intel_display.c 309 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. static void intel_increase_pllclock(struct drm_crtc *crtc);
  43. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  44. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  45. struct intel_crtc_config *pipe_config);
  46. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  47. struct intel_crtc_config *pipe_config);
  48. static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
  49. int x, int y, struct drm_framebuffer *old_fb);
  50. typedef struct {
  51. int min, max;
  52. } intel_range_t;
  53. typedef struct {
  54. int dot_limit;
  55. int p2_slow, p2_fast;
  56. } intel_p2_t;
  57. typedef struct intel_limit intel_limit_t;
  58. struct intel_limit {
  59. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  60. intel_p2_t p2;
  61. };
  62. int
  63. intel_pch_rawclk(struct drm_device *dev)
  64. {
  65. struct drm_i915_private *dev_priv = dev->dev_private;
  66. WARN_ON(!HAS_PCH_SPLIT(dev));
  67. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  68. }
  69. static inline u32 /* units of 100MHz */
  70. intel_fdi_link_freq(struct drm_device *dev)
  71. {
  72. if (IS_GEN5(dev)) {
  73. struct drm_i915_private *dev_priv = dev->dev_private;
  74. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  75. } else
  76. return 27;
  77. }
  78. static const intel_limit_t intel_limits_i8xx_dac = {
  79. .dot = { .min = 25000, .max = 350000 },
  80. .vco = { .min = 930000, .max = 1400000 },
  81. .n = { .min = 3, .max = 16 },
  82. .m = { .min = 96, .max = 140 },
  83. .m1 = { .min = 18, .max = 26 },
  84. .m2 = { .min = 6, .max = 16 },
  85. .p = { .min = 4, .max = 128 },
  86. .p1 = { .min = 2, .max = 33 },
  87. .p2 = { .dot_limit = 165000,
  88. .p2_slow = 4, .p2_fast = 2 },
  89. };
  90. static const intel_limit_t intel_limits_i8xx_dvo = {
  91. .dot = { .min = 25000, .max = 350000 },
  92. .vco = { .min = 930000, .max = 1400000 },
  93. .n = { .min = 3, .max = 16 },
  94. .m = { .min = 96, .max = 140 },
  95. .m1 = { .min = 18, .max = 26 },
  96. .m2 = { .min = 6, .max = 16 },
  97. .p = { .min = 4, .max = 128 },
  98. .p1 = { .min = 2, .max = 33 },
  99. .p2 = { .dot_limit = 165000,
  100. .p2_slow = 4, .p2_fast = 4 },
  101. };
  102. static const intel_limit_t intel_limits_i8xx_lvds = {
  103. .dot = { .min = 25000, .max = 350000 },
  104. .vco = { .min = 930000, .max = 1400000 },
  105. .n = { .min = 3, .max = 16 },
  106. .m = { .min = 96, .max = 140 },
  107. .m1 = { .min = 18, .max = 26 },
  108. .m2 = { .min = 6, .max = 16 },
  109. .p = { .min = 4, .max = 128 },
  110. .p1 = { .min = 1, .max = 6 },
  111. .p2 = { .dot_limit = 165000,
  112. .p2_slow = 14, .p2_fast = 7 },
  113. };
  114. static const intel_limit_t intel_limits_i9xx_sdvo = {
  115. .dot = { .min = 20000, .max = 400000 },
  116. .vco = { .min = 1400000, .max = 2800000 },
  117. .n = { .min = 1, .max = 6 },
  118. .m = { .min = 70, .max = 120 },
  119. .m1 = { .min = 8, .max = 18 },
  120. .m2 = { .min = 3, .max = 7 },
  121. .p = { .min = 5, .max = 80 },
  122. .p1 = { .min = 1, .max = 8 },
  123. .p2 = { .dot_limit = 200000,
  124. .p2_slow = 10, .p2_fast = 5 },
  125. };
  126. static const intel_limit_t intel_limits_i9xx_lvds = {
  127. .dot = { .min = 20000, .max = 400000 },
  128. .vco = { .min = 1400000, .max = 2800000 },
  129. .n = { .min = 1, .max = 6 },
  130. .m = { .min = 70, .max = 120 },
  131. .m1 = { .min = 8, .max = 18 },
  132. .m2 = { .min = 3, .max = 7 },
  133. .p = { .min = 7, .max = 98 },
  134. .p1 = { .min = 1, .max = 8 },
  135. .p2 = { .dot_limit = 112000,
  136. .p2_slow = 14, .p2_fast = 7 },
  137. };
  138. static const intel_limit_t intel_limits_g4x_sdvo = {
  139. .dot = { .min = 25000, .max = 270000 },
  140. .vco = { .min = 1750000, .max = 3500000},
  141. .n = { .min = 1, .max = 4 },
  142. .m = { .min = 104, .max = 138 },
  143. .m1 = { .min = 17, .max = 23 },
  144. .m2 = { .min = 5, .max = 11 },
  145. .p = { .min = 10, .max = 30 },
  146. .p1 = { .min = 1, .max = 3},
  147. .p2 = { .dot_limit = 270000,
  148. .p2_slow = 10,
  149. .p2_fast = 10
  150. },
  151. };
  152. static const intel_limit_t intel_limits_g4x_hdmi = {
  153. .dot = { .min = 22000, .max = 400000 },
  154. .vco = { .min = 1750000, .max = 3500000},
  155. .n = { .min = 1, .max = 4 },
  156. .m = { .min = 104, .max = 138 },
  157. .m1 = { .min = 16, .max = 23 },
  158. .m2 = { .min = 5, .max = 11 },
  159. .p = { .min = 5, .max = 80 },
  160. .p1 = { .min = 1, .max = 8},
  161. .p2 = { .dot_limit = 165000,
  162. .p2_slow = 10, .p2_fast = 5 },
  163. };
  164. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  165. .dot = { .min = 20000, .max = 115000 },
