slub.c 123 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/kmemcheck.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpuset.h>
  23. #include <linux/mempolicy.h>
  24. #include <linux/ctype.h>
  25. #include <linux/debugobjects.h>
  26. #include <linux/kallsyms.h>
  27. #include <linux/memory.h>
  28. #include <linux/math64.h>
  29. #include <linux/fault-inject.h>
  30. #include <linux/stacktrace.h>
  31. #include <trace/events/kmem.h>
  32. /*
  33. * Lock order:
  34. * 1. slub_lock (Global Semaphore)
  35. * 2. node->list_lock
  36. * 3. slab_lock(page) (Only on some arches and for debugging)
  37. *
  38. * slub_lock
  39. *
  40. * The role of the slub_lock is to protect the list of all the slabs
  41. * and to synchronize major metadata changes to slab cache structures.
  42. *
  43. * The slab_lock is only used for debugging and on arches that do not
  44. * have the ability to do a cmpxchg_double. It only protects the second
  45. * double word in the page struct. Meaning
  46. * A. page->freelist -> List of object free in a page
  47. * B. page->counters -> Counters of objects
  48. * C. page->frozen -> frozen state
  49. *
  50. * If a slab is frozen then it is exempt from list management. It is not
  51. * on any list. The processor that froze the slab is the one who can
  52. * perform list operations on the page. Other processors may put objects
  53. * onto the freelist but the processor that froze the slab is the only
  54. * one that can retrieve the objects from the page's freelist.
  55. *
  56. * The list_lock protects the partial and full list on each node and
  57. * the partial slab counter. If taken then no new slabs may be added or
  58. * removed from the lists nor make the number of partial slabs be modified.
  59. * (Note that the total number of slabs is an atomic value that may be
  60. * modified without taking the list lock).
  61. *
  62. * The list_lock is a centralized lock and thus we avoid taking it as
  63. * much as possible. As long as SLUB does not have to handle partial
  64. * slabs, operations can continue without any centralized lock. F.e.
  65. * allocating a long series of objects that fill up slabs does not require
  66. * the list lock.
  67. * Interrupts are disabled during allocation and deallocation in order to
  68. * make the slab allocator safe to use in the context of an irq. In addition
  69. * interrupts are disabled to ensure that the processor does not change
  70. * while handling per_cpu slabs, due to kernel preemption.
  71. *
  72. * SLUB assigns one slab for allocation to each processor.
  73. * Allocations only occur from these slabs called cpu slabs.
  74. *
  75. * Slabs with free elements are kept on a partial list and during regular
  76. * operations no list for full slabs is used. If an object in a full slab is
  77. * freed then the slab will show up again on the partial lists.
  78. * We track full slabs for debugging purposes though because otherwise we
  79. * cannot scan all objects.
  80. *
  81. * Slabs are freed when they become empty. Teardown and setup is
  82. * minimal so we rely on the page allocators per cpu caches for
  83. * fast frees and allocs.
  84. *
  85. * Overloading of page flags that are otherwise used for LRU management.
  86. *
  87. * PageActive The slab is frozen and exempt from list processing.
  88. * This means that the slab is dedicated to a purpose
  89. * such as satisfying allocations for a specific
  90. * processor. Objects may be freed in the slab while
  91. * it is frozen but slab_free will then skip the usual
  92. * list operations. It is up to the processor holding
  93. * the slab to integrate the slab into the slab lists
  94. * when the slab is no longer needed.
  95. *
  96. * One use of this flag is to mark slabs that are
  97. * used for allocations. Then such a slab becomes a cpu
  98. * slab. The cpu slab may be equipped with an additional
  99. * freelist that allows lockless access to
  100. * free objects in addition to the regular freelist
  101. * that requires the slab lock.
  102. *
  103. * PageError Slab requires special handling due to debug
  104. * options set. This moves slab handling out of
  105. * the fast path and disables lockless freelists.
  106. */
  107. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  108. SLAB_TRACE | SLAB_DEBUG_FREE)
  109. static inline int kmem_cache_debug(struct kmem_cache *s)
  110. {
  111. #ifdef CONFIG_SLUB_DEBUG
  112. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  113. #else
  114. return 0;
  115. #endif
  116. }
  117. /*
  118. * Issues still to be resolved:
  119. *
  120. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  121. *
  122. * - Variable sizing of the per node arrays
  123. */
  124. /* Enable to test recovery from slab corruption on boot */
  125. #undef SLUB_RESILIENCY_TEST
  126. /* Enable to log cmpxchg failures */
  127. #undef SLUB_DEBUG_CMPXCHG
  128. /*
  129. * Mininum number of partial slabs. These will be left on the partial
  130. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  131. */
  132. #define MIN_PARTIAL 5
  133. /*
  134. * Maximum number of desirable partial slabs.
  135. * The existence of more partial slabs makes kmem_cache_shrink
  136. * sort the partial list by the number of objects in the.
  137. */
  138. #define MAX_PARTIAL 10
  139. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  140. SLAB_POISON | SLAB_STORE_USER)
  141. /*
  142. * Debugging flags that require metadata to be stored in the slab. These get
  143. * disabled when slub_debug=O is used and a cache's min order increases with
  144. * metadata.
  145. */
  146. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  147. /*
  148. * Set of flags that will prevent slab merging
  149. */
  150. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  151. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  152. SLAB_FAILSLAB)
  153. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  154. SLAB_CACHE_DMA | SLAB_NOTRACK)
  155. #define OO_SHIFT 16
  156. #define OO_MASK ((1 << OO_SHIFT) - 1)
  157. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  158. /* Internal SLUB flags */
  159. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  160. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  161. static int kmem_size = sizeof(struct kmem_cache);
  162. #ifdef CONFIG_SMP
  163. static struct notifier_block slab_notifier;
  164. #endif
  165. static enum {
  166. DOWN, /* No slab functionality available */
  167. PARTIAL, /* Kmem_cache_node works */
  168. UP, /* Everything works but does not show up in sysfs */
  169. SYSFS /* Sysfs up */
  170. } slab_state = DOWN;
  171. /* A list of all slab caches on the system */
  172. static DECLARE_RWSEM(slub_lock);
  173. static LIST_HEAD(slab_caches);
  174. /*
  175. * Tracking user of a slab.
  176. */
  177. #define TRACK_ADDRS_COUNT 16
  178. struct track {
  179. unsigned long addr; /* Called from address */
  180. #ifdef CONFIG_STACKTRACE
  181. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  182. #endif
  183. int cpu; /* Was running on cpu */
  184. int pid; /* Pid context */
  185. unsigned long when; /* When did the operation occur */
  186. };
  187. enum track_item { TRACK_ALLOC, TRACK_FREE };
  188. #ifdef CONFIG_SYSFS
  189. static int sysfs_slab_add(struct kmem_cache *);
  190. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  191. static void sysfs_slab_remove(struct kmem_cache *);
  192. #else
  193. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  194. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  195. { return 0; }
  196. static inline void sysfs_slab_remove(struct kmem_cache *s)
  197. {
  198. kfree(s->name);
  199. kfree(s);
  200. }
  201. #endif
  202. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  203. {
  204. #ifdef CONFIG_SLUB_STATS
  205. __this_cpu_inc(s->cpu_slab->stat[si]);
  206. #endif
  207. }
  208. /********************************************************************
  209. * Core slab cache functions
  210. *******************************************************************/
  211. int slab_is_available(void)
  212. {
  213. return slab_state >= UP;
  214. }
  215. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  216. {
  217. return s->node[node];
  218. }
  219. /* Verify that a pointer has an address that is valid within a slab page */
  220. static inline int check_valid_pointer(struct kmem_cache *s,
  221. struct page *page, const void *object)
  222. {
  223. void *base;
  224. if (!object)
  225. return 1;
  226. base = page_address(page);
  227. if (object < base || object >= base + page->objects * s->size ||
  228. (object - base) % s->size) {
  229. return 0;
  230. }
  231. return 1;
  232. }
  233. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  234. {
  235. return *(void **)(object + s->offset);
  236. }
  237. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  238. {
  239. void *p;
  240. #ifdef CONFIG_DEBUG_PAGEALLOC
  241. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  242. #else
  243. p = get_freepointer(s, object);
  244. #endif
  245. return p;
  246. }
  247. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  248. {
  249. *(void **)(object + s->offset) = fp;
  250. }
  251. /* Loop over all objects in a slab */
  252. #define for_each_object(__p, __s, __addr, __objects) \
  253. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  254. __p += (__s)->size)
  255. /* Determine object index from a given position */
  256. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  257. {
  258. return (p - addr) / s->size;
  259. }
  260. static inline size_t slab_ksize(const struct kmem_cache *s)
  261. {
  262. #ifdef CONFIG_SLUB_DEBUG
  263. /*
  264. * Debugging requires use of the padding between object
  265. * and whatever may come after it.
  266. */
  267. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  268. return s->objsize;
  269. #endif
  270. /*
  271. * If we have the need to store the freelist pointer
  272. * back there or track user information then we can
  273. * only use the space before that information.
  274. */
  275. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  276. return s->inuse;
  277. /*
  278. * Else we can use all the padding etc for the allocation
  279. */
  280. return s->size;
  281. }
  282. static inline int order_objects(int order, unsigned long size, int reserved)
  283. {
  284. return ((PAGE_SIZE << order) - reserved) / size;
  285. }
  286. static inline struct kmem_cache_order_objects oo_make(int order,
  287. unsigned long size, int reserved)
  288. {
  289. struct kmem_cache_order_objects x = {
  290. (order << OO_SHIFT) + order_objects(order, size, reserved)
  291. };
  292. return x;
  293. }
  294. static inline int oo_order(struct kmem_cache_order_objects x)
  295. {
  296. return x.x >> OO_SHIFT;
  297. }
  298. static inline int oo_objects(struct kmem_cache_order_objects x)
  299. {
  300. return x.x & OO_MASK;
  301. }
  302. /*
  303. * Per slab locking using the pagelock
  304. */
  305. static __always_inline void slab_lock(struct page *page)
  306. {
  307. bit_spin_lock(PG_locked, &page->flags);
  308. }
  309. static __always_inline void slab_unlock(struct page *page)
  310. {
  311. __bit_spin_unlock(PG_locked, &page->flags);
  312. }
  313. /* Interrupts must be disabled (for the fallback code to work right) */
  314. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  315. void *freelist_old, unsigned long counters_old,
  316. void *freelist_new, unsigned long counters_new,
  317. const char *n)
  318. {
  319. VM_BUG_ON(!irqs_disabled());
  320. #ifdef CONFIG_CMPXCHG_DOUBLE
  321. if (s->flags & __CMPXCHG_DOUBLE) {
  322. if (cmpxchg_double(&page->freelist,
  323. freelist_old, counters_old,
  324. freelist_new, counters_new))
  325. return 1;
  326. } else
  327. #endif
  328. {
  329. slab_lock(page);
  330. if (page->freelist == freelist_old && page->counters == counters_old) {
  331. page->freelist = freelist_new;
  332. page->counters = counters_new;
  333. slab_unlock(page);
  334. return 1;
  335. }
  336. slab_unlock(page);
  337. }
  338. cpu_relax();
  339. stat(s, CMPXCHG_DOUBLE_FAIL);
  340. #ifdef SLUB_DEBUG_CMPXCHG
  341. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  342. #endif
  343. return 0;
  344. }
  345. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  346. void *freelist_old, unsigned long counters_old,
  347. void *freelist_new, unsigned long counters_new,
  348. const char *n)
  349. {
  350. #ifdef CONFIG_CMPXCHG_DOUBLE
  351. if (s->flags & __CMPXCHG_DOUBLE) {
  352. if (cmpxchg_double(&page->freelist,
  353. freelist_old, counters_old,
  354. freelist_new, counters_new))
  355. return 1;
  356. } else
  357. #endif
  358. {
  359. unsigned long flags;
  360. local_irq_save(flags);
  361. slab_lock(page);
  362. if (page->freelist == freelist_old && page->counters == counters_old) {
  363. page->freelist = freelist_new;
  364. page->counters = counters_new;
  365. slab_unlock(page);
  366. local_irq_restore(flags);
  367. return 1;
  368. }
  369. slab_unlock(page);
  370. local_irq_restore(flags);
  371. }
  372. cpu_relax();
  373. stat(s, CMPXCHG_DOUBLE_FAIL);
  374. #ifdef SLUB_DEBUG_CMPXCHG
  375. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  376. #endif
  377. return 0;
  378. }
  379. #ifdef CONFIG_SLUB_DEBUG
  380. /*
  381. * Determine a map of object in use on a page.
  382. *
  383. * Node listlock must be held to guarantee that the page does
  384. * not vanish from under us.
  385. */
  386. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  387. {
  388. void *p;
  389. void *addr = page_address(page);
  390. for (p = page->freelist; p; p = get_freepointer(s, p))
  391. set_bit(slab_index(p, s, addr), map);
  392. }
  393. /*
  394. * Debug settings:
  395. */
  396. #ifdef CONFIG_SLUB_DEBUG_ON
  397. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  398. #else
  399. static int slub_debug;
  400. #endif
  401. static char *slub_debug_slabs;
  402. static int disable_higher_order_debug;
  403. /*
  404. * Object debugging
  405. */
  406. static void print_section(char *text, u8 *addr, unsigned int length)
  407. {
  408. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  409. length, 1);
  410. }
  411. static struct track *get_track(struct kmem_cache *s, void *object,
  412. enum track_item alloc)
  413. {
  414. struct track *p;
  415. if (s->offset)
  416. p = object + s->offset + sizeof(void *);
  417. else
  418. p = object + s->inuse;
  419. return p + alloc;
  420. }
  421. static void set_track(struct kmem_cache *s, void *object,
  422. enum track_item alloc, unsigned long addr)
  423. {
  424. struct track *p = get_track(s, object, alloc);
  425. if (addr) {
  426. #ifdef CONFIG_STACKTRACE
  427. struct stack_trace trace;
  428. int i;
  429. trace.nr_entries = 0;
  430. trace.max_entries = TRACK_ADDRS_COUNT;
  431. trace.entries = p->addrs;
  432. trace.skip = 3;
  433. save_stack_trace(&trace);
  434. /* See rant in lockdep.c */
  435. if (trace.nr_entries != 0 &&
  436. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  437. trace.nr_entries--;
  438. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  439. p->addrs[i] = 0;
  440. #endif
  441. p->addr = addr;
  442. p->cpu = smp_processor_id();
  443. p->pid = current->pid;
  444. p->when = jiffies;
  445. } else
  446. memset(p, 0, sizeof(struct track));
  447. }
  448. static void init_tracking(struct kmem_cache *s, void *object)
  449. {
  450. if (!(s->flags & SLAB_STORE_USER))
  451. return;
  452. set_track(s, object, TRACK_FREE, 0UL);
  453. set_track(s, object, TRACK_ALLOC, 0UL);
  454. }
  455. static void print_track(const char *s, struct track *t)
  456. {
  457. if (!t->addr)
  458. return;
  459. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  460. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  461. #ifdef CONFIG_STACKTRACE
  462. {
  463. int i;
  464. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  465. if (t->addrs[i])
  466. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  467. else
  468. break;
  469. }
  470. #endif
  471. }
  472. static void print_tracking(struct kmem_cache *s, void *object)
  473. {
  474. if (!(s->flags & SLAB_STORE_USER))
  475. return;
  476. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  477. print_track("Freed", get_track(s, object, TRACK_FREE));
  478. }
  479. static void print_page_info(struct page *page)
  480. {
  481. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  482. page, page->objects, page->inuse, page->freelist, page->flags);
  483. }
  484. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  485. {
  486. va_list args;
  487. char buf[100];
  488. va_start(args, fmt);
  489. vsnprintf(buf, sizeof(buf), fmt, args);
  490. va_end(args);
  491. printk(KERN_ERR "========================================"
  492. "=====================================\n");
  493. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  494. printk(KERN_ERR "----------------------------------------"
  495. "-------------------------------------\n\n");
  496. }
  497. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  498. {
  499. va_list args;
  500. char buf[100];
  501. va_start(args, fmt);
  502. vsnprintf(buf, sizeof(buf), fmt, args);
  503. va_end(args);
  504. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  505. }
  506. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  507. {
  508. unsigned int off; /* Offset of last byte */
  509. u8 *addr = page_address(page);
  510. print_tracking(s, p);
  511. print_page_info(page);
  512. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  513. p, p - addr, get_freepointer(s, p));
  514. if (p > addr + 16)
  515. print_section("Bytes b4 ", p - 16, 16);
  516. print_section("Object ", p, min_t(unsigned long, s->objsize,
  517. PAGE_SIZE));
  518. if (s->flags & SLAB_RED_ZONE)
  519. print_section("Redzone ", p + s->objsize,
  520. s->inuse - s->objsize);
  521. if (s->offset)
  522. off = s->offset + sizeof(void *);
  523. else
  524. off = s->inuse;
  525. if (s->flags & SLAB_STORE_USER)
  526. off += 2 * sizeof(struct track);
  527. if (off != s->size)
  528. /* Beginning of the filler is the free pointer */
  529. print_section("Padding ", p + off, s->size - off);
  530. dump_stack();
  531. }
  532. static void object_err(struct kmem_cache *s, struct page *page,
  533. u8 *object, char *reason)
  534. {
  535. slab_bug(s, "%s", reason);
  536. print_trailer(s, page, object);
  537. }
  538. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  539. {
  540. va_list args;
  541. char buf[100];
  542. va_start(args, fmt);
  543. vsnprintf(buf, sizeof(buf), fmt, args);
  544. va_end(args);
  545. slab_bug(s, "%s", buf);
  546. print_page_info(page);
  547. dump_stack();
  548. }
  549. static void init_object(struct kmem_cache *s, void *object, u8 val)
  550. {
  551. u8 *p = object;
  552. if (s->flags & __OBJECT_POISON) {
  553. memset(p, POISON_FREE, s->objsize - 1);
  554. p[s->objsize - 1] = POISON_END;
  555. }
  556. if (s->flags & SLAB_RED_ZONE)
  557. memset(p + s->objsize, val, s->inuse - s->objsize);
  558. }
  559. static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
  560. {
  561. while (bytes) {
  562. if (*start != value)
  563. return start;
  564. start++;
  565. bytes--;
  566. }
  567. return NULL;
  568. }
  569. static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
  570. {
  571. u64 value64;
  572. unsigned int words, prefix;
  573. if (bytes <= 16)
  574. return check_bytes8(start, value, bytes);
  575. value64 = value | value << 8 | value << 16 | value << 24;
  576. value64 = (value64 & 0xffffffff) | value64 << 32;
  577. prefix = 8 - ((unsigned long)start) % 8;
  578. if (prefix) {
  579. u8 *r = check_bytes8(start, value, prefix);
  580. if (r)
  581. return r;
  582. start += prefix;
  583. bytes -= prefix;
  584. }
  585. words = bytes / 8;
  586. while (words) {
  587. if (*(u64 *)start != value64)
  588. return check_bytes8(start, value, 8);
  589. start += 8;
  590. words--;
  591. }
  592. return check_bytes8(start, value, bytes % 8);
  593. }
  594. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  595. void *from, void *to)
  596. {
  597. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  598. memset(from, data, to - from);
  599. }
  600. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  601. u8 *object, char *what,
  602. u8 *start, unsigned int value, unsigned int bytes)
  603. {
  604. u8 *fault;
  605. u8 *end;
  606. fault = check_bytes(start, value, bytes);
  607. if (!fault)
  608. return 1;
  609. end = start + bytes;
  610. while (end > fault && end[-1] == value)
  611. end--;
  612. slab_bug(s, "%s overwritten", what);
  613. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  614. fault, end - 1, fault[0], value);
  615. print_trailer(s, page, object);
  616. restore_bytes(s, what, value, fault, end);
  617. return 0;
  618. }
  619. /*
  620. * Object layout:
  621. *
  622. * object address
  623. * Bytes of the object to be managed.
