time.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264
  1. /*
  2. * linux/arch/parisc/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992, 1995 Linus Torvalds
  5. * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
  6. * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
  7. *
  8. * 1994-07-02 Alan Modra
  9. * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  10. * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. */
  13. #include <linux/errno.h>
  14. #include <linux/module.h>
  15. #include <linux/sched.h>
  16. #include <linux/kernel.h>
  17. #include <linux/param.h>
  18. #include <linux/string.h>
  19. #include <linux/mm.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/smp.h>
  24. #include <linux/profile.h>
  25. #include <linux/clocksource.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/ftrace.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/io.h>
  30. #include <asm/irq.h>
  31. #include <asm/param.h>
  32. #include <asm/pdc.h>
  33. #include <asm/led.h>
  34. #include <linux/timex.h>
  35. static unsigned long clocktick __read_mostly; /* timer cycles per tick */
  36. /*
  37. * We keep time on PA-RISC Linux by using the Interval Timer which is
  38. * a pair of registers; one is read-only and one is write-only; both
  39. * accessed through CR16. The read-only register is 32 or 64 bits wide,
  40. * and increments by 1 every CPU clock tick. The architecture only
  41. * guarantees us a rate between 0.5 and 2, but all implementations use a
  42. * rate of 1. The write-only register is 32-bits wide. When the lowest
  43. * 32 bits of the read-only register compare equal to the write-only
  44. * register, it raises a maskable external interrupt. Each processor has
  45. * an Interval Timer of its own and they are not synchronised.
  46. *
  47. * We want to generate an interrupt every 1/HZ seconds. So we program
  48. * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
  49. * is programmed with the intended time of the next tick. We can be
  50. * held off for an arbitrarily long period of time by interrupts being
  51. * disabled, so we may miss one or more ticks.
  52. */
  53. irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
  54. {
  55. unsigned long now;
  56. unsigned long next_tick;
  57. unsigned long cycles_elapsed, ticks_elapsed;
  58. unsigned long cycles_remainder;
  59. unsigned int cpu = smp_processor_id();
  60. struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
  61. /* gcc can optimize for "read-only" case with a local clocktick */
  62. unsigned long cpt = clocktick;
  63. profile_tick(CPU_PROFILING);
  64. /* Initialize next_tick to the expected tick time. */
  65. next_tick = cpuinfo->it_value;
  66. /* Get current interval timer.
  67. * CR16 reads as 64 bits in CPU wide mode.
  68. * CR16 reads as 32 bits in CPU narrow mode.
  69. */
  70. now = mfctl(16);
  71. cycles_elapsed = now - next_tick;
  72. if ((cycles_elapsed >> 5) < cpt) {
  73. /* use "cheap" math (add/subtract) instead
  74. * of the more expensive div/mul method
  75. */
  76. cycles_remainder = cycles_elapsed;
  77. ticks_elapsed = 1;
  78. while (cycles_remainder > cpt) {
  79. cycles_remainder -= cpt;
  80. ticks_elapsed++;
  81. }
  82. } else {
  83. cycles_remainder = cycles_elapsed % cpt;
  84. ticks_elapsed = 1 + cycles_elapsed / cpt;
  85. }
  86. /* Can we differentiate between "early CR16" (aka Scenario 1) and
  87. * "long delay" (aka Scenario 3)? I don't think so.
  88. *
  89. * We expected timer_interrupt to be delivered at least a few hundred
  90. * cycles after the IT fires. But it's arbitrary how much time passes
  91. * before we call it "late". I've picked one second.
  92. */
  93. if (unlikely(ticks_elapsed > HZ)) {
  94. /* Scenario 3: very long delay? bad in any case */
  95. printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
  96. " cycles %lX rem %lX "
  97. " next/now %lX/%lX\n",
  98. cpu,
  99. cycles_elapsed, cycles_remainder,
  100. next_tick, now );
  101. }
  102. /* convert from "division remainder" to "remainder of clock tick" */
  103. cycles_remainder = cpt - cycles_remainder;
  104. /* Determine when (in CR16 cycles) next IT interrupt will fire.
  105. * We want IT to fire modulo clocktick even if we miss/skip some.
  106. * But those interrupts don't in fact get delivered that regularly.
  107. */
  108. next_tick = now + cycles_remainder;
  109. cpuinfo->it_value = next_tick;
  110. /* Skip one clocktick on purpose if we are likely to miss next_tick.