  166. .vco = { .min = 1750000, .max = 3500000 },
  167. .n = { .min = 1, .max = 3 },
  168. .m = { .min = 104, .max = 138 },
  169. .m1 = { .min = 17, .max = 23 },
  170. .m2 = { .min = 5, .max = 11 },
  171. .p = { .min = 28, .max = 112 },
  172. .p1 = { .min = 2, .max = 8 },
  173. .p2 = { .dot_limit = 0,
  174. .p2_slow = 14, .p2_fast = 14
  175. },
  176. };
  177. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  178. .dot = { .min = 80000, .max = 224000 },
  179. .vco = { .min = 1750000, .max = 3500000 },
  180. .n = { .min = 1, .max = 3 },
  181. .m = { .min = 104, .max = 138 },
  182. .m1 = { .min = 17, .max = 23 },
  183. .m2 = { .min = 5, .max = 11 },
  184. .p = { .min = 14, .max = 42 },
  185. .p1 = { .min = 2, .max = 6 },
  186. .p2 = { .dot_limit = 0,
  187. .p2_slow = 7, .p2_fast = 7
  188. },
  189. };
  190. static const intel_limit_t intel_limits_pineview_sdvo = {
  191. .dot = { .min = 20000, .max = 400000},
  192. .vco = { .min = 1700000, .max = 3500000 },
  193. /* Pineview's Ncounter is a ring counter */
  194. .n = { .min = 3, .max = 6 },
  195. .m = { .min = 2, .max = 256 },
  196. /* Pineview only has one combined m divider, which we treat as m2. */
  197. .m1 = { .min = 0, .max = 0 },
  198. .m2 = { .min = 0, .max = 254 },
  199. .p = { .min = 5, .max = 80 },
  200. .p1 = { .min = 1, .max = 8 },
  201. .p2 = { .dot_limit = 200000,
  202. .p2_slow = 10, .p2_fast = 5 },
  203. };
  204. static const intel_limit_t intel_limits_pineview_lvds = {
  205. .dot = { .min = 20000, .max = 400000 },
  206. .vco = { .min = 1700000, .max = 3500000 },
  207. .n = { .min = 3, .max = 6 },
  208. .m = { .min = 2, .max = 256 },
  209. .m1 = { .min = 0, .max = 0 },
  210. .m2 = { .min = 0, .max = 254 },
  211. .p = { .min = 7, .max = 112 },
  212. .p1 = { .min = 1, .max = 8 },
  213. .p2 = { .dot_limit = 112000,
  214. .p2_slow = 14, .p2_fast = 14 },
  215. };
  216. /* Ironlake / Sandybridge
  217. *
  218. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  219. * the range value for them is (actual_value - 2).
  220. */
  221. static const intel_limit_t intel_limits_ironlake_dac = {
  222. .dot = { .min = 25000, .max = 350000 },
  223. .vco = { .min = 1760000, .max = 3510000 },
  224. .n = { .min = 1, .max = 5 },
  225. .m = { .min = 79, .max = 127 },
  226. .m1 = { .min = 12, .max = 22 },
  227. .m2 = { .min = 5, .max = 9 },
  228. .p = { .min = 5, .max = 80 },
  229. .p1 = { .min = 1, .max = 8 },
  230. .p2 = { .dot_limit = 225000,
  231. .p2_slow = 10, .p2_fast = 5 },
  232. };
  233. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  234. .dot = { .min = 25000, .max = 350000 },
  235. .vco = { .min = 1760000, .max = 3510000 },
  236. .n = { .min = 1, .max = 3 },
  237. .m = { .min = 79, .max = 118 },
  238. .m1 = { .min = 12, .max = 22 },
  239. .m2 = { .min = 5, .max = 9 },
  240. .p = { .min = 28, .max = 112 },
  241. .p1 = { .min = 2, .max = 8 },
  242. .p2 = { .dot_limit = 225000,
  243. .p2_slow = 14, .p2_fast = 14 },
  244. };
  245. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  246. .dot = { .min = 25000, .max = 350000 },
  247. .vco = { .min = 1760000, .max = 3510000 },
  248. .n = { .min = 1, .max = 3 },
  249. .m = { .min = 79, .max = 127 },
  250. .m1 = { .min = 12, .max = 22 },
  251. .m2 = { .min = 5, .max = 9 },
  252. .p = { .min = 14, .max = 56 },
  253. .p1 = { .min = 2, .max = 8 },
  254. .p2 = { .dot_limit = 225000,
  255. .p2_slow = 7, .p2_fast = 7 },
  256. };
  257. /* LVDS 100mhz refclk limits. */
  258. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  259. .dot = { .min = 25000, .max = 350000 },
  260. .vco = { .min = 1760000, .max = 3510000 },
  261. .n = { .min = 1, .max = 2 },
  262. .m = { .min = 79, .max = 126 },
  263. .m1 = { .min = 12, .max = 22 },
  264. .m2 = { .min = 5, .max = 9 },
  265. .p = { .min = 28, .max = 112 },
  266. .p1 = { .min = 2, .max = 8 },
  267. .p2 = { .dot_limit = 225000,
  268. .p2_slow = 14, .p2_fast = 14 },
  269. };
  270. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  271. .dot = { .min = 25000, .max = 350000 },
  272. .vco = { .min = 1760000, .max = 3510000 },
  273. .n = { .min = 1, .max = 3 },
  274. .m = { .min = 79, .max = 126 },
  275. .m1 = { .min = 12, .max = 22 },
  276. .m2 = { .min = 5, .max = 9 },
  277. .p = { .min = 14, .max = 42 },
  278. .p1 = { .min = 2, .max = 6 },
  279. .p2 = { .dot_limit = 225000,
  280. .p2_slow = 7, .p2_fast = 7 },
  281. };
  282. static const intel_limit_t intel_limits_vlv = {
  283. /*
  284. * These are the data rate limits (measured in fast clocks)
  285. * since those are the strictest limits we have. The fast
  286. * clock and actual rate limits are more relaxed, so checking
  287. * them would make no difference.
