spi_bfin5xx.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471
  1. /*
  2. * Blackfin On-Chip SPI Driver
  3. *
  4. * Copyright 2004-2007 Analog Devices Inc.
  5. *
  6. * Enter bugs at http://blackfin.uclinux.org/
  7. *
  8. * Licensed under the GPL-2 or later.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/device.h>
  14. #include <linux/slab.h>
  15. #include <linux/io.h>
  16. #include <linux/ioport.h>
  17. #include <linux/irq.h>
  18. #include <linux/errno.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/workqueue.h>
  24. #include <asm/dma.h>
  25. #include <asm/portmux.h>
  26. #include <asm/bfin5xx_spi.h>
  27. #include <asm/cacheflush.h>
  28. #define DRV_NAME "bfin-spi"
  29. #define DRV_AUTHOR "Bryan Wu, Luke Yang"
  30. #define DRV_DESC "Blackfin on-chip SPI Controller Driver"
  31. #define DRV_VERSION "1.0"
  32. MODULE_AUTHOR(DRV_AUTHOR);
  33. MODULE_DESCRIPTION(DRV_DESC);
  34. MODULE_LICENSE("GPL");
  35. #define START_STATE ((void *)0)
  36. #define RUNNING_STATE ((void *)1)
  37. #define DONE_STATE ((void *)2)
  38. #define ERROR_STATE ((void *)-1)
  39. #define QUEUE_RUNNING 0
  40. #define QUEUE_STOPPED 1
  41. struct driver_data {
  42. /* Driver model hookup */
  43. struct platform_device *pdev;
  44. /* SPI framework hookup */
  45. struct spi_master *master;
  46. /* Regs base of SPI controller */
  47. void __iomem *regs_base;
  48. /* Pin request list */
  49. u16 *pin_req;
  50. /* BFIN hookup */
  51. struct bfin5xx_spi_master *master_info;
  52. /* Driver message queue */
  53. struct workqueue_struct *workqueue;
  54. struct work_struct pump_messages;
  55. spinlock_t lock;
  56. struct list_head queue;
  57. int busy;
  58. int run;
  59. /* Message Transfer pump */
  60. struct tasklet_struct pump_transfers;
  61. /* Current message transfer state info */
  62. struct spi_message *cur_msg;
  63. struct spi_transfer *cur_transfer;
  64. struct chip_data *cur_chip;
  65. size_t len_in_bytes;
  66. size_t len;
  67. void *tx;
  68. void *tx_end;
  69. void *rx;
  70. void *rx_end;
  71. /* DMA stuffs */
  72. int dma_channel;
  73. int dma_mapped;
  74. int dma_requested;
  75. dma_addr_t rx_dma;
  76. dma_addr_t tx_dma;
  77. int irq_requested;
  78. int spi_irq;
  79. size_t rx_map_len;
  80. size_t tx_map_len;
  81. u8 n_bytes;
  82. int cs_change;
  83. void (*write) (struct driver_data *);
  84. void (*read) (struct driver_data *);
  85. void (*duplex) (struct driver_data *);
  86. };
  87. struct chip_data {
  88. u16 ctl_reg;
  89. u16 baud;
  90. u16 flag;
  91. u8 chip_select_num;
  92. u8 n_bytes;
  93. u8 width; /* 0 or 1 */
  94. u8 enable_dma;
  95. u8 bits_per_word; /* 8 or 16 */
  96. u16 cs_chg_udelay; /* Some devices require > 255usec delay */
  97. u32 cs_gpio;
  98. u16 idle_tx_val;
  99. u8 pio_interrupt; /* use spi data irq */
  100. void (*write) (struct driver_data *);
  101. void (*read) (struct driver_data *);
  102. void (*duplex) (struct driver_data *);
  103. };
  104. #define DEFINE_SPI_REG(reg, off) \
  105. static inline u16 read_##reg(struct driver_data *drv_data) \
  106. { return bfin_read16(drv_data->regs_base + off); } \
  107. static inline void write_##reg(struct driver_data *drv_data, u16 v) \
  108. { bfin_write16(drv_data->regs_base + off, v); }
  109. DEFINE_SPI_REG(CTRL, 0x00)
  110. DEFINE_SPI_REG(FLAG, 0x04)
  111. DEFINE_SPI_REG(STAT, 0x08)
  112. DEFINE_SPI_REG(TDBR, 0x0C)
  113. DEFINE_SPI_REG(RDBR, 0x10)
  114. DEFINE_SPI_REG(BAUD, 0x14)
  115. DEFINE_SPI_REG(SHAW, 0x18)
  116. static void bfin_spi_enable(struct driver_data *drv_data)
  117. {
  118. u16 cr;
  119. cr = read_CTRL(drv_data);
  120. write_CTRL(drv_data, (cr | BIT_CTL_ENABLE));
  121. }
  122. static void bfin_spi_disable(struct driver_data *drv_data)
  123. {
  124. u16 cr;
  125. cr = read_CTRL(drv_data);
  126. write_CTRL(drv_data, (cr & (~BIT_CTL_ENABLE)));
  127. }
  128. /* Caculate the SPI_BAUD register value based on input HZ */
  129. static u16 hz_to_spi_baud(u32 speed_hz)
  130. {
  131. u_long sclk = get_sclk();
  132. u16 spi_baud = (sclk / (2 * speed_hz));
  133. if ((sclk % (2 * speed_hz)) > 0)
  134. spi_baud++;
  135. if (spi_baud < MIN_SPI_BAUD_VAL)
  136. spi_baud = MIN_SPI_BAUD_VAL;
  137. return spi_baud;
  138. }
  139. static int bfin_spi_flush(struct driver_data *drv_data)
  140. {
  141. unsigned long limit = loops_per_jiffy << 1;
  142. /* wait for stop and clear stat */
  143. while (!(read_STAT(drv_data) & BIT_STAT_SPIF) && --limit)
  144. cpu_relax();
  145. write_STAT(drv_data, BIT_STAT_CLR);
  146. return limit;
  147. }
  148. /* Chip select operation functions for cs_change flag */
  149. static void bfin_spi_cs_active(struct driver_data *drv_data, struct chip_data *chip)
  150. {
  151. if (likely(chip->chip_select_num)) {
  152. u16 flag = read_FLAG(drv_data);
  153. flag &= ~chip->flag;
  154. write_FLAG(drv_data, flag);
  155. } else {
  156. gpio_set_value(chip->cs_gpio, 0);
  157. }
  158. }
  159. static void bfin_spi_cs_deactive(struct driver_data *drv_data, struct chip_data *chip)
  160. {
  161. if (likely(chip->chip_select_num)) {
  162. u16 flag = read_FLAG(drv_data);
  163. flag |= chip->flag;
  164. write_FLAG(drv_data, flag);
  165. } else {
  166. gpio_set_value(chip->cs_gpio, 1);
  167. }
  168. /* Move delay here for consistency */
  169. if (chip->cs_chg_udelay)
  170. udelay(chip->cs_chg_udelay);
  171. }
  172. /* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
  173. static inline void bfin_spi_cs_enable(struct driver_data *drv_data, struct chip_data *chip)
  174. {
  175. u16 flag = read_FLAG(drv_data);
  176. flag |= (chip->flag >> 8);
  177. write_FLAG(drv_data, flag);
  178. }
  179. static inline void bfin_spi_cs_disable(struct driver_data *drv_data, struct chip_data *chip)
  180. {
  181. u16 flag = read_FLAG(drv_data);
  182. flag &= ~(chip->flag >> 8);
  183. write_FLAG(drv_data, flag);
  184. }
  185. /* stop controller and re-config current chip*/
  186. static void bfin_spi_restore_state(struct driver_data *drv_data)
  187. {
  188. struct chip_data *chip = drv_data->cur_chip;
  189. /* Clear status and disable clock */
  190. write_STAT(drv_data, BIT_STAT_CLR);
  191. bfin_spi_disable(drv_data);
  192. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  193. /* Load the registers */
  194. write_CTRL(drv_data, chip->ctl_reg);
  195. write_BAUD(drv_data, chip->baud);
  196. bfin_spi_enable(drv_data);
  197. bfin_spi_cs_active(drv_data, chip);
  198. }
  199. /* used to kick off transfer in rx mode and read unwanted RX data */
  200. static inline void bfin_spi_dummy_read(struct driver_data *drv_data)
  201. {
  202. (void) read_RDBR(drv_data);
  203. }
  204. static void bfin_spi_u8_writer(struct driver_data *drv_data)
  205. {
  206. /* clear RXS (we check for RXS inside the loop) */
  207. bfin_spi_dummy_read(drv_data);
  208. while (drv_data->tx < drv_data->tx_end) {
  209. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  210. /* wait until transfer finished.
  211. checking SPIF or TXS may not guarantee transfer completion */
  212. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  213. cpu_relax();
  214. /* discard RX data and clear RXS */
  215. bfin_spi_dummy_read(drv_data);
  216. }
  217. }
  218. static void bfin_spi_u8_reader(struct driver_data *drv_data)
  219. {
  220. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  221. /* discard old RX data and clear RXS */
  222. bfin_spi_dummy_read(drv_data);
  223. while (drv_data->rx < drv_data->rx_end) {
  224. write_TDBR(drv_data, tx_val);
  225. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  226. cpu_relax();
  227. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  228. }
  229. }
  230. static void bfin_spi_u8_duplex(struct driver_data *drv_data)
  231. {
  232. /* discard old RX data and clear RXS */
  233. bfin_spi_dummy_read(drv_data);
  234. while (drv_data->rx < drv_data->rx_end) {
  235. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  236. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  237. cpu_relax();
  238. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  239. }
  240. }
  241. static void bfin_spi_u16_writer(struct driver_data *drv_data)
  242. {
  243. /* clear RXS (we check for RXS inside the loop) */
  244. bfin_spi_dummy_read(drv_data);
  245. while (drv_data->tx < drv_data->tx_end) {
  246. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  247. drv_data->tx += 2;
  248. /* wait until transfer finished.
  249. checking SPIF or TXS may not guarantee transfer completion */
  250. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  251. cpu_relax();
  252. /* discard RX data and clear RXS */
  253. bfin_spi_dummy_read(drv_data);
  254. }
  255. }
  256. static void bfin_spi_u16_reader(struct driver_data *drv_data)
  257. {
  258. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  259. /* discard old RX data and clear RXS */
  260. bfin_spi_dummy_read(drv_data);
  261. while (drv_data->rx < drv_data->rx_end) {
  262. write_TDBR(drv_data, tx_val);
  263. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  264. cpu_relax();
  265. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  266. drv_data->rx += 2;
  267. }
  268. }
  269. static void bfin_spi_u16_duplex(struct driver_data *drv_data)
  270. {
  271. /* discard old RX data and clear RXS */
  272. bfin_spi_dummy_read(drv_data);
  273. while (drv_data->rx < drv_data->rx_end) {
  274. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  275. drv_data->tx += 2;
  276. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  277. cpu_relax();
  278. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  279. drv_data->rx += 2;
  280. }
  281. }
  282. /* test if ther is more transfer to be done */
  283. static void *bfin_spi_next_transfer(struct driver_data *drv_data)
  284. {
  285. struct spi_message *msg = drv_data->cur_msg;
  286. struct spi_transfer *trans = drv_data->cur_transfer;
  287. /* Move to next transfer */
  288. if (trans->transfer_list.next != &msg->transfers) {
  289. drv_data->cur_transfer =
  290. list_entry(trans->transfer_list.next,
  291. struct spi_transfer, transfer_list);
  292. return RUNNING_STATE;
  293. } else
  294. return DONE_STATE;
  295. }
  296. /*
  297. * caller already set message->status;
  298. * dma and pio irqs are blocked give finished message back
  299. */
  300. static void bfin_spi_giveback(struct driver_data *drv_data)
  301. {
  302. struct chip_data *chip = drv_data->cur_chip;
  303. struct spi_transfer *last_transfer;
  304. unsigned long flags;
  305. struct spi_message *msg;
  306. spin_lock_irqsave(&drv_data->lock, flags);
  307. msg = drv_data->cur_msg;
  308. drv_data->cur_msg = NULL;
  309. drv_data->cur_transfer = NULL;
  310. drv_data->cur_chip = NULL;
  311. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  312. spin_unlock_irqrestore(&drv_data->lock, flags);
  313. last_transfer = list_entry(msg->transfers.prev,
  314. struct spi_transfer, transfer_list);
  315. msg->state = NULL;
  316. if (!drv_data->cs_change)
  317. bfin_spi_cs_deactive(drv_data, chip);
  318. /* Not stop spi in autobuffer mode */
  319. if (drv_data->tx_dma != 0xFFFF)
  320. bfin_spi_disable(drv_data);
  321. if (msg->complete)
  322. msg->complete(msg->context);
  323. }
  324. /* spi data irq handler */
  325. static irqreturn_t bfin_spi_pio_irq_handler(int irq, void *dev_id)
  326. {
  327. struct driver_data *drv_data = dev_id;
  328. struct chip_data *chip = drv_data->cur_chip;
  329. struct spi_message *msg = drv_data->cur_msg;
  330. int n_bytes = drv_data->n_bytes;
  331. /* wait until transfer finished. */
  332. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  333. cpu_relax();
  334. if ((drv_data->tx && drv_data->tx >= drv_data->tx_end) ||
  335. (drv_data->rx && drv_data->rx >= (drv_data->rx_end - n_bytes))) {
  336. /* last read */
  337. if (drv_data->rx) {
  338. dev_dbg(&drv_data->pdev->dev, "last read\n");
  339. if (n_bytes == 2)
  340. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  341. else if (n_bytes == 1)
  342. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  343. drv_data->rx += n_bytes;
  344. }
  345. msg->actual_length += drv_data->len_in_bytes;
  346. if (drv_data->cs_change)
  347. bfin_spi_cs_deactive(drv_data, chip);
  348. /* Move to next transfer */
  349. msg->state = bfin_spi_next_transfer(drv_data);
  350. disable_irq(drv_data->spi_irq);
  351. /* Schedule transfer tasklet */
  352. tasklet_schedule(&drv_data->pump_transfers);
  353. return IRQ_HANDLED;
  354. }
  355. if (drv_data->rx && drv_data->tx) {
  356. /* duplex */
  357. dev_dbg(&drv_data->pdev->dev, "duplex: write_TDBR\n");
  358. if (drv_data->n_bytes == 2) {
  359. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  360. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  361. } else if (drv_data->n_bytes == 1) {
  362. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  363. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  364. }
  365. } else if (drv_data->rx) {
  366. /* read */
  367. dev_dbg(&drv_data->pdev->dev, "read: write_TDBR\n");
  368. if (drv_data->n_bytes == 2)
  369. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  370. else if (drv_data->n_bytes == 1)
  371. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  372. write_TDBR(drv_data, chip->idle_tx_val);
  373. } else if (drv_data->tx) {
  374. /* write */
  375. dev_dbg(&drv_data->pdev->dev, "write: write_TDBR\n");
  376. bfin_spi_dummy_read(drv_data);
  377. if (drv_data->n_bytes == 2)
  378. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  379. else if (drv_data->n_bytes == 1)
  380. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  381. }
  382. if (drv_data->tx)
  383. drv_data->tx += n_bytes;
  384. if (drv_data->rx)
  385. drv_data->rx += n_bytes;
  386. return IRQ_HANDLED;
  387. }
  388. static irqreturn_t bfin_spi_dma_irq_handler(int irq, void *dev_id)
  389. {
  390. struct driver_data *drv_data = dev_id;
  391. struct chip_data *chip = drv_data->cur_chip;
  392. struct spi_message *msg = drv_data->cur_msg;
  393. unsigned long timeout;
  394. unsigned short dmastat = get_dma_curr_irqstat(drv_data->dma_channel);
  395. u16 spistat = read_STAT(drv_data);
  396. dev_dbg(&drv_data->pdev->dev,
  397. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  398. dmastat, spistat);
  399. clear_dma_irqstat(drv_data->dma_channel);
  400. /*
  401. * wait for the last transaction shifted out. HRM states:
  402. * at this point there may still be data in the SPI DMA FIFO waiting
  403. * to be transmitted ... software needs to poll TXS in the SPI_STAT
  404. * register until it goes low for 2 successive reads
  405. */
  406. if (drv_data->tx != NULL) {
  407. while ((read_STAT(drv_data) & TXS) ||
  408. (read_STAT(drv_data) & TXS))
  409. cpu_relax();
  410. }
  411. dev_dbg(&drv_data->pdev->dev,
  412. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  413. dmastat, read_STAT(drv_data));
  414. timeout = jiffies + HZ;
  415. while (!(read_STAT(drv_data) & SPIF))
  416. if (!time_before(jiffies, timeout)) {
  417. dev_warn(&drv_data->pdev->dev, "timeout waiting for SPIF");
  418. break;
  419. } else
  420. cpu_relax();
  421. if ((dmastat & DMA_ERR) && (spistat & RBSY)) {
  422. msg->state = ERROR_STATE;
  423. dev_err(&drv_data->pdev->dev, "dma receive: fifo/buffer overflow\n");
  424. } else {
  425. msg->actual_length += drv_data->len_in_bytes;
  426. if (drv_data->cs_change)
  427. bfin_spi_cs_deactive(drv_data, chip);
  428. /* Move to next transfer */
  429. msg->state = bfin_spi_next_transfer(drv_data);
  430. }
  431. /* Schedule transfer tasklet */
  432. tasklet_schedule(&drv_data->pump_transfers);
  433. /* free the irq handler before next transfer */
  434. dev_dbg(&drv_data->pdev->dev,
  435. "disable dma channel irq%d\n",
  436. drv_data->dma_channel);
  437. dma_disable_irq(drv_data->dma_channel);
  438. return IRQ_HANDLED;
  439. }
  440. static void bfin_spi_pump_transfers(unsigned long data)
  441. {
  442. struct driver_data *drv_data = (struct driver_data *)data;
  443. struct spi_message *message = NULL;
  444. struct spi_transfer *transfer = NULL;
  445. struct spi_transfer *previous = NULL;
  446. struct chip_data *chip = NULL;
  447. u8 width;
  448. u16 cr, dma_width, dma_config;
  449. u32 tranf_success = 1;
  450. u8 full_duplex = 0;
  451. /* Get current state information */
  452. message = drv_data->cur_msg;
  453. transfer = drv_data->cur_transfer;
  454. chip = drv_data->cur_chip;
  455. /*
  456. * if msg is error or done, report it back using complete() callback
  457. */
  458. /* Handle for abort */
  459. if (message->state == ERROR_STATE) {
  460. dev_dbg(&drv_data->pdev->dev, "transfer: we've hit an error\n");
  461. message->status = -EIO;
  462. bfin_spi_giveback(drv_data);
  463. return;
  464. }
  465. /* Handle end of message */
  466. if (message->state == DONE_STATE) {
  467. dev_dbg(&drv_data->pdev->dev, "transfer: all done!\n");
  468. message->status = 0;
  469. bfin_spi_giveback(drv_data);
  470. return;
  471. }
  472. /* Delay if requested at end of transfer */
  473. if (message->state == RUNNING_STATE) {
  474. dev_dbg(&drv_data->pdev->dev, "transfer: still running ...\n");
  475. previous = list_entry(transfer->transfer_list.prev,
  476. struct spi_transfer, transfer_list);
  477. if (previous->delay_usecs)
  478. udelay(previous->delay_usecs);
  479. }
  480. /* Flush any existing transfers that may be sitting in the hardware */
  481. if (bfin_spi_flush(drv_data) == 0) {
  482. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  483. message->status = -EIO;
  484. bfin_spi_giveback(drv_data);
  485. return;
  486. }
  487. if (transfer->len == 0) {
  488. /* Move to next transfer of this msg */
  489. message->state = bfin_spi_next_transfer(drv_data);
  490. /* Schedule next transfer tasklet */
  491. tasklet_schedule(&drv_data->pump_transfers);
  492. }
  493. if (transfer->tx_buf != NULL) {
  494. drv_data->tx = (void *)transfer->tx_buf;
  495. drv_data->tx_end = drv_data->tx + transfer->len;
  496. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  497. transfer->tx_buf, drv_data->tx_end);
  498. } else {
  499. drv_data->tx = NULL;
  500. }
  501. if (transfer->rx_buf != NULL) {
  502. full_duplex = transfer->tx_buf != NULL;
  503. drv_data->rx = transfer->rx_buf;
  504. drv_data->rx_end = drv_data->rx + transfer->len;
  505. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  506. transfer->rx_buf, drv_data->rx_end);
  507. } else {
  508. drv_data->rx = NULL;
  509. }
  510. drv_data->rx_dma = transfer->rx_dma;
  511. drv_data->tx_dma = transfer->tx_dma;
  512. drv_data->len_in_bytes = transfer->len;
  513. drv_data->cs_change = transfer->cs_change;
  514. /* Bits per word setup */
  515. switch (transfer->bits_per_word) {
  516. case 8:
  517. drv_data->n_bytes = 1;
  518. width = CFG_SPI_WORDSIZE8;
  519. drv_data->read = bfin_spi_u8_reader;
  520. drv_data->write = bfin_spi_u8_writer;
  521. drv_data->duplex = bfin_spi_u8_duplex;
  522. break;
  523. case 16:
  524. drv_data->n_bytes = 2;
  525. width = CFG_SPI_WORDSIZE16;
  526. drv_data->read = bfin_spi_u16_reader;
  527. drv_data->write = bfin_spi_u16_writer;
  528. drv_data->duplex = bfin_spi_u16_duplex;
  529. break;
  530. default:
  531. /* No change, the same as default setting */
  532. transfer->bits_per_word = chip->bits_per_word;
  533. drv_data->n_bytes = chip->n_bytes;
  534. width = chip->width;
  535. drv_data->write = chip->write;
  536. drv_data->read = chip->read;
  537. drv_data->duplex = chip->duplex;
  538. break;
  539. }
  540. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  541. cr |= (width << 8);
  542. write_CTRL(drv_data, cr);
  543. if (width == CFG_SPI_WORDSIZE16) {
  544. drv_data->len = (transfer->len) >> 1;
  545. } else {
  546. drv_data->len = transfer->len;
  547. }
  548. dev_dbg(&drv_data->pdev->dev,
  549. "transfer: drv_data->write is %p, chip->write is %p\n",
  550. drv_data->write, chip->write);
  551. message->state = RUNNING_STATE;
  552. dma_config = 0;
  553. /* Speed setup (surely valid because already checked) */
  554. if (transfer->speed_hz)
  555. write_BAUD(drv_data, hz_to_spi_baud(transfer->speed_hz));
  556. else
  557. write_BAUD(drv_data, chip->baud);
  558. write_STAT(drv_data, BIT_STAT_CLR);
  559. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  560. if (drv_data->cs_change)
  561. bfin_spi_cs_active(drv_data, chip);
  562. dev_dbg(&drv_data->pdev->dev,
  563. "now pumping a transfer: width is %d, len is %d\n",
  564. width, transfer->len);
  565. /*
  566. * Try to map dma buffer and do a dma transfer. If successful use,
  567. * different way to r/w according to the enable_dma settings and if
  568. * we are not doing a full duplex transfer (since the hardware does
  569. * not support full duplex DMA transfers).
  570. */
  571. if (!full_duplex && drv_data->cur_chip->enable_dma
  572. && drv_data->len > 6) {
  573. unsigned long dma_start_addr, flags;
  574. disable_dma(drv_data->dma_channel);
  575. clear_dma_irqstat(drv_data->dma_channel);
  576. /* config dma channel */
  577. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  578. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  579. if (width == CFG_SPI_WORDSIZE16) {
  580. set_dma_x_modify(drv_data->dma_channel, 2);
  581. dma_width = WDSIZE_16;
  582. } else {
  583. set_dma_x_modify(drv_data->dma_channel, 1);
  584. dma_width = WDSIZE_8;
  585. }
  586. /* poll for SPI completion before start */
  587. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  588. cpu_relax();
  589. /* dirty hack for autobuffer DMA mode */
  590. if (drv_data->tx_dma == 0xFFFF) {
  591. dev_dbg(&drv_data->pdev->dev,
  592. "doing autobuffer DMA out.\n");
  593. /* no irq in autobuffer mode */
  594. dma_config =
  595. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  596. set_dma_config(drv_data->dma_channel, dma_config);
  597. set_dma_start_addr(drv_data->dma_channel,
  598. (unsigned long)drv_data->tx);
  599. enable_dma(drv_data->dma_channel);
  600. /* start SPI transfer */
  601. write_CTRL(drv_data, cr | BIT_CTL_TIMOD_DMA_TX);
  602. /* just return here, there can only be one transfer
  603. * in this mode
  604. */
  605. message->status = 0;
  606. bfin_spi_giveback(drv_data);
  607. return;
  608. }
  609. /* In dma mode, rx or tx must be NULL in one transfer */
  610. dma_config = (RESTART | dma_width | DI_EN);
  611. if (drv_data->rx != NULL) {
  612. /* set transfer mode, and enable SPI */
  613. dev_dbg(&drv_data->pdev->dev, "doing DMA in to %p (size %zx)\n",
  614. drv_data->rx, drv_data->len_in_bytes);
  615. /* invalidate caches, if needed */
  616. if (bfin_addr_dcacheable((unsigned long) drv_data->rx))
  617. invalidate_dcache_range((unsigned long) drv_data->rx,
  618. (unsigned long) (drv_data->rx +
  619. drv_data->len_in_bytes));
  620. dma_config |= WNR;
  621. dma_start_addr = (unsigned long)drv_data->rx;
  622. cr |= BIT_CTL_TIMOD_DMA_RX | BIT_CTL_SENDOPT;
  623. } else if (drv_data->tx != NULL) {
  624. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  625. /* flush caches, if needed */
  626. if (bfin_addr_dcacheable((unsigned long) drv_data->tx))
  627. flush_dcache_range((unsigned long) drv_data->tx,
  628. (unsigned long) (drv_data->tx +
  629. drv_data->len_in_bytes));
  630. dma_start_addr = (unsigned long)drv_data->tx;
  631. cr |= BIT_CTL_TIMOD_DMA_TX;
  632. } else
  633. BUG();
  634. /* oh man, here there be monsters ... and i dont mean the
  635. * fluffy cute ones from pixar, i mean the kind that'll eat
  636. * your data, kick your dog, and love it all. do *not* try
  637. * and change these lines unless you (1) heavily test DMA
  638. * with SPI flashes on a loaded system (e.g. ping floods),
  639. * (2) know just how broken the DMA engine interaction with
  640. * the SPI peripheral is, and (3) have someone else to blame
  641. * when you screw it all up anyways.
  642. */
  643. set_dma_start_addr(drv_data->dma_channel, dma_start_addr);
  644. set_dma_config(drv_data->dma_channel, dma_config);
  645. local_irq_save(flags);
  646. SSYNC();
  647. write_CTRL(drv_data, cr);
  648. enable_dma(drv_data->dma_channel);
  649. dma_enable_irq(drv_data->dma_channel);
  650. local_irq_restore(flags);
  651. return;
  652. }
  653. if (chip->pio_interrupt) {
  654. /* use write mode. spi irq should have been disabled */
  655. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  656. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  657. /* discard old RX data and clear RXS */
  658. bfin_spi_dummy_read(drv_data);
  659. /* start transfer */
  660. if (drv_data->tx == NULL)
  661. write_TDBR(drv_data, chip->idle_tx_val);
  662. else {
  663. if (transfer->bits_per_word == 8)
  664. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  665. else if (transfer->bits_per_word == 16)
  666. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  667. drv_data->tx += drv_data->n_bytes;
  668. }
  669. /* once TDBR is empty, interrupt is triggered */
  670. enable_irq(drv_data->spi_irq);
  671. return;
  672. }
  673. /* IO mode */
  674. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  675. /* we always use SPI_WRITE mode. SPI_READ mode
  676. seems to have problems with setting up the
  677. output value in TDBR prior to the transfer. */
  678. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  679. if (full_duplex) {
  680. /* full duplex mode */
  681. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  682. (drv_data->rx_end - drv_data->rx));
  683. dev_dbg(&drv_data->pdev->dev,
  684. "IO duplex: cr is 0x%x\n", cr);
  685. drv_data->duplex(drv_data);
  686. if (drv_data->tx != drv_data->tx_end)
  687. tranf_success = 0;
  688. } else if (drv_data->tx != NULL) {
  689. /* write only half duplex */
  690. dev_dbg(&drv_data->pdev->dev,
  691. "IO write: cr is 0x%x\n", cr);
  692. drv_data->write(drv_data);
  693. if (drv_data->tx != drv_data->tx_end)
  694. tranf_success = 0;
  695. } else if (drv_data->rx != NULL) {
  696. /* read only half duplex */
  697. dev_dbg(&drv_data->pdev->dev,
  698. "IO read: cr is 0x%x\n", cr);
  699. drv_data->read(drv_data);
  700. if (drv_data->rx != drv_data->rx_end)
  701. tranf_success = 0;
  702. }
  703. if (!tranf_success) {
  704. dev_dbg(&drv_data->pdev->dev,
  705. "IO write error!\n");
  706. message->state = ERROR_STATE;
  707. } else {
  708. /* Update total byte transfered */
  709. message->actual_length += drv_data->len_in_bytes;
  710. /* Move to next transfer of this msg */
  711. message->state = bfin_spi_next_transfer(drv_data);
  712. if (drv_data->cs_change)
  713. bfin_spi_cs_deactive(drv_data, chip);
  714. }
  715. /* Schedule next transfer tasklet */
  716. tasklet_schedule(&drv_data->pump_transfers);
  717. }
  718. /* pop a msg from queue and kick off real transfer */
  719. static void bfin_spi_pump_messages(struct work_struct *work)
  720. {
  721. struct driver_data *drv_data;
  722. unsigned long flags;
  723. drv_data = container_of(work, struct driver_data, pump_messages);
  724. /* Lock queue and check for queue work */
  725. spin_lock_irqsave(&drv_data->lock, flags);
  726. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  727. /* pumper kicked off but no work to do */
  728. drv_data->busy = 0;
  729. spin_unlock_irqrestore(&drv_data->lock, flags);
  730. return;
  731. }
  732. /* Make sure we are not already running a message */
  733. if (drv_data->cur_msg) {
  734. spin_unlock_irqrestore(&drv_data->lock, flags);
  735. return;
  736. }
  737. /* Extract head of queue */
  738. drv_data->cur_msg = list_entry(drv_data->queue.next,
  739. struct spi_message, queue);
  740. /* Setup the SSP using the per chip configuration */
  741. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  742. bfin_spi_restore_state(drv_data);
  743. list_del_init(&drv_data->cur_msg->queue);
  744. /* Initial message state */
  745. drv_data->cur_msg->state = START_STATE;
  746. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  747. struct spi_transfer, transfer_list);
  748. dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
  749. "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  750. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  751. drv_data->cur_chip->ctl_reg);
  752. dev_dbg(&drv_data->pdev->dev,
  753. "the first transfer len is %d\n",
  754. drv_data->cur_transfer->len);
  755. /* Mark as busy and launch transfers */
  756. tasklet_schedule(&drv_data->pump_transfers);
  757. drv_data->busy = 1;
  758. spin_unlock_irqrestore(&drv_data->lock, flags);
  759. }
  760. /*
  761. * got a msg to transfer, queue it in drv_data->queue.
  762. * And kick off message pumper
  763. */
  764. static int bfin_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  765. {
  766. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  767. unsigned long flags;
  768. spin_lock_irqsave(&drv_data->lock, flags);
  769. if (drv_data->run == QUEUE_STOPPED) {
  770. spin_unlock_irqrestore(&drv_data->lock, flags);
  771. return -ESHUTDOWN;
  772. }
  773. msg->actual_length = 0;
  774. msg->status = -EINPROGRESS;
  775. msg->state = START_STATE;
  776. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  777. list_add_tail(&msg->queue, &drv_data->queue);
  778. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  779. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  780. spin_unlock_irqrestore(&drv_data->lock, flags);
  781. return 0;
  782. }
  783. #define MAX_SPI_SSEL 7
  784. static u16 ssel[][MAX_SPI_SSEL] = {
  785. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  786. P_SPI0_SSEL4, P_SPI0_SSEL5,
  787. P_SPI0_SSEL6, P_SPI0_SSEL7},
  788. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  789. P_SPI1_SSEL4, P_SPI1_SSEL5,
  790. P_SPI1_SSEL6, P_SPI1_SSEL7},
  791. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  792. P_SPI2_SSEL4, P_SPI2_SSEL5,
  793. P_SPI2_SSEL6, P_SPI2_SSEL7},
  794. };
  795. /* setup for devices (may be called multiple times -- not just first setup) */
  796. static int bfin_spi_setup(struct spi_device *spi)
  797. {
  798. struct bfin5xx_spi_chip *chip_info;
  799. struct chip_data *chip = NULL;
  800. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  801. int ret = -EINVAL;
  802. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  803. goto error;
  804. /* Only alloc (or use chip_info) on first setup */
  805. chip_info = NULL;
  806. chip = spi_get_ctldata(spi);
  807. if (chip == NULL) {
  808. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  809. if (!chip) {
  810. dev_err(&spi->dev, "cannot allocate chip data\n");
  811. ret = -ENOMEM;
  812. goto error;
  813. }
  814. chip->enable_dma = 0;
  815. chip_info = spi->controller_data;
  816. }
  817. /* chip_info isn't always needed */
  818. if (chip_info) {
  819. /* Make sure people stop trying to set fields via ctl_reg
  820. * when they should actually be using common SPI framework.
  821. * Currently we let through: WOM EMISO PSSE GM SZ TIMOD.
  822. * Not sure if a user actually needs/uses any of these,
  823. * but let's assume (for now) they do.
  824. */
  825. if (chip_info->ctl_reg & (SPE|MSTR|CPOL|CPHA|LSBF|SIZE)) {
  826. dev_err(&spi->dev, "do not set bits in ctl_reg "
  827. "that the SPI framework manages\n");
  828. goto error;
  829. }
  830. chip->enable_dma = chip_info->enable_dma != 0
  831. && drv_data->master_info->enable_dma;
  832. chip->ctl_reg = chip_info->ctl_reg;
  833. chip->bits_per_word = chip_info->bits_per_word;
  834. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  835. chip->cs_gpio = chip_info->cs_gpio;
  836. chip->idle_tx_val = chip_info->idle_tx_val;
  837. chip->pio_interrupt = chip_info->pio_interrupt;
  838. }
  839. /* translate common spi framework into our register */
  840. if (spi->mode & SPI_CPOL)
  841. chip->ctl_reg |= CPOL;
  842. if (spi->mode & SPI_CPHA)
  843. chip->ctl_reg |= CPHA;
  844. if (spi->mode & SPI_LSB_FIRST)
  845. chip->ctl_reg |= LSBF;
  846. /* we dont support running in slave mode (yet?) */
  847. chip->ctl_reg |= MSTR;
  848. /*
  849. * Notice: for blackfin, the speed_hz is the value of register
  850. * SPI_BAUD, not the real baudrate
  851. */
  852. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  853. chip->flag = (1 << (spi->chip_select)) << 8;
  854. chip->chip_select_num = spi->chip_select;
  855. switch (chip->bits_per_word) {
  856. case 8:
  857. chip->n_bytes = 1;
  858. chip->width = CFG_SPI_WORDSIZE8;
  859. chip->read = bfin_spi_u8_reader;
  860. chip->write = bfin_spi_u8_writer;
  861. chip->duplex = bfin_spi_u8_duplex;
  862. break;
  863. case 16:
  864. chip->n_bytes = 2;
  865. chip->width = CFG_SPI_WORDSIZE16;
  866. chip->read = bfin_spi_u16_reader;
  867. chip->write = bfin_spi_u16_writer;
  868. chip->duplex = bfin_spi_u16_duplex;
  869. break;
  870. default:
  871. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  872. chip->bits_per_word);
  873. goto error;
  874. }
  875. if (chip->enable_dma && chip->pio_interrupt) {
  876. dev_err(&spi->dev, "enable_dma is set, "
  877. "do not set pio_interrupt\n");
  878. goto error;
  879. }
  880. /*
  881. * if any one SPI chip is registered and wants DMA, request the
  882. * DMA channel for it
  883. */
  884. if (chip->enable_dma && !drv_data->dma_requested) {
  885. /* register dma irq handler */
  886. ret = request_dma(drv_data->dma_channel, "BFIN_SPI_DMA");
  887. if (ret) {
  888. dev_err(&spi->dev,
  889. "Unable to request BlackFin SPI DMA channel\n");
  890. goto error;
  891. }
  892. drv_data->dma_requested = 1;
  893. ret = set_dma_callback(drv_data->dma_channel,
  894. bfin_spi_dma_irq_handler, drv_data);
  895. if (ret) {
  896. dev_err(&spi->dev, "Unable to set dma callback\n");
  897. goto error;
  898. }
  899. dma_disable_irq(drv_data->dma_channel);
  900. }
  901. if (chip->pio_interrupt && !drv_data->irq_requested) {
  902. ret = request_irq(drv_data->spi_irq, bfin_spi_pio_irq_handler,
  903. IRQF_DISABLED, "BFIN_SPI", drv_data);
  904. if (ret) {
  905. dev_err(&spi->dev, "Unable to register spi IRQ\n");
  906. goto error;
  907. }
  908. drv_data->irq_requested = 1;
  909. /* we use write mode, spi irq has to be disabled here */
  910. disable_irq(drv_data->spi_irq);
  911. }
  912. if (chip->chip_select_num == 0) {
  913. ret = gpio_request(chip->cs_gpio, spi->modalias);
  914. if (ret) {
  915. dev_err(&spi->dev, "gpio_request() error\n");
  916. goto pin_error;
  917. }
  918. gpio_direction_output(chip->cs_gpio, 1);
  919. }
  920. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
  921. spi->modalias, chip->width, chip->enable_dma);
  922. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  923. chip->ctl_reg, chip->flag);
  924. spi_set_ctldata(spi, chip);
  925. dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
  926. if (chip->chip_select_num > 0 &&
  927. chip->chip_select_num <= spi->master->num_chipselect) {
  928. ret = peripheral_request(ssel[spi->master->bus_num]
  929. [chip->chip_select_num-1], spi->modalias);
  930. if (ret) {
  931. dev_err(&spi->dev, "peripheral_request() error\n");
  932. goto pin_error;
  933. }
  934. }
  935. bfin_spi_cs_enable(drv_data, chip);
  936. bfin_spi_cs_deactive(drv_data, chip);
  937. return 0;
  938. pin_error:
  939. if (chip->chip_select_num == 0)
  940. gpio_free(chip->cs_gpio);
  941. else
  942. peripheral_free(ssel[spi->master->bus_num]
  943. [chip->chip_select_num - 1]);
  944. error:
  945. if (chip) {
  946. if (drv_data->dma_requested)
  947. free_dma(drv_data->dma_channel);
  948. drv_data->dma_requested = 0;
  949. kfree(chip);
  950. /* prevent free 'chip' twice */
  951. spi_set_ctldata(spi, NULL);
  952. }
  953. return ret;
  954. }
  955. /*
  956. * callback for spi framework.
  957. * clean driver specific data
  958. */
  959. static void bfin_spi_cleanup(struct spi_device *spi)
  960. {
  961. struct chip_data *chip = spi_get_ctldata(spi);
  962. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  963. if (!chip)
  964. return;
  965. if ((chip->chip_select_num > 0)
  966. && (chip->chip_select_num <= spi->master->num_chipselect)) {
  967. peripheral_free(ssel[spi->master->bus_num]
  968. [chip->chip_select_num-1]);
  969. bfin_spi_cs_disable(drv_data, chip);
  970. }
  971. if (chip->chip_select_num == 0)
  972. gpio_free(chip->cs_gpio);
  973. kfree(chip);
  974. /* prevent free 'chip' twice */
  975. spi_set_ctldata(spi, NULL);
  976. }
  977. static inline int bfin_spi_init_queue(struct driver_data *drv_data)
  978. {
  979. INIT_LIST_HEAD(&drv_data->queue);
  980. spin_lock_init(&drv_data->lock);
  981. drv_data->run = QUEUE_STOPPED;
  982. drv_data->busy = 0;
  983. /* init transfer tasklet */
  984. tasklet_init(&drv_data->pump_transfers,
  985. bfin_spi_pump_transfers, (unsigned long)drv_data);
  986. /* init messages workqueue */
  987. INIT_WORK(&drv_data->pump_messages, bfin_spi_pump_messages);
  988. drv_data->workqueue = create_singlethread_workqueue(
  989. dev_name(drv_data->master->dev.parent));
  990. if (drv_data->workqueue == NULL)
  991. return -EBUSY;
  992. return 0;
  993. }
  994. static inline int bfin_spi_start_queue(struct driver_data *drv_data)
  995. {
  996. unsigned long flags;
  997. spin_lock_irqsave(&drv_data->lock, flags);
  998. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  999. spin_unlock_irqrestore(&drv_data->lock, flags);
  1000. return -EBUSY;
  1001. }
  1002. drv_data->run = QUEUE_RUNNING;
  1003. drv_data->cur_msg = NULL;
  1004. drv_data->cur_transfer = NULL;
  1005. drv_data->cur_chip = NULL;
  1006. spin_unlock_irqrestore(&drv_data->lock, flags);
  1007. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1008. return 0;
  1009. }
  1010. static inline int bfin_spi_stop_queue(struct driver_data *drv_data)
  1011. {
  1012. unsigned long flags;
  1013. unsigned limit = 500;
  1014. int status = 0;
  1015. spin_lock_irqsave(&drv_data->lock, flags);
  1016. /*
  1017. * This is a bit lame, but is optimized for the common execution path.
  1018. * A wait_queue on the drv_data->busy could be used, but then the common
  1019. * execution path (pump_messages) would be required to call wake_up or
  1020. * friends on every SPI message. Do this instead
  1021. */
  1022. drv_data->run = QUEUE_STOPPED;
  1023. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1024. spin_unlock_irqrestore(&drv_data->lock, flags);
  1025. msleep(10);
  1026. spin_lock_irqsave(&drv_data->lock, flags);
  1027. }
  1028. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1029. status = -EBUSY;
  1030. spin_unlock_irqrestore(&drv_data->lock, flags);
  1031. return status;
  1032. }
  1033. static inline int bfin_spi_destroy_queue(struct driver_data *drv_data)
  1034. {
  1035. int status;
  1036. status = bfin_spi_stop_queue(drv_data);
  1037. if (status != 0)
  1038. return status;
  1039. destroy_workqueue(drv_data->workqueue);
  1040. return 0;
  1041. }
  1042. static int __init bfin_spi_probe(struct platform_device *pdev)
  1043. {
  1044. struct device *dev = &pdev->dev;
  1045. struct bfin5xx_spi_master *platform_info;
  1046. struct spi_master *master;
  1047. struct driver_data *drv_data = 0;
  1048. struct resource *res;
  1049. int status = 0;
  1050. platform_info = dev->platform_data;
  1051. /* Allocate master with space for drv_data */
  1052. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1053. if (!master) {
  1054. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1055. return -ENOMEM;
  1056. }
  1057. drv_data = spi_master_get_devdata(master);
  1058. drv_data->master = master;
  1059. drv_data->master_info = platform_info;
  1060. drv_data->pdev = pdev;
  1061. drv_data->pin_req = platform_info->pin_req;
  1062. /* the spi->mode bits supported by this driver: */
  1063. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  1064. master->bus_num = pdev->id;
  1065. master->num_chipselect = platform_info->num_chipselect;
  1066. master->cleanup = bfin_spi_cleanup;
  1067. master->setup = bfin_spi_setup;
  1068. master->transfer = bfin_spi_transfer;
  1069. /* Find and map our resources */
  1070. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1071. if (res == NULL) {
  1072. dev_err(dev, "Cannot get IORESOURCE_MEM\n");
  1073. status = -ENOENT;
  1074. goto out_error_get_res;
  1075. }
  1076. drv_data->regs_base = ioremap(res->start, resource_size(res));
  1077. if (drv_data->regs_base == NULL) {
  1078. dev_err(dev, "Cannot map IO\n");
  1079. status = -ENXIO;
  1080. goto out_error_ioremap;
  1081. }
  1082. res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  1083. if (res == NULL) {
  1084. dev_err(dev, "No DMA channel specified\n");
  1085. status = -ENOENT;
  1086. goto out_error_free_io;
  1087. }
  1088. drv_data->dma_channel = res->start;
  1089. drv_data->spi_irq = platform_get_irq(pdev, 0);
  1090. if (drv_data->spi_irq < 0) {
  1091. dev_err(dev, "No spi pio irq specified\n");
  1092. status = -ENOENT;
  1093. goto out_error_free_io;
  1094. }
  1095. /* Initial and start queue */
  1096. status = bfin_spi_init_queue(drv_data);
  1097. if (status != 0) {
  1098. dev_err(dev, "problem initializing queue\n");
  1099. goto out_error_queue_alloc;
  1100. }
  1101. status = bfin_spi_start_queue(drv_data);
  1102. if (status != 0) {
  1103. dev_err(dev, "problem starting queue\n");
  1104. goto out_error_queue_alloc;
  1105. }
  1106. status = peripheral_request_list(drv_data->pin_req, DRV_NAME);
  1107. if (status != 0) {
  1108. dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
  1109. goto out_error_queue_alloc;
  1110. }
  1111. /* Reset SPI registers. If these registers were used by the boot loader,
  1112. * the sky may fall on your head if you enable the dma controller.
  1113. */
  1114. write_CTRL(drv_data, BIT_CTL_CPHA | BIT_CTL_MASTER);
  1115. write_FLAG(drv_data, 0xFF00);
  1116. /* Register with the SPI framework */
  1117. platform_set_drvdata(pdev, drv_data);
  1118. status = spi_register_master(master);
  1119. if (status != 0) {
  1120. dev_err(dev, "problem registering spi master\n");
  1121. goto out_error_queue_alloc;
  1122. }
  1123. dev_info(dev, "%s, Version %s, regs_base@%p, dma channel@%d\n",
  1124. DRV_DESC, DRV_VERSION, drv_data->regs_base,
  1125. drv_data->dma_channel);
  1126. return status;
  1127. out_error_queue_alloc:
  1128. bfin_spi_destroy_queue(drv_data);
  1129. out_error_free_io:
  1130. iounmap((void *) drv_data->regs_base);
  1131. out_error_ioremap:
  1132. out_error_get_res:
  1133. spi_master_put(master);
  1134. return status;
  1135. }
  1136. /* stop hardware and remove the driver */
  1137. static int __devexit bfin_spi_remove(struct platform_device *pdev)
  1138. {
  1139. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1140. int status = 0;
  1141. if (!drv_data)
  1142. return 0;
  1143. /* Remove the queue */
  1144. status = bfin_spi_destroy_queue(drv_data);
  1145. if (status != 0)
  1146. return status;
  1147. /* Disable the SSP at the peripheral and SOC level */
  1148. bfin_spi_disable(drv_data);
  1149. /* Release DMA */
  1150. if (drv_data->master_info->enable_dma) {
  1151. if (dma_channel_active(drv_data->dma_channel))
  1152. free_dma(drv_data->dma_channel);
  1153. }
  1154. if (drv_data->irq_requested) {
  1155. free_irq(drv_data->spi_irq, drv_data);
  1156. drv_data->irq_requested = 0;
  1157. }
  1158. /* Disconnect from the SPI framework */
  1159. spi_unregister_master(drv_data->master);
  1160. peripheral_free_list(drv_data->pin_req);
  1161. /* Prevent double remove */
  1162. platform_set_drvdata(pdev, NULL);
  1163. return 0;
  1164. }
  1165. #ifdef CONFIG_PM
  1166. static int bfin_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1167. {
  1168. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1169. int status = 0;
  1170. status = bfin_spi_stop_queue(drv_data);
  1171. if (status != 0)
  1172. return status;
  1173. /* stop hardware */
  1174. bfin_spi_disable(drv_data);
  1175. return 0;
  1176. }
  1177. static int bfin_spi_resume(struct platform_device *pdev)
  1178. {
  1179. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1180. int status = 0;
  1181. /* Enable the SPI interface */
  1182. bfin_spi_enable(drv_data);
  1183. /* Start the queue running */
  1184. status = bfin_spi_start_queue(drv_data);
  1185. if (status != 0) {
  1186. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1187. return status;
  1188. }
  1189. return 0;
  1190. }
  1191. #else
  1192. #define bfin_spi_suspend NULL
  1193. #define bfin_spi_resume NULL
  1194. #endif /* CONFIG_PM */
  1195. MODULE_ALIAS("platform:bfin-spi");
  1196. static struct platform_driver bfin_spi_driver = {
  1197. .driver = {
  1198. .name = DRV_NAME,
  1199. .owner = THIS_MODULE,
  1200. },
  1201. .suspend = bfin_spi_suspend,
  1202. .resume = bfin_spi_resume,
  1203. .remove = __devexit_p(bfin_spi_remove),
  1204. };
  1205. static int __init bfin_spi_init(void)
  1206. {
  1207. return platform_driver_probe(&bfin_spi_driver, bfin_spi_probe);
  1208. }
  1209. module_init(bfin_spi_init);
  1210. static void __exit bfin_spi_exit(void)
  1211. {
  1212. platform_driver_unregister(&bfin_spi_driver);
  1213. }
  1214. module_exit(bfin_spi_exit);