clock.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128
  1. /*
  2. * linux/arch/arm/mach-omap2/clock.c
  3. *
  4. * Copyright (C) 2005 Texas Instruments Inc.
  5. * Richard Woodruff <r-woodruff2@ti.com>
  6. * Created for OMAP2.
  7. *
  8. * Cleaned up and modified to use omap shared clock framework by
  9. * Tony Lindgren <tony@atomide.com>
  10. *
  11. * Based on omap1 clock.c, Copyright (C) 2004 - 2005 Nokia corporation
  12. * Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License version 2 as
  16. * published by the Free Software Foundation.
  17. */
  18. #include <linux/module.h>
  19. #include <linux/kernel.h>
  20. #include <linux/device.h>
  21. #include <linux/list.h>
  22. #include <linux/errno.h>
  23. #include <linux/delay.h>
  24. #include <linux/clk.h>
  25. #include <asm/io.h>
  26. #include <asm/arch/clock.h>
  27. #include <asm/arch/sram.h>
  28. #include "prcm-regs.h"
  29. #include "memory.h"
  30. #include "clock.h"
  31. //#define DOWN_VARIABLE_DPLL 1 /* Experimental */
  32. static struct prcm_config *curr_prcm_set;
  33. static u32 curr_perf_level = PRCM_FULL_SPEED;
  34. static struct clk *vclk;
  35. static struct clk *sclk;
  36. /*-------------------------------------------------------------------------
  37. * Omap2 specific clock functions
  38. *-------------------------------------------------------------------------*/
  39. /* Recalculate SYST_CLK */
  40. static void omap2_sys_clk_recalc(struct clk * clk)
  41. {
  42. u32 div = PRCM_CLKSRC_CTRL;
  43. div &= (1 << 7) | (1 << 6); /* Test if ext clk divided by 1 or 2 */
  44. div >>= clk->rate_offset;
  45. clk->rate = (clk->parent->rate / div);
  46. propagate_rate(clk);
  47. }
  48. static u32 omap2_get_dpll_rate(struct clk * tclk)
  49. {
  50. long long dpll_clk;
  51. int dpll_mult, dpll_div, amult;
  52. dpll_mult = (CM_CLKSEL1_PLL >> 12) & 0x03ff; /* 10 bits */
  53. dpll_div = (CM_CLKSEL1_PLL >> 8) & 0x0f; /* 4 bits */
  54. dpll_clk = (long long)tclk->parent->rate * dpll_mult;
  55. do_div(dpll_clk, dpll_div + 1);
  56. amult = CM_CLKSEL2_PLL & 0x3;
  57. dpll_clk *= amult;
  58. return dpll_clk;
  59. }
  60. static void omap2_followparent_recalc(struct clk *clk)
  61. {
  62. followparent_recalc(clk);
  63. }
  64. static void omap2_propagate_rate(struct clk * clk)
  65. {
  66. if (!(clk->flags & RATE_FIXED))
  67. clk->rate = clk->parent->rate;
  68. propagate_rate(clk);
  69. }
  70. static void omap2_set_osc_ck(int enable)
  71. {
  72. if (enable)
  73. PRCM_CLKSRC_CTRL &= ~(0x3 << 3);
  74. else
  75. PRCM_CLKSRC_CTRL |= 0x3 << 3;
  76. }
  77. /* Enable an APLL if off */
  78. static void omap2_clk_fixed_enable(struct clk *clk)
  79. {
  80. u32 cval, i=0;
  81. if (clk->enable_bit == 0xff) /* Parent will do it */
  82. return;
  83. cval = CM_CLKEN_PLL;
  84. if ((cval & (0x3 << clk->enable_bit)) == (0x3 << clk->enable_bit))
  85. return;
  86. cval &= ~(0x3 << clk->enable_bit);
  87. cval |= (0x3 << clk->enable_bit);
  88. CM_CLKEN_PLL = cval;
  89. if (clk == &apll96_ck)
  90. cval = (1 << 8);
  91. else if (clk == &apll54_ck)
  92. cval = (1 << 6);
  93. while (!(CM_IDLEST_CKGEN & cval)) { /* Wait for lock */
  94. ++i;
  95. udelay(1);
  96. if (i == 100000)
  97. break;
  98. }
  99. }
  100. /* Enables clock without considering parent dependencies or use count
  101. * REVISIT: Maybe change this to use clk->enable like on omap1?