  288. */
  289. .dot = { .min = 25000 * 5, .max = 270000 * 5 },
  290. .vco = { .min = 4000000, .max = 6000000 },
  291. .n = { .min = 1, .max = 7 },
  292. .m1 = { .min = 2, .max = 3 },
  293. .m2 = { .min = 11, .max = 156 },
  294. .p1 = { .min = 2, .max = 3 },
  295. .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
  296. };
  297. static void vlv_clock(int refclk, intel_clock_t *clock)
  298. {
  299. clock->m = clock->m1 * clock->m2;
  300. clock->p = clock->p1 * clock->p2;
  301. clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
  302. clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  303. }
  304. /**
  305. * Returns whether any output on the specified pipe is of the specified type
  306. */
  307. static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  308. {
  309. struct drm_device *dev = crtc->dev;
  310. struct intel_encoder *encoder;
  311. for_each_encoder_on_crtc(dev, crtc, encoder)
  312. if (encoder->type == type)
  313. return true;
  314. return false;
  315. }
  316. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  317. int refclk)
  318. {
  319. struct drm_device *dev = crtc->dev;
  320. const intel_limit_t *limit;
  321. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  322. if (intel_is_dual_link_lvds(dev)) {
  323. if (refclk == 100000)
  324. limit = &intel_limits_ironlake_dual_lvds_100m;
  325. else
  326. limit = &intel_limits_ironlake_dual_lvds;
  327. } else {
  328. if (refclk == 100000)
  329. limit = &intel_limits_ironlake_single_lvds_100m;
  330. else
  331. limit = &intel_limits_ironlake_single_lvds;
  332. }
  333. } else
  334. limit = &intel_limits_ironlake_dac;
  335. return limit;
  336. }
  337. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  338. {
  339. struct drm_device *dev = crtc->dev;
  340. const intel_limit_t *limit;
  341. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  342. if (intel_is_dual_link_lvds(dev))
  343. limit = &intel_limits_g4x_dual_channel_lvds;
  344. else
  345. limit = &intel_limits_g4x_single_channel_lvds;
  346. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  347. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  348. limit = &intel_limits_g4x_hdmi;
  349. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  350. limit = &intel_limits_g4x_sdvo;
  351. } else /* The option is for other outputs */
  352. limit = &intel_limits_i9xx_sdvo;
  353. return limit;
  354. }
  355. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  356. {
  357. struct drm_device *dev = crtc->dev;
  358. const intel_limit_t *limit;
  359. if (HAS_PCH_SPLIT(dev))
  360. limit = intel_ironlake_limit(crtc, refclk);
  361. else if (IS_G4X(dev)) {
  362. limit = intel_g4x_limit(crtc);
  363. } else if (IS_PINEVIEW(dev)) {
  364. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  365. limit = &intel_limits_pineview_lvds;
  366. else
  367. limit = &intel_limits_pineview_sdvo;
  368. } else if (IS_VALLEYVIEW(dev)) {
  369. limit = &intel_limits_vlv;
  370. } else if (!IS_GEN2(dev)) {
  371. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  372. limit = &intel_limits_i9xx_lvds;
  373. else
  374. limit = &intel_limits_i9xx_sdvo;
  375. } else {
  376. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  377. limit = &intel_limits_i8xx_lvds;
  378. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
  379. limit = &intel_limits_i8xx_dvo;
  380. else
  381. limit = &intel_limits_i8xx_dac;
  382. }
  383. return limit;
  384. }
  385. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  386. static void pineview_clock(int refclk, intel_clock_t *clock)
  387. {
  388. clock->m = clock->m2 + 2;
  389. clock->p = clock->p1 * clock->p2;
  390. clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
  391. clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  392. }
  393. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  394. {
  395. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  396. }
  397. static void i9xx_clock(int refclk, intel_clock_t *clock)
  398. {
  399. clock->m = i9xx_dpll_compute_m(clock);
  400. clock->p = clock->p1 * clock->p2;
  401. clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
  402. clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  403. }
  404. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  405. /**
  406. * Returns whether the given set of divisors are valid for a given refclk with
  407. * the given connectors.