  624. * If the freepointer may overlay the object then the free
  625. * pointer is the first word of the object.
  626. *
  627. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  628. * 0xa5 (POISON_END)
  629. *
  630. * object + s->objsize
  631. * Padding to reach word boundary. This is also used for Redzoning.
  632. * Padding is extended by another word if Redzoning is enabled and
  633. * objsize == inuse.
  634. *
  635. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  636. * 0xcc (RED_ACTIVE) for objects in use.
  637. *
  638. * object + s->inuse
  639. * Meta data starts here.
  640. *
  641. * A. Free pointer (if we cannot overwrite object on free)
  642. * B. Tracking data for SLAB_STORE_USER
  643. * C. Padding to reach required alignment boundary or at mininum
  644. * one word if debugging is on to be able to detect writes
  645. * before the word boundary.
  646. *
  647. * Padding is done using 0x5a (POISON_INUSE)
  648. *
  649. * object + s->size
  650. * Nothing is used beyond s->size.
  651. *
  652. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  653. * ignored. And therefore no slab options that rely on these boundaries
  654. * may be used with merged slabcaches.
  655. */
  656. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  657. {
  658. unsigned long off = s->inuse; /* The end of info */
  659. if (s->offset)
  660. /* Freepointer is placed after the object. */
  661. off += sizeof(void *);
  662. if (s->flags & SLAB_STORE_USER)
  663. /* We also have user information there */
  664. off += 2 * sizeof(struct track);
  665. if (s->size == off)
  666. return 1;
  667. return check_bytes_and_report(s, page, p, "Object padding",
  668. p + off, POISON_INUSE, s->size - off);
  669. }
  670. /* Check the pad bytes at the end of a slab page */
  671. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  672. {
  673. u8 *start;
  674. u8 *fault;
  675. u8 *end;
  676. int length;
  677. int remainder;
  678. if (!(s->flags & SLAB_POISON))
  679. return 1;
  680. start = page_address(page);
  681. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  682. end = start + length;
  683. remainder = length % s->size;
  684. if (!remainder)
  685. return 1;
  686. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  687. if (!fault)
  688. return 1;
  689. while (end > fault && end[-1] == POISON_INUSE)
  690. end--;
  691. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  692. print_section("Padding ", end - remainder, remainder);
  693. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  694. return 0;
  695. }
  696. static int check_object(struct kmem_cache *s, struct page *page,
  697. void *object, u8 val)
  698. {
  699. u8 *p = object;
  700. u8 *endobject = object + s->objsize;
  701. if (s->flags & SLAB_RED_ZONE) {
  702. if (!check_bytes_and_report(s, page, object, "Redzone",
  703. endobject, val, s->inuse - s->objsize))
  704. return 0;
  705. } else {
  706. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  707. check_bytes_and_report(s, page, p, "Alignment padding",
  708. endobject, POISON_INUSE, s->inuse - s->objsize);
  709. }
  710. }
  711. if (s->flags & SLAB_POISON) {
  712. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  713. (!check_bytes_and_report(s, page, p, "Poison", p,
  714. POISON_FREE, s->objsize - 1) ||
  715. !check_bytes_and_report(s, page, p, "Poison",
  716. p + s->objsize - 1, POISON_END, 1)))
  717. return 0;
  718. /*
  719. * check_pad_bytes cleans up on its own.
  720. */
  721. check_pad_bytes(s, page, p);
  722. }
  723. if (!s->offset && val == SLUB_RED_ACTIVE)
  724. /*
  725. * Object and freepointer overlap. Cannot check
  726. * freepointer while object is allocated.
  727. */
  728. return 1;
  729. /* Check free pointer validity */
  730. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  731. object_err(s, page, p, "Freepointer corrupt");
  732. /*
  733. * No choice but to zap it and thus lose the remainder
  734. * of the free objects in this slab. May cause
  735. * another error because the object count is now wrong.
  736. */
  737. set_freepointer(s, p, NULL);
  738. return 0;
  739. }
  740. return 1;
  741. }
  742. static int check_slab(struct kmem_cache *s, struct page *page)
  743. {
  744. int maxobj;
  745. VM_BUG_ON(!irqs_disabled());
  746. if (!PageSlab(page)) {
  747. slab_err(s, page, "Not a valid slab page");
  748. return 0;
  749. }
  750. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  751. if (page->objects > maxobj) {
  752. slab_err(s, page, "objects %u > max %u",
  753. s->name, page->objects, maxobj);
  754. return 0;
  755. }
  756. if (page->inuse > page->objects) {
  757. slab_err(s, page, "inuse %u > max %u",
  758. s->name, page->inuse, page->objects);
  759. return 0;
  760. }
  761. /* Slab_pad_check fixes things up after itself */
  762. slab_pad_check(s, page);
  763. return 1;
  764. }
  765. /*
  766. * Determine if a certain object on a page is on the freelist. Must hold the
  767. * slab lock to guarantee that the chains are in a consistent state.
  768. */
  769. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  770. {
  771. int nr = 0;
  772. void *fp;
  773. void *object = NULL;
  774. unsigned long max_objects;
  775. fp = page->freelist;
  776. while (fp && nr <= page->objects) {
  777. if (fp == search)
  778. return 1;
  779. if (!check_valid_pointer(s, page, fp)) {
  780. if (object) {
  781. object_err(s, page, object,
  782. "Freechain corrupt");
  783. set_freepointer(s, object, NULL);
  784. break;
  785. } else {
  786. slab_err(s, page, "Freepointer corrupt");
  787. page->freelist = NULL;
  788. page->inuse = page->objects;
  789. slab_fix(s, "Freelist cleared");
  790. return 0;
  791. }
  792. break;
  793. }
  794. object = fp;
  795. fp = get_freepointer(s, object);
  796. nr++;
  797. }
  798. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  799. if (max_objects > MAX_OBJS_PER_PAGE)
  800. max_objects = MAX_OBJS_PER_PAGE;
  801. if (page->objects != max_objects) {
  802. slab_err(s, page, "Wrong number of objects. Found %d but "
  803. "should be %d", page->objects, max_objects);
  804. page->objects = max_objects;
  805. slab_fix(s, "Number of objects adjusted.");
  806. }
  807. if (page->inuse != page->objects - nr) {
  808. slab_err(s, page, "Wrong object count. Counter is %d but "
  809. "counted were %d", page->inuse, page->objects - nr);
  810. page->inuse = page->objects - nr;
  811. slab_fix(s, "Object count adjusted.");
  812. }
  813. return search == NULL;
  814. }
  815. static void trace(struct kmem_cache *s, struct page *page, void *object,
  816. int alloc)
  817. {
  818. if (s->flags & SLAB_TRACE) {
  819. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  820. s->name,
  821. alloc ? "alloc" : "free",
  822. object, page->inuse,
  823. page->freelist);
  824. if (!alloc)
  825. print_section("Object ", (void *)object, s->objsize);
  826. dump_stack();
  827. }
  828. }
  829. /*
  830. * Hooks for other subsystems that check memory allocations. In a typical
  831. * production configuration these hooks all should produce no code at all.
  832. */
  833. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  834. {
  835. flags &= gfp_allowed_mask;
  836. lockdep_trace_alloc(flags);
  837. might_sleep_if(flags & __GFP_WAIT);
  838. return should_failslab(s->objsize, flags, s->flags);
  839. }
  840. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  841. {
  842. flags &= gfp_allowed_mask;
  843. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  844. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
  845. }
  846. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  847. {
  848. kmemleak_free_recursive(x, s->flags);
  849. /*
  850. * Trouble is that we may no longer disable interupts in the fast path
  851. * So in order to make the debug calls that expect irqs to be
  852. * disabled we need to disable interrupts temporarily.
  853. */
  854. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  855. {
  856. unsigned long flags;
  857. local_irq_save(flags);
  858. kmemcheck_slab_free(s, x, s->objsize);
  859. debug_check_no_locks_freed(x, s->objsize);
  860. local_irq_restore(flags);
  861. }
  862. #endif
  863. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  864. debug_check_no_obj_freed(x, s->objsize);
  865. }
  866. /*
  867. * Tracking of fully allocated slabs for debugging purposes.
  868. *
  869. * list_lock must be held.
  870. */
  871. static void add_full(struct kmem_cache *s,
  872. struct kmem_cache_node *n, struct page *page)
  873. {
  874. if (!(s->flags & SLAB_STORE_USER))
  875. return;
  876. list_add(&page->lru, &n->full);
  877. }
  878. /*
  879. * list_lock must be held.
  880. */
  881. static void remove_full(struct kmem_cache *s, struct page *page)
  882. {
  883. if (!(s->flags & SLAB_STORE_USER))
  884. return;
  885. list_del(&page->lru);
  886. }
  887. /* Tracking of the number of slabs for debugging purposes */
  888. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  889. {
  890. struct kmem_cache_node *n = get_node(s, node);
  891. return atomic_long_read(&n->nr_slabs);
  892. }
  893. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  894. {
  895. return atomic_long_read(&n->nr_slabs);
  896. }
  897. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  898. {
  899. struct kmem_cache_node *n = get_node(s, node);
  900. /*
  901. * May be called early in order to allocate a slab for the
  902. * kmem_cache_node structure. Solve the chicken-egg
  903. * dilemma by deferring the increment of the count during
  904. * bootstrap (see early_kmem_cache_node_alloc).
  905. */
  906. if (n) {
  907. atomic_long_inc(&n->nr_slabs);
  908. atomic_long_add(objects, &n->total_objects);
  909. }
  910. }
  911. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  912. {
  913. struct kmem_cache_node *n = get_node(s, node);
  914. atomic_long_dec(&n->nr_slabs);
  915. atomic_long_sub(objects, &n->total_objects);
  916. }
  917. /* Object debug checks for alloc/free paths */
  918. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  919. void *object)
  920. {
  921. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  922. return;
  923. init_object(s, object, SLUB_RED_INACTIVE);
  924. init_tracking(s, object);
  925. }
  926. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  927. void *object, unsigned long addr)
  928. {
  929. if (!check_slab(s, page))
  930. goto bad;
  931. if (!check_valid_pointer(s, page, object)) {
  932. object_err(s, page, object, "Freelist Pointer check fails");
  933. goto bad;
  934. }
  935. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  936. goto bad;
  937. /* Success perform special debug activities for allocs */
  938. if (s->flags & SLAB_STORE_USER)
  939. set_track(s, object, TRACK_ALLOC, addr);
  940. trace(s, page, object, 1);
  941. init_object(s, object, SLUB_RED_ACTIVE);
  942. return 1;
  943. bad:
  944. if (PageSlab(page)) {
  945. /*
  946. * If this is a slab page then lets do the best we can
  947. * to avoid issues in the future. Marking all objects
  948. * as used avoids touching the remaining objects.
  949. */
  950. slab_fix(s, "Marking all objects used");
  951. page->inuse = page->objects;
  952. page->freelist = NULL;
  953. }
  954. return 0;
  955. }
  956. static noinline int free_debug_processing(struct kmem_cache *s,
  957. struct page *page, void *object, unsigned long addr)
  958. {
  959. unsigned long flags;
  960. int rc = 0;
  961. local_irq_save(flags);
  962. slab_lock(page);
  963. if (!check_slab(s, page))
  964. goto fail;
  965. if (!check_valid_pointer(s, page, object)) {
  966. slab_err(s, page, "Invalid object pointer 0x%p", object);
  967. goto fail;
  968. }
  969. if (on_freelist(s, page, object)) {
  970. object_err(s, page, object, "Object already free");
  971. goto fail;
  972. }
  973. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  974. goto out;
  975. if (unlikely(s != page->slab)) {
  976. if (!PageSlab(page)) {
  977. slab_err(s, page, "Attempt to free object(0x%p) "
  978. "outside of slab", object);
  979. } else if (!page->slab) {
  980. printk(KERN_ERR
  981. "SLUB <none>: no slab for object 0x%p.\n",
  982. object);
  983. dump_stack();
  984. } else
  985. object_err(s, page, object,
  986. "page slab pointer corrupt.");
  987. goto fail;
  988. }
  989. if (s->flags & SLAB_STORE_USER)
  990. set_track(s, object, TRACK_FREE, addr);
  991. trace(s, page, object, 0);
  992. init_object(s, object, SLUB_RED_INACTIVE);
  993. rc = 1;
  994. out:
  995. slab_unlock(page);
  996. local_irq_restore(flags);
  997. return rc;
  998. fail:
  999. slab_fix(s, "Object at 0x%p not freed", object);
  1000. goto out;
  1001. }
  1002. static int __init setup_slub_debug(char *str)
  1003. {
  1004. slub_debug = DEBUG_DEFAULT_FLAGS;
  1005. if (*str++ != '=' || !*str)
  1006. /*
  1007. * No options specified. Switch on full debugging.
  1008. */
  1009. goto out;
  1010. if (*str == ',')
  1011. /*
  1012. * No options but restriction on slabs. This means full
  1013. * debugging for slabs matching a pattern.
  1014. */
  1015. goto check_slabs;
  1016. if (tolower(*str) == 'o') {
  1017. /*
  1018. * Avoid enabling debugging on caches if its minimum order
  1019. * would increase as a result.
  1020. */
  1021. disable_higher_order_debug = 1;
  1022. goto out;
  1023. }
  1024. slub_debug = 0;
  1025. if (*str == '-')
  1026. /*
  1027. * Switch off all debugging measures.
  1028. */
  1029. goto out;
  1030. /*
  1031. * Determine which debug features should be switched on
  1032. */
  1033. for (; *str && *str != ','; str++) {
  1034. switch (tolower(*str)) {
  1035. case 'f':
  1036. slub_debug |= SLAB_DEBUG_FREE;
  1037. break;
  1038. case 'z':
  1039. slub_debug |= SLAB_RED_ZONE;
  1040. break;
  1041. case 'p':
  1042. slub_debug |= SLAB_POISON;
  1043. break;
  1044. case 'u':
  1045. slub_debug |= SLAB_STORE_USER;
  1046. break;
  1047. case 't':
  1048. slub_debug |= SLAB_TRACE;
  1049. break;
  1050. case 'a':
  1051. slub_debug |= SLAB_FAILSLAB;
  1052. break;
  1053. default:
  1054. printk(KERN_ERR "slub_debug option '%c' "
  1055. "unknown. skipped\n", *str);
  1056. }
  1057. }
  1058. check_slabs:
  1059. if (*str == ',')
  1060. slub_debug_slabs = str + 1;
  1061. out:
  1062. return 1;
  1063. }
  1064. __setup("slub_debug", setup_slub_debug);
  1065. static unsigned long kmem_cache_flags(unsigned long objsize,
  1066. unsigned long flags, const char *name,
  1067. void (*ctor)(void *))
  1068. {
  1069. /*
  1070. * Enable debugging if selected on the kernel commandline.
  1071. */
  1072. if (slub_debug && (!slub_debug_slabs ||
  1073. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1074. flags |= slub_debug;
  1075. return flags;
  1076. }
  1077. #else
  1078. static inline void setup_object_debug(struct kmem_cache *s,
  1079. struct page *page, void *object) {}
  1080. static inline int alloc_debug_processing(struct kmem_cache *s,
  1081. struct page *page, void *object, unsigned long addr) { return 0; }
  1082. static inline int free_debug_processing(struct kmem_cache *s,
  1083. struct page *page, void *object, unsigned long addr) { return 0; }
  1084. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1085. { return 1; }
  1086. static inline int check_object(struct kmem_cache *s, struct page *page,
  1087. void *object, u8 val) { return 1; }
  1088. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1089. struct page *page) {}
  1090. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1091. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  1092. unsigned long flags, const char *name,
  1093. void (*ctor)(void *))
  1094. {
  1095. return flags;
  1096. }
  1097. #define slub_debug 0
  1098. #define disable_higher_order_debug 0
  1099. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1100. { return 0; }
  1101. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1102. { return 0; }
  1103. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1104. int objects) {}
  1105. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1106. int objects) {}
  1107. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1108. { return 0; }
  1109. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1110. void *object) {}
  1111. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1112. #endif /* CONFIG_SLUB_DEBUG */
  1113. /*
  1114. * Slab allocation and freeing
  1115. */
  1116. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1117. struct kmem_cache_order_objects oo)
  1118. {
  1119. int order = oo_order(oo);
  1120. flags |= __GFP_NOTRACK;
  1121. if (node == NUMA_NO_NODE)
  1122. return alloc_pages(flags, order);
  1123. else
  1124. return alloc_pages_exact_node(node, flags, order);
  1125. }
  1126. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1127. {
  1128. struct page *page;
  1129. struct kmem_cache_order_objects oo = s->oo;
  1130. gfp_t alloc_gfp;
  1131. flags &= gfp_allowed_mask;
  1132. if (flags & __GFP_WAIT)
  1133. local_irq_enable();
  1134. flags |= s->allocflags;
  1135. /*
  1136. * Let the initial higher-order allocation fail under memory pressure
  1137. * so we fall-back to the minimum order allocation.
  1138. */
  1139. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1140. page = alloc_slab_page(alloc_gfp, node, oo);
  1141. if (unlikely(!page)) {
  1142. oo = s->min;
  1143. /*
  1144. * Allocation may have failed due to fragmentation.
  1145. * Try a lower order alloc if possible
  1146. */
  1147. page = alloc_slab_page(flags, node, oo);
  1148. if (page)
  1149. stat(s, ORDER_FALLBACK);
  1150. }
  1151. if (flags & __GFP_WAIT)
  1152. local_irq_disable();
  1153. if (!page)
  1154. return NULL;
  1155. if (kmemcheck_enabled
  1156. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1157. int pages = 1 << oo_order(oo);
  1158. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1159. /*
  1160. * Objects from caches that have a constructor don't get
  1161. * cleared when they're allocated, so we need to do it here.