  102. */
  103. static int _omap2_clk_enable(struct clk * clk)
  104. {
  105. u32 regval32;
  106. if (clk->flags & ALWAYS_ENABLED)
  107. return 0;
  108. if (unlikely(clk == &osc_ck)) {
  109. omap2_set_osc_ck(1);
  110. return 0;
  111. }
  112. if (unlikely(clk->enable_reg == 0)) {
  113. printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
  114. clk->name);
  115. return 0;
  116. }
  117. if (clk->enable_reg == (void __iomem *)&CM_CLKEN_PLL) {
  118. omap2_clk_fixed_enable(clk);
  119. return 0;
  120. }
  121. regval32 = __raw_readl(clk->enable_reg);
  122. regval32 |= (1 << clk->enable_bit);
  123. __raw_writel(regval32, clk->enable_reg);
  124. wmb();
  125. return 0;
  126. }
  127. /* Stop APLL */
  128. static void omap2_clk_fixed_disable(struct clk *clk)
  129. {
  130. u32 cval;
  131. if(clk->enable_bit == 0xff) /* let parent off do it */
  132. return;
  133. cval = CM_CLKEN_PLL;
  134. cval &= ~(0x3 << clk->enable_bit);
  135. CM_CLKEN_PLL = cval;
  136. }
  137. /* Disables clock without considering parent dependencies or use count */
  138. static void _omap2_clk_disable(struct clk *clk)
  139. {
  140. u32 regval32;
  141. if (unlikely(clk == &osc_ck)) {
  142. omap2_set_osc_ck(0);
  143. return;
  144. }
  145. if (clk->enable_reg == 0)
  146. return;
  147. if (clk->enable_reg == (void __iomem *)&CM_CLKEN_PLL) {
  148. omap2_clk_fixed_disable(clk);
  149. return;
  150. }
  151. regval32 = __raw_readl(clk->enable_reg);
  152. regval32 &= ~(1 << clk->enable_bit);
  153. __raw_writel(regval32, clk->enable_reg);
  154. wmb();
  155. }
  156. static int omap2_clk_enable(struct clk *clk)
  157. {
  158. int ret = 0;
  159. if (clk->usecount++ == 0) {
  160. if (likely((u32)clk->parent))
  161. ret = omap2_clk_enable(clk->parent);
  162. if (unlikely(ret != 0)) {
  163. clk->usecount--;
  164. return ret;
  165. }
  166. ret = _omap2_clk_enable(clk);
  167. if (unlikely(ret != 0) && clk->parent) {
  168. omap2_clk_disable(clk->parent);
  169. clk->usecount--;
  170. }
  171. }
  172. return ret;
  173. }
  174. static void omap2_clk_disable(struct clk *clk)
  175. {
  176. if (clk->usecount > 0 && !(--clk->usecount)) {
  177. _omap2_clk_disable(clk);
  178. if (likely((u32)clk->parent))
  179. omap2_clk_disable(clk->parent);
  180. }
  181. }
  182. /*
  183. * Uses the current prcm set to tell if a rate is valid.
  184. * You can go slower, but not faster within a given rate set.
  185. */
  186. static u32 omap2_dpll_round_rate(unsigned long target_rate)
  187. {
  188. u32 high, low;
  189. if ((CM_CLKSEL2_PLL & 0x3) == 1) { /* DPLL clockout */
  190. high = curr_prcm_set->dpll_speed * 2;
  191. low = curr_prcm_set->dpll_speed;
  192. } else { /* DPLL clockout x 2 */
  193. high = curr_prcm_set->dpll_speed;
  194. low = curr_prcm_set->dpll_speed / 2;
  195. }
  196. #ifdef DOWN_VARIABLE_DPLL
  197. if (target_rate > high)
  198. return high;
  199. else
  200. return target_rate;
  201. #else
  202. if (target_rate > low)
  203. return high;
  204. else
  205. return low;
  206. #endif
  207. }
  208. /*
  209. * Used for clocks that are part of CLKSEL_xyz governed clocks.
  210. * REVISIT: Maybe change to use clk->enable() functions like on omap1?
  211. */
  212. static void omap2_clksel_recalc(struct clk * clk)
  213. {
  214. u32 fixed = 0, div = 0;
  215. if (clk == &dpll_ck) {
  216. clk->rate = omap2_get_dpll_rate(clk);
  217. fixed = 1;
  218. div = 0;
  219. }
  220. if (clk == &iva1_mpu_int_ifck) {
  221. div = 2;
  222. fixed = 1;
  223. }
  224. if ((clk == &dss1_fck) && ((CM_CLKSEL1_CORE & (0x1f << 8)) == 0)) {
  225. clk->rate = sys_ck.rate;
  226. return;
  227. }
  228. if (!fixed) {
  229. div = omap2_clksel_get_divisor(clk);
  230. if (div == 0)
  231. return;
  232. }
  233. if (div != 0) {
  234. if (unlikely(clk->rate == clk->parent->rate / div))
  235. return;
  236. clk->rate = clk->parent->rate / div;
  237. }
  238. if (unlikely(clk->flags & RATE_PROPAGATES))
  239. propagate_rate(clk);
  240. }
  241. /*
  242. * Finds best divider value in an array based on the source and target
  243. * rates. The divider array must be sorted with smallest divider first.
  244. */
  245. static inline u32 omap2_divider_from_table(u32 size, u32 *div_array,
  246. u32 src_rate, u32 tgt_rate)
  247. {
  248. int i, test_rate;
  249. if (div_array == NULL)
  250. return ~1;
  251. for (i=0; i < size; i++) {
  252. test_rate = src_rate / *div_array;
  253. if (test_rate <= tgt_rate)
  254. return *div_array;
  255. ++div_array;
  256. }
  257. return ~0; /* No acceptable divider */
  258. }
  259. /*
  260. * Find divisor for the given clock and target rate.