  408. */
  409. static bool intel_PLL_is_valid(struct drm_device *dev,
  410. const intel_limit_t *limit,
  411. const intel_clock_t *clock)
  412. {
  413. if (clock->n < limit->n.min || limit->n.max < clock->n)
  414. INTELPllInvalid("n out of range\n");
  415. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  416. INTELPllInvalid("p1 out of range\n");
  417. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  418. INTELPllInvalid("m2 out of range\n");
  419. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  420. INTELPllInvalid("m1 out of range\n");
  421. if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
  422. if (clock->m1 <= clock->m2)
  423. INTELPllInvalid("m1 <= m2\n");
  424. if (!IS_VALLEYVIEW(dev)) {
  425. if (clock->p < limit->p.min || limit->p.max < clock->p)
  426. INTELPllInvalid("p out of range\n");
  427. if (clock->m < limit->m.min || limit->m.max < clock->m)
  428. INTELPllInvalid("m out of range\n");
  429. }
  430. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  431. INTELPllInvalid("vco out of range\n");
  432. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  433. * connector, etc., rather than just a single range.
  434. */
  435. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  436. INTELPllInvalid("dot out of range\n");
  437. return true;
  438. }
  439. static bool
  440. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  441. int target, int refclk, intel_clock_t *match_clock,
  442. intel_clock_t *best_clock)
  443. {
  444. struct drm_device *dev = crtc->dev;
  445. intel_clock_t clock;
  446. int err = target;
  447. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  448. /*
  449. * For LVDS just rely on its current settings for dual-channel.
  450. * We haven't figured out how to reliably set up different
  451. * single/dual channel state, if we even can.
  452. */
  453. if (intel_is_dual_link_lvds(dev))
  454. clock.p2 = limit->p2.p2_fast;
  455. else
  456. clock.p2 = limit->p2.p2_slow;
  457. } else {
  458. if (target < limit->p2.dot_limit)
  459. clock.p2 = limit->p2.p2_slow;
  460. else
  461. clock.p2 = limit->p2.p2_fast;
  462. }
  463. memset(best_clock, 0, sizeof(*best_clock));
  464. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  465. clock.m1++) {
  466. for (clock.m2 = limit->m2.min;
  467. clock.m2 <= limit->m2.max; clock.m2++) {
  468. if (clock.m2 >= clock.m1)
  469. break;
  470. for (clock.n = limit->n.min;
  471. clock.n <= limit->n.max; clock.n++) {
  472. for (clock.p1 = limit->p1.min;
  473. clock.p1 <= limit->p1.max; clock.p1++) {
  474. int this_err;
  475. i9xx_clock(refclk, &clock);
  476. if (!intel_PLL_is_valid(dev, limit,
  477. &clock))
  478. continue;
  479. if (match_clock &&
  480. clock.p != match_clock->p)
  481. continue;
  482. this_err = abs(clock.dot - target);
  483. if (this_err < err) {
  484. *best_clock = clock;
  485. err = this_err;
  486. }
  487. }
  488. }
  489. }
  490. }
  491. return (err != target);
  492. }
  493. static bool
  494. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  495. int target, int refclk, intel_clock_t *match_clock,
  496. intel_clock_t *best_clock)
  497. {
  498. struct drm_device *dev = crtc->dev;
  499. intel_clock_t clock;
  500. int err = target;
  501. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  502. /*
  503. * For LVDS just rely on its current settings for dual-channel.
  504. * We haven't figured out how to reliably set up different
  505. * single/dual channel state, if we even can.
  506. */
  507. if (intel_is_dual_link_lvds(dev))
  508. clock.p2 = limit->p2.p2_fast;
  509. else
  510. clock.p2 = limit->p2.p2_slow;
  511. } else {
  512. if (target < limit->p2.dot_limit)
  513. clock.p2 = limit->p2.p2_slow;
  514. else
  515. clock.p2 = limit->p2.p2_fast;
  516. }
  517. memset(best_clock, 0, sizeof(*best_clock));
  518. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  519. clock.m1++) {
  520. for (clock.m2 = limit->m2.min;
  521. clock.m2 <= limit->m2.max; clock.m2++) {
  522. for (clock.n = limit->n.min;
  523. clock.n <= limit->n.max; clock.n++) {
  524. for (clock.p1 = limit->p1.min;
  525. clock.p1 <= limit->p1.max; clock.p1++) {
  526. int this_err;
  527. pineview_clock(refclk, &clock);
  528. if (!intel_PLL_is_valid(dev, limit,
  529. &clock))
  530. continue;
  531. if (match_clock &&
  532. clock.p != match_clock->p)
  533. continue;
  534. this_err = abs(clock.dot - target);
  535. if (this_err < err) {
  536. *best_clock = clock;
  537. err = this_err;
  538. }
  539. }
  540. }
  541. }
  542. }
  543. return (err != target);
  544. }
  545. static bool
  546. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  547. int target, int refclk, intel_clock_t *match_clock,
  548. intel_clock_t *best_clock)
  549. {
  550. struct drm_device *dev = crtc->dev;
  551. intel_clock_t clock;
  552. int max_n;
  553. bool found;
  554. /* approximately equals target * 0.00585 */
  555. int err_most = (target >> 8) + (target >> 9);
  556. found = false;
  557. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  558. if (intel_is_dual_link_lvds(dev))
  559. clock.p2 = limit->p2.p2_fast;
  560. else
  561. clock.p2 = limit->p2.p2_slow;
  562. } else {
  563. if (target < limit->p2.dot_limit)
  564. clock.p2 = limit->p2.p2_slow;
  565. else
  566. clock.p2 = limit->p2.p2_fast;
  567. }
  568. memset(best_clock, 0, sizeof(*best_clock));
  569. max_n = limit->n.max;
  570. /* based on hardware requirement, prefer smaller n to precision */
  571. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  572. /* based on hardware requirement, prefere larger m1,m2 */
  573. for (clock.m1 = limit->m1.max;
  574. clock.m1 >= limit->m1.min; clock.m1--) {