  1162. */
  1163. if (s->ctor)
  1164. kmemcheck_mark_uninitialized_pages(page, pages);
  1165. else
  1166. kmemcheck_mark_unallocated_pages(page, pages);
  1167. }
  1168. page->objects = oo_objects(oo);
  1169. mod_zone_page_state(page_zone(page),
  1170. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1171. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1172. 1 << oo_order(oo));
  1173. return page;
  1174. }
  1175. static void setup_object(struct kmem_cache *s, struct page *page,
  1176. void *object)
  1177. {
  1178. setup_object_debug(s, page, object);
  1179. if (unlikely(s->ctor))
  1180. s->ctor(object);
  1181. }
  1182. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1183. {
  1184. struct page *page;
  1185. void *start;
  1186. void *last;
  1187. void *p;
  1188. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1189. page = allocate_slab(s,
  1190. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1191. if (!page)
  1192. goto out;
  1193. inc_slabs_node(s, page_to_nid(page), page->objects);
  1194. page->slab = s;
  1195. page->flags |= 1 << PG_slab;
  1196. start = page_address(page);
  1197. if (unlikely(s->flags & SLAB_POISON))
  1198. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1199. last = start;
  1200. for_each_object(p, s, start, page->objects) {
  1201. setup_object(s, page, last);
  1202. set_freepointer(s, last, p);
  1203. last = p;
  1204. }
  1205. setup_object(s, page, last);
  1206. set_freepointer(s, last, NULL);
  1207. page->freelist = start;
  1208. page->inuse = 0;
  1209. page->frozen = 1;
  1210. out:
  1211. return page;
  1212. }
  1213. static void __free_slab(struct kmem_cache *s, struct page *page)
  1214. {
  1215. int order = compound_order(page);
  1216. int pages = 1 << order;
  1217. if (kmem_cache_debug(s)) {
  1218. void *p;
  1219. slab_pad_check(s, page);
  1220. for_each_object(p, s, page_address(page),
  1221. page->objects)
  1222. check_object(s, page, p, SLUB_RED_INACTIVE);
  1223. }
  1224. kmemcheck_free_shadow(page, compound_order(page));
  1225. mod_zone_page_state(page_zone(page),
  1226. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1227. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1228. -pages);
  1229. __ClearPageSlab(page);
  1230. reset_page_mapcount(page);
  1231. if (current->reclaim_state)
  1232. current->reclaim_state->reclaimed_slab += pages;
  1233. __free_pages(page, order);
  1234. }
  1235. #define need_reserve_slab_rcu \
  1236. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1237. static void rcu_free_slab(struct rcu_head *h)
  1238. {
  1239. struct page *page;
  1240. if (need_reserve_slab_rcu)
  1241. page = virt_to_head_page(h);
  1242. else
  1243. page = container_of((struct list_head *)h, struct page, lru);
  1244. __free_slab(page->slab, page);
  1245. }
  1246. static void free_slab(struct kmem_cache *s, struct page *page)
  1247. {
  1248. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1249. struct rcu_head *head;
  1250. if (need_reserve_slab_rcu) {
  1251. int order = compound_order(page);
  1252. int offset = (PAGE_SIZE << order) - s->reserved;
  1253. VM_BUG_ON(s->reserved != sizeof(*head));
  1254. head = page_address(page) + offset;
  1255. } else {
  1256. /*
  1257. * RCU free overloads the RCU head over the LRU
  1258. */
  1259. head = (void *)&page->lru;
  1260. }
  1261. call_rcu(head, rcu_free_slab);
  1262. } else
  1263. __free_slab(s, page);
  1264. }
  1265. static void discard_slab(struct kmem_cache *s, struct page *page)
  1266. {
  1267. dec_slabs_node(s, page_to_nid(page), page->objects);
  1268. free_slab(s, page);
  1269. }
  1270. /*
  1271. * Management of partially allocated slabs.
  1272. *
  1273. * list_lock must be held.
  1274. */
  1275. static inline void add_partial(struct kmem_cache_node *n,
  1276. struct page *page, int tail)
  1277. {
  1278. n->nr_partial++;
  1279. if (tail == DEACTIVATE_TO_TAIL)
  1280. list_add_tail(&page->lru, &n->partial);
  1281. else
  1282. list_add(&page->lru, &n->partial);
  1283. }
  1284. /*
  1285. * list_lock must be held.
  1286. */
  1287. static inline void remove_partial(struct kmem_cache_node *n,
  1288. struct page *page)
  1289. {
  1290. list_del(&page->lru);
  1291. n->nr_partial--;
  1292. }
  1293. /*
  1294. * Lock slab, remove from the partial list and put the object into the
  1295. * per cpu freelist.
  1296. *
  1297. * Must hold list_lock.
  1298. */
  1299. static inline int acquire_slab(struct kmem_cache *s,
  1300. struct kmem_cache_node *n, struct page *page)
  1301. {
  1302. void *freelist;
  1303. unsigned long counters;
  1304. struct page new;
  1305. /*
  1306. * Zap the freelist and set the frozen bit.
  1307. * The old freelist is the list of objects for the
  1308. * per cpu allocation list.
  1309. */
  1310. do {
  1311. freelist = page->freelist;
  1312. counters = page->counters;
  1313. new.counters = counters;
  1314. new.inuse = page->objects;
  1315. VM_BUG_ON(new.frozen);
  1316. new.frozen = 1;
  1317. } while (!__cmpxchg_double_slab(s, page,
  1318. freelist, counters,
  1319. NULL, new.counters,
  1320. "lock and freeze"));
  1321. remove_partial(n, page);
  1322. if (freelist) {
  1323. /* Populate the per cpu freelist */
  1324. this_cpu_write(s->cpu_slab->freelist, freelist);
  1325. this_cpu_write(s->cpu_slab->page, page);
  1326. this_cpu_write(s->cpu_slab->node, page_to_nid(page));
  1327. return 1;
  1328. } else {
  1329. /*
  1330. * Slab page came from the wrong list. No object to allocate
  1331. * from. Put it onto the correct list and continue partial
  1332. * scan.
  1333. */
  1334. printk(KERN_ERR "SLUB: %s : Page without available objects on"
  1335. " partial list\n", s->name);
  1336. return 0;
  1337. }
  1338. }
  1339. /*
  1340. * Try to allocate a partial slab from a specific node.
  1341. */
  1342. static struct page *get_partial_node(struct kmem_cache *s,
  1343. struct kmem_cache_node *n)
  1344. {
  1345. struct page *page;
  1346. /*
  1347. * Racy check. If we mistakenly see no partial slabs then we
  1348. * just allocate an empty slab. If we mistakenly try to get a
  1349. * partial slab and there is none available then get_partials()
  1350. * will return NULL.
  1351. */
  1352. if (!n || !n->nr_partial)
  1353. return NULL;
  1354. spin_lock(&n->list_lock);
  1355. list_for_each_entry(page, &n->partial, lru)
  1356. if (acquire_slab(s, n, page))
  1357. goto out;
  1358. page = NULL;
  1359. out:
  1360. spin_unlock(&n->list_lock);
  1361. return page;
  1362. }
  1363. /*
  1364. * Get a page from somewhere. Search in increasing NUMA distances.
  1365. */
  1366. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1367. {
  1368. #ifdef CONFIG_NUMA
  1369. struct zonelist *zonelist;
  1370. struct zoneref *z;
  1371. struct zone *zone;
  1372. enum zone_type high_zoneidx = gfp_zone(flags);
  1373. struct page *page;
  1374. /*
  1375. * The defrag ratio allows a configuration of the tradeoffs between
  1376. * inter node defragmentation and node local allocations. A lower
  1377. * defrag_ratio increases the tendency to do local allocations
  1378. * instead of attempting to obtain partial slabs from other nodes.
  1379. *
  1380. * If the defrag_ratio is set to 0 then kmalloc() always
  1381. * returns node local objects. If the ratio is higher then kmalloc()
  1382. * may return off node objects because partial slabs are obtained
  1383. * from other nodes and filled up.
  1384. *
  1385. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1386. * defrag_ratio = 1000) then every (well almost) allocation will
  1387. * first attempt to defrag slab caches on other nodes. This means
  1388. * scanning over all nodes to look for partial slabs which may be
  1389. * expensive if we do it every time we are trying to find a slab
  1390. * with available objects.
  1391. */
  1392. if (!s->remote_node_defrag_ratio ||
  1393. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1394. return NULL;
  1395. get_mems_allowed();
  1396. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1397. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1398. struct kmem_cache_node *n;
  1399. n = get_node(s, zone_to_nid(zone));
  1400. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1401. n->nr_partial > s->min_partial) {
  1402. page = get_partial_node(s, n);
  1403. if (page) {
  1404. put_mems_allowed();
  1405. return page;
  1406. }
  1407. }
  1408. }
  1409. put_mems_allowed();
  1410. #endif
  1411. return NULL;
  1412. }
  1413. /*
  1414. * Get a partial page, lock it and return it.
  1415. */
  1416. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1417. {
  1418. struct page *page;
  1419. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1420. page = get_partial_node(s, get_node(s, searchnode));
  1421. if (page || node != NUMA_NO_NODE)
  1422. return page;
  1423. return get_any_partial(s, flags);
  1424. }
  1425. #ifdef CONFIG_PREEMPT
  1426. /*
  1427. * Calculate the next globally unique transaction for disambiguiation
  1428. * during cmpxchg. The transactions start with the cpu number and are then
  1429. * incremented by CONFIG_NR_CPUS.
  1430. */
  1431. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1432. #else
  1433. /*
  1434. * No preemption supported therefore also no need to check for
  1435. * different cpus.
  1436. */
  1437. #define TID_STEP 1
  1438. #endif
  1439. static inline unsigned long next_tid(unsigned long tid)
  1440. {
  1441. return tid + TID_STEP;
  1442. }
  1443. static inline unsigned int tid_to_cpu(unsigned long tid)
  1444. {
  1445. return tid % TID_STEP;
  1446. }
  1447. static inline unsigned long tid_to_event(unsigned long tid)
  1448. {
  1449. return tid / TID_STEP;
  1450. }
  1451. static inline unsigned int init_tid(int cpu)
  1452. {
  1453. return cpu;
  1454. }
  1455. static inline void note_cmpxchg_failure(const char *n,
  1456. const struct kmem_cache *s, unsigned long tid)
  1457. {
  1458. #ifdef SLUB_DEBUG_CMPXCHG
  1459. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1460. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1461. #ifdef CONFIG_PREEMPT
  1462. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1463. printk("due to cpu change %d -> %d\n",
  1464. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1465. else
  1466. #endif
  1467. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1468. printk("due to cpu running other code. Event %ld->%ld\n",
  1469. tid_to_event(tid), tid_to_event(actual_tid));
  1470. else
  1471. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1472. actual_tid, tid, next_tid(tid));
  1473. #endif
  1474. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1475. }
  1476. void init_kmem_cache_cpus(struct kmem_cache *s)
  1477. {
  1478. int cpu;
  1479. for_each_possible_cpu(cpu)
  1480. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1481. }
  1482. /*
  1483. * Remove the cpu slab
  1484. */
  1485. /*
  1486. * Remove the cpu slab
  1487. */
  1488. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1489. {
  1490. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1491. struct page *page = c->page;
  1492. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1493. int lock = 0;
  1494. enum slab_modes l = M_NONE, m = M_NONE;
  1495. void *freelist;
  1496. void *nextfree;
  1497. int tail = DEACTIVATE_TO_HEAD;
  1498. struct page new;
  1499. struct page old;
  1500. if (page->freelist) {
  1501. stat(s, DEACTIVATE_REMOTE_FREES);
  1502. tail = DEACTIVATE_TO_TAIL;
  1503. }
  1504. c->tid = next_tid(c->tid);
  1505. c->page = NULL;
  1506. freelist = c->freelist;
  1507. c->freelist = NULL;
  1508. /*
  1509. * Stage one: Free all available per cpu objects back
  1510. * to the page freelist while it is still frozen. Leave the
  1511. * last one.
  1512. *
  1513. * There is no need to take the list->lock because the page
  1514. * is still frozen.
  1515. */
  1516. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1517. void *prior;
  1518. unsigned long counters;
  1519. do {
  1520. prior = page->freelist;
  1521. counters = page->counters;
  1522. set_freepointer(s, freelist, prior);
  1523. new.counters = counters;
  1524. new.inuse--;
  1525. VM_BUG_ON(!new.frozen);
  1526. } while (!__cmpxchg_double_slab(s, page,
  1527. prior, counters,
  1528. freelist, new.counters,
  1529. "drain percpu freelist"));
  1530. freelist = nextfree;
  1531. }
  1532. /*
  1533. * Stage two: Ensure that the page is unfrozen while the
  1534. * list presence reflects the actual number of objects
  1535. * during unfreeze.
  1536. *
  1537. * We setup the list membership and then perform a cmpxchg
  1538. * with the count. If there is a mismatch then the page
  1539. * is not unfrozen but the page is on the wrong list.
  1540. *
  1541. * Then we restart the process which may have to remove
  1542. * the page from the list that we just put it on again
  1543. * because the number of objects in the slab may have
  1544. * changed.
  1545. */
  1546. redo:
  1547. old.freelist = page->freelist;
  1548. old.counters = page->counters;
  1549. VM_BUG_ON(!old.frozen);
  1550. /* Determine target state of the slab */
  1551. new.counters = old.counters;
  1552. if (freelist) {
  1553. new.inuse--;
  1554. set_freepointer(s, freelist, old.freelist);
  1555. new.freelist = freelist;
  1556. } else
  1557. new.freelist = old.freelist;
  1558. new.frozen = 0;
  1559. if (!new.inuse && n->nr_partial > s->min_partial)
  1560. m = M_FREE;
  1561. else if (new.freelist) {
  1562. m = M_PARTIAL;
  1563. if (!lock) {
  1564. lock = 1;
  1565. /*
  1566. * Taking the spinlock removes the possiblity
  1567. * that acquire_slab() will see a slab page that
  1568. * is frozen
  1569. */
  1570. spin_lock(&n->list_lock);
  1571. }
  1572. } else {
  1573. m = M_FULL;
  1574. if (kmem_cache_debug(s) && !lock) {
  1575. lock = 1;
  1576. /*
  1577. * This also ensures that the scanning of full
  1578. * slabs from diagnostic functions will not see
  1579. * any frozen slabs.
  1580. */
  1581. spin_lock(&n->list_lock);
  1582. }
  1583. }
  1584. if (l != m) {
  1585. if (l == M_PARTIAL)
  1586. remove_partial(n, page);
  1587. else if (l == M_FULL)
  1588. remove_full(s, page);
  1589. if (m == M_PARTIAL) {
  1590. add_partial(n, page, tail);
  1591. stat(s, tail);
  1592. } else if (m == M_FULL) {
  1593. stat(s, DEACTIVATE_FULL);
  1594. add_full(s, n, page);
  1595. }
  1596. }
  1597. l = m;
  1598. if (!__cmpxchg_double_slab(s, page,
  1599. old.freelist, old.counters,
  1600. new.freelist, new.counters,
  1601. "unfreezing slab"))
  1602. goto redo;
  1603. if (lock)
  1604. spin_unlock(&n->list_lock);
  1605. if (m == M_FREE) {
  1606. stat(s, DEACTIVATE_EMPTY);
  1607. discard_slab(s, page);
  1608. stat(s, FREE_SLAB);
  1609. }
  1610. }
  1611. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1612. {
  1613. stat(s, CPUSLAB_FLUSH);
  1614. deactivate_slab(s, c);
  1615. }
  1616. /*
  1617. * Flush cpu slab.
  1618. *
  1619. * Called from IPI handler with interrupts disabled.
  1620. */
  1621. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1622. {
  1623. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1624. if (likely(c && c->page))
  1625. flush_slab(s, c);
  1626. }
  1627. static void flush_cpu_slab(void *d)
  1628. {
  1629. struct kmem_cache *s = d;
  1630. __flush_cpu_slab(s, smp_processor_id());
  1631. }
  1632. static void flush_all(struct kmem_cache *s)
  1633. {
  1634. on_each_cpu(flush_cpu_slab, s, 1);
  1635. }
  1636. /*
  1637. * Check if the objects in a per cpu structure fit numa
  1638. * locality expectations.
  1639. */
  1640. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1641. {
  1642. #ifdef CONFIG_NUMA
  1643. if (node != NUMA_NO_NODE && c->node != node)
  1644. return 0;
  1645. #endif
  1646. return 1;
  1647. }
  1648. static int count_free(struct page *page)
  1649. {
  1650. return page->objects - page->inuse;
  1651. }
  1652. static unsigned long count_partial(struct kmem_cache_node *n,
  1653. int (*get_count)(struct page *))
  1654. {
  1655. unsigned long flags;
  1656. unsigned long x = 0;
  1657. struct page *page;
  1658. spin_lock_irqsave(&n->list_lock, flags);
  1659. list_for_each_entry(page, &n->partial, lru)
  1660. x += get_count(page);
  1661. spin_unlock_irqrestore(&n->list_lock, flags);
  1662. return x;
  1663. }
  1664. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1665. {
  1666. #ifdef CONFIG_SLUB_DEBUG
  1667. return atomic_long_read(&n->total_objects);
  1668. #else
  1669. return 0;
  1670. #endif
  1671. }
  1672. static noinline void
  1673. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1674. {
  1675. int node;
  1676. printk(KERN_WARNING
  1677. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1678. nid, gfpflags);
  1679. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1680. "default order: %d, min order: %d\n", s->name, s->objsize,
  1681. s->size, oo_order(s->oo), oo_order(s->min));
  1682. if (oo_order(s->min) > get_order(s->objsize))
  1683. printk(KERN_WARNING " %s debugging increased min order, use "
  1684. "slub_debug=O to disable.\n", s->name);
  1685. for_each_online_node(node) {
  1686. struct kmem_cache_node *n = get_node(s, node);
  1687. unsigned long nr_slabs;
  1688. unsigned long nr_objs;
  1689. unsigned long nr_free;
  1690. if (!n)
  1691. continue;
  1692. nr_free = count_partial(n, count_free);
  1693. nr_slabs = node_nr_slabs(n);
  1694. nr_objs = node_nr_objs(n);
  1695. printk(KERN_WARNING
  1696. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1697. node, nr_slabs, nr_objs, nr_free);
  1698. }
  1699. }
  1700. /*
  1701. * Slow path. The lockless freelist is empty or we need to perform
  1702. * debugging duties.
  1703. *
  1704. * Interrupts are disabled.