  111. * We want to avoid the new next_tick being less than CR16.
  112. * If that happened, itimer wouldn't fire until CR16 wrapped.
  113. * We'll catch the tick we missed on the tick after that.
  114. */
  115. if (!(cycles_remainder >> 13))
  116. next_tick += cpt;
  117. /* Program the IT when to deliver the next interrupt. */
  118. /* Only bottom 32-bits of next_tick are written to cr16. */
  119. mtctl(next_tick, 16);
  120. /* Done mucking with unreliable delivery of interrupts.
  121. * Go do system house keeping.
  122. */
  123. if (!--cpuinfo->prof_counter) {
  124. cpuinfo->prof_counter = cpuinfo->prof_multiplier;
  125. update_process_times(user_mode(get_irq_regs()));
  126. }
  127. if (cpu == 0) {
  128. write_seqlock(&xtime_lock);
  129. do_timer(ticks_elapsed);
  130. write_sequnlock(&xtime_lock);
  131. }
  132. return IRQ_HANDLED;
  133. }
  134. unsigned long profile_pc(struct pt_regs *regs)
  135. {
  136. unsigned long pc = instruction_pointer(regs);
  137. if (regs->gr[0] & PSW_N)
  138. pc -= 4;
  139. #ifdef CONFIG_SMP
  140. if (in_lock_functions(pc))
  141. pc = regs->gr[2];
  142. #endif
  143. return pc;
  144. }
  145. EXPORT_SYMBOL(profile_pc);
  146. /* clock source code */
  147. static cycle_t read_cr16(void)
  148. {
  149. return get_cycles();
  150. }
  151. static struct clocksource clocksource_cr16 = {
  152. .name = "cr16",
  153. .rating = 300,
  154. .read = read_cr16,
  155. .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
  156. .mult = 0, /* to be set */
  157. .shift = 22,
  158. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  159. };
  160. #ifdef CONFIG_SMP
  161. int update_cr16_clocksource(void)
  162. {
  163. /* since the cr16 cycle counters are not synchronized across CPUs,
  164. we'll check if we should switch to a safe clocksource: */
  165. if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
  166. clocksource_change_rating(&clocksource_cr16, 0);
  167. return 1;
  168. }
  169. return 0;
  170. }
  171. #else
  172. int update_cr16_clocksource(void)
  173. {
  174. return 0; /* no change */
  175. }
  176. #endif /*CONFIG_SMP*/
  177. void __init start_cpu_itimer(void)
  178. {
  179. unsigned int cpu = smp_processor_id();
  180. unsigned long next_tick = mfctl(16) + clocktick;
  181. mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
  182. per_cpu(cpu_data, cpu).it_value = next_tick;
  183. }
  184. static struct platform_device rtc_generic_dev = {
  185. .name = "rtc-generic",
  186. .id = -1,
  187. };
  188. static int __init rtc_init(void)
  189. {
  190. if (platform_device_register(&rtc_generic_dev) < 0)
  191. printk(KERN_ERR "unable to register rtc device...\n");
  192. /* not necessarily an error */
  193. return 0;
  194. }
  195. module_init(rtc_init);
  196. void __init time_init(void)
  197. {
  198. static struct pdc_tod tod_data;
  199. unsigned long current_cr16_khz;
  200. clocktick = (100 * PAGE0->mem_10msec) / HZ;
  201. start_cpu_itimer(); /* get CPU 0 started */
  202. /* register at clocksource framework */
  203. current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */
  204. clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
  205. clocksource_cr16.shift);
  206. clocksource_register(&clocksource_cr16);
  207. if (pdc_tod_read(&tod_data) == 0) {
  208. unsigned long flags;
  209. write_seqlock_irqsave(&xtime_lock, flags);
  210. xtime.tv_sec = tod_data.tod_sec;
  211. xtime.tv_nsec = tod_data.tod_usec * 1000;
  212. set_normalized_timespec(&wall_to_monotonic,
  213. -xtime.tv_sec, -xtime.tv_nsec);
  214. write_sequnlock_irqrestore(&xtime_lock, flags);
  215. } else {
  216. printk(KERN_ERR "Error reading tod clock\n");
  217. xtime.tv_sec = 0;
  218. xtime.tv_nsec = 0;
  219. }
  220. }