  575. for (clock.m2 = limit->m2.max;
  576. clock.m2 >= limit->m2.min; clock.m2--) {
  577. for (clock.p1 = limit->p1.max;
  578. clock.p1 >= limit->p1.min; clock.p1--) {
  579. int this_err;
  580. i9xx_clock(refclk, &clock);
  581. if (!intel_PLL_is_valid(dev, limit,
  582. &clock))
  583. continue;
  584. this_err = abs(clock.dot - target);
  585. if (this_err < err_most) {
  586. *best_clock = clock;
  587. err_most = this_err;
  588. max_n = clock.n;
  589. found = true;
  590. }
  591. }
  592. }
  593. }
  594. }
  595. return found;
  596. }
  597. static bool
  598. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  599. int target, int refclk, intel_clock_t *match_clock,
  600. intel_clock_t *best_clock)
  601. {
  602. struct drm_device *dev = crtc->dev;
  603. intel_clock_t clock;
  604. unsigned int bestppm = 1000000;
  605. /* min update 19.2 MHz */
  606. int max_n = min(limit->n.max, refclk / 19200);
  607. bool found = false;
  608. target *= 5; /* fast clock */
  609. memset(best_clock, 0, sizeof(*best_clock));
  610. /* based on hardware requirement, prefer smaller n to precision */
  611. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  612. for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
  613. for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
  614. clock.p2 -= clock.p2 > 10 ? 2 : 1) {
  615. clock.p = clock.p1 * clock.p2;
  616. /* based on hardware requirement, prefer bigger m1,m2 values */
  617. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
  618. unsigned int ppm, diff;
  619. clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
  620. refclk * clock.m1);
  621. vlv_clock(refclk, &clock);
  622. if (!intel_PLL_is_valid(dev, limit,
  623. &clock))
  624. continue;
  625. diff = abs(clock.dot - target);
  626. ppm = div_u64(1000000ULL * diff, target);
  627. if (ppm < 100 && clock.p > best_clock->p) {
  628. bestppm = 0;
  629. *best_clock = clock;
  630. found = true;
  631. }
  632. if (bestppm >= 10 && ppm < bestppm - 10) {
  633. bestppm = ppm;
  634. *best_clock = clock;
  635. found = true;
  636. }
  637. }
  638. }
  639. }
  640. }
  641. return found;
  642. }
  643. bool intel_crtc_active(struct drm_crtc *crtc)
  644. {
  645. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  646. /* Be paranoid as we can arrive here with only partial
  647. * state retrieved from the hardware during setup.
  648. *
  649. * We can ditch the adjusted_mode.crtc_clock check as soon
  650. * as Haswell has gained clock readout/fastboot support.
  651. *
  652. * We can ditch the crtc->fb check as soon as we can
  653. * properly reconstruct framebuffers.
  654. */
  655. return intel_crtc->active && crtc->fb &&
  656. intel_crtc->config.adjusted_mode.crtc_clock;
  657. }
  658. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  659. enum pipe pipe)
  660. {
  661. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  662. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  663. return intel_crtc->config.cpu_transcoder;
  664. }
  665. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  666. {
  667. struct drm_i915_private *dev_priv = dev->dev_private;
  668. u32 frame, frame_reg = PIPEFRAME(pipe);
  669. frame = I915_READ(frame_reg);
  670. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  671. DRM_DEBUG_KMS("vblank wait timed out\n");
  672. }
  673. /**
  674. * intel_wait_for_vblank - wait for vblank on a given pipe
  675. * @dev: drm device
  676. * @pipe: pipe to wait for
  677. *
  678. * Wait for vblank to occur on a given pipe. Needed for various bits of
  679. * mode setting code.
  680. */
  681. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  682. {
  683. struct drm_i915_private *dev_priv = dev->dev_private;
  684. int pipestat_reg = PIPESTAT(pipe);
  685. if (INTEL_INFO(dev)->gen >= 5) {
  686. ironlake_wait_for_vblank(dev, pipe);
  687. return;
  688. }
  689. /* Clear existing vblank status. Note this will clear any other
  690. * sticky status fields as well.
  691. *
  692. * This races with i915_driver_irq_handler() with the result
  693. * that either function could miss a vblank event. Here it is not
  694. * fatal, as we will either wait upon the next vblank interrupt or
  695. * timeout. Generally speaking intel_wait_for_vblank() is only
  696. * called during modeset at which time the GPU should be idle and
  697. * should *not* be performing page flips and thus not waiting on
  698. * vblanks...
  699. * Currently, the result of us stealing a vblank from the irq
  700. * handler is that a single frame will be skipped during swapbuffers.
  701. */
  702. I915_WRITE(pipestat_reg,
  703. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  704. /* Wait for vblank interrupt bit to set */
  705. if (wait_for(I915_READ(pipestat_reg) &
  706. PIPE_VBLANK_INTERRUPT_STATUS,
  707. 50))
  708. DRM_DEBUG_KMS("vblank wait timed out\n");
  709. }
  710. static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
  711. {
  712. struct drm_i915_private *dev_priv = dev->dev_private;
  713. u32 reg = PIPEDSL(pipe);
  714. u32 line1, line2;
  715. u32 line_mask;
  716. if (IS_GEN2(dev))
  717. line_mask = DSL_LINEMASK_GEN2;
  718. else
  719. line_mask = DSL_LINEMASK_GEN3;
  720. line1 = I915_READ(reg) & line_mask;
  721. mdelay(5);
  722. line2 = I915_READ(reg) & line_mask;
  723. return line1 == line2;
  724. }
  725. /*
  726. * intel_wait_for_pipe_off - wait for pipe to turn off
  727. * @dev: drm device
  728. * @pipe: pipe to wait for
  729. *
  730. * After disabling a pipe, we can't wait for vblank in the usual way,
  731. * spinning on the vblank interrupt status bit, since we won't actually
  732. * see an interrupt when the pipe is disabled.