  261. *
  262. * Note that this will not work for clocks which are part of CONFIG_PARTICIPANT,
  263. * they are only settable as part of virtual_prcm set.
  264. */
  265. static u32 omap2_clksel_round_rate(struct clk *tclk, u32 target_rate,
  266. u32 *new_div)
  267. {
  268. u32 gfx_div[] = {2, 3, 4};
  269. u32 sysclkout_div[] = {1, 2, 4, 8, 16};
  270. u32 dss1_div[] = {1, 2, 3, 4, 5, 6, 8, 9, 12, 16};
  271. u32 vylnq_div[] = {1, 2, 3, 4, 6, 8, 9, 12, 16, 18};
  272. u32 best_div = ~0, asize = 0;
  273. u32 *div_array = NULL;
  274. switch (tclk->flags & SRC_RATE_SEL_MASK) {
  275. case CM_GFX_SEL1:
  276. asize = 3;
  277. div_array = gfx_div;
  278. break;
  279. case CM_PLL_SEL1:
  280. return omap2_dpll_round_rate(target_rate);
  281. case CM_SYSCLKOUT_SEL1:
  282. asize = 5;
  283. div_array = sysclkout_div;
  284. break;
  285. case CM_CORE_SEL1:
  286. if(tclk == &dss1_fck){
  287. if(tclk->parent == &core_ck){
  288. asize = 10;
  289. div_array = dss1_div;
  290. } else {
  291. *new_div = 0; /* fixed clk */
  292. return(tclk->parent->rate);
  293. }
  294. } else if((tclk == &vlynq_fck) && cpu_is_omap2420()){
  295. if(tclk->parent == &core_ck){
  296. asize = 10;
  297. div_array = vylnq_div;
  298. } else {
  299. *new_div = 0; /* fixed clk */
  300. return(tclk->parent->rate);
  301. }
  302. }
  303. break;
  304. }
  305. best_div = omap2_divider_from_table(asize, div_array,
  306. tclk->parent->rate, target_rate);
  307. if (best_div == ~0){
  308. *new_div = 1;
  309. return best_div; /* signal error */
  310. }
  311. *new_div = best_div;
  312. return (tclk->parent->rate / best_div);
  313. }
  314. /* Given a clock and a rate apply a clock specific rounding function */
  315. static long omap2_clk_round_rate(struct clk *clk, unsigned long rate)
  316. {
  317. u32 new_div = 0;
  318. int valid_rate;
  319. if (clk->flags & RATE_FIXED)
  320. return clk->rate;
  321. if (clk->flags & RATE_CKCTL) {
  322. valid_rate = omap2_clksel_round_rate(clk, rate, &new_div);
  323. return valid_rate;
  324. }
  325. if (clk->round_rate != 0)
  326. return clk->round_rate(clk, rate);
  327. return clk->rate;
  328. }
  329. /*
  330. * Check the DLL lock state, and return tue if running in unlock mode.
  331. * This is needed to compenste for the shifted DLL value in unlock mode.
  332. */
  333. static u32 omap2_dll_force_needed(void)
  334. {
  335. u32 dll_state = SDRC_DLLA_CTRL; /* dlla and dllb are a set */
  336. if ((dll_state & (1 << 2)) == (1 << 2))
  337. return 1;
  338. else
  339. return 0;
  340. }
  341. static u32 omap2_reprogram_sdrc(u32 level, u32 force)
  342. {
  343. u32 slow_dll_ctrl, fast_dll_ctrl, m_type;
  344. u32 prev = curr_perf_level, flags;
  345. if ((curr_perf_level == level) && !force)
  346. return prev;
  347. m_type = omap2_memory_get_type();
  348. slow_dll_ctrl = omap2_memory_get_slow_dll_ctrl();
  349. fast_dll_ctrl = omap2_memory_get_fast_dll_ctrl();
  350. if (level == PRCM_HALF_SPEED) {
  351. local_irq_save(flags);
  352. PRCM_VOLTSETUP = 0xffff;
  353. omap2_sram_reprogram_sdrc(PRCM_HALF_SPEED,
  354. slow_dll_ctrl, m_type);
  355. curr_perf_level = PRCM_HALF_SPEED;
  356. local_irq_restore(flags);
  357. }
  358. if (level == PRCM_FULL_SPEED) {
  359. local_irq_save(flags);
  360. PRCM_VOLTSETUP = 0xffff;
  361. omap2_sram_reprogram_sdrc(PRCM_FULL_SPEED,
  362. fast_dll_ctrl, m_type);
  363. curr_perf_level = PRCM_FULL_SPEED;
  364. local_irq_restore(flags);
  365. }
  366. return prev;
  367. }
  368. static int omap2_reprogram_dpll(struct clk * clk, unsigned long rate)
  369. {
  370. u32 flags, cur_rate, low, mult, div, valid_rate, done_rate;
  371. u32 bypass = 0;
  372. struct prcm_config tmpset;
  373. int ret = -EINVAL;
  374. local_irq_save(flags);
  375. cur_rate = omap2_get_dpll_rate(&dpll_ck);