  1705. *
  1706. * Processing is still very fast if new objects have been freed to the
  1707. * regular freelist. In that case we simply take over the regular freelist
  1708. * as the lockless freelist and zap the regular freelist.
  1709. *
  1710. * If that is not working then we fall back to the partial lists. We take the
  1711. * first element of the freelist as the object to allocate now and move the
  1712. * rest of the freelist to the lockless freelist.
  1713. *
  1714. * And if we were unable to get a new slab from the partial slab lists then
  1715. * we need to allocate a new slab. This is the slowest path since it involves
  1716. * a call to the page allocator and the setup of a new slab.
  1717. */
  1718. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1719. unsigned long addr, struct kmem_cache_cpu *c)
  1720. {
  1721. void **object;
  1722. struct page *page;
  1723. unsigned long flags;
  1724. struct page new;
  1725. unsigned long counters;
  1726. local_irq_save(flags);
  1727. #ifdef CONFIG_PREEMPT
  1728. /*
  1729. * We may have been preempted and rescheduled on a different
  1730. * cpu before disabling interrupts. Need to reload cpu area
  1731. * pointer.
  1732. */
  1733. c = this_cpu_ptr(s->cpu_slab);
  1734. #endif
  1735. /* We handle __GFP_ZERO in the caller */
  1736. gfpflags &= ~__GFP_ZERO;
  1737. page = c->page;
  1738. if (!page)
  1739. goto new_slab;
  1740. if (unlikely(!node_match(c, node))) {
  1741. stat(s, ALLOC_NODE_MISMATCH);
  1742. deactivate_slab(s, c);
  1743. goto new_slab;
  1744. }
  1745. stat(s, ALLOC_SLOWPATH);
  1746. do {
  1747. object = page->freelist;
  1748. counters = page->counters;
  1749. new.counters = counters;
  1750. VM_BUG_ON(!new.frozen);
  1751. /*
  1752. * If there is no object left then we use this loop to
  1753. * deactivate the slab which is simple since no objects
  1754. * are left in the slab and therefore we do not need to
  1755. * put the page back onto the partial list.
  1756. *
  1757. * If there are objects left then we retrieve them
  1758. * and use them to refill the per cpu queue.
  1759. */
  1760. new.inuse = page->objects;
  1761. new.frozen = object != NULL;
  1762. } while (!__cmpxchg_double_slab(s, page,
  1763. object, counters,
  1764. NULL, new.counters,
  1765. "__slab_alloc"));
  1766. if (unlikely(!object)) {
  1767. c->page = NULL;
  1768. stat(s, DEACTIVATE_BYPASS);
  1769. goto new_slab;
  1770. }
  1771. stat(s, ALLOC_REFILL);
  1772. load_freelist:
  1773. VM_BUG_ON(!page->frozen);
  1774. c->freelist = get_freepointer(s, object);
  1775. c->tid = next_tid(c->tid);
  1776. local_irq_restore(flags);
  1777. return object;
  1778. new_slab:
  1779. page = get_partial(s, gfpflags, node);
  1780. if (page) {
  1781. stat(s, ALLOC_FROM_PARTIAL);
  1782. object = c->freelist;
  1783. if (kmem_cache_debug(s))
  1784. goto debug;
  1785. goto load_freelist;
  1786. }
  1787. page = new_slab(s, gfpflags, node);
  1788. if (page) {
  1789. c = __this_cpu_ptr(s->cpu_slab);
  1790. if (c->page)
  1791. flush_slab(s, c);
  1792. /*
  1793. * No other reference to the page yet so we can
  1794. * muck around with it freely without cmpxchg
  1795. */
  1796. object = page->freelist;
  1797. page->freelist = NULL;
  1798. page->inuse = page->objects;
  1799. stat(s, ALLOC_SLAB);
  1800. c->node = page_to_nid(page);
  1801. c->page = page;
  1802. if (kmem_cache_debug(s))
  1803. goto debug;
  1804. goto load_freelist;
  1805. }
  1806. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1807. slab_out_of_memory(s, gfpflags, node);
  1808. local_irq_restore(flags);
  1809. return NULL;
  1810. debug:
  1811. if (!object || !alloc_debug_processing(s, page, object, addr))
  1812. goto new_slab;
  1813. c->freelist = get_freepointer(s, object);
  1814. deactivate_slab(s, c);
  1815. c->page = NULL;
  1816. c->node = NUMA_NO_NODE;
  1817. local_irq_restore(flags);
  1818. return object;
  1819. }
  1820. /*
  1821. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1822. * have the fastpath folded into their functions. So no function call
  1823. * overhead for requests that can be satisfied on the fastpath.
  1824. *
  1825. * The fastpath works by first checking if the lockless freelist can be used.
  1826. * If not then __slab_alloc is called for slow processing.
  1827. *
  1828. * Otherwise we can simply pick the next object from the lockless free list.
  1829. */
  1830. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1831. gfp_t gfpflags, int node, unsigned long addr)
  1832. {
  1833. void **object;
  1834. struct kmem_cache_cpu *c;
  1835. unsigned long tid;
  1836. if (slab_pre_alloc_hook(s, gfpflags))
  1837. return NULL;
  1838. redo:
  1839. /*
  1840. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1841. * enabled. We may switch back and forth between cpus while
  1842. * reading from one cpu area. That does not matter as long
  1843. * as we end up on the original cpu again when doing the cmpxchg.
  1844. */
  1845. c = __this_cpu_ptr(s->cpu_slab);
  1846. /*
  1847. * The transaction ids are globally unique per cpu and per operation on
  1848. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1849. * occurs on the right processor and that there was no operation on the
  1850. * linked list in between.
  1851. */
  1852. tid = c->tid;
  1853. barrier();
  1854. object = c->freelist;
  1855. if (unlikely(!object || !node_match(c, node)))
  1856. object = __slab_alloc(s, gfpflags, node, addr, c);
  1857. else {
  1858. /*
  1859. * The cmpxchg will only match if there was no additional
  1860. * operation and if we are on the right processor.
  1861. *
  1862. * The cmpxchg does the following atomically (without lock semantics!)
  1863. * 1. Relocate first pointer to the current per cpu area.
  1864. * 2. Verify that tid and freelist have not been changed
  1865. * 3. If they were not changed replace tid and freelist
  1866. *
  1867. * Since this is without lock semantics the protection is only against
  1868. * code executing on this cpu *not* from access by other cpus.
  1869. */
  1870. if (unlikely(!irqsafe_cpu_cmpxchg_double(
  1871. s->cpu_slab->freelist, s->cpu_slab->tid,
  1872. object, tid,
  1873. get_freepointer_safe(s, object), next_tid(tid)))) {
  1874. note_cmpxchg_failure("slab_alloc", s, tid);
  1875. goto redo;
  1876. }
  1877. stat(s, ALLOC_FASTPATH);
  1878. }
  1879. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1880. memset(object, 0, s->objsize);
  1881. slab_post_alloc_hook(s, gfpflags, object);
  1882. return object;
  1883. }
  1884. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1885. {
  1886. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1887. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1888. return ret;
  1889. }
  1890. EXPORT_SYMBOL(kmem_cache_alloc);
  1891. #ifdef CONFIG_TRACING
  1892. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  1893. {
  1894. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1895. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  1896. return ret;
  1897. }
  1898. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  1899. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  1900. {
  1901. void *ret = kmalloc_order(size, flags, order);
  1902. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  1903. return ret;
  1904. }
  1905. EXPORT_SYMBOL(kmalloc_order_trace);
  1906. #endif
  1907. #ifdef CONFIG_NUMA
  1908. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1909. {
  1910. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1911. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1912. s->objsize, s->size, gfpflags, node);
  1913. return ret;
  1914. }
  1915. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1916. #ifdef CONFIG_TRACING
  1917. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  1918. gfp_t gfpflags,
  1919. int node, size_t size)
  1920. {
  1921. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1922. trace_kmalloc_node(_RET_IP_, ret,
  1923. size, s->size, gfpflags, node);
  1924. return ret;
  1925. }
  1926. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  1927. #endif
  1928. #endif
  1929. /*
  1930. * Slow patch handling. This may still be called frequently since objects
  1931. * have a longer lifetime than the cpu slabs in most processing loads.
  1932. *
  1933. * So we still attempt to reduce cache line usage. Just take the slab
  1934. * lock and free the item. If there is no additional partial page
  1935. * handling required then we can return immediately.
  1936. */
  1937. static void __slab_free(struct kmem_cache *s, struct page *page,
  1938. void *x, unsigned long addr)
  1939. {
  1940. void *prior;
  1941. void **object = (void *)x;
  1942. int was_frozen;
  1943. int inuse;
  1944. struct page new;
  1945. unsigned long counters;
  1946. struct kmem_cache_node *n = NULL;
  1947. unsigned long uninitialized_var(flags);
  1948. stat(s, FREE_SLOWPATH);
  1949. if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
  1950. return;
  1951. do {
  1952. prior = page->freelist;
  1953. counters = page->counters;
  1954. set_freepointer(s, object, prior);
  1955. new.counters = counters;
  1956. was_frozen = new.frozen;
  1957. new.inuse--;
  1958. if ((!new.inuse || !prior) && !was_frozen && !n) {
  1959. n = get_node(s, page_to_nid(page));
  1960. /*
  1961. * Speculatively acquire the list_lock.
  1962. * If the cmpxchg does not succeed then we may
  1963. * drop the list_lock without any processing.
  1964. *
  1965. * Otherwise the list_lock will synchronize with
  1966. * other processors updating the list of slabs.
  1967. */
  1968. spin_lock_irqsave(&n->list_lock, flags);
  1969. }
  1970. inuse = new.inuse;
  1971. } while (!cmpxchg_double_slab(s, page,
  1972. prior, counters,
  1973. object, new.counters,
  1974. "__slab_free"));
  1975. if (likely(!n)) {
  1976. /*
  1977. * The list lock was not taken therefore no list
  1978. * activity can be necessary.
  1979. */
  1980. if (was_frozen)
  1981. stat(s, FREE_FROZEN);
  1982. return;
  1983. }
  1984. /*
  1985. * was_frozen may have been set after we acquired the list_lock in
  1986. * an earlier loop. So we need to check it here again.
  1987. */
  1988. if (was_frozen)
  1989. stat(s, FREE_FROZEN);
  1990. else {
  1991. if (unlikely(!inuse && n->nr_partial > s->min_partial))
  1992. goto slab_empty;
  1993. /*
  1994. * Objects left in the slab. If it was not on the partial list before
  1995. * then add it.
  1996. */
  1997. if (unlikely(!prior)) {
  1998. remove_full(s, page);
  1999. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2000. stat(s, FREE_ADD_PARTIAL);
  2001. }
  2002. }
  2003. spin_unlock_irqrestore(&n->list_lock, flags);
  2004. return;
  2005. slab_empty:
  2006. if (prior) {
  2007. /*
  2008. * Slab on the partial list.
  2009. */
  2010. remove_partial(n, page);
  2011. stat(s, FREE_REMOVE_PARTIAL);
  2012. } else
  2013. /* Slab must be on the full list */
  2014. remove_full(s, page);
  2015. spin_unlock_irqrestore(&n->list_lock, flags);
  2016. stat(s, FREE_SLAB);
  2017. discard_slab(s, page);
  2018. }
  2019. /*
  2020. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2021. * can perform fastpath freeing without additional function calls.
  2022. *
  2023. * The fastpath is only possible if we are freeing to the current cpu slab
  2024. * of this processor. This typically the case if we have just allocated
  2025. * the item before.
  2026. *
  2027. * If fastpath is not possible then fall back to __slab_free where we deal
  2028. * with all sorts of special processing.
  2029. */
  2030. static __always_inline void slab_free(struct kmem_cache *s,
  2031. struct page *page, void *x, unsigned long addr)
  2032. {
  2033. void **object = (void *)x;
  2034. struct kmem_cache_cpu *c;
  2035. unsigned long tid;
  2036. slab_free_hook(s, x);
  2037. redo:
  2038. /*
  2039. * Determine the currently cpus per cpu slab.
  2040. * The cpu may change afterward. However that does not matter since
  2041. * data is retrieved via this pointer. If we are on the same cpu
  2042. * during the cmpxchg then the free will succedd.
  2043. */
  2044. c = __this_cpu_ptr(s->cpu_slab);
  2045. tid = c->tid;
  2046. barrier();
  2047. if (likely(page == c->page)) {
  2048. set_freepointer(s, object, c->freelist);
  2049. if (unlikely(!irqsafe_cpu_cmpxchg_double(
  2050. s->cpu_slab->freelist, s->cpu_slab->tid,
  2051. c->freelist, tid,
  2052. object, next_tid(tid)))) {
  2053. note_cmpxchg_failure("slab_free", s, tid);
  2054. goto redo;
  2055. }
  2056. stat(s, FREE_FASTPATH);
  2057. } else
  2058. __slab_free(s, page, x, addr);
  2059. }
  2060. void kmem_cache_free(struct kmem_cache *s, void *x)
  2061. {
  2062. struct page *page;
  2063. page = virt_to_head_page(x);
  2064. slab_free(s, page, x, _RET_IP_);
  2065. trace_kmem_cache_free(_RET_IP_, x);
  2066. }
  2067. EXPORT_SYMBOL(kmem_cache_free);
  2068. /*
  2069. * Object placement in a slab is made very easy because we always start at
  2070. * offset 0. If we tune the size of the object to the alignment then we can
  2071. * get the required alignment by putting one properly sized object after
  2072. * another.
  2073. *
  2074. * Notice that the allocation order determines the sizes of the per cpu
  2075. * caches. Each processor has always one slab available for allocations.
  2076. * Increasing the allocation order reduces the number of times that slabs
  2077. * must be moved on and off the partial lists and is therefore a factor in
  2078. * locking overhead.
  2079. */
  2080. /*
  2081. * Mininum / Maximum order of slab pages. This influences locking overhead
  2082. * and slab fragmentation. A higher order reduces the number of partial slabs
  2083. * and increases the number of allocations possible without having to
  2084. * take the list_lock.
  2085. */
  2086. static int slub_min_order;
  2087. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2088. static int slub_min_objects;
  2089. /*
  2090. * Merge control. If this is set then no merging of slab caches will occur.
  2091. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2092. */
  2093. static int slub_nomerge;
  2094. /*
  2095. * Calculate the order of allocation given an slab object size.
  2096. *
  2097. * The order of allocation has significant impact on performance and other
  2098. * system components. Generally order 0 allocations should be preferred since
  2099. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2100. * be problematic to put into order 0 slabs because there may be too much
  2101. * unused space left. We go to a higher order if more than 1/16th of the slab
  2102. * would be wasted.
  2103. *
  2104. * In order to reach satisfactory performance we must ensure that a minimum
  2105. * number of objects is in one slab. Otherwise we may generate too much
  2106. * activity on the partial lists which requires taking the list_lock. This is
  2107. * less a concern for large slabs though which are rarely used.
  2108. *
  2109. * slub_max_order specifies the order where we begin to stop considering the
  2110. * number of objects in a slab as critical. If we reach slub_max_order then
  2111. * we try to keep the page order as low as possible. So we accept more waste
  2112. * of space in favor of a small page order.
  2113. *
  2114. * Higher order allocations also allow the placement of more objects in a
  2115. * slab and thereby reduce object handling overhead. If the user has
  2116. * requested a higher mininum order then we start with that one instead of
  2117. * the smallest order which will fit the object.
  2118. */
  2119. static inline int slab_order(int size, int min_objects,
  2120. int max_order, int fract_leftover, int reserved)
  2121. {
  2122. int order;
  2123. int rem;
  2124. int min_order = slub_min_order;
  2125. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2126. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2127. for (order = max(min_order,
  2128. fls(min_objects * size - 1) - PAGE_SHIFT);
  2129. order <= max_order; order++) {
  2130. unsigned long slab_size = PAGE_SIZE << order;
  2131. if (slab_size < min_objects * size + reserved)
  2132. continue;
  2133. rem = (slab_size - reserved) % size;
  2134. if (rem <= slab_size / fract_leftover)
  2135. break;
  2136. }
  2137. return order;
  2138. }
  2139. static inline int calculate_order(int size, int reserved)
  2140. {
  2141. int order;
  2142. int min_objects;
  2143. int fraction;
  2144. int max_objects;
  2145. /*
  2146. * Attempt to find best configuration for a slab. This
  2147. * works by first attempting to generate a layout with
  2148. * the best configuration and backing off gradually.
  2149. *
  2150. * First we reduce the acceptable waste in a slab. Then
  2151. * we reduce the minimum objects required in a slab.
  2152. */
  2153. min_objects = slub_min_objects;
  2154. if (!min_objects)
  2155. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2156. max_objects = order_objects(slub_max_order, size, reserved);
  2157. min_objects = min(min_objects, max_objects);
  2158. while (min_objects > 1) {
  2159. fraction = 16;
  2160. while (fraction >= 4) {
  2161. order = slab_order(size, min_objects,
  2162. slub_max_order, fraction, reserved);
  2163. if (order <= slub_max_order)
  2164. return order;
  2165. fraction /= 2;
  2166. }
  2167. min_objects--;
  2168. }
  2169. /*
  2170. * We were unable to place multiple objects in a slab. Now
  2171. * lets see if we can place a single object there.
  2172. */
  2173. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2174. if (order <= slub_max_order)
  2175. return order;
  2176. /*
  2177. * Doh this slab cannot be placed using slub_max_order.
  2178. */
  2179. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2180. if (order < MAX_ORDER)
  2181. return order;
  2182. return -ENOSYS;
  2183. }
  2184. /*
  2185. * Figure out what the alignment of the objects will be.
  2186. */
  2187. static unsigned long calculate_alignment(unsigned long flags,
  2188. unsigned long align, unsigned long size)
  2189. {
  2190. /*
  2191. * If the user wants hardware cache aligned objects then follow that
  2192. * suggestion if the object is sufficiently large.
  2193. *
  2194. * The hardware cache alignment cannot override the specified
  2195. * alignment though. If that is greater then use it.
  2196. */
  2197. if (flags & SLAB_HWCACHE_ALIGN) {
  2198. unsigned long ralign = cache_line_size();
  2199. while (size <= ralign / 2)
  2200. ralign /= 2;
  2201. align = max(align, ralign);
  2202. }
  2203. if (align < ARCH_SLAB_MINALIGN)
  2204. align = ARCH_SLAB_MINALIGN;
  2205. return ALIGN(align, sizeof(void *));
  2206. }
  2207. static void
  2208. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  2209. {
  2210. n->nr_partial = 0;
  2211. spin_lock_init(&n->list_lock);
  2212. INIT_LIST_HEAD(&n->partial);
  2213. #ifdef CONFIG_SLUB_DEBUG
  2214. atomic_long_set(&n->nr_slabs, 0);
  2215. atomic_long_set(&n->total_objects, 0);
  2216. INIT_LIST_HEAD(&n->full);
  2217. #endif
  2218. }
  2219. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2220. {
  2221. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2222. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2223. /*
  2224. * Must align to double word boundary for the double cmpxchg
  2225. * instructions to work; see __pcpu_double_call_return_bool().
  2226. */
  2227. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2228. 2 * sizeof(void *));
  2229. if (!s->cpu_slab)
  2230. return 0;
  2231. init_kmem_cache_cpus(s);
  2232. return 1;
  2233. }
  2234. static struct kmem_cache *kmem_cache_node;
  2235. /*
  2236. * No kmalloc_node yet so do it by hand. We know that this is the first
  2237. * slab on the node for this slabcache. There are no concurrent accesses
  2238. * possible.
  2239. *
  2240. * Note that this function only works on the kmalloc_node_cache
  2241. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2242. * memory on a fresh node that has no slab structures yet.
  2243. */
  2244. static void early_kmem_cache_node_alloc(int node)
  2245. {
  2246. struct page *page;
  2247. struct kmem_cache_node *n;
  2248. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2249. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2250. BUG_ON(!page);
  2251. if (page_to_nid(page) != node) {
  2252. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2253. "node %d\n", node);
  2254. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2255. "in order to be able to continue\n");
  2256. }
  2257. n = page->freelist;
  2258. BUG_ON(!n);
  2259. page->freelist = get_freepointer(kmem_cache_node, n);
  2260. page->inuse++;
  2261. page->frozen = 0;
  2262. kmem_cache_node->node[node] = n;
  2263. #ifdef CONFIG_SLUB_DEBUG
  2264. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2265. init_tracking(kmem_cache_node, n);
  2266. #endif
  2267. init_kmem_cache_node(n, kmem_cache_node);
  2268. inc_slabs_node(kmem_cache_node, node, page->objects);
  2269. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2270. }
  2271. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2272. {
  2273. int node;
  2274. for_each_node_state(node, N_NORMAL_MEMORY) {
  2275. struct kmem_cache_node *n = s->node[node];
  2276. if (n)
  2277. kmem_cache_free(kmem_cache_node, n);
  2278. s->node[node] = NULL;
  2279. }
  2280. }
  2281. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2282. {
  2283. int node;
  2284. for_each_node_state(node, N_NORMAL_MEMORY) {
  2285. struct kmem_cache_node *n;
  2286. if (slab_state == DOWN) {
  2287. early_kmem_cache_node_alloc(node);
  2288. continue;
  2289. }
  2290. n = kmem_cache_alloc_node(kmem_cache_node,
  2291. GFP_KERNEL, node);
  2292. if (!n) {
  2293. free_kmem_cache_nodes(s);
  2294. return 0;
  2295. }
  2296. s->node[node] = n;
  2297. init_kmem_cache_node(n, s);
  2298. }
  2299. return 1;
  2300. }
  2301. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2302. {
  2303. if (min < MIN_PARTIAL)
  2304. min = MIN_PARTIAL;
  2305. else if (min > MAX_PARTIAL)
  2306. min = MAX_PARTIAL;
  2307. s->min_partial = min;
  2308. }
  2309. /*
  2310. * calculate_sizes() determines the order and the distribution of data within
  2311. * a slab object.
  2312. */
  2313. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2314. {
  2315. unsigned long flags = s->flags;
  2316. unsigned long size = s->objsize;
  2317. unsigned long align = s->align;
  2318. int order;
  2319. /*
  2320. * Round up object size to the next word boundary. We can only
  2321. * place the free pointer at word boundaries and this determines
  2322. * the possible location of the free pointer.
  2323. */
  2324. size = ALIGN(size, sizeof(void *));
  2325. #ifdef CONFIG_SLUB_DEBUG
  2326. /*
  2327. * Determine if we can poison the object itself. If the user of
  2328. * the slab may touch the object after free or before allocation
  2329. * then we should never poison the object itself.
  2330. */
  2331. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2332. !s->ctor)
  2333. s->flags |= __OBJECT_POISON;
  2334. else
  2335. s->flags &= ~__OBJECT_POISON;
  2336. /*
  2337. * If we are Redzoning then check if there is some space between the
  2338. * end of the object and the free pointer. If not then add an
  2339. * additional word to have some bytes to store Redzone information.
  2340. */
  2341. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  2342. size += sizeof(void *);
  2343. #endif
  2344. /*
  2345. * With that we have determined the number of bytes in actual use
  2346. * by the object. This is the potential offset to the free pointer.
  2347. */
  2348. s->inuse = size;
  2349. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2350. s->ctor)) {
  2351. /*
  2352. * Relocate free pointer after the object if it is not
  2353. * permitted to overwrite the first word of the object on
  2354. * kmem_cache_free.
  2355. *
  2356. * This is the case if we do RCU, have a constructor or
  2357. * destructor or are poisoning the objects.
  2358. */
  2359. s->offset = size;
  2360. size += sizeof(void *);
  2361. }
  2362. #ifdef CONFIG_SLUB_DEBUG
  2363. if (flags & SLAB_STORE_USER)
  2364. /*
  2365. * Need to store information about allocs and frees after
  2366. * the object.
  2367. */
  2368. size += 2 * sizeof(struct track);
  2369. if (flags & SLAB_RED_ZONE)
  2370. /*
  2371. * Add some empty padding so that we can catch
  2372. * overwrites from earlier objects rather than let
  2373. * tracking information or the free pointer be
  2374. * corrupted if a user writes before the start
  2375. * of the object.
  2376. */
  2377. size += sizeof(void *);
  2378. #endif
  2379. /*
  2380. * Determine the alignment based on various parameters that the
  2381. * user specified and the dynamic determination of cache line size
  2382. * on bootup.
  2383. */
  2384. align = calculate_alignment(flags, align, s->objsize);
  2385. s->align = align;
  2386. /*
  2387. * SLUB stores one object immediately after another beginning from
  2388. * offset 0. In order to align the objects we have to simply size
  2389. * each object to conform to the alignment.
  2390. */
  2391. size = ALIGN(size, align);
  2392. s->size = size;
  2393. if (forced_order >= 0)
  2394. order = forced_order;
  2395. else
  2396. order = calculate_order(size, s->reserved);
  2397. if (order < 0)
  2398. return 0;
  2399. s->allocflags = 0;
  2400. if (order)
  2401. s->allocflags |= __GFP_COMP;
  2402. if (s->flags & SLAB_CACHE_DMA)
  2403. s->allocflags |= SLUB_DMA;
  2404. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2405. s->allocflags |= __GFP_RECLAIMABLE;
  2406. /*
  2407. * Determine the number of objects per slab
  2408. */
  2409. s->oo = oo_make(order, size, s->reserved);
  2410. s->min = oo_make(get_order(size), size, s->reserved);
  2411. if (oo_objects(s->oo) > oo_objects(s->max))
  2412. s->max = s->oo;
  2413. return !!oo_objects(s->oo);
  2414. }
  2415. static int kmem_cache_open(struct kmem_cache *s,
  2416. const char *name, size_t size,
  2417. size_t align, unsigned long flags,
  2418. void (*ctor)(void *))
  2419. {
  2420. memset(s, 0, kmem_size);
  2421. s->name = name;
  2422. s->ctor = ctor;
  2423. s->objsize = size;
  2424. s->align = align;
  2425. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2426. s->reserved = 0;
  2427. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2428. s->reserved = sizeof(struct rcu_head);
  2429. if (!calculate_sizes(s, -1))
  2430. goto error;
  2431. if (disable_higher_order_debug) {
  2432. /*
  2433. * Disable debugging flags that store metadata if the min slab
  2434. * order increased.
  2435. */
  2436. if (get_order(s->size) > get_order(s->objsize)) {
  2437. s->flags &= ~DEBUG_METADATA_FLAGS;
  2438. s->offset = 0;
  2439. if (!calculate_sizes(s, -1))
  2440. goto error;
  2441. }
  2442. }
  2443. #ifdef CONFIG_CMPXCHG_DOUBLE
  2444. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2445. /* Enable fast mode */
  2446. s->flags |= __CMPXCHG_DOUBLE;
  2447. #endif
  2448. /*
  2449. * The larger the object size is, the more pages we want on the partial
  2450. * list to avoid pounding the page allocator excessively.
  2451. */
  2452. set_min_partial(s, ilog2(s->size));
  2453. s->refcount = 1;
  2454. #ifdef CONFIG_NUMA
  2455. s->remote_node_defrag_ratio = 1000;
  2456. #endif
  2457. if (!init_kmem_cache_nodes(s))
  2458. goto error;
  2459. if (alloc_kmem_cache_cpus(s))
  2460. return 1;
  2461. free_kmem_cache_nodes(s);
  2462. error:
  2463. if (flags & SLAB_PANIC)
  2464. panic("Cannot create slab %s size=%lu realsize=%u "
  2465. "order=%u offset=%u flags=%lx\n",
  2466. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2467. s->offset, flags);
  2468. return 0;
  2469. }
  2470. /*
  2471. * Determine the size of a slab object
  2472. */
  2473. unsigned int kmem_cache_size(struct kmem_cache *s)
  2474. {
  2475. return s->objsize;
  2476. }
  2477. EXPORT_SYMBOL(kmem_cache_size);
  2478. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2479. const char *text)
  2480. {
  2481. #ifdef CONFIG_SLUB_DEBUG
  2482. void *addr = page_address(page);
  2483. void *p;
  2484. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2485. sizeof(long), GFP_ATOMIC);
  2486. if (!map)
  2487. return;
  2488. slab_err(s, page, "%s", text);
  2489. slab_lock(page);
  2490. get_map(s, page, map);
  2491. for_each_object(p, s, addr, page->objects) {
  2492. if (!test_bit(slab_index(p, s, addr), map)) {
  2493. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2494. p, p - addr);
  2495. print_tracking(s, p);
  2496. }
  2497. }
  2498. slab_unlock(page);
  2499. kfree(map);
  2500. #endif
  2501. }
  2502. /*
  2503. * Attempt to free all partial slabs on a node.
  2504. */
  2505. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2506. {
  2507. unsigned long flags;
  2508. struct page *page, *h;
  2509. spin_lock_irqsave(&n->list_lock, flags);
  2510. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2511. if (!page->inuse) {
  2512. remove_partial(n, page);
  2513. discard_slab(s, page);
  2514. } else {
  2515. list_slab_objects(s, page,
  2516. "Objects remaining on kmem_cache_close()");
  2517. }
  2518. }
  2519. spin_unlock_irqrestore(&n->list_lock, flags);
  2520. }
  2521. /*
  2522. * Release all resources used by a slab cache.
  2523. */
  2524. static inline int kmem_cache_close(struct kmem_cache *s)
  2525. {
  2526. int node;
  2527. flush_all(s);
  2528. free_percpu(s->cpu_slab);
  2529. /* Attempt to free all objects */
  2530. for_each_node_state(node, N_NORMAL_MEMORY) {
  2531. struct kmem_cache_node *n = get_node(s, node);
  2532. free_partial(s, n);
  2533. if (n->nr_partial || slabs_node(s, node))
  2534. return 1;
  2535. }
  2536. free_kmem_cache_nodes(s);
  2537. return 0;
  2538. }
  2539. /*
  2540. * Close a cache and release the kmem_cache structure
  2541. * (must be used for caches created using kmem_cache_create)
  2542. */
  2543. void kmem_cache_destroy(struct kmem_cache *s)
  2544. {
  2545. down_write(&slub_lock);
  2546. s->refcount--;
  2547. if (!s->refcount) {
  2548. list_del(&s->list);
  2549. if (kmem_cache_close(s)) {
  2550. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2551. "still has objects.\n", s->name, __func__);
  2552. dump_stack();
  2553. }
  2554. if (s->flags & SLAB_DESTROY_BY_RCU)
  2555. rcu_barrier();
  2556. sysfs_slab_remove(s);
  2557. }
  2558. up_write(&slub_lock);
  2559. }
  2560. EXPORT_SYMBOL(kmem_cache_destroy);
  2561. /********************************************************************
  2562. * Kmalloc subsystem
  2563. *******************************************************************/
  2564. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2565. EXPORT_SYMBOL(kmalloc_caches);
  2566. static struct kmem_cache *kmem_cache;
  2567. #ifdef CONFIG_ZONE_DMA
  2568. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2569. #endif
  2570. static int __init setup_slub_min_order(char *str)
  2571. {
  2572. get_option(&str, &slub_min_order);
  2573. return 1;
  2574. }
  2575. __setup("slub_min_order=", setup_slub_min_order);
  2576. static int __init setup_slub_max_order(char *str)
  2577. {
  2578. get_option(&str, &slub_max_order);
  2579. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2580. return 1;
  2581. }
  2582. __setup("slub_max_order=", setup_slub_max_order);
  2583. static int __init setup_slub_min_objects(char *str)
  2584. {
  2585. get_option(&str, &slub_min_objects);
  2586. return 1;
  2587. }
  2588. __setup("slub_min_objects=", setup_slub_min_objects);
  2589. static int __init setup_slub_nomerge(char *str)
  2590. {
  2591. slub_nomerge = 1;
  2592. return 1;
  2593. }
  2594. __setup("slub_nomerge", setup_slub_nomerge);
  2595. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2596. int size, unsigned int flags)
  2597. {
  2598. struct kmem_cache *s;
  2599. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2600. /*
  2601. * This function is called with IRQs disabled during early-boot on
  2602. * single CPU so there's no need to take slub_lock here.
  2603. */
  2604. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2605. flags, NULL))
  2606. goto panic;
  2607. list_add(&s->list, &slab_caches);
  2608. return s;
  2609. panic:
  2610. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2611. return NULL;
  2612. }
  2613. /*
  2614. * Conversion table for small slabs sizes / 8 to the index in the
  2615. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2616. * of two cache sizes there. The size of larger slabs can be determined using
  2617. * fls.
  2618. */
  2619. static s8 size_index[24] = {
  2620. 3, /* 8 */
  2621. 4, /* 16 */
  2622. 5, /* 24 */
  2623. 5, /* 32 */
  2624. 6, /* 40 */
  2625. 6, /* 48 */
  2626. 6, /* 56 */
  2627. 6, /* 64 */
  2628. 1, /* 72 */
  2629. 1, /* 80 */
  2630. 1, /* 88 */
  2631. 1, /* 96 */
  2632. 7, /* 104 */
  2633. 7, /* 112 */
  2634. 7, /* 120 */
  2635. 7, /* 128 */
  2636. 2, /* 136 */
  2637. 2, /* 144 */
  2638. 2, /* 152 */
  2639. 2, /* 160 */
  2640. 2, /* 168 */
  2641. 2, /* 176 */
  2642. 2, /* 184 */
  2643. 2 /* 192 */
  2644. };
  2645. static inline int size_index_elem(size_t bytes)
  2646. {
  2647. return (bytes - 1) / 8;
  2648. }
  2649. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2650. {
  2651. int index;
  2652. if (size <= 192) {
  2653. if (!size)
  2654. return ZERO_SIZE_PTR;
  2655. index = size_index[size_index_elem(size)];
  2656. } else
  2657. index = fls(size - 1);
  2658. #ifdef CONFIG_ZONE_DMA
  2659. if (unlikely((flags & SLUB_DMA)))
  2660. return kmalloc_dma_caches[index];
  2661. #endif
  2662. return kmalloc_caches[index];
  2663. }
  2664. void *__kmalloc(size_t size, gfp_t flags)
  2665. {
  2666. struct kmem_cache *s;
  2667. void *ret;
  2668. if (unlikely(size > SLUB_MAX_SIZE))
  2669. return kmalloc_large(size, flags);
  2670. s = get_slab(size, flags);
  2671. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2672. return s;
  2673. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2674. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2675. return ret;
  2676. }
  2677. EXPORT_SYMBOL(__kmalloc);
  2678. #ifdef CONFIG_NUMA
  2679. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2680. {
  2681. struct page *page;
  2682. void *ptr = NULL;
  2683. flags |= __GFP_COMP | __GFP_NOTRACK;
  2684. page = alloc_pages_node(node, flags, get_order(size));
  2685. if (page)
  2686. ptr = page_address(page);
  2687. kmemleak_alloc(ptr, size, 1, flags);
  2688. return ptr;
  2689. }
  2690. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2691. {
  2692. struct kmem_cache *s;
  2693. void *ret;
  2694. if (unlikely(size > SLUB_MAX_SIZE)) {
  2695. ret = kmalloc_large_node(size, flags, node);
  2696. trace_kmalloc_node(_RET_IP_, ret,
  2697. size, PAGE_SIZE << get_order(size),
  2698. flags, node);
  2699. return ret;
  2700. }
  2701. s = get_slab(size, flags);
  2702. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2703. return s;
  2704. ret = slab_alloc(s, flags, node, _RET_IP_);
  2705. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2706. return ret;
  2707. }
  2708. EXPORT_SYMBOL(__kmalloc_node);
  2709. #endif
  2710. size_t ksize(const void *object)
  2711. {
  2712. struct page *page;
  2713. if (unlikely(object == ZERO_SIZE_PTR))
  2714. return 0;
  2715. page = virt_to_head_page(object);
  2716. if (unlikely(!PageSlab(page))) {
  2717. WARN_ON(!PageCompound(page));
  2718. return PAGE_SIZE << compound_order(page);
  2719. }
  2720. return slab_ksize(page->slab);
  2721. }
  2722. EXPORT_SYMBOL(ksize);
  2723. #ifdef CONFIG_SLUB_DEBUG
  2724. bool verify_mem_not_deleted(const void *x)
  2725. {
  2726. struct page *page;
  2727. void *object = (void *)x;
  2728. unsigned long flags;
  2729. bool rv;
  2730. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2731. return false;
  2732. local_irq_save(flags);
  2733. page = virt_to_head_page(x);
  2734. if (unlikely(!PageSlab(page))) {
  2735. /* maybe it was from stack? */
  2736. rv = true;
  2737. goto out_unlock;
  2738. }
  2739. slab_lock(page);
  2740. if (on_freelist(page->slab, page, object)) {
  2741. object_err(page->slab, page, object, "Object is on free-list");
  2742. rv = false;
  2743. } else {
  2744. rv = true;
  2745. }
  2746. slab_unlock(page);
  2747. out_unlock:
  2748. local_irq_restore(flags);
  2749. return rv;
  2750. }
  2751. EXPORT_SYMBOL(verify_mem_not_deleted);
  2752. #endif
  2753. void kfree(const void *x)
  2754. {
  2755. struct page *page;
  2756. void *object = (void *)x;
  2757. trace_kfree(_RET_IP_, x);
  2758. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2759. return;
  2760. page = virt_to_head_page(x);
  2761. if (unlikely(!PageSlab(page))) {
  2762. BUG_ON(!PageCompound(page));
  2763. kmemleak_free(x);
  2764. put_page(page);
  2765. return;
  2766. }
  2767. slab_free(page->slab, page, object, _RET_IP_);
  2768. }
  2769. EXPORT_SYMBOL(kfree);
  2770. /*
  2771. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2772. * the remaining slabs by the number of items in use. The slabs with the
  2773. * most items in use come first. New allocations will then fill those up
  2774. * and thus they can be removed from the partial lists.
  2775. *
  2776. * The slabs with the least items are placed last. This results in them
  2777. * being allocated from last increasing the chance that the last objects
  2778. * are freed in them.
  2779. */
  2780. int kmem_cache_shrink(struct kmem_cache *s)
  2781. {
  2782. int node;
  2783. int i;
  2784. struct kmem_cache_node *n;
  2785. struct page *page;
  2786. struct page *t;
  2787. int objects = oo_objects(s->max);
  2788. struct list_head *slabs_by_inuse =
  2789. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2790. unsigned long flags;
  2791. if (!slabs_by_inuse)
  2792. return -ENOMEM;
  2793. flush_all(s);
  2794. for_each_node_state(node, N_NORMAL_MEMORY) {
  2795. n = get_node(s, node);
  2796. if (!n->nr_partial)
  2797. continue;
  2798. for (i = 0; i < objects; i++)
  2799. INIT_LIST_HEAD(slabs_by_inuse + i);
  2800. spin_lock_irqsave(&n->list_lock, flags);
  2801. /*
  2802. * Build lists indexed by the items in use in each slab.
  2803. *
  2804. * Note that concurrent frees may occur while we hold the
  2805. * list_lock. page->inuse here is the upper limit.
  2806. */
  2807. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2808. if (!page->inuse) {
  2809. remove_partial(n, page);
  2810. discard_slab(s, page);
  2811. } else {
  2812. list_move(&page->lru,
  2813. slabs_by_inuse + page->inuse);
  2814. }
  2815. }
  2816. /*
  2817. * Rebuild the partial list with the slabs filled up most
  2818. * first and the least used slabs at the end.
  2819. */
  2820. for (i = objects - 1; i >= 0; i--)
  2821. list_splice(slabs_by_inuse + i, n->partial.prev);
  2822. spin_unlock_irqrestore(&n->list_lock, flags);
  2823. }
  2824. kfree(slabs_by_inuse);
  2825. return 0;
  2826. }
  2827. EXPORT_SYMBOL(kmem_cache_shrink);
  2828. #if defined(CONFIG_MEMORY_HOTPLUG)
  2829. static int slab_mem_going_offline_callback(void *arg)
  2830. {
  2831. struct kmem_cache *s;
  2832. down_read(&slub_lock);
  2833. list_for_each_entry(s, &slab_caches, list)
  2834. kmem_cache_shrink(s);
  2835. up_read(&slub_lock);
  2836. return 0;
  2837. }
  2838. static void slab_mem_offline_callback(void *arg)
  2839. {
  2840. struct kmem_cache_node *n;
  2841. struct kmem_cache *s;
  2842. struct memory_notify *marg = arg;
  2843. int offline_node;
  2844. offline_node = marg->status_change_nid;
  2845. /*
  2846. * If the node still has available memory. we need kmem_cache_node
  2847. * for it yet.
  2848. */
  2849. if (offline_node < 0)
  2850. return;
  2851. down_read(&slub_lock);
  2852. list_for_each_entry(s, &slab_caches, list) {
  2853. n = get_node(s, offline_node);
  2854. if (n) {
  2855. /*
  2856. * if n->nr_slabs > 0, slabs still exist on the node
  2857. * that is going down. We were unable to free them,
  2858. * and offline_pages() function shouldn't call this
  2859. * callback. So, we must fail.
  2860. */
  2861. BUG_ON(slabs_node(s, offline_node));
  2862. s->node[offline_node] = NULL;
  2863. kmem_cache_free(kmem_cache_node, n);
  2864. }
  2865. }
  2866. up_read(&slub_lock);
  2867. }
  2868. static int slab_mem_going_online_callback(void *arg)
  2869. {
  2870. struct kmem_cache_node *n;
  2871. struct kmem_cache *s;
  2872. struct memory_notify *marg = arg;
  2873. int nid = marg->status_change_nid;
  2874. int ret = 0;
  2875. /*
  2876. * If the node's memory is already available, then kmem_cache_node is
  2877. * already created. Nothing to do.
  2878. */
  2879. if (nid < 0)
  2880. return 0;
  2881. /*
  2882. * We are bringing a node online. No memory is available yet. We must
  2883. * allocate a kmem_cache_node structure in order to bring the node
  2884. * online.
  2885. */
  2886. down_read(&slub_lock);
  2887. list_for_each_entry(s, &slab_caches, list) {
  2888. /*
  2889. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2890. * since memory is not yet available from the node that
  2891. * is brought up.
  2892. */
  2893. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2894. if (!n) {
  2895. ret = -ENOMEM;
  2896. goto out;
  2897. }
  2898. init_kmem_cache_node(n, s);
  2899. s->node[nid] = n;
  2900. }
  2901. out:
  2902. up_read(&slub_lock);
  2903. return ret;
  2904. }
  2905. static int slab_memory_callback(struct notifier_block *self,
  2906. unsigned long action, void *arg)
  2907. {
  2908. int ret = 0;
  2909. switch (action) {
  2910. case MEM_GOING_ONLINE:
  2911. ret = slab_mem_going_online_callback(arg);
  2912. break;
  2913. case MEM_GOING_OFFLINE:
  2914. ret = slab_mem_going_offline_callback(arg);
  2915. break;
  2916. case MEM_OFFLINE:
  2917. case MEM_CANCEL_ONLINE:
  2918. slab_mem_offline_callback(arg);
  2919. break;
  2920. case MEM_ONLINE:
  2921. case MEM_CANCEL_OFFLINE:
  2922. break;
  2923. }
  2924. if (ret)
  2925. ret = notifier_from_errno(ret);
  2926. else
  2927. ret = NOTIFY_OK;
  2928. return ret;
  2929. }
  2930. #endif /* CONFIG_MEMORY_HOTPLUG */
  2931. /********************************************************************
  2932. * Basic setup of slabs
  2933. *******************************************************************/
  2934. /*
  2935. * Used for early kmem_cache structures that were allocated using
  2936. * the page allocator
  2937. */
  2938. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  2939. {
  2940. int node;
  2941. list_add(&s->list, &slab_caches);
  2942. s->refcount = -1;
  2943. for_each_node_state(node, N_NORMAL_MEMORY) {
  2944. struct kmem_cache_node *n = get_node(s, node);
  2945. struct page *p;
  2946. if (n) {
  2947. list_for_each_entry(p, &n->partial, lru)
  2948. p->slab = s;
  2949. #ifdef CONFIG_SLUB_DEBUG
  2950. list_for_each_entry(p, &n->full, lru)
  2951. p->slab = s;
  2952. #endif
  2953. }
  2954. }
  2955. }
  2956. void __init kmem_cache_init(void)
  2957. {
  2958. int i;
  2959. int caches = 0;
  2960. struct kmem_cache *temp_kmem_cache;
  2961. int order;
  2962. struct kmem_cache *temp_kmem_cache_node;
  2963. unsigned long kmalloc_size;
  2964. kmem_size = offsetof(struct kmem_cache, node) +
  2965. nr_node_ids * sizeof(struct kmem_cache_node *);
  2966. /* Allocate two kmem_caches from the page allocator */
  2967. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  2968. order = get_order(2 * kmalloc_size);
  2969. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  2970. /*
  2971. * Must first have the slab cache available for the allocations of the
  2972. * struct kmem_cache_node's. There is special bootstrap code in
  2973. * kmem_cache_open for slab_state == DOWN.
  2974. */
  2975. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  2976. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  2977. sizeof(struct kmem_cache_node),
  2978. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2979. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2980. /* Able to allocate the per node structures */
  2981. slab_state = PARTIAL;
  2982. temp_kmem_cache = kmem_cache;
  2983. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  2984. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2985. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2986. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  2987. /*
  2988. * Allocate kmem_cache_node properly from the kmem_cache slab.
  2989. * kmem_cache_node is separately allocated so no need to
  2990. * update any list pointers.
  2991. */
  2992. temp_kmem_cache_node = kmem_cache_node;
  2993. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2994. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  2995. kmem_cache_bootstrap_fixup(kmem_cache_node);
  2996. caches++;
  2997. kmem_cache_bootstrap_fixup(kmem_cache);
  2998. caches++;
  2999. /* Free temporary boot structure */
  3000. free_pages((unsigned long)temp_kmem_cache, order);
  3001. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3002. /*
  3003. * Patch up the size_index table if we have strange large alignment
  3004. * requirements for the kmalloc array. This is only the case for
  3005. * MIPS it seems. The standard arches will not generate any code here.
  3006. *
  3007. * Largest permitted alignment is 256 bytes due to the way we
  3008. * handle the index determination for the smaller caches.
  3009. *
  3010. * Make sure that nothing crazy happens if someone starts tinkering
  3011. * around with ARCH_KMALLOC_MINALIGN
  3012. */
  3013. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  3014. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  3015. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  3016. int elem = size_index_elem(i);
  3017. if (elem >= ARRAY_SIZE(size_index))
  3018. break;
  3019. size_index[elem] = KMALLOC_SHIFT_LOW;
  3020. }
  3021. if (KMALLOC_MIN_SIZE == 64) {
  3022. /*
  3023. * The 96 byte size cache is not used if the alignment
  3024. * is 64 byte.
  3025. */
  3026. for (i = 64 + 8; i <= 96; i += 8)
  3027. size_index[size_index_elem(i)] = 7;
  3028. } else if (KMALLOC_MIN_SIZE == 128) {
  3029. /*
  3030. * The 192 byte sized cache is not used if the alignment
  3031. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  3032. * instead.
  3033. */
  3034. for (i = 128 + 8; i <= 192; i += 8)
  3035. size_index[size_index_elem(i)] = 8;
  3036. }
  3037. /* Caches that are not of the two-to-the-power-of size */
  3038. if (KMALLOC_MIN_SIZE <= 32) {
  3039. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  3040. caches++;
  3041. }
  3042. if (KMALLOC_MIN_SIZE <= 64) {
  3043. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  3044. caches++;
  3045. }
  3046. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3047. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  3048. caches++;
  3049. }
  3050. slab_state = UP;
  3051. /* Provide the correct kmalloc names now that the caches are up */
  3052. if (KMALLOC_MIN_SIZE <= 32) {
  3053. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  3054. BUG_ON(!kmalloc_caches[1]->name);
  3055. }
  3056. if (KMALLOC_MIN_SIZE <= 64) {
  3057. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  3058. BUG_ON(!kmalloc_caches[2]->name);
  3059. }
  3060. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3061. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  3062. BUG_ON(!s);
  3063. kmalloc_caches[i]->name = s;
  3064. }
  3065. #ifdef CONFIG_SMP
  3066. register_cpu_notifier(&slab_notifier);
  3067. #endif
  3068. #ifdef CONFIG_ZONE_DMA
  3069. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3070. struct kmem_cache *s = kmalloc_caches[i];
  3071. if (s && s->size) {
  3072. char *name = kasprintf(GFP_NOWAIT,
  3073. "dma-kmalloc-%d", s->objsize);
  3074. BUG_ON(!name);
  3075. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3076. s->objsize, SLAB_CACHE_DMA);
  3077. }
  3078. }
  3079. #endif
  3080. printk(KERN_INFO
  3081. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3082. " CPUs=%d, Nodes=%d\n",
  3083. caches, cache_line_size(),
  3084. slub_min_order, slub_max_order, slub_min_objects,
  3085. nr_cpu_ids, nr_node_ids);
  3086. }
  3087. void __init kmem_cache_init_late(void)
  3088. {
  3089. }
  3090. /*
  3091. * Find a mergeable slab cache
  3092. */
  3093. static int slab_unmergeable(struct kmem_cache *s)
  3094. {
  3095. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3096. return 1;
  3097. if (s->ctor)
  3098. return 1;
  3099. /*
  3100. * We may have set a slab to be unmergeable during bootstrap.
  3101. */
  3102. if (s->refcount < 0)
  3103. return 1;
  3104. return 0;
  3105. }
  3106. static struct kmem_cache *find_mergeable(size_t size,
  3107. size_t align, unsigned long flags, const char *name,
  3108. void (*ctor)(void *))
  3109. {
  3110. struct kmem_cache *s;
  3111. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3112. return NULL;
  3113. if (ctor)
  3114. return NULL;
  3115. size = ALIGN(size, sizeof(void *));
  3116. align = calculate_alignment(flags, align, size);
  3117. size = ALIGN(size, align);
  3118. flags = kmem_cache_flags(size, flags, name, NULL);
  3119. list_for_each_entry(s, &slab_caches, list) {
  3120. if (slab_unmergeable(s))
  3121. continue;
  3122. if (size > s->size)
  3123. continue;
  3124. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3125. continue;
  3126. /*
  3127. * Check if alignment is compatible.
  3128. * Courtesy of Adrian Drzewiecki
  3129. */
  3130. if ((s->size & ~(align - 1)) != s->size)
  3131. continue;
  3132. if (s->size - size >= sizeof(void *))
  3133. continue;
  3134. return s;
  3135. }
  3136. return NULL;
  3137. }
  3138. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  3139. size_t align, unsigned long flags, void (*ctor)(void *))
  3140. {
  3141. struct kmem_cache *s;
  3142. char *n;
  3143. if (WARN_ON(!name))
  3144. return NULL;
  3145. down_write(&slub_lock);
  3146. s = find_mergeable(size, align, flags, name, ctor);
  3147. if (s) {
  3148. s->refcount++;
  3149. /*
  3150. * Adjust the object sizes so that we clear
  3151. * the complete object on kzalloc.
  3152. */
  3153. s->objsize = max(s->objsize, (int)size);
  3154. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3155. if (sysfs_slab_alias(s, name)) {
  3156. s->refcount--;
  3157. goto err;
  3158. }
  3159. up_write(&slub_lock);
  3160. return s;
  3161. }
  3162. n = kstrdup(name, GFP_KERNEL);
  3163. if (!n)
  3164. goto err;
  3165. s = kmalloc(kmem_size, GFP_KERNEL);
  3166. if (s) {
  3167. if (kmem_cache_open(s, n,
  3168. size, align, flags, ctor)) {
  3169. list_add(&s->list, &slab_caches);
  3170. if (sysfs_slab_add(s)) {
  3171. list_del(&s->list);
  3172. kfree(n);
  3173. kfree(s);
  3174. goto err;
  3175. }
  3176. up_write(&slub_lock);
  3177. return s;
  3178. }
  3179. kfree(n);
  3180. kfree(s);
  3181. }
  3182. err:
  3183. up_write(&slub_lock);
  3184. if (flags & SLAB_PANIC)
  3185. panic("Cannot create slabcache %s\n", name);
  3186. else
  3187. s = NULL;
  3188. return s;
  3189. }
  3190. EXPORT_SYMBOL(kmem_cache_create);
  3191. #ifdef CONFIG_SMP
  3192. /*
  3193. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3194. * necessary.
  3195. */
  3196. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3197. unsigned long action, void *hcpu)
  3198. {
  3199. long cpu = (long)hcpu;
  3200. struct kmem_cache *s;
  3201. unsigned long flags;
  3202. switch (action) {
  3203. case CPU_UP_CANCELED:
  3204. case CPU_UP_CANCELED_FROZEN:
  3205. case CPU_DEAD:
  3206. case CPU_DEAD_FROZEN:
  3207. down_read(&slub_lock);
  3208. list_for_each_entry(s, &slab_caches, list) {
  3209. local_irq_save(flags);
  3210. __flush_cpu_slab(s, cpu);
  3211. local_irq_restore(flags);
  3212. }
  3213. up_read(&slub_lock);
  3214. break;
  3215. default:
  3216. break;
  3217. }
  3218. return NOTIFY_OK;
  3219. }
  3220. static struct notifier_block __cpuinitdata slab_notifier = {
  3221. .notifier_call = slab_cpuup_callback
  3222. };
  3223. #endif
  3224. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3225. {
  3226. struct kmem_cache *s;
  3227. void *ret;
  3228. if (unlikely(size > SLUB_MAX_SIZE))
  3229. return kmalloc_large(size, gfpflags);
  3230. s = get_slab(size, gfpflags);
  3231. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3232. return s;
  3233. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  3234. /* Honor the call site pointer we received. */
  3235. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3236. return ret;
  3237. }
  3238. #ifdef CONFIG_NUMA
  3239. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3240. int node, unsigned long caller)
  3241. {
  3242. struct kmem_cache *s;
  3243. void *ret;
  3244. if (unlikely(size > SLUB_MAX_SIZE)) {
  3245. ret = kmalloc_large_node(size, gfpflags, node);
  3246. trace_kmalloc_node(caller, ret,
  3247. size, PAGE_SIZE << get_order(size),
  3248. gfpflags, node);
  3249. return ret;
  3250. }
  3251. s = get_slab(size, gfpflags);
  3252. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3253. return s;
  3254. ret = slab_alloc(s, gfpflags, node, caller);
  3255. /* Honor the call site pointer we received. */
  3256. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3257. return ret;
  3258. }
  3259. #endif
  3260. #ifdef CONFIG_SYSFS
  3261. static int count_inuse(struct page *page)
  3262. {
  3263. return page->inuse;
  3264. }
  3265. static int count_total(struct page *page)
  3266. {
  3267. return page->objects;
  3268. }
  3269. #endif
  3270. #ifdef CONFIG_SLUB_DEBUG
  3271. static int validate_slab(struct kmem_cache *s, struct page *page,
  3272. unsigned long *map)
  3273. {
  3274. void *p;
  3275. void *addr = page_address(page);
  3276. if (!check_slab(s, page) ||
  3277. !on_freelist(s, page, NULL))
  3278. return 0;
  3279. /* Now we know that a valid freelist exists */
  3280. bitmap_zero(map, page->objects);
  3281. get_map(s, page, map);
  3282. for_each_object(p, s, addr, page->objects) {
  3283. if (test_bit(slab_index(p, s, addr), map))
  3284. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3285. return 0;
  3286. }
  3287. for_each_object(p, s, addr, page->objects)
  3288. if (!test_bit(slab_index(p, s, addr), map))
  3289. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3290. return 0;
  3291. return 1;
  3292. }
  3293. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3294. unsigned long *map)
  3295. {
  3296. slab_lock(page);
  3297. validate_slab(s, page, map);
  3298. slab_unlock(page);
  3299. }
  3300. static int validate_slab_node(struct kmem_cache *s,
  3301. struct kmem_cache_node *n, unsigned long *map)
  3302. {
  3303. unsigned long count = 0;
  3304. struct page *page;
  3305. unsigned long flags;
  3306. spin_lock_irqsave(&n->list_lock, flags);
  3307. list_for_each_entry(page, &n->partial, lru) {
  3308. validate_slab_slab(s, page, map);
  3309. count++;
  3310. }
  3311. if (count != n->nr_partial)
  3312. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3313. "counter=%ld\n", s->name, count, n->nr_partial);
  3314. if (!(s->flags & SLAB_STORE_USER))
  3315. goto out;
  3316. list_for_each_entry(page, &n->full, lru) {
  3317. validate_slab_slab(s, page, map);
  3318. count++;
  3319. }
  3320. if (count != atomic_long_read(&n->nr_slabs))
  3321. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3322. "counter=%ld\n", s->name, count,
  3323. atomic_long_read(&n->nr_slabs));
  3324. out:
  3325. spin_unlock_irqrestore(&n->list_lock, flags);
  3326. return count;
  3327. }
  3328. static long validate_slab_cache(struct kmem_cache *s)
  3329. {
  3330. int node;
  3331. unsigned long count = 0;
  3332. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3333. sizeof(unsigned long), GFP_KERNEL);
  3334. if (!map)
  3335. return -ENOMEM;
  3336. flush_all(s);
  3337. for_each_node_state(node, N_NORMAL_MEMORY) {
  3338. struct kmem_cache_node *n = get_node(s, node);
  3339. count += validate_slab_node(s, n, map);
  3340. }
  3341. kfree(map);
  3342. return count;
  3343. }
  3344. /*
  3345. * Generate lists of code addresses where slabcache objects are allocated
  3346. * and freed.
  3347. */
  3348. struct location {
  3349. unsigned long count;
  3350. unsigned long addr;
  3351. long long sum_time;
  3352. long min_time;
  3353. long max_time;
  3354. long min_pid;
  3355. long max_pid;
  3356. DECLARE_BITMAP(cpus, NR_CPUS);
  3357. nodemask_t nodes;
  3358. };
  3359. struct loc_track {
  3360. unsigned long max;
  3361. unsigned long count;
  3362. struct location *loc;
  3363. };
  3364. static void free_loc_track(struct loc_track *t)
  3365. {
  3366. if (t->max)
  3367. free_pages((unsigned long)t->loc,
  3368. get_order(sizeof(struct location) * t->max));
  3369. }
  3370. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3371. {
  3372. struct location *l;
  3373. int order;
  3374. order = get_order(sizeof(struct location) * max);
  3375. l = (void *)__get_free_pages(flags, order);
  3376. if (!l)
  3377. return 0;
  3378. if (t->count) {
  3379. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3380. free_loc_track(t);
  3381. }
  3382. t->max = max;
  3383. t->loc = l;
  3384. return 1;
  3385. }
  3386. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3387. const struct track *track)
  3388. {
  3389. long start, end, pos;
  3390. struct location *l;
  3391. unsigned long caddr;
  3392. unsigned long age = jiffies - track->when;
  3393. start = -1;
  3394. end = t->count;
  3395. for ( ; ; ) {
  3396. pos = start + (end - start + 1) / 2;
  3397. /*
  3398. * There is nothing at "end". If we end up there
  3399. * we need to add something to before end.
  3400. */
  3401. if (pos == end)
  3402. break;
  3403. caddr = t->loc[pos].addr;
  3404. if (track->addr == caddr) {
  3405. l = &t->loc[pos];
  3406. l->count++;
  3407. if (track->when) {
  3408. l->sum_time += age;
  3409. if (age < l->min_time)
  3410. l->min_time = age;
  3411. if (age > l->max_time)
  3412. l->max_time = age;
  3413. if (track->pid < l->min_pid)
  3414. l->min_pid = track->pid;
  3415. if (track->pid > l->max_pid)
  3416. l->max_pid = track->pid;
  3417. cpumask_set_cpu(track->cpu,
  3418. to_cpumask(l->cpus));
  3419. }
  3420. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3421. return 1;
  3422. }
  3423. if (track->addr < caddr)
  3424. end = pos;
  3425. else
  3426. start = pos;
  3427. }
  3428. /*
  3429. * Not found. Insert new tracking element.
  3430. */
  3431. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3432. return 0;
  3433. l = t->loc + pos;
  3434. if (pos < t->count)
  3435. memmove(l + 1, l,
  3436. (t->count - pos) * sizeof(struct location));
  3437. t->count++;
  3438. l->count = 1;
  3439. l->addr = track->addr;
  3440. l->sum_time = age;
  3441. l->min_time = age;
  3442. l->max_time = age;
  3443. l->min_pid = track->pid;
  3444. l->max_pid = track->pid;
  3445. cpumask_clear(to_cpumask(l->cpus));
  3446. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3447. nodes_clear(l->nodes);
  3448. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3449. return 1;
  3450. }
  3451. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3452. struct page *page, enum track_item alloc,
  3453. unsigned long *map)
  3454. {
  3455. void *addr = page_address(page);
  3456. void *p;
  3457. bitmap_zero(map, page->objects);
  3458. get_map(s, page, map);
  3459. for_each_object(p, s, addr, page->objects)
  3460. if (!test_bit(slab_index(p, s, addr), map))
  3461. add_location(t, s, get_track(s, p, alloc));
  3462. }
  3463. static int list_locations(struct kmem_cache *s, char *buf,
  3464. enum track_item alloc)
  3465. {
  3466. int len = 0;
  3467. unsigned long i;
  3468. struct loc_track t = { 0, 0, NULL };
  3469. int node;
  3470. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3471. sizeof(unsigned long), GFP_KERNEL);
  3472. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3473. GFP_TEMPORARY)) {
  3474. kfree(map);
  3475. return sprintf(buf, "Out of memory\n");
  3476. }
  3477. /* Push back cpu slabs */
  3478. flush_all(s);
  3479. for_each_node_state(node, N_NORMAL_MEMORY) {
  3480. struct kmem_cache_node *n = get_node(s, node);
  3481. unsigned long flags;
  3482. struct page *page;
  3483. if (!atomic_long_read(&n->nr_slabs))
  3484. continue;
  3485. spin_lock_irqsave(&n->list_lock, flags);
  3486. list_for_each_entry(page, &n->partial, lru)
  3487. process_slab(&t, s, page, alloc, map);
  3488. list_for_each_entry(page, &n->full, lru)
  3489. process_slab(&t, s, page, alloc, map);
  3490. spin_unlock_irqrestore(&n->list_lock, flags);
  3491. }
  3492. for (i = 0; i < t.count; i++) {
  3493. struct location *l = &t.loc[i];
  3494. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3495. break;
  3496. len += sprintf(buf + len, "%7ld ", l->count);
  3497. if (l->addr)
  3498. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3499. else
  3500. len += sprintf(buf + len, "<not-available>");
  3501. if (l->sum_time != l->min_time) {
  3502. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3503. l->min_time,
  3504. (long)div_u64(l->sum_time, l->count),
  3505. l->max_time);
  3506. } else
  3507. len += sprintf(buf + len, " age=%ld",
  3508. l->min_time);
  3509. if (l->min_pid != l->max_pid)
  3510. len += sprintf(buf + len, " pid=%ld-%ld",
  3511. l->min_pid, l->max_pid);
  3512. else
  3513. len += sprintf(buf + len, " pid=%ld",
  3514. l->min_pid);
  3515. if (num_online_cpus() > 1 &&
  3516. !cpumask_empty(to_cpumask(l->cpus)) &&
  3517. len < PAGE_SIZE - 60) {
  3518. len += sprintf(buf + len, " cpus=");
  3519. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3520. to_cpumask(l->cpus));
  3521. }
  3522. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3523. len < PAGE_SIZE - 60) {
  3524. len += sprintf(buf + len, " nodes=");
  3525. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3526. l->nodes);
  3527. }
  3528. len += sprintf(buf + len, "\n");
  3529. }
  3530. free_loc_track(&t);
  3531. kfree(map);
  3532. if (!t.count)
  3533. len += sprintf(buf, "No data\n");
  3534. return len;
  3535. }
  3536. #endif
  3537. #ifdef SLUB_RESILIENCY_TEST
  3538. static void resiliency_test(void)
  3539. {
  3540. u8 *p;
  3541. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3542. printk(KERN_ERR "SLUB resiliency testing\n");
  3543. printk(KERN_ERR "-----------------------\n");
  3544. printk(KERN_ERR "A. Corruption after allocation\n");
  3545. p = kzalloc(16, GFP_KERNEL);
  3546. p[16] = 0x12;
  3547. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3548. " 0x12->0x%p\n\n", p + 16);
  3549. validate_slab_cache(kmalloc_caches[4]);
  3550. /* Hmmm... The next two are dangerous */
  3551. p = kzalloc(32, GFP_KERNEL);
  3552. p[32 + sizeof(void *)] = 0x34;
  3553. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3554. " 0x34 -> -0x%p\n", p);
  3555. printk(KERN_ERR
  3556. "If allocated object is overwritten then not detectable\n\n");
  3557. validate_slab_cache(kmalloc_caches[5]);
  3558. p = kzalloc(64, GFP_KERNEL);
  3559. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3560. *p = 0x56;
  3561. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3562. p);
  3563. printk(KERN_ERR
  3564. "If allocated object is overwritten then not detectable\n\n");
  3565. validate_slab_cache(kmalloc_caches[6]);
  3566. printk(KERN_ERR "\nB. Corruption after free\n");
  3567. p = kzalloc(128, GFP_KERNEL);
  3568. kfree(p);
  3569. *p = 0x78;
  3570. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3571. validate_slab_cache(kmalloc_caches[7]);
  3572. p = kzalloc(256, GFP_KERNEL);
  3573. kfree(p);
  3574. p[50] = 0x9a;
  3575. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3576. p);
  3577. validate_slab_cache(kmalloc_caches[8]);
  3578. p = kzalloc(512, GFP_KERNEL);
  3579. kfree(p);
  3580. p[512] = 0xab;
  3581. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3582. validate_slab_cache(kmalloc_caches[9]);
  3583. }
  3584. #else
  3585. #ifdef CONFIG_SYSFS
  3586. static void resiliency_test(void) {};
  3587. #endif
  3588. #endif
  3589. #ifdef CONFIG_SYSFS
  3590. enum slab_stat_type {
  3591. SL_ALL, /* All slabs */
  3592. SL_PARTIAL, /* Only partially allocated slabs */
  3593. SL_CPU, /* Only slabs used for cpu caches */
  3594. SL_OBJECTS, /* Determine allocated objects not slabs */
  3595. SL_TOTAL /* Determine object capacity not slabs */
  3596. };
  3597. #define SO_ALL (1 << SL_ALL)
  3598. #define SO_PARTIAL (1 << SL_PARTIAL)
  3599. #define SO_CPU (1 << SL_CPU)
  3600. #define SO_OBJECTS (1 << SL_OBJECTS)
  3601. #define SO_TOTAL (1 << SL_TOTAL)
  3602. static ssize_t show_slab_objects(struct kmem_cache *s,
  3603. char *buf, unsigned long flags)
  3604. {
  3605. unsigned long total = 0;
  3606. int node;
  3607. int x;
  3608. unsigned long *nodes;
  3609. unsigned long *per_cpu;
  3610. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3611. if (!nodes)
  3612. return -ENOMEM;
  3613. per_cpu = nodes + nr_node_ids;
  3614. if (flags & SO_CPU) {
  3615. int cpu;
  3616. for_each_possible_cpu(cpu) {
  3617. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3618. if (!c || c->node < 0)
  3619. continue;
  3620. if (c->page) {
  3621. if (flags & SO_TOTAL)
  3622. x = c->page->objects;
  3623. else if (flags & SO_OBJECTS)
  3624. x = c->page->inuse;
  3625. else
  3626. x = 1;
  3627. total += x;
  3628. nodes[c->node] += x;
  3629. }
  3630. per_cpu[c->node]++;
  3631. }
  3632. }
  3633. lock_memory_hotplug();
  3634. #ifdef CONFIG_SLUB_DEBUG
  3635. if (flags & SO_ALL) {
  3636. for_each_node_state(node, N_NORMAL_MEMORY) {
  3637. struct kmem_cache_node *n = get_node(s, node);
  3638. if (flags & SO_TOTAL)
  3639. x = atomic_long_read(&n->total_objects);
  3640. else if (flags & SO_OBJECTS)
  3641. x = atomic_long_read(&n->total_objects) -
  3642. count_partial(n, count_free);
  3643. else
  3644. x = atomic_long_read(&n->nr_slabs);
  3645. total += x;
  3646. nodes[node] += x;
  3647. }
  3648. } else
  3649. #endif
  3650. if (flags & SO_PARTIAL) {
  3651. for_each_node_state(node, N_NORMAL_MEMORY) {
  3652. struct kmem_cache_node *n = get_node(s, node);
  3653. if (flags & SO_TOTAL)
  3654. x = count_partial(n, count_total);
  3655. else if (flags & SO_OBJECTS)
  3656. x = count_partial(n, count_inuse);
  3657. else
  3658. x = n->nr_partial;
  3659. total += x;
  3660. nodes[node] += x;
  3661. }
  3662. }
  3663. x = sprintf(buf, "%lu", total);
  3664. #ifdef CONFIG_NUMA
  3665. for_each_node_state(node, N_NORMAL_MEMORY)
  3666. if (nodes[node])
  3667. x += sprintf(buf + x, " N%d=%lu",
  3668. node, nodes[node]);
  3669. #endif
  3670. unlock_memory_hotplug();
  3671. kfree(nodes);
  3672. return x + sprintf(buf + x, "\n");
  3673. }
  3674. #ifdef CONFIG_SLUB_DEBUG
  3675. static int any_slab_objects(struct kmem_cache *s)
  3676. {
  3677. int node;
  3678. for_each_online_node(node) {
  3679. struct kmem_cache_node *n = get_node(s, node);
  3680. if (!n)
  3681. continue;
  3682. if (atomic_long_read(&n->total_objects))
  3683. return 1;
  3684. }
  3685. return 0;
  3686. }
  3687. #endif
  3688. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3689. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3690. struct slab_attribute {
  3691. struct attribute attr;
  3692. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3693. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3694. };
  3695. #define SLAB_ATTR_RO(_name) \
  3696. static struct slab_attribute _name##_attr = \
  3697. __ATTR(_name, 0400, _name##_show, NULL)
  3698. #define SLAB_ATTR(_name) \
  3699. static struct slab_attribute _name##_attr = \
  3700. __ATTR(_name, 0600, _name##_show, _name##_store)
  3701. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3702. {
  3703. return sprintf(buf, "%d\n", s->size);
  3704. }
  3705. SLAB_ATTR_RO(slab_size);
  3706. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3707. {
  3708. return sprintf(buf, "%d\n", s->align);
  3709. }
  3710. SLAB_ATTR_RO(align);
  3711. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3712. {
  3713. return sprintf(buf, "%d\n", s->objsize);
  3714. }
  3715. SLAB_ATTR_RO(object_size);
  3716. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3717. {
  3718. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3719. }
  3720. SLAB_ATTR_RO(objs_per_slab);
  3721. static ssize_t order_store(struct kmem_cache *s,
  3722. const char *buf, size_t length)
  3723. {
  3724. unsigned long order;
  3725. int err;
  3726. err = strict_strtoul(buf, 10, &order);
  3727. if (err)
  3728. return err;
  3729. if (order > slub_max_order || order < slub_min_order)
  3730. return -EINVAL;
  3731. calculate_sizes(s, order);
  3732. return length;
  3733. }
  3734. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3735. {
  3736. return sprintf(buf, "%d\n", oo_order(s->oo));
  3737. }
  3738. SLAB_ATTR(order);
  3739. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3740. {
  3741. return sprintf(buf, "%lu\n", s->min_partial);
  3742. }
  3743. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3744. size_t length)
  3745. {
  3746. unsigned long min;
  3747. int err;
  3748. err = strict_strtoul(buf, 10, &min);
  3749. if (err)
  3750. return err;
  3751. set_min_partial(s, min);
  3752. return length;
  3753. }
  3754. SLAB_ATTR(min_partial);
  3755. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3756. {
  3757. if (!s->ctor)
  3758. return 0;
  3759. return sprintf(buf, "%pS\n", s->ctor);
  3760. }
  3761. SLAB_ATTR_RO(ctor);
  3762. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3763. {
  3764. return sprintf(buf, "%d\n", s->refcount - 1);
  3765. }
  3766. SLAB_ATTR_RO(aliases);
  3767. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3768. {
  3769. return show_slab_objects(s, buf, SO_PARTIAL);
  3770. }
  3771. SLAB_ATTR_RO(partial);
  3772. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3773. {
  3774. return show_slab_objects(s, buf, SO_CPU);
  3775. }
  3776. SLAB_ATTR_RO(cpu_slabs);
  3777. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3778. {
  3779. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3780. }
  3781. SLAB_ATTR_RO(objects);
  3782. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3783. {
  3784. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3785. }
  3786. SLAB_ATTR_RO(objects_partial);
  3787. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3788. {
  3789. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3790. }
  3791. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3792. const char *buf, size_t length)
  3793. {
  3794. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3795. if (buf[0] == '1')
  3796. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3797. return length;
  3798. }
  3799. SLAB_ATTR(reclaim_account);
  3800. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3801. {
  3802. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3803. }
  3804. SLAB_ATTR_RO(hwcache_align);
  3805. #ifdef CONFIG_ZONE_DMA
  3806. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3807. {
  3808. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3809. }
  3810. SLAB_ATTR_RO(cache_dma);
  3811. #endif
  3812. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3813. {
  3814. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3815. }
  3816. SLAB_ATTR_RO(destroy_by_rcu);
  3817. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3818. {
  3819. return sprintf(buf, "%d\n", s->reserved);
  3820. }
  3821. SLAB_ATTR_RO(reserved);
  3822. #ifdef CONFIG_SLUB_DEBUG
  3823. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3824. {
  3825. return show_slab_objects(s, buf, SO_ALL);
  3826. }
  3827. SLAB_ATTR_RO(slabs);
  3828. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3829. {
  3830. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3831. }
  3832. SLAB_ATTR_RO(total_objects);
  3833. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3834. {
  3835. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3836. }
  3837. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3838. const char *buf, size_t length)
  3839. {
  3840. s->flags &= ~SLAB_DEBUG_FREE;
  3841. if (buf[0] == '1') {
  3842. s->flags &= ~__CMPXCHG_DOUBLE;
  3843. s->flags |= SLAB_DEBUG_FREE;
  3844. }
  3845. return length;
  3846. }
  3847. SLAB_ATTR(sanity_checks);
  3848. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3849. {
  3850. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3851. }
  3852. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3853. size_t length)
  3854. {
  3855. s->flags &= ~SLAB_TRACE;
  3856. if (buf[0] == '1') {
  3857. s->flags &= ~__CMPXCHG_DOUBLE;
  3858. s->flags |= SLAB_TRACE;
  3859. }
  3860. return length;
  3861. }
  3862. SLAB_ATTR(trace);
  3863. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3864. {
  3865. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3866. }
  3867. static ssize_t red_zone_store(struct kmem_cache *s,
  3868. const char *buf, size_t length)
  3869. {
  3870. if (any_slab_objects(s))
  3871. return -EBUSY;
  3872. s->flags &= ~SLAB_RED_ZONE;
  3873. if (buf[0] == '1') {
  3874. s->flags &= ~__CMPXCHG_DOUBLE;
  3875. s->flags |= SLAB_RED_ZONE;
  3876. }
  3877. calculate_sizes(s, -1);
  3878. return length;
  3879. }
  3880. SLAB_ATTR(red_zone);
  3881. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3882. {
  3883. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3884. }
  3885. static ssize_t poison_store(struct kmem_cache *s,
  3886. const char *buf, size_t length)
  3887. {
  3888. if (any_slab_objects(s))
  3889. return -EBUSY;
  3890. s->flags &= ~SLAB_POISON;
  3891. if (buf[0] == '1') {
  3892. s->flags &= ~__CMPXCHG_DOUBLE;
  3893. s->flags |= SLAB_POISON;
  3894. }
  3895. calculate_sizes(s, -1);
  3896. return length;
  3897. }
  3898. SLAB_ATTR(poison);
  3899. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3900. {
  3901. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3902. }
  3903. static ssize_t store_user_store(struct kmem_cache *s,
  3904. const char *buf, size_t length)
  3905. {
  3906. if (any_slab_objects(s))
  3907. return -EBUSY;
  3908. s->flags &= ~SLAB_STORE_USER;
  3909. if (buf[0] == '1') {
  3910. s->flags &= ~__CMPXCHG_DOUBLE;
  3911. s->flags |= SLAB_STORE_USER;
  3912. }
  3913. calculate_sizes(s, -1);
  3914. return length;
  3915. }
  3916. SLAB_ATTR(store_user);
  3917. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3918. {
  3919. return 0;
  3920. }
  3921. static ssize_t validate_store(struct kmem_cache *s,
  3922. const char *buf, size_t length)
  3923. {
  3924. int ret = -EINVAL;
  3925. if (buf[0] == '1') {
  3926. ret = validate_slab_cache(s);
  3927. if (ret >= 0)
  3928. ret = length;
  3929. }
  3930. return ret;
  3931. }
  3932. SLAB_ATTR(validate);
  3933. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3934. {
  3935. if (!(s->flags & SLAB_STORE_USER))
  3936. return -ENOSYS;
  3937. return list_locations(s, buf, TRACK_ALLOC);
  3938. }
  3939. SLAB_ATTR_RO(alloc_calls);
  3940. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3941. {
  3942. if (!(s->flags & SLAB_STORE_USER))
  3943. return -ENOSYS;
  3944. return list_locations(s, buf, TRACK_FREE);
  3945. }
  3946. SLAB_ATTR_RO(free_calls);
  3947. #endif /* CONFIG_SLUB_DEBUG */
  3948. #ifdef CONFIG_FAILSLAB
  3949. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3950. {
  3951. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3952. }
  3953. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3954. size_t length)
  3955. {
  3956. s->flags &= ~SLAB_FAILSLAB;
  3957. if (buf[0] == '1')
  3958. s->flags |= SLAB_FAILSLAB;
  3959. return length;
  3960. }
  3961. SLAB_ATTR(failslab);
  3962. #endif
  3963. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3964. {
  3965. return 0;
  3966. }
  3967. static ssize_t shrink_store(struct kmem_cache *s,
  3968. const char *buf, size_t length)
  3969. {
  3970. if (buf[0] == '1') {
  3971. int rc = kmem_cache_shrink(s);
  3972. if (rc)
  3973. return rc;
  3974. } else
  3975. return -EINVAL;
  3976. return length;
  3977. }
  3978. SLAB_ATTR(shrink);
  3979. #ifdef CONFIG_NUMA
  3980. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3981. {
  3982. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3983. }
  3984. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3985. const char *buf, size_t length)
  3986. {
  3987. unsigned long ratio;
  3988. int err;
  3989. err = strict_strtoul(buf, 10, &ratio);
  3990. if (err)
  3991. return err;
  3992. if (ratio <= 100)
  3993. s->remote_node_defrag_ratio = ratio * 10;
  3994. return length;
  3995. }
  3996. SLAB_ATTR(remote_node_defrag_ratio);
  3997. #endif
  3998. #ifdef CONFIG_SLUB_STATS
  3999. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4000. {
  4001. unsigned long sum = 0;
  4002. int cpu;
  4003. int len;
  4004. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4005. if (!data)
  4006. return -ENOMEM;
  4007. for_each_online_cpu(cpu) {
  4008. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4009. data[cpu] = x;
  4010. sum += x;
  4011. }
  4012. len = sprintf(buf, "%lu", sum);
  4013. #ifdef CONFIG_SMP
  4014. for_each_online_cpu(cpu) {
  4015. if (data[cpu] && len < PAGE_SIZE - 20)
  4016. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4017. }
  4018. #endif
  4019. kfree(data);
  4020. return len + sprintf(buf + len, "\n");
  4021. }
  4022. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4023. {
  4024. int cpu;
  4025. for_each_online_cpu(cpu)
  4026. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4027. }
  4028. #define STAT_ATTR(si, text) \
  4029. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4030. { \
  4031. return show_stat(s, buf, si); \
  4032. } \
  4033. static ssize_t text##_store(struct kmem_cache *s, \
  4034. const char *buf, size_t length) \
  4035. { \
  4036. if (buf[0] != '0') \
  4037. return -EINVAL; \
  4038. clear_stat(s, si); \
  4039. return length; \
  4040. } \
  4041. SLAB_ATTR(text); \
  4042. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4043. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4044. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4045. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4046. STAT_ATTR(FREE_FROZEN, free_frozen);
  4047. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4048. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4049. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4050. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4051. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4052. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4053. STAT_ATTR(FREE_SLAB, free_slab);
  4054. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4055. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4056. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4057. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4058. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4059. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4060. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4061. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4062. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4063. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4064. #endif
  4065. static struct attribute *slab_attrs[] = {
  4066. &slab_size_attr.attr,
  4067. &object_size_attr.attr,
  4068. &objs_per_slab_attr.attr,
  4069. &order_attr.attr,
  4070. &min_partial_attr.attr,
  4071. &objects_attr.attr,
  4072. &objects_partial_attr.attr,
  4073. &partial_attr.attr,
  4074. &cpu_slabs_attr.attr,
  4075. &ctor_attr.attr,
  4076. &aliases_attr.attr,
  4077. &align_attr.attr,
  4078. &hwcache_align_attr.attr,
  4079. &reclaim_account_attr.attr,
  4080. &destroy_by_rcu_attr.attr,
  4081. &shrink_attr.attr,
  4082. &reserved_attr.attr,
  4083. #ifdef CONFIG_SLUB_DEBUG
  4084. &total_objects_attr.attr,
  4085. &slabs_attr.attr,
  4086. &sanity_checks_attr.attr,
  4087. &trace_attr.attr,
  4088. &red_zone_attr.attr,
  4089. &poison_attr.attr,
  4090. &store_user_attr.attr,
  4091. &validate_attr.attr,
  4092. &alloc_calls_attr.attr,
  4093. &free_calls_attr.attr,
  4094. #endif
  4095. #ifdef CONFIG_ZONE_DMA
  4096. &cache_dma_attr.attr,
  4097. #endif
  4098. #ifdef CONFIG_NUMA
  4099. &remote_node_defrag_ratio_attr.attr,
  4100. #endif
  4101. #ifdef CONFIG_SLUB_STATS
  4102. &alloc_fastpath_attr.attr,
  4103. &alloc_slowpath_attr.attr,
  4104. &free_fastpath_attr.attr,
  4105. &free_slowpath_attr.attr,
  4106. &free_frozen_attr.attr,
  4107. &free_add_partial_attr.attr,
  4108. &free_remove_partial_attr.attr,
  4109. &alloc_from_partial_attr.attr,
  4110. &alloc_slab_attr.attr,
  4111. &alloc_refill_attr.attr,
  4112. &alloc_node_mismatch_attr.attr,
  4113. &free_slab_attr.attr,
  4114. &cpuslab_flush_attr.attr,
  4115. &deactivate_full_attr.attr,
  4116. &deactivate_empty_attr.attr,
  4117. &deactivate_to_head_attr.attr,
  4118. &deactivate_to_tail_attr.attr,
  4119. &deactivate_remote_frees_attr.attr,
  4120. &deactivate_bypass_attr.attr,
  4121. &order_fallback_attr.attr,
  4122. &cmpxchg_double_fail_attr.attr,
  4123. &cmpxchg_double_cpu_fail_attr.attr,
  4124. #endif
  4125. #ifdef CONFIG_FAILSLAB
  4126. &failslab_attr.attr,
  4127. #endif
  4128. NULL
  4129. };
  4130. static struct attribute_group slab_attr_group = {
  4131. .attrs = slab_attrs,
  4132. };
  4133. static ssize_t slab_attr_show(struct kobject *kobj,
  4134. struct attribute *attr,
  4135. char *buf)
  4136. {
  4137. struct slab_attribute *attribute;
  4138. struct kmem_cache *s;
  4139. int err;
  4140. attribute = to_slab_attr(attr);
  4141. s = to_slab(kobj);
  4142. if (!attribute->show)
  4143. return -EIO;
  4144. err = attribute->show(s, buf);
  4145. return err;
  4146. }
  4147. static ssize_t slab_attr_store(struct kobject *kobj,
  4148. struct attribute *attr,
  4149. const char *buf, size_t len)
  4150. {
  4151. struct slab_attribute *attribute;
  4152. struct kmem_cache *s;
  4153. int err;
  4154. attribute = to_slab_attr(attr);
  4155. s = to_slab(kobj);
  4156. if (!attribute->store)
  4157. return -EIO;
  4158. err = attribute->store(s, buf, len);
  4159. return err;
  4160. }
  4161. static void kmem_cache_release(struct kobject *kobj)
  4162. {
  4163. struct kmem_cache *s = to_slab(kobj);
  4164. kfree(s->name);
  4165. kfree(s);
  4166. }
  4167. static const struct sysfs_ops slab_sysfs_ops = {
  4168. .show = slab_attr_show,
  4169. .store = slab_attr_store,
  4170. };
  4171. static struct kobj_type slab_ktype = {
  4172. .sysfs_ops = &slab_sysfs_ops,
  4173. .release = kmem_cache_release
  4174. };
  4175. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4176. {
  4177. struct kobj_type *ktype = get_ktype(kobj);
  4178. if (ktype == &slab_ktype)
  4179. return 1;
  4180. return 0;
  4181. }
  4182. static const struct kset_uevent_ops slab_uevent_ops = {
  4183. .filter = uevent_filter,
  4184. };
  4185. static struct kset *slab_kset;
  4186. #define ID_STR_LENGTH 64
  4187. /* Create a unique string id for a slab cache:
  4188. *
  4189. * Format :[flags-]size
  4190. */
  4191. static char *create_unique_id(struct kmem_cache *s)
  4192. {
  4193. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4194. char *p = name;
  4195. BUG_ON(!name);
  4196. *p++ = ':';
  4197. /*
  4198. * First flags affecting slabcache operations. We will only
  4199. * get here for aliasable slabs so we do not need to support
  4200. * too many flags. The flags here must cover all flags that
  4201. * are matched during merging to guarantee that the id is
  4202. * unique.
  4203. */
  4204. if (s->flags & SLAB_CACHE_DMA)
  4205. *p++ = 'd';
  4206. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4207. *p++ = 'a';
  4208. if (s->flags & SLAB_DEBUG_FREE)
  4209. *p++ = 'F';
  4210. if (!(s->flags & SLAB_NOTRACK))
  4211. *p++ = 't';
  4212. if (p != name + 1)
  4213. *p++ = '-';
  4214. p += sprintf(p, "%07d", s->size);
  4215. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4216. return name;
  4217. }
  4218. static int sysfs_slab_add(struct kmem_cache *s)
  4219. {
  4220. int err;
  4221. const char *name;
  4222. int unmergeable;
  4223. if (slab_state < SYSFS)
  4224. /* Defer until later */
  4225. return 0;
  4226. unmergeable = slab_unmergeable(s);
  4227. if (unmergeable) {
  4228. /*
  4229. * Slabcache can never be merged so we can use the name proper.
  4230. * This is typically the case for debug situations. In that
  4231. * case we can catch duplicate names easily.
  4232. */
  4233. sysfs_remove_link(&slab_kset->kobj, s->name);
  4234. name = s->name;
  4235. } else {
  4236. /*
  4237. * Create a unique name for the slab as a target
  4238. * for the symlinks.
  4239. */
  4240. name = create_unique_id(s);
  4241. }
  4242. s->kobj.kset = slab_kset;
  4243. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4244. if (err) {
  4245. kobject_put(&s->kobj);
  4246. return err;
  4247. }
  4248. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4249. if (err) {
  4250. kobject_del(&s->kobj);
  4251. kobject_put(&s->kobj);
  4252. return err;
  4253. }
  4254. kobject_uevent(&s->kobj, KOBJ_ADD);
  4255. if (!unmergeable) {
  4256. /* Setup first alias */
  4257. sysfs_slab_alias(s, s->name);
  4258. kfree(name);
  4259. }
  4260. return 0;
  4261. }
  4262. static void sysfs_slab_remove(struct kmem_cache *s)
  4263. {
  4264. if (slab_state < SYSFS)
  4265. /*
  4266. * Sysfs has not been setup yet so no need to remove the
  4267. * cache from sysfs.
  4268. */
  4269. return;
  4270. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4271. kobject_del(&s->kobj);
  4272. kobject_put(&s->kobj);
  4273. }
  4274. /*
  4275. * Need to buffer aliases during bootup until sysfs becomes
  4276. * available lest we lose that information.
  4277. */
  4278. struct saved_alias {
  4279. struct kmem_cache *s;
  4280. const char *name;
  4281. struct saved_alias *next;
  4282. };
  4283. static struct saved_alias *alias_list;
  4284. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4285. {
  4286. struct saved_alias *al;
  4287. if (slab_state == SYSFS) {
  4288. /*
  4289. * If we have a leftover link then remove it.
  4290. */
  4291. sysfs_remove_link(&slab_kset->kobj, name);
  4292. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4293. }
  4294. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4295. if (!al)
  4296. return -ENOMEM;
  4297. al->s = s;
  4298. al->name = name;
  4299. al->next = alias_list;
  4300. alias_list = al;
  4301. return 0;
  4302. }
  4303. static int __init slab_sysfs_init(void)
  4304. {
  4305. struct kmem_cache *s;
  4306. int err;
  4307. down_write(&slub_lock);
  4308. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4309. if (!slab_kset) {
  4310. up_write(&slub_lock);
  4311. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4312. return -ENOSYS;
  4313. }
  4314. slab_state = SYSFS;
  4315. list_for_each_entry(s, &slab_caches, list) {
  4316. err = sysfs_slab_add(s);
  4317. if (err)
  4318. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4319. " to sysfs\n", s->name);
  4320. }
  4321. while (alias_list) {
  4322. struct saved_alias *al = alias_list;
  4323. alias_list = alias_list->next;
  4324. err = sysfs_slab_alias(al->s, al->name);
  4325. if (err)
  4326. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4327. " %s to sysfs\n", s->name);
  4328. kfree(al);
  4329. }
  4330. up_write(&slub_lock);
  4331. resiliency_test();
  4332. return 0;
  4333. }
  4334. __initcall(slab_sysfs_init);
  4335. #endif /* CONFIG_SYSFS */
  4336. /*
  4337. * The /proc/slabinfo ABI
  4338. */
  4339. #ifdef CONFIG_SLABINFO
  4340. static void print_slabinfo_header(struct seq_file *m)
  4341. {
  4342. seq_puts(m, "slabinfo - version: 2.1\n");
  4343. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  4344. "<objperslab> <pagesperslab>");
  4345. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  4346. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  4347. seq_putc(m, '\n');
  4348. }
  4349. static void *s_start(struct seq_file *m, loff_t *pos)
  4350. {
  4351. loff_t n = *pos;
  4352. down_read(&slub_lock);
  4353. if (!n)
  4354. print_slabinfo_header(m);
  4355. return seq_list_start(&slab_caches, *pos);
  4356. }
  4357. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  4358. {
  4359. return seq_list_next(p, &slab_caches, pos);
  4360. }
  4361. static void s_stop(struct seq_file *m, void *p)
  4362. {
  4363. up_read(&slub_lock);
  4364. }
  4365. static int s_show(struct seq_file *m, void *p)
  4366. {
  4367. unsigned long nr_partials = 0;
  4368. unsigned long nr_slabs = 0;
  4369. unsigned long nr_inuse = 0;
  4370. unsigned long nr_objs = 0;
  4371. unsigned long nr_free = 0;
  4372. struct kmem_cache *s;
  4373. int node;
  4374. s = list_entry(p, struct kmem_cache, list);
  4375. for_each_online_node(node) {
  4376. struct kmem_cache_node *n = get_node(s, node);
  4377. if (!n)
  4378. continue;
  4379. nr_partials += n->nr_partial;
  4380. nr_slabs += atomic_long_read(&n->nr_slabs);
  4381. nr_objs += atomic_long_read(&n->total_objects);
  4382. nr_free += count_partial(n, count_free);
  4383. }
  4384. nr_inuse = nr_objs - nr_free;
  4385. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4386. nr_objs, s->size, oo_objects(s->oo),
  4387. (1 << oo_order(s->oo)));
  4388. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4389. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4390. 0UL);
  4391. seq_putc(m, '\n');
  4392. return 0;
  4393. }
  4394. static const struct seq_operations slabinfo_op = {
  4395. .start = s_start,
  4396. .next = s_next,
  4397. .stop = s_stop,
  4398. .show = s_show,
  4399. };
  4400. static int slabinfo_open(struct inode *inode, struct file *file)
  4401. {
  4402. return seq_open(file, &slabinfo_op);
  4403. }
  4404. static const struct file_operations proc_slabinfo_operations = {
  4405. .open = slabinfo_open,
  4406. .read = seq_read,
  4407. .llseek = seq_lseek,
  4408. .release = seq_release,
  4409. };
  4410. static int __init slab_proc_init(void)
  4411. {
  4412. proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
  4413. return 0;
  4414. }
  4415. module_init(slab_proc_init);
  4416. #endif /* CONFIG_SLABINFO */