  733. *
  734. * On Gen4 and above:
  735. * wait for the pipe register state bit to turn off
  736. *
  737. * Otherwise:
  738. * wait for the display line value to settle (it usually
  739. * ends up stopping at the start of the next frame).
  740. *
  741. */
  742. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  743. {
  744. struct drm_i915_private *dev_priv = dev->dev_private;
  745. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  746. pipe);
  747. if (INTEL_INFO(dev)->gen >= 4) {
  748. int reg = PIPECONF(cpu_transcoder);
  749. /* Wait for the Pipe State to go off */
  750. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  751. 100))
  752. WARN(1, "pipe_off wait timed out\n");
  753. } else {
  754. /* Wait for the display line to settle */
  755. if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
  756. WARN(1, "pipe_off wait timed out\n");
  757. }
  758. }
  759. /*
  760. * ibx_digital_port_connected - is the specified port connected?
  761. * @dev_priv: i915 private structure
  762. * @port: the port to test
  763. *
  764. * Returns true if @port is connected, false otherwise.
  765. */
  766. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  767. struct intel_digital_port *port)
  768. {
  769. u32 bit;
  770. if (HAS_PCH_IBX(dev_priv->dev)) {
  771. switch(port->port) {
  772. case PORT_B:
  773. bit = SDE_PORTB_HOTPLUG;
  774. break;
  775. case PORT_C:
  776. bit = SDE_PORTC_HOTPLUG;
  777. break;
  778. case PORT_D:
  779. bit = SDE_PORTD_HOTPLUG;
  780. break;
  781. default:
  782. return true;
  783. }
  784. } else {
  785. switch(port->port) {
  786. case PORT_B:
  787. bit = SDE_PORTB_HOTPLUG_CPT;
  788. break;
  789. case PORT_C:
  790. bit = SDE_PORTC_HOTPLUG_CPT;
  791. break;
  792. case PORT_D:
  793. bit = SDE_PORTD_HOTPLUG_CPT;
  794. break;
  795. default:
  796. return true;
  797. }
  798. }
  799. return I915_READ(SDEISR) & bit;
  800. }
  801. static const char *state_string(bool enabled)
  802. {
  803. return enabled ? "on" : "off";
  804. }
  805. /* Only for pre-ILK configs */
  806. void assert_pll(struct drm_i915_private *dev_priv,
  807. enum pipe pipe, bool state)
  808. {
  809. int reg;
  810. u32 val;
  811. bool cur_state;
  812. reg = DPLL(pipe);
  813. val = I915_READ(reg);
  814. cur_state = !!(val & DPLL_VCO_ENABLE);
  815. WARN(cur_state != state,
  816. "PLL state assertion failure (expected %s, current %s)\n",
  817. state_string(state), state_string(cur_state));
  818. }
  819. /* XXX: the dsi pll is shared between MIPI DSI ports */
  820. static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
  821. {
  822. u32 val;
  823. bool cur_state;
  824. mutex_lock(&dev_priv->dpio_lock);
  825. val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
  826. mutex_unlock(&dev_priv->dpio_lock);
  827. cur_state = val & DSI_PLL_VCO_EN;
  828. WARN(cur_state != state,
  829. "DSI PLL state assertion failure (expected %s, current %s)\n",
  830. state_string(state), state_string(cur_state));
  831. }
  832. #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
  833. #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
  834. struct intel_shared_dpll *
  835. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  836. {
  837. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  838. if (crtc->config.shared_dpll < 0)
  839. return NULL;
  840. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  841. }
  842. /* For ILK+ */
  843. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  844. struct intel_shared_dpll *pll,
  845. bool state)
  846. {
  847. bool cur_state;
  848. struct intel_dpll_hw_state hw_state;
  849. if (HAS_PCH_LPT(dev_priv->dev)) {
  850. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  851. return;
  852. }
  853. if (WARN (!pll,
  854. "asserting DPLL %s with no DPLL\n", state_string(state)))
  855. return;
  856. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  857. WARN(cur_state != state,
  858. "%s assertion failure (expected %s, current %s)\n",
  859. pll->name, state_string(state), state_string(cur_state));
  860. }
  861. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  862. enum pipe pipe, bool state)
  863. {
  864. int reg;
  865. u32 val;
  866. bool cur_state;
  867. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  868. pipe);
  869. if (HAS_DDI(dev_priv->dev)) {
  870. /* DDI does not have a specific FDI_TX register */
  871. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  872. val = I915_READ(reg);
  873. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  874. } else {
  875. reg = FDI_TX_CTL(pipe);
  876. val = I915_READ(reg);
  877. cur_state = !!(val & FDI_TX_ENABLE);
  878. }
  879. WARN(cur_state != state,
  880. "FDI TX state assertion failure (expected %s, current %s)\n",
  881. state_string(state), state_string(cur_state));
  882. }
  883. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  884. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  885. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  886. enum pipe pipe, bool state)
  887. {
  888. int reg;
  889. u32 val;
  890. bool cur_state;
  891. reg = FDI_RX_CTL(pipe);
  892. val = I915_READ(reg);
  893. cur_state = !!(val & FDI_RX_ENABLE);
  894. WARN(cur_state != state,
  895. "FDI RX state assertion failure (expected %s, current %s)\n",
  896. state_string(state), state_string(cur_state));
  897. }
  898. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  899. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  900. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  901. enum pipe pipe)
  902. {
  903. int reg;
  904. u32 val;
  905. /* ILK FDI PLL is always enabled */
  906. if (dev_priv->info->gen == 5)
  907. return;
  908. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  909. if (HAS_DDI(dev_priv->dev))