  376. mult = CM_CLKSEL2_PLL & 0x3;
  377. if ((rate == (cur_rate / 2)) && (mult == 2)) {
  378. omap2_reprogram_sdrc(PRCM_HALF_SPEED, 1);
  379. } else if ((rate == (cur_rate * 2)) && (mult == 1)) {
  380. omap2_reprogram_sdrc(PRCM_FULL_SPEED, 1);
  381. } else if (rate != cur_rate) {
  382. valid_rate = omap2_dpll_round_rate(rate);
  383. if (valid_rate != rate)
  384. goto dpll_exit;
  385. if ((CM_CLKSEL2_PLL & 0x3) == 1)
  386. low = curr_prcm_set->dpll_speed;
  387. else
  388. low = curr_prcm_set->dpll_speed / 2;
  389. tmpset.cm_clksel1_pll = CM_CLKSEL1_PLL;
  390. tmpset.cm_clksel1_pll &= ~(0x3FFF << 8);
  391. div = ((curr_prcm_set->xtal_speed / 1000000) - 1);
  392. tmpset.cm_clksel2_pll = CM_CLKSEL2_PLL;
  393. tmpset.cm_clksel2_pll &= ~0x3;
  394. if (rate > low) {
  395. tmpset.cm_clksel2_pll |= 0x2;
  396. mult = ((rate / 2) / 1000000);
  397. done_rate = PRCM_FULL_SPEED;
  398. } else {
  399. tmpset.cm_clksel2_pll |= 0x1;
  400. mult = (rate / 1000000);
  401. done_rate = PRCM_HALF_SPEED;
  402. }
  403. tmpset.cm_clksel1_pll |= ((div << 8) | (mult << 12));
  404. /* Worst case */
  405. tmpset.base_sdrc_rfr = V24XX_SDRC_RFR_CTRL_BYPASS;
  406. if (rate == curr_prcm_set->xtal_speed) /* If asking for 1-1 */
  407. bypass = 1;
  408. omap2_reprogram_sdrc(PRCM_FULL_SPEED, 1); /* For init_mem */
  409. /* Force dll lock mode */
  410. omap2_set_prcm(tmpset.cm_clksel1_pll, tmpset.base_sdrc_rfr,
  411. bypass);
  412. /* Errata: ret dll entry state */
  413. omap2_init_memory_params(omap2_dll_force_needed());
  414. omap2_reprogram_sdrc(done_rate, 0);
  415. }
  416. omap2_clksel_recalc(&dpll_ck);
  417. ret = 0;
  418. dpll_exit:
  419. local_irq_restore(flags);
  420. return(ret);
  421. }
  422. /* Just return the MPU speed */
  423. static void omap2_mpu_recalc(struct clk * clk)
  424. {
  425. clk->rate = curr_prcm_set->mpu_speed;
  426. }
  427. /*
  428. * Look for a rate equal or less than the target rate given a configuration set.
  429. *
  430. * What's not entirely clear is "which" field represents the key field.
  431. * Some might argue L3-DDR, others ARM, others IVA. This code is simple and
  432. * just uses the ARM rates.
  433. */
  434. static long omap2_round_to_table_rate(struct clk * clk, unsigned long rate)
  435. {
  436. struct prcm_config * ptr;
  437. long highest_rate;
  438. if (clk != &virt_prcm_set)
  439. return -EINVAL;
  440. highest_rate = -EINVAL;
  441. for (ptr = rate_table; ptr->mpu_speed; ptr++) {
  442. if (ptr->xtal_speed != sys_ck.rate)
  443. continue;
  444. highest_rate = ptr->mpu_speed;
  445. /* Can check only after xtal frequency check */
  446. if (ptr->mpu_speed <= rate)
  447. break;
  448. }
  449. return highest_rate;
  450. }
  451. /*
  452. * omap2_convert_field_to_div() - turn field value into integer divider
  453. */
  454. static u32 omap2_clksel_to_divisor(u32 div_sel, u32 field_val)
  455. {
  456. u32 i;
  457. u32 clkout_array[] = {1, 2, 4, 8, 16};
  458. if ((div_sel & SRC_RATE_SEL_MASK) == CM_SYSCLKOUT_SEL1) {
  459. for (i = 0; i < 5; i++) {
  460. if (field_val == i)
  461. return clkout_array[i];
  462. }
  463. return ~0;
  464. } else
  465. return field_val;
  466. }
  467. /*
  468. * Returns the CLKSEL divider register value
  469. * REVISIT: This should be cleaned up to work nicely with void __iomem *
  470. */
  471. static u32 omap2_get_clksel(u32 *div_sel, u32 *field_mask,
  472. struct clk *clk)
  473. {
  474. int ret = ~0;
  475. u32 reg_val, div_off;
  476. u32 div_addr = 0;
  477. u32 mask = ~0;
  478. div_off = clk->rate_offset;
  479. switch ((*div_sel & SRC_RATE_SEL_MASK)) {
  480. case CM_MPU_SEL1:
  481. div_addr = (u32)&CM_CLKSEL_MPU;
  482. mask = 0x1f;
  483. break;
  484. case CM_DSP_SEL1:
  485. div_addr = (u32)&CM_CLKSEL_DSP;
  486. if (cpu_is_omap2420()) {
  487. if ((div_off == 0) || (div_off == 8))
  488. mask = 0x1f;
  489. else if (div_off == 5)
  490. mask = 0x3;
  491. } else if (cpu_is_omap2430()) {
  492. if (div_off == 0)
  493. mask = 0x1f;
  494. else if (div_off == 5)
  495. mask = 0x3;
  496. }
  497. break;
  498. case CM_GFX_SEL1:
  499. div_addr = (u32)&CM_CLKSEL_GFX;
  500. if (div_off == 0)
  501. mask = 0x7;
  502. break;
  503. case CM_MODEM_SEL1:
  504. div_addr = (u32)&CM_CLKSEL_MDM;
  505. if (div_off == 0)
  506. mask = 0xf;
  507. break;
  508. case CM_SYSCLKOUT_SEL1:
  509. div_addr = (u32)&PRCM_CLKOUT_CTRL;
  510. if ((div_off == 3) || (div_off = 11))
  511. mask= 0x3;
  512. break;
  513. case CM_CORE_SEL1:
  514. div_addr = (u32)&CM_CLKSEL1_CORE;
  515. switch (div_off) {
  516. case 0: /* l3 */
  517. case 8: /* dss1 */
  518. case 15: /* vylnc-2420 */
  519. case 20: /* ssi */
  520. mask = 0x1f; break;
  521. case 5: /* l4 */
  522. mask = 0x3; break;
  523. case 13: /* dss2 */
  524. mask = 0x1; break;
  525. case 25: /* usb */
  526. mask = 0x7; break;
  527. }
  528. }
  529. *field_mask = mask;
  530. if (unlikely(mask == ~0))
  531. div_addr = 0;
  532. *div_sel = div_addr;
  533. if (unlikely(div_addr == 0))
  534. return ret;
  535. /* Isolate field */
  536. reg_val = __raw_readl((void __iomem *)div_addr) & (mask << div_off);
  537. /* Normalize back to divider value */
  538. reg_val >>= div_off;
  539. return reg_val;
  540. }
  541. /*
  542. * Return divider to be applied to parent clock.
  543. * Return 0 on error.
  544. */
  545. static u32 omap2_clksel_get_divisor(struct clk *clk)
  546. {
  547. int ret = 0;
  548. u32 div, div_sel, div_off, field_mask, field_val;
  549. /* isolate control register */
  550. div_sel = (SRC_RATE_SEL_MASK & clk->flags);
  551. div_off = clk->rate_offset;
  552. field_val = omap2_get_clksel(&div_sel, &field_mask, clk);
  553. if (div_sel == 0)
  554. return ret;
  555. div_sel = (SRC_RATE_SEL_MASK & clk->flags);
  556. div = omap2_clksel_to_divisor(div_sel, field_val);
  557. return div;
  558. }
  559. /* Set the clock rate for a clock source */
  560. static int omap2_clk_set_rate(struct clk *clk, unsigned long rate)
  561. {
  562. int ret = -EINVAL;
  563. void __iomem * reg;
  564. u32 div_sel, div_off, field_mask, field_val, reg_val, validrate;
  565. u32 new_div = 0;
  566. if (!(clk->flags & CONFIG_PARTICIPANT) && (clk->flags & RATE_CKCTL)) {
  567. if (clk == &dpll_ck)
  568. return omap2_reprogram_dpll(clk, rate);
  569. /* Isolate control register */
  570. div_sel = (SRC_RATE_SEL_MASK & clk->flags);
  571. div_off = clk->rate_offset;
  572. validrate = omap2_clksel_round_rate(clk, rate, &new_div);
  573. if (validrate != rate)
  574. return(ret);
  575. field_val = omap2_get_clksel(&div_sel, &field_mask, clk);
  576. if (div_sel == 0)
  577. return ret;
  578. if (clk->flags & CM_SYSCLKOUT_SEL1) {
  579. switch (new_div) {
  580. case 16:
  581. field_val = 4;
  582. break;
  583. case 8:
  584. field_val = 3;
  585. break;
  586. case 4:
  587. field_val = 2;
  588. break;
  589. case 2:
  590. field_val = 1;
  591. break;
  592. case 1:
  593. field_val = 0;
  594. break;
  595. }
  596. } else
  597. field_val = new_div;
  598. reg = (void __iomem *)div_sel;
  599. reg_val = __raw_readl(reg);
  600. reg_val &= ~(field_mask << div_off);
  601. reg_val |= (field_val << div_off);
  602. __raw_writel(reg_val, reg);
  603. wmb();
  604. clk->rate = clk->parent->rate / field_val;
  605. if (clk->flags & DELAYED_APP) {
  606. __raw_writel(0x1, (void __iomem *)&PRCM_CLKCFG_CTRL);
  607. wmb();
  608. }
  609. ret = 0;
  610. } else if (clk->set_rate != 0)
  611. ret = clk->set_rate(clk, rate);
  612. if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES)))
  613. propagate_rate(clk);
  614. return ret;
  615. }
  616. /* Converts encoded control register address into a full address */
  617. static u32 omap2_get_src_field(u32 *type_to_addr, u32 reg_offset,
  618. struct clk *src_clk, u32 *field_mask)
  619. {
  620. u32 val = ~0, src_reg_addr = 0, mask = 0;
  621. /* Find target control register.*/
  622. switch ((*type_to_addr & SRC_RATE_SEL_MASK)) {
  623. case CM_CORE_SEL1:
  624. src_reg_addr = (u32)&CM_CLKSEL1_CORE;
  625. if (reg_offset == 13) { /* DSS2_fclk */
  626. mask = 0x1;
  627. if (src_clk == &sys_ck)
  628. val = 0;
  629. if (src_clk == &func_48m_ck)
  630. val = 1;
  631. } else if (reg_offset == 8) { /* DSS1_fclk */
  632. mask = 0x1f;
  633. if (src_clk == &sys_ck)
  634. val = 0;
  635. else if (src_clk == &core_ck) /* divided clock */
  636. val = 0x10; /* rate needs fixing */
  637. } else if ((reg_offset == 15) && cpu_is_omap2420()){ /*vlnyq*/
  638. mask = 0x1F;
  639. if(src_clk == &func_96m_ck)
  640. val = 0;
  641. else if (src_clk == &core_ck)
  642. val = 0x10;
  643. }
  644. break;
  645. case CM_CORE_SEL2:
  646. src_reg_addr = (u32)&CM_CLKSEL2_CORE;
  647. mask = 0x3;
  648. if (src_clk == &func_32k_ck)
  649. val = 0x0;
  650. if (src_clk == &sys_ck)
  651. val = 0x1;
  652. if (src_clk == &alt_ck)
  653. val = 0x2;
  654. break;
  655. case CM_WKUP_SEL1:
  656. src_reg_addr = (u32)&CM_CLKSEL_WKUP;
  657. mask = 0x3;
  658. if (src_clk == &func_32k_ck)
  659. val = 0x0;
  660. if (src_clk == &sys_ck)
  661. val = 0x1;
  662. if (src_clk == &alt_ck)
  663. val = 0x2;
  664. break;
  665. case CM_PLL_SEL1:
  666. src_reg_addr = (u32)&CM_CLKSEL1_PLL;
  667. mask = 0x1;
  668. if (reg_offset == 0x3) {
  669. if (src_clk == &apll96_ck)
  670. val = 0;
  671. if (src_clk == &alt_ck)
  672. val = 1;
  673. }
  674. else if (reg_offset == 0x5) {
  675. if (src_clk == &apll54_ck)
  676. val = 0;
  677. if (src_clk == &alt_ck)
  678. val = 1;
  679. }
  680. break;
  681. case CM_PLL_SEL2:
  682. src_reg_addr = (u32)&CM_CLKSEL2_PLL;
  683. mask = 0x3;
  684. if (src_clk == &func_32k_ck)
  685. val = 0x0;
  686. if (src_clk == &dpll_ck)
  687. val = 0x2;
  688. break;
  689. case CM_SYSCLKOUT_SEL1:
  690. src_reg_addr = (u32)&PRCM_CLKOUT_CTRL;
  691. mask = 0x3;
  692. if (src_clk == &dpll_ck)
  693. val = 0;
  694. if (src_clk == &sys_ck)
  695. val = 1;
  696. if (src_clk == &func_96m_ck)
  697. val = 2;
  698. if (src_clk == &func_54m_ck)
  699. val = 3;
  700. break;
  701. }
  702. if (val == ~0) /* Catch errors in offset */
  703. *type_to_addr = 0;
  704. else
  705. *type_to_addr = src_reg_addr;
  706. *field_mask = mask;
  707. return val;
  708. }
  709. static int omap2_clk_set_parent(struct clk *clk, struct clk *new_parent)
  710. {
  711. void __iomem * reg;
  712. u32 src_sel, src_off, field_val, field_mask, reg_val, rate;
  713. int ret = -EINVAL;
  714. if (unlikely(clk->flags & CONFIG_PARTICIPANT))
  715. return ret;
  716. if (clk->flags & SRC_SEL_MASK) { /* On-chip SEL collection */
  717. src_sel = (SRC_RATE_SEL_MASK & clk->flags);
  718. src_off = clk->src_offset;
  719. if (src_sel == 0)
  720. goto set_parent_error;
  721. field_val = omap2_get_src_field(&src_sel, src_off, new_parent,
  722. &field_mask);
  723. reg = (void __iomem *)src_sel;
  724. if (clk->usecount > 0)
  725. _omap2_clk_disable(clk);
  726. /* Set new source value (previous dividers if any in effect) */
  727. reg_val = __raw_readl(reg) & ~(field_mask << src_off);
  728. reg_val |= (field_val << src_off);
  729. __raw_writel(reg_val, reg);
  730. wmb();
  731. if (clk->flags & DELAYED_APP) {
  732. __raw_writel(0x1, (void __iomem *)&PRCM_CLKCFG_CTRL);
  733. wmb();
  734. }
  735. if (clk->usecount > 0)
  736. _omap2_clk_enable(clk);
  737. clk->parent = new_parent;
  738. /* SRC_RATE_SEL_MASK clocks follow their parents rates.*/
  739. if ((new_parent == &core_ck) && (clk == &dss1_fck))
  740. clk->rate = new_parent->rate / 0x10;
  741. else
  742. clk->rate = new_parent->rate;
  743. if (unlikely(clk->flags & RATE_PROPAGATES))
  744. propagate_rate(clk);
  745. return 0;
  746. } else {
  747. clk->parent = new_parent;
  748. rate = new_parent->rate;
  749. omap2_clk_set_rate(clk, rate);
  750. ret = 0;
  751. }
  752. set_parent_error:
  753. return ret;
  754. }
  755. /* Sets basic clocks based on the specified rate */
  756. static int omap2_select_table_rate(struct clk * clk, unsigned long rate)
  757. {
  758. u32 flags, cur_rate, done_rate, bypass = 0;
  759. u8 cpu_mask = 0;
  760. struct prcm_config *prcm;
  761. unsigned long found_speed = 0;
  762. if (clk != &virt_prcm_set)
  763. return -EINVAL;
  764. /* FIXME: Change cpu_is_omap2420() to cpu_is_omap242x() */
  765. if (cpu_is_omap2420())
  766. cpu_mask = RATE_IN_242X;
  767. else if (cpu_is_omap2430())
  768. cpu_mask = RATE_IN_243X;
  769. for (prcm = rate_table; prcm->mpu_speed; prcm++) {
  770. if (!(prcm->flags & cpu_mask))
  771. continue;
  772. if (prcm->xtal_speed != sys_ck.rate)
  773. continue;
  774. if (prcm->mpu_speed <= rate) {
  775. found_speed = prcm->mpu_speed;
  776. break;
  777. }
  778. }
  779. if (!found_speed) {
  780. printk(KERN_INFO "Could not set MPU rate to %luMHz\n",
  781. rate / 1000000);
  782. return -EINVAL;
  783. }
  784. curr_prcm_set = prcm;
  785. cur_rate = omap2_get_dpll_rate(&dpll_ck);
  786. if (prcm->dpll_speed == cur_rate / 2) {
  787. omap2_reprogram_sdrc(PRCM_HALF_SPEED, 1);
  788. } else if (prcm->dpll_speed == cur_rate * 2) {
  789. omap2_reprogram_sdrc(PRCM_FULL_SPEED, 1);
  790. } else if (prcm->dpll_speed != cur_rate) {
  791. local_irq_save(flags);
  792. if (prcm->dpll_speed == prcm->xtal_speed)
  793. bypass = 1;
  794. if ((prcm->cm_clksel2_pll & 0x3) == 2)
  795. done_rate = PRCM_FULL_SPEED;
  796. else
  797. done_rate = PRCM_HALF_SPEED;
  798. /* MPU divider */
  799. CM_CLKSEL_MPU = prcm->cm_clksel_mpu;
  800. /* dsp + iva1 div(2420), iva2.1(2430) */
  801. CM_CLKSEL_DSP = prcm->cm_clksel_dsp;
  802. CM_CLKSEL_GFX = prcm->cm_clksel_gfx;
  803. /* Major subsystem dividers */
  804. CM_CLKSEL1_CORE = prcm->cm_clksel1_core;
  805. if (cpu_is_omap2430())
  806. CM_CLKSEL_MDM = prcm->cm_clksel_mdm;
  807. /* x2 to enter init_mem */
  808. omap2_reprogram_sdrc(PRCM_FULL_SPEED, 1);
  809. omap2_set_prcm(prcm->cm_clksel1_pll, prcm->base_sdrc_rfr,
  810. bypass);
  811. omap2_init_memory_params(omap2_dll_force_needed());
  812. omap2_reprogram_sdrc(done_rate, 0);
  813. local_irq_restore(flags);
  814. }
  815. omap2_clksel_recalc(&dpll_ck);
  816. return 0;
  817. }
  818. /*-------------------------------------------------------------------------
  819. * Omap2 clock reset and init functions
  820. *-------------------------------------------------------------------------*/
  821. static struct clk_functions omap2_clk_functions = {
  822. .clk_enable = omap2_clk_enable,
  823. .clk_disable = omap2_clk_disable,
  824. .clk_round_rate = omap2_clk_round_rate,
  825. .clk_set_rate = omap2_clk_set_rate,
  826. .clk_set_parent = omap2_clk_set_parent,
  827. };
  828. static void __init omap2_get_crystal_rate(struct clk *osc, struct clk *sys)
  829. {
  830. u32 div, aplls, sclk = 13000000;
  831. aplls = CM_CLKSEL1_PLL;
  832. aplls &= ((1 << 23) | (1 << 24) | (1 << 25));
  833. aplls >>= 23; /* Isolate field, 0,2,3 */
  834. if (aplls == 0)
  835. sclk = 19200000;
  836. else if (aplls == 2)
  837. sclk = 13000000;
  838. else if (aplls == 3)
  839. sclk = 12000000;
  840. div = PRCM_CLKSRC_CTRL;
  841. div &= ((1 << 7) | (1 << 6));
  842. div >>= sys->rate_offset;
  843. osc->rate = sclk * div;
  844. sys->rate = sclk;
  845. }
  846. /*
  847. * Set clocks for bypass mode for reboot to work.
