mmu.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/bootmem.h>
  15. #include <linux/mman.h>
  16. #include <linux/nodemask.h>
  17. #include <asm/cputype.h>
  18. #include <asm/mach-types.h>
  19. #include <asm/sections.h>
  20. #include <asm/cachetype.h>
  21. #include <asm/setup.h>
  22. #include <asm/sizes.h>
  23. #include <asm/tlb.h>
  24. #include <asm/highmem.h>
  25. #include <asm/mach/arch.h>
  26. #include <asm/mach/map.h>
  27. #include "mm.h"
  28. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  29. /*
  30. * empty_zero_page is a special page that is used for
  31. * zero-initialized data and COW.
  32. */
  33. struct page *empty_zero_page;
  34. EXPORT_SYMBOL(empty_zero_page);
  35. /*
  36. * The pmd table for the upper-most set of pages.
  37. */
  38. pmd_t *top_pmd;
  39. #define CPOLICY_UNCACHED 0
  40. #define CPOLICY_BUFFERED 1
  41. #define CPOLICY_WRITETHROUGH 2
  42. #define CPOLICY_WRITEBACK 3
  43. #define CPOLICY_WRITEALLOC 4
  44. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  45. static unsigned int ecc_mask __initdata = 0;
  46. pgprot_t pgprot_user;
  47. pgprot_t pgprot_kernel;
  48. EXPORT_SYMBOL(pgprot_user);
  49. EXPORT_SYMBOL(pgprot_kernel);
  50. struct cachepolicy {
  51. const char policy[16];
  52. unsigned int cr_mask;
  53. unsigned int pmd;
  54. unsigned int pte;
  55. };
  56. static struct cachepolicy cache_policies[] __initdata = {
  57. {
  58. .policy = "uncached",
  59. .cr_mask = CR_W|CR_C,
  60. .pmd = PMD_SECT_UNCACHED,
  61. .pte = L_PTE_MT_UNCACHED,
  62. }, {
  63. .policy = "buffered",
  64. .cr_mask = CR_C,
  65. .pmd = PMD_SECT_BUFFERED,
  66. .pte = L_PTE_MT_BUFFERABLE,
  67. }, {
  68. .policy = "writethrough",
  69. .cr_mask = 0,
  70. .pmd = PMD_SECT_WT,
  71. .pte = L_PTE_MT_WRITETHROUGH,
  72. }, {
  73. .policy = "writeback",
  74. .cr_mask = 0,
  75. .pmd = PMD_SECT_WB,
  76. .pte = L_PTE_MT_WRITEBACK,
  77. }, {
  78. .policy = "writealloc",
  79. .cr_mask = 0,
  80. .pmd = PMD_SECT_WBWA,
  81. .pte = L_PTE_MT_WRITEALLOC,
  82. }
  83. };
  84. /*
  85. * These are useful for identifying cache coherency
  86. * problems by allowing the cache or the cache and
  87. * writebuffer to be turned off. (Note: the write
  88. * buffer should not be on and the cache off).
  89. */
  90. static void __init early_cachepolicy(char **p)
  91. {
  92. int i;
  93. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  94. int len = strlen(cache_policies[i].policy);
  95. if (memcmp(*p, cache_policies[i].policy, len) == 0) {
  96. cachepolicy = i;
  97. cr_alignment &= ~cache_policies[i].cr_mask;
  98. cr_no_alignment &= ~cache_policies[i].cr_mask;
  99. *p += len;
  100. break;
  101. }
  102. }
  103. if (i == ARRAY_SIZE(cache_policies))
  104. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  105. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  106. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  107. cachepolicy = CPOLICY_WRITEBACK;
  108. }
  109. flush_cache_all();
  110. set_cr(cr_alignment);
  111. }
  112. __early_param("cachepolicy=", early_cachepolicy);
  113. static void __init early_nocache(char **__unused)
  114. {
  115. char *p = "buffered";
  116. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  117. early_cachepolicy(&p);
  118. }
  119. __early_param("nocache", early_nocache);
  120. static void __init early_nowrite(char **__unused)
  121. {
  122. char *p = "uncached";
  123. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  124. early_cachepolicy(&p);
  125. }
  126. __early_param("nowb", early_nowrite);
  127. static void __init early_ecc(char **p)
  128. {
  129. if (memcmp(*p, "on", 2) == 0) {
  130. ecc_mask = PMD_PROTECTION;
  131. *p += 2;
  132. } else if (memcmp(*p, "off", 3) == 0) {
  133. ecc_mask = 0;
  134. *p += 3;
  135. }
  136. }
  137. __early_param("ecc=", early_ecc);
  138. static int __init noalign_setup(char *__unused)
  139. {
  140. cr_alignment &= ~CR_A;
  141. cr_no_alignment &= ~CR_A;
  142. set_cr(cr_alignment);
  143. return 1;
  144. }
  145. __setup("noalign", noalign_setup);
  146. #ifndef CONFIG_SMP
  147. void adjust_cr(unsigned long mask, unsigned long set)
  148. {
  149. unsigned long flags;
  150. mask &= ~CR_A;
  151. set &= mask;
  152. local_irq_save(flags);
  153. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  154. cr_alignment = (cr_alignment & ~mask) | set;
  155. set_cr((get_cr() & ~mask) | set);
  156. local_irq_restore(flags);
  157. }
  158. #endif
  159. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
  160. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  161. static struct mem_type mem_types[] = {
  162. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  163. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  164. L_PTE_SHARED,
  165. .prot_l1 = PMD_TYPE_TABLE,
  166. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  167. .domain = DOMAIN_IO,
  168. },
  169. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  170. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  171. .prot_l1 = PMD_TYPE_TABLE,
  172. .prot_sect = PROT_SECT_DEVICE,
  173. .domain = DOMAIN_IO,
  174. },
  175. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  176. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  177. .prot_l1 = PMD_TYPE_TABLE,
  178. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  179. .domain = DOMAIN_IO,
  180. },
  181. [MT_DEVICE_WC] = { /* ioremap_wc */
  182. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  183. .prot_l1 = PMD_TYPE_TABLE,
  184. .prot_sect = PROT_SECT_DEVICE,
  185. .domain = DOMAIN_IO,
  186. },
  187. [MT_UNCACHED] = {
  188. .prot_pte = PROT_PTE_DEVICE,
  189. .prot_l1 = PMD_TYPE_TABLE,
  190. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  191. .domain = DOMAIN_IO,
  192. },
  193. [MT_CACHECLEAN] = {
  194. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  195. .domain = DOMAIN_KERNEL,
  196. },
  197. [MT_MINICLEAN] = {
  198. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  199. .domain = DOMAIN_KERNEL,
  200. },
  201. [MT_LOW_VECTORS] = {
  202. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  203. L_PTE_EXEC,
  204. .prot_l1 = PMD_TYPE_TABLE,
  205. .domain = DOMAIN_USER,
  206. },
  207. [MT_HIGH_VECTORS] = {
  208. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  209. L_PTE_USER | L_PTE_EXEC,
  210. .prot_l1 = PMD_TYPE_TABLE,
  211. .domain = DOMAIN_USER,
  212. },
  213. [MT_MEMORY] = {
  214. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  215. .domain = DOMAIN_KERNEL,
  216. },
  217. [MT_ROM] = {
  218. .prot_sect = PMD_TYPE_SECT,
  219. .domain = DOMAIN_KERNEL,
  220. },
  221. [MT_MEMORY_NONCACHED] = {
  222. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  223. .domain = DOMAIN_KERNEL,
  224. },
  225. };
  226. const struct mem_type *get_mem_type(unsigned int type)
  227. {
  228. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  229. }
  230. /*
  231. * Adjust the PMD section entries according to the CPU in use.
  232. */
  233. static void __init build_mem_type_table(void)
  234. {
  235. struct cachepolicy *cp;
  236. unsigned int cr = get_cr();
  237. unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
  238. int cpu_arch = cpu_architecture();
  239. int i;
  240. if (cpu_arch < CPU_ARCH_ARMv6) {
  241. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  242. if (cachepolicy > CPOLICY_BUFFERED)
  243. cachepolicy = CPOLICY_BUFFERED;
  244. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  245. if (cachepolicy > CPOLICY_WRITETHROUGH)
  246. cachepolicy = CPOLICY_WRITETHROUGH;
  247. #endif
  248. }
  249. if (cpu_arch < CPU_ARCH_ARMv5) {
  250. if (cachepolicy >= CPOLICY_WRITEALLOC)
  251. cachepolicy = CPOLICY_WRITEBACK;
  252. ecc_mask = 0;
  253. }
  254. #ifdef CONFIG_SMP
  255. cachepolicy = CPOLICY_WRITEALLOC;
  256. #endif
  257. /*
  258. * Strip out features not present on earlier architectures.