  910. return;
  911. reg = FDI_TX_CTL(pipe);
  912. val = I915_READ(reg);
  913. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  914. }
  915. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  916. enum pipe pipe, bool state)
  917. {
  918. int reg;
  919. u32 val;
  920. bool cur_state;
  921. reg = FDI_RX_CTL(pipe);
  922. val = I915_READ(reg);
  923. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  924. WARN(cur_state != state,
  925. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  926. state_string(state), state_string(cur_state));
  927. }
  928. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  929. enum pipe pipe)
  930. {
  931. int pp_reg, lvds_reg;
  932. u32 val;
  933. enum pipe panel_pipe = PIPE_A;
  934. bool locked = true;
  935. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  936. pp_reg = PCH_PP_CONTROL;
  937. lvds_reg = PCH_LVDS;
  938. } else {
  939. pp_reg = PP_CONTROL;
  940. lvds_reg = LVDS;
  941. }
  942. val = I915_READ(pp_reg);
  943. if (!(val & PANEL_POWER_ON) ||
  944. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  945. locked = false;
  946. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  947. panel_pipe = PIPE_B;
  948. WARN(panel_pipe == pipe && locked,
  949. "panel assertion failure, pipe %c regs locked\n",
  950. pipe_name(pipe));
  951. }
  952. static void assert_cursor(struct drm_i915_private *dev_priv,
  953. enum pipe pipe, bool state)
  954. {
  955. struct drm_device *dev = dev_priv->dev;
  956. bool cur_state;
  957. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  958. cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
  959. else if (IS_845G(dev) || IS_I865G(dev))
  960. cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
  961. else
  962. cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  963. WARN(cur_state != state,
  964. "cursor on pipe %c assertion failure (expected %s, current %s)\n",
  965. pipe_name(pipe), state_string(state), state_string(cur_state));
  966. }
  967. #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
  968. #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
  969. void assert_pipe(struct drm_i915_private *dev_priv,
  970. enum pipe pipe, bool state)
  971. {
  972. int reg;
  973. u32 val;
  974. bool cur_state;
  975. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  976. pipe);
  977. /* if we need the pipe A quirk it must be always on */
  978. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  979. state = true;
  980. if (!intel_display_power_enabled(dev_priv->dev,
  981. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  982. cur_state = false;
  983. } else {
  984. reg = PIPECONF(cpu_transcoder);
  985. val = I915_READ(reg);
  986. cur_state = !!(val & PIPECONF_ENABLE);
  987. }
  988. WARN(cur_state != state,
  989. "pipe %c assertion failure (expected %s, current %s)\n",
  990. pipe_name(pipe), state_string(state), state_string(cur_state));
  991. }
  992. static void assert_plane(struct drm_i915_private *dev_priv,
  993. enum plane plane, bool state)
  994. {
  995. int reg;
  996. u32 val;
  997. bool cur_state;
  998. reg = DSPCNTR(plane);
  999. val = I915_READ(reg);
  1000. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1001. WARN(cur_state != state,
  1002. "plane %c assertion failure (expected %s, current %s)\n",
  1003. plane_name(plane), state_string(state), state_string(cur_state));
  1004. }
  1005. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1006. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1007. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1008. enum pipe pipe)
  1009. {
  1010. struct drm_device *dev = dev_priv->dev;
  1011. int reg, i;
  1012. u32 val;
  1013. int cur_pipe;
  1014. /* Primary planes are fixed to pipes on gen4+ */
  1015. if (INTEL_INFO(dev)->gen >= 4) {
  1016. reg = DSPCNTR(pipe);
  1017. val = I915_READ(reg);
  1018. WARN((val & DISPLAY_PLANE_ENABLE),
  1019. "plane %c assertion failure, should be disabled but not\n",
  1020. plane_name(pipe));
  1021. return;
  1022. }
  1023. /* Need to check both planes against the pipe */
  1024. for_each_pipe(i) {
  1025. reg = DSPCNTR(i);
  1026. val = I915_READ(reg);
  1027. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1028. DISPPLANE_SEL_PIPE_SHIFT;
  1029. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1030. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1031. plane_name(i), pipe_name(pipe));
  1032. }
  1033. }
  1034. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1035. enum pipe pipe)
  1036. {
  1037. struct drm_device *dev = dev_priv->dev;
  1038. int reg, i;
  1039. u32 val;
  1040. if (IS_VALLEYVIEW(dev)) {
  1041. for (i = 0; i < dev_priv->num_plane; i++) {
  1042. reg = SPCNTR(pipe, i);
  1043. val = I915_READ(reg);
  1044. WARN((val & SP_ENABLE),
  1045. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1046. sprite_name(pipe, i), pipe_name(pipe));
  1047. }
  1048. } else if (INTEL_INFO(dev)->gen >= 7) {
  1049. reg = SPRCTL(pipe);
  1050. val = I915_READ(reg);
  1051. WARN((val & SPRITE_ENABLE),
  1052. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1053. plane_name(pipe), pipe_name(pipe));
  1054. } else if (INTEL_INFO(dev)->gen >= 5) {
  1055. reg = DVSCNTR(pipe);
  1056. val = I915_READ(reg);
  1057. WARN((val & DVS_ENABLE),
  1058. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1059. plane_name(pipe), pipe_name(pipe));
  1060. }
  1061. }
  1062. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1063. {
  1064. u32 val;
  1065. bool enabled;
  1066. if (HAS_PCH_LPT(dev_priv->dev)) {
  1067. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1068. return;
  1069. }
  1070. val = I915_READ(PCH_DREF_CONTROL);
  1071. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1072. DREF_SUPERSPREAD_SOURCE_MASK));