  848. */
  849. void omap2_clk_prepare_for_reboot(void)
  850. {
  851. u32 rate;
  852. if (vclk == NULL || sclk == NULL)
  853. return;
  854. rate = clk_get_rate(sclk);
  855. clk_set_rate(vclk, rate);
  856. }
  857. #ifdef CONFIG_OMAP_RESET_CLOCKS
  858. static void __init omap2_disable_unused_clocks(void)
  859. {
  860. struct clk *ck;
  861. u32 regval32;
  862. list_for_each_entry(ck, &clocks, node) {
  863. if (ck->usecount > 0 || (ck->flags & ALWAYS_ENABLED) ||
  864. ck->enable_reg == 0)
  865. continue;
  866. regval32 = __raw_readl(ck->enable_reg);
  867. if ((regval32 & (1 << ck->enable_bit)) == 0)
  868. continue;
  869. printk(KERN_INFO "Disabling unused clock \"%s\"\n", ck->name);
  870. _omap2_clk_disable(ck);
  871. }
  872. }
  873. late_initcall(omap2_disable_unused_clocks);
  874. #endif
  875. /*
  876. * Switch the MPU rate if specified on cmdline.
  877. * We cannot do this early until cmdline is parsed.
  878. */
  879. static int __init omap2_clk_arch_init(void)
  880. {
  881. if (!mpurate)
  882. return -EINVAL;
  883. if (omap2_select_table_rate(&virt_prcm_set, mpurate))
  884. printk(KERN_ERR "Could not find matching MPU rate\n");
  885. propagate_rate(&osc_ck); /* update main root fast */
  886. propagate_rate(&func_32k_ck); /* update main root slow */
  887. printk(KERN_INFO "Switched to new clocking rate (Crystal/DPLL/MPU): "
  888. "%ld.%01ld/%ld/%ld MHz\n",
  889. (sys_ck.rate / 1000000), (sys_ck.rate / 100000) % 10,
  890. (dpll_ck.rate / 1000000), (mpu_ck.rate / 1000000)) ;
  891. return 0;
  892. }
  893. arch_initcall(omap2_clk_arch_init);
  894. int __init omap2_clk_init(void)
  895. {
  896. struct prcm_config *prcm;
  897. struct clk ** clkp;
  898. u32 clkrate;
  899. clk_init(&omap2_clk_functions);
  900. omap2_get_crystal_rate(&osc_ck, &sys_ck);
  901. for (clkp = onchip_clks; clkp < onchip_clks + ARRAY_SIZE(onchip_clks);
  902. clkp++) {
  903. if ((*clkp)->flags & CLOCK_IN_OMAP242X && cpu_is_omap2420()) {
  904. clk_register(*clkp);
  905. continue;
  906. }
  907. if ((*clkp)->flags & CLOCK_IN_OMAP243X && cpu_is_omap2430()) {
  908. clk_register(*clkp);
  909. continue;
  910. }
  911. }
  912. /* Check the MPU rate set by bootloader */
  913. clkrate = omap2_get_dpll_rate(&dpll_ck);
  914. for (prcm = rate_table; prcm->mpu_speed; prcm++) {
  915. if (prcm->xtal_speed != sys_ck.rate)
  916. continue;
  917. if (prcm->dpll_speed <= clkrate)
  918. break;
  919. }
  920. curr_prcm_set = prcm;
  921. propagate_rate(&osc_ck); /* update main root fast */
  922. propagate_rate(&func_32k_ck); /* update main root slow */
  923. printk(KERN_INFO "Clocking rate (Crystal/DPLL/MPU): "
  924. "%ld.%01ld/%ld/%ld MHz\n",
  925. (sys_ck.rate / 1000000), (sys_ck.rate / 100000) % 10,
  926. (dpll_ck.rate / 1000000), (mpu_ck.rate / 1000000)) ;
  927. /*
  928. * Only enable those clocks we will need, let the drivers
  929. * enable other clocks as necessary
  930. */
  931. clk_enable(&sync_32k_ick);
  932. clk_enable(&omapctrl_ick);
  933. if (cpu_is_omap2430())
  934. clk_enable(&sdrc_ick);
  935. /* Avoid sleeping sleeping during omap2_clk_prepare_for_reboot() */
  936. vclk = clk_get(NULL, "virt_prcm_set");
  937. sclk = clk_get(NULL, "sys_ck");
  938. return 0;
  939. }