  259. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  260. * without extended page tables don't have the 'Shared' bit.
  261. */
  262. if (cpu_arch < CPU_ARCH_ARMv5)
  263. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  264. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  265. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  266. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  267. mem_types[i].prot_sect &= ~PMD_SECT_S;
  268. /*
  269. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  270. * "update-able on write" bit on ARM610). However, Xscale and
  271. * Xscale3 require this bit to be cleared.
  272. */
  273. if (cpu_is_xscale() || cpu_is_xsc3()) {
  274. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  275. mem_types[i].prot_sect &= ~PMD_BIT4;
  276. mem_types[i].prot_l1 &= ~PMD_BIT4;
  277. }
  278. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  279. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  280. if (mem_types[i].prot_l1)
  281. mem_types[i].prot_l1 |= PMD_BIT4;
  282. if (mem_types[i].prot_sect)
  283. mem_types[i].prot_sect |= PMD_BIT4;
  284. }
  285. }
  286. /*
  287. * Mark the device areas according to the CPU/architecture.
  288. */
  289. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  290. if (!cpu_is_xsc3()) {
  291. /*
  292. * Mark device regions on ARMv6+ as execute-never
  293. * to prevent speculative instruction fetches.
  294. */
  295. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  296. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  297. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  298. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  299. }
  300. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  301. /*
  302. * For ARMv7 with TEX remapping,
  303. * - shared device is SXCB=1100
  304. * - nonshared device is SXCB=0100
  305. * - write combine device mem is SXCB=0001
  306. * (Uncached Normal memory)
  307. */
  308. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  309. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  310. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  311. } else if (cpu_is_xsc3()) {
  312. /*
  313. * For Xscale3,
  314. * - shared device is TEXCB=00101
  315. * - nonshared device is TEXCB=01000
  316. * - write combine device mem is TEXCB=00100
  317. * (Inner/Outer Uncacheable in xsc3 parlance)
  318. */
  319. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  320. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  321. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  322. } else {
  323. /*
  324. * For ARMv6 and ARMv7 without TEX remapping,
  325. * - shared device is TEXCB=00001
  326. * - nonshared device is TEXCB=01000
  327. * - write combine device mem is TEXCB=00100
  328. * (Uncached Normal in ARMv6 parlance).
  329. */
  330. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  331. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  332. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  333. }
  334. } else {
  335. /*
  336. * On others, write combining is "Uncached/Buffered"
  337. */
  338. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  339. }
  340. /*
  341. * Now deal with the memory-type mappings
  342. */
  343. cp = &cache_policies[cachepolicy];
  344. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  345. #ifndef CONFIG_SMP
  346. /*
  347. * Only use write-through for non-SMP systems
  348. */
  349. if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  350. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  351. #endif
  352. /*
  353. * Enable CPU-specific coherency if supported.
  354. * (Only available on XSC3 at the moment.)
  355. */
  356. if (arch_is_coherent() && cpu_is_xsc3())
  357. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  358. /*
  359. * ARMv6 and above have extended page tables.
  360. */
  361. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  362. /*
  363. * Mark cache clean areas and XIP ROM read only
  364. * from SVC mode and no access from userspace.
  365. */
  366. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  367. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  368. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  369. #ifdef CONFIG_SMP
  370. /*
  371. * Mark memory with the "shared" attribute for SMP systems
  372. */
  373. user_pgprot |= L_PTE_SHARED;
  374. kern_pgprot |= L_PTE_SHARED;
  375. vecs_pgprot |= L_PTE_SHARED;
  376. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  377. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  378. #endif
  379. }
  380. /*
  381. * Non-cacheable Normal - intended for memory areas that must
  382. * not cause dirty cache line writebacks when used
  383. */
  384. if (cpu_arch >= CPU_ARCH_ARMv6) {
  385. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  386. /* Non-cacheable Normal is XCB = 001 */
  387. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  388. PMD_SECT_BUFFERED;
  389. } else {
  390. /* For both ARMv6 and non-TEX-remapping ARMv7 */
  391. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  392. PMD_SECT_TEX(1);
  393. }
  394. } else {
  395. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
  396. }
  397. for (i = 0; i < 16; i++) {
  398. unsigned long v = pgprot_val(protection_map[i]);
  399. protection_map[i] = __pgprot(v | user_pgprot);
  400. }
  401. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  402. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  403. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  404. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  405. L_PTE_DIRTY | L_PTE_WRITE |
  406. L_PTE_EXEC | kern_pgprot);
  407. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  408. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  409. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  410. mem_types[MT_ROM].prot_sect |= cp->pmd;
  411. switch (cp->pmd) {
  412. case PMD_SECT_WT:
  413. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  414. break;
  415. case PMD_SECT_WB:
  416. case PMD_SECT_WBWA:
  417. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  418. break;
  419. }
  420. printk("Memory policy: ECC %sabled, Data cache %s\n",
  421. ecc_mask ? "en" : "dis", cp->policy);
  422. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  423. struct mem_type *t = &mem_types[i];
  424. if (t->prot_l1)
  425. t->prot_l1 |= PMD_DOMAIN(t->domain);
  426. if (t->prot_sect)
  427. t->prot_sect |= PMD_DOMAIN(t->domain);
  428. }
  429. }
  430. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  431. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  432. unsigned long end, unsigned long pfn,
  433. const struct mem_type *type)
  434. {
  435. pte_t *pte;
  436. if (pmd_none(*pmd)) {
  437. pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
  438. __pmd_populate(pmd, __pa(pte) | type->prot_l1);
  439. }
  440. pte = pte_offset_kernel(pmd, addr);
  441. do {
  442. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  443. pfn++;
  444. } while (pte++, addr += PAGE_SIZE, addr != end);
  445. }
  446. static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
  447. unsigned long end, unsigned long phys,
  448. const struct mem_type *type)
  449. {
  450. pmd_t *pmd = pmd_offset(pgd, addr);
  451. /*
  452. * Try a section mapping - end, addr and phys must all be aligned
  453. * to a section boundary. Note that PMDs refer to the individual
  454. * L1 entries, whereas PGDs refer to a group of L1 entries making
  455. * up one logical pointer to an L2 table.
  456. */
  457. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  458. pmd_t *p = pmd;
  459. if (addr & SECTION_SIZE)
  460. pmd++;
  461. do {
  462. *pmd = __pmd(phys | type->prot_sect);
  463. phys += SECTION_SIZE;
  464. } while (pmd++, addr += SECTION_SIZE, addr != end);
  465. flush_pmd_entry(p);
  466. } else {
  467. /*
  468. * No need to loop; pte's aren't interested in the
  469. * individual L1 entries.
  470. */
  471. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  472. }
  473. }
  474. static void __init create_36bit_mapping(struct map_desc *md,
  475. const struct mem_type *type)
  476. {
  477. unsigned long phys, addr, length, end;
  478. pgd_t *pgd;
  479. addr = md->virtual;
  480. phys = (unsigned long)__pfn_to_phys(md->pfn);
  481. length = PAGE_ALIGN(md->length);
  482. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  483. printk(KERN_ERR "MM: CPU does not support supersection "
  484. "mapping for 0x%08llx at 0x%08lx\n",
  485. __pfn_to_phys((u64)md->pfn), addr);
  486. return;
  487. }
  488. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  489. * Since domain assignments can in fact be arbitrary, the
  490. * 'domain == 0' check below is required to insure that ARMv6
  491. * supersections are only allocated for domain 0 regardless
  492. * of the actual domain assignments in use.
  493. */
  494. if (type->domain) {
  495. printk(KERN_ERR "MM: invalid domain in supersection "
  496. "mapping for 0x%08llx at 0x%08lx\n",
  497. __pfn_to_phys((u64)md->pfn), addr);
  498. return;
  499. }
  500. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  501. printk(KERN_ERR "MM: cannot create mapping for "
  502. "0x%08llx at 0x%08lx invalid alignment\n",
  503. __pfn_to_phys((u64)md->pfn), addr);
  504. return;
  505. }
  506. /*
  507. * Shift bits [35:32] of address into bits [23:20] of PMD
  508. * (See ARMv6 spec).
  509. */
  510. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  511. pgd = pgd_offset_k(addr);
  512. end = addr + length;
  513. do {
  514. pmd_t *pmd = pmd_offset(pgd, addr);
  515. int i;
  516. for (i = 0; i < 16; i++)
  517. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  518. addr += SUPERSECTION_SIZE;
  519. phys += SUPERSECTION_SIZE;
  520. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  521. } while (addr != end);
  522. }
  523. /*
  524. * Create the page directory entries and any necessary
  525. * page tables for the mapping specified by `md'. We
  526. * are able to cope here with varying sizes and address
  527. * offsets, and we take full advantage of sections and
  528. * supersections.
  529. */
  530. void __init create_mapping(struct map_desc *md)
  531. {
  532. unsigned long phys, addr, length, end;
  533. const struct mem_type *type;
  534. pgd_t *pgd;
  535. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  536. printk(KERN_WARNING "BUG: not creating mapping for "
  537. "0x%08llx at 0x%08lx in user region\n",
  538. __pfn_to_phys((u64)md->pfn), md->virtual);
  539. return;
  540. }
  541. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  542. md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
  543. printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
  544. "overlaps vmalloc space\n",
  545. __pfn_to_phys((u64)md->pfn), md->virtual);
  546. }
  547. type = &mem_types[md->type];
  548. /*
  549. * Catch 36-bit addresses
  550. */
  551. if (md->pfn >= 0x100000) {
  552. create_36bit_mapping(md, type);
  553. return;
  554. }
  555. addr = md->virtual & PAGE_MASK;
  556. phys = (unsigned long)__pfn_to_phys(md->pfn);
  557. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  558. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  559. printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
  560. "be mapped using pages, ignoring.\n",
  561. __pfn_to_phys(md->pfn), addr);
  562. return;
  563. }
  564. pgd = pgd_offset_k(addr);
  565. end = addr + length;
  566. do {
  567. unsigned long next = pgd_addr_end(addr, end);
  568. alloc_init_section(pgd, addr, next, phys, type);
  569. phys += next - addr;
  570. addr = next;
  571. } while (pgd++, addr != end);
  572. }
  573. /*
  574. * Create the architecture specific mappings
  575. */
  576. void __init iotable_init(struct map_desc *io_desc, int nr)
  577. {
  578. int i;
  579. for (i = 0; i < nr; i++)
  580. create_mapping(io_desc + i);
  581. }
  582. static unsigned long __initdata vmalloc_reserve = SZ_128M;
  583. /*
  584. * vmalloc=size forces the vmalloc area to be exactly 'size'
  585. * bytes. This can be used to increase (or decrease) the vmalloc
  586. * area - the default is 128m.
  587. */
  588. static void __init early_vmalloc(char **arg)
  589. {
  590. vmalloc_reserve = memparse(*arg, arg);
  591. if (vmalloc_reserve < SZ_16M) {
  592. vmalloc_reserve = SZ_16M;
  593. printk(KERN_WARNING
  594. "vmalloc area too small, limiting to %luMB\n",
  595. vmalloc_reserve >> 20);
  596. }
  597. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  598. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  599. printk(KERN_WARNING
  600. "vmalloc area is too big, limiting to %luMB\n",
  601. vmalloc_reserve >> 20);
  602. }
  603. }
  604. __early_param("vmalloc=", early_vmalloc);
  605. #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
  606. static void __init sanity_check_meminfo(void)
  607. {
  608. int i, j;
  609. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  610. struct membank *bank = &meminfo.bank[j];
  611. *bank = meminfo.bank[i];
  612. #ifdef CONFIG_HIGHMEM
  613. /*
  614. * Split those memory banks which are partially overlapping
  615. * the vmalloc area greatly simplifying things later.
  616. */
  617. if (__va(bank->start) < VMALLOC_MIN &&
  618. bank->size > VMALLOC_MIN - __va(bank->start)) {
  619. if (meminfo.nr_banks >= NR_BANKS) {
  620. printk(KERN_CRIT "NR_BANKS too low, "
  621. "ignoring high memory\n");
  622. } else if (cache_is_vipt_aliasing()) {
  623. printk(KERN_CRIT "HIGHMEM is not yet supported "
  624. "with VIPT aliasing cache, "
  625. "ignoring high memory\n");
  626. } else {
  627. memmove(bank + 1, bank,
  628. (meminfo.nr_banks - i) * sizeof(*bank));
  629. meminfo.nr_banks++;
  630. i++;
  631. bank[1].size -= VMALLOC_MIN - __va(bank->start);
  632. bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
  633. j++;
  634. }
  635. bank->size = VMALLOC_MIN - __va(bank->start);
  636. }
  637. #else
  638. /*
  639. * Check whether this memory bank would entirely overlap
  640. * the vmalloc area.
  641. */
  642. if (__va(bank->start) >= VMALLOC_MIN ||
  643. __va(bank->start) < (void *)PAGE_OFFSET) {
  644. printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
  645. "(vmalloc region overlap).\n",
  646. bank->start, bank->start + bank->size - 1);
  647. continue;
  648. }
  649. /*
  650. * Check whether this memory bank would partially overlap
  651. * the vmalloc area.
  652. */
  653. if (__va(bank->start + bank->size) > VMALLOC_MIN ||
  654. __va(bank->start + bank->size) < __va(bank->start)) {
  655. unsigned long newsize = VMALLOC_MIN - __va(bank->start);
  656. printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
  657. "to -%.8lx (vmalloc region overlap).\n",
  658. bank->start, bank->start + bank->size - 1,
  659. bank->start + newsize - 1);
  660. bank->size = newsize;
  661. }
  662. #endif
  663. j++;
  664. }
  665. meminfo.nr_banks = j;
  666. }
  667. static inline void prepare_page_table(void)
  668. {
  669. unsigned long addr;
  670. /*
  671. * Clear out all the mappings below the kernel image.
  672. */
  673. for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
  674. pmd_clear(pmd_off_k(addr));
  675. #ifdef CONFIG_XIP_KERNEL
  676. /* The XIP kernel is mapped in the module area -- skip over it */
  677. addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
  678. #endif
  679. for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
  680. pmd_clear(pmd_off_k(addr));
  681. /*
  682. * Clear out all the kernel space mappings, except for the first
  683. * memory bank, up to the end of the vmalloc region.
  684. */
  685. for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
  686. addr < VMALLOC_END; addr += PGDIR_SIZE)
  687. pmd_clear(pmd_off_k(addr));
  688. }
  689. /*
  690. * Reserve the various regions of node 0
  691. */
  692. void __init reserve_node_zero(pg_data_t *pgdat)
  693. {
  694. unsigned long res_size = 0;
  695. /*
  696. * Register the kernel text and data with bootmem.
  697. * Note that this can only be in node 0.
  698. */
  699. #ifdef CONFIG_XIP_KERNEL
  700. reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
  701. BOOTMEM_DEFAULT);
  702. #else
  703. reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
  704. BOOTMEM_DEFAULT);
  705. #endif
  706. /*
  707. * Reserve the page tables. These are already in use,
  708. * and can only be in node 0.
  709. */
  710. reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
  711. PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
  712. /*
  713. * Hmm... This should go elsewhere, but we really really need to
  714. * stop things allocating the low memory; ideally we need a better
  715. * implementation of GFP_DMA which does not assume that DMA-able
  716. * memory starts at zero.
  717. */
  718. if (machine_is_integrator() || machine_is_cintegrator())
  719. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  720. /*
  721. * These should likewise go elsewhere. They pre-reserve the
  722. * screen memory region at the start of main system memory.
  723. */
  724. if (machine_is_edb7211())
  725. res_size = 0x00020000;
  726. if (machine_is_p720t())
  727. res_size = 0x00014000;
  728. /* H1940 and RX3715 need to reserve this for suspend */
  729. if (machine_is_h1940() || machine_is_rx3715()) {
  730. reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
  731. BOOTMEM_DEFAULT);
  732. reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
  733. BOOTMEM_DEFAULT);
  734. }
  735. if (machine_is_palmld() || machine_is_palmtx()) {
  736. reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
  737. BOOTMEM_EXCLUSIVE);
  738. reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
  739. BOOTMEM_EXCLUSIVE);
  740. }
  741. if (machine_is_palmt5())
  742. reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
  743. BOOTMEM_EXCLUSIVE);
  744. #ifdef CONFIG_SA1111
  745. /*
  746. * Because of the SA1111 DMA bug, we want to preserve our
  747. * precious DMA-able memory...
  748. */
  749. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  750. #endif
  751. if (res_size)
  752. reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
  753. BOOTMEM_DEFAULT);
  754. }
  755. /*
  756. * Set up device the mappings. Since we clear out the page tables for all
  757. * mappings above VMALLOC_END, we will remove any debug device mappings.
  758. * This means you have to be careful how you debug this function, or any
  759. * called function. This means you can't use any function or debugging
  760. * method which may touch any device, otherwise the kernel _will_ crash.
  761. */
  762. static void __init devicemaps_init(struct machine_desc *mdesc)
  763. {
  764. struct map_desc map;
  765. unsigned long addr;
  766. void *vectors;
  767. /*
  768. * Allocate the vector page early.
  769. */
  770. vectors = alloc_bootmem_low_pages(PAGE_SIZE);
  771. for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
  772. pmd_clear(pmd_off_k(addr));
  773. /*
  774. * Map the kernel if it is XIP.
  775. * It is always first in the modulearea.
  776. */
  777. #ifdef CONFIG_XIP_KERNEL
  778. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  779. map.virtual = MODULES_VADDR;
  780. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  781. map.type = MT_ROM;
  782. create_mapping(&map);
  783. #endif
  784. /*
  785. * Map the cache flushing regions.
  786. */
  787. #ifdef FLUSH_BASE
  788. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  789. map.virtual = FLUSH_BASE;
  790. map.length = SZ_1M;
  791. map.type = MT_CACHECLEAN;
  792. create_mapping(&map);
  793. #endif
  794. #ifdef FLUSH_BASE_MINICACHE
  795. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  796. map.virtual = FLUSH_BASE_MINICACHE;
  797. map.length = SZ_1M;
  798. map.type = MT_MINICLEAN;
  799. create_mapping(&map);
  800. #endif
  801. /*
  802. * Create a mapping for the machine vectors at the high-vectors
  803. * location (0xffff0000). If we aren't using high-vectors, also
  804. * create a mapping at the low-vectors virtual address.
  805. */
  806. map.pfn = __phys_to_pfn(virt_to_phys(vectors));
  807. map.virtual = 0xffff0000;
  808. map.length = PAGE_SIZE;
  809. map.type = MT_HIGH_VECTORS;
  810. create_mapping(&map);
  811. if (!vectors_high()) {
  812. map.virtual = 0;
  813. map.type = MT_LOW_VECTORS;
  814. create_mapping(&map);
  815. }
  816. /*
  817. * Ask the machine support to map in the statically mapped devices.
  818. */
  819. if (mdesc->map_io)
  820. mdesc->map_io();
  821. /*
  822. * Finally flush the caches and tlb to ensure that we're in a
  823. * consistent state wrt the writebuffer. This also ensures that
  824. * any write-allocated cache lines in the vector page are written
  825. * back. After this point, we can start to touch devices again.
  826. */
  827. local_flush_tlb_all();
  828. flush_cache_all();
  829. }
  830. static void __init kmap_init(void)
  831. {
  832. #ifdef CONFIG_HIGHMEM
  833. pmd_t *pmd = pmd_off_k(PKMAP_BASE);
  834. pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
  835. BUG_ON(!pmd_none(*pmd) || !pte);
  836. __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
  837. pkmap_page_table = pte + PTRS_PER_PTE;
  838. #endif
  839. }
  840. /*
  841. * paging_init() sets up the page tables, initialises the zone memory
  842. * maps, and sets up the zero page, bad page and bad page tables.
  843. */
  844. void __init paging_init(struct machine_desc *mdesc)
  845. {
  846. void *zero_page;
  847. build_mem_type_table();
  848. sanity_check_meminfo();
  849. prepare_page_table();
  850. bootmem_init();
  851. devicemaps_init(mdesc);
  852. kmap_init();
  853. top_pmd = pmd_off_k(0xffff0000);
  854. /*
  855. * allocate the zero page. Note that this always succeeds and
  856. * returns a zeroed result.
  857. */
  858. zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
  859. empty_zero_page = virt_to_page(zero_page);
  860. flush_dcache_page(empty_zero_page);
  861. }
  862. /*
  863. * In order to soft-boot, we need to insert a 1:1 mapping in place of
  864. * the user-mode pages. This will then ensure that we have predictable
  865. * results when turning the mmu off
  866. */
  867. void setup_mm_for_reboot(char mode)
  868. {
  869. unsigned long base_pmdval;
  870. pgd_t *pgd;
  871. int i;
  872. if (current->mm && current->mm->pgd)
  873. pgd = current->mm->pgd;
  874. else
  875. pgd = init_mm.pgd;
  876. base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
  877. if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
  878. base_pmdval |= PMD_BIT4;
  879. for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
  880. unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
  881. pmd_t *pmd;
  882. pmd = pmd_off(pgd, i << PGDIR_SHIFT);
  883. pmd[0] = __pmd(pmdval);
  884. pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
  885. flush_pmd_entry(pmd);
  886. }
  887. }