  1073. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1074. }
  1075. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1076. enum pipe pipe)
  1077. {
  1078. int reg;
  1079. u32 val;
  1080. bool enabled;
  1081. reg = PCH_TRANSCONF(pipe);
  1082. val = I915_READ(reg);
  1083. enabled = !!(val & TRANS_ENABLE);
  1084. WARN(enabled,
  1085. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1086. pipe_name(pipe));
  1087. }
  1088. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1089. enum pipe pipe, u32 port_sel, u32 val)
  1090. {
  1091. if ((val & DP_PORT_EN) == 0)
  1092. return false;
  1093. if (HAS_PCH_CPT(dev_priv->dev)) {
  1094. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1095. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1096. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1097. return false;
  1098. } else {
  1099. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1100. return false;
  1101. }
  1102. return true;
  1103. }
  1104. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1105. enum pipe pipe, u32 val)
  1106. {
  1107. if ((val & SDVO_ENABLE) == 0)
  1108. return false;
  1109. if (HAS_PCH_CPT(dev_priv->dev)) {
  1110. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1111. return false;
  1112. } else {
  1113. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1114. return false;
  1115. }
  1116. return true;
  1117. }
  1118. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1119. enum pipe pipe, u32 val)
  1120. {
  1121. if ((val & LVDS_PORT_EN) == 0)
  1122. return false;
  1123. if (HAS_PCH_CPT(dev_priv->dev)) {
  1124. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1125. return false;
  1126. } else {
  1127. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1128. return false;
  1129. }
  1130. return true;
  1131. }
  1132. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1133. enum pipe pipe, u32 val)
  1134. {
  1135. if ((val & ADPA_DAC_ENABLE) == 0)
  1136. return false;
  1137. if (HAS_PCH_CPT(dev_priv->dev)) {
  1138. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1139. return false;
  1140. } else {
  1141. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1142. return false;
  1143. }
  1144. return true;
  1145. }
  1146. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1147. enum pipe pipe, int reg, u32 port_sel)
  1148. {
  1149. u32 val = I915_READ(reg);
  1150. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1151. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1152. reg, pipe_name(pipe));
  1153. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1154. && (val & DP_PIPEB_SELECT),
  1155. "IBX PCH dp port still using transcoder B\n");
  1156. }
  1157. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1158. enum pipe pipe, int reg)
  1159. {
  1160. u32 val = I915_READ(reg);
  1161. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1162. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1163. reg, pipe_name(pipe));
  1164. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1165. && (val & SDVO_PIPE_B_SELECT),
  1166. "IBX PCH hdmi port still using transcoder B\n");
  1167. }
  1168. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1169. enum pipe pipe)
  1170. {
  1171. int reg;
  1172. u32 val;
  1173. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1174. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1175. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1176. reg = PCH_ADPA;
  1177. val = I915_READ(reg);
  1178. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1179. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1180. pipe_name(pipe));
  1181. reg = PCH_LVDS;
  1182. val = I915_READ(reg);
  1183. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1184. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1185. pipe_name(pipe));
  1186. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1187. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1188. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1189. }
  1190. static void intel_init_dpio(struct drm_device *dev)
  1191. {
  1192. struct drm_i915_private *dev_priv = dev->dev_private;
  1193. if (!IS_VALLEYVIEW(dev))
  1194. return;
  1195. /*
  1196. * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
  1197. * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
  1198. * a. GUnit 0x2110 bit[0] set to 1 (def 0)
  1199. * b. The other bits such as sfr settings / modesel may all be set
  1200. * to 0.
  1201. *
  1202. * This should only be done on init and resume from S3 with both
  1203. * PLLs disabled, or we risk losing DPIO and PLL synchronization.
  1204. */
  1205. I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
  1206. }
  1207. static void vlv_enable_pll(struct intel_crtc *crtc)
  1208. {
  1209. struct drm_device *dev = crtc->base.dev;
  1210. struct drm_i915_private *dev_priv = dev->dev_private;
  1211. int reg = DPLL(crtc->pipe);
  1212. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1213. assert_pipe_disabled(dev_priv, crtc->pipe);
  1214. /* No really, not for ILK+ */
  1215. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1216. /* PLL is protected by panel, make sure we can write it */
  1217. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1218. assert_panel_unlocked(dev_priv, crtc->pipe);
  1219. I915_WRITE(reg, dpll);
  1220. POSTING_READ(reg);
  1221. udelay(150);
  1222. if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1223. DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1224. I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
  1225. POSTING_READ(DPLL_MD(crtc->pipe));
  1226. /* We do this three times for luck */
  1227. I915_WRITE(reg, dpll);
  1228. POSTING_READ(reg);
  1229. udelay(150); /* wait for warmup */
  1230. I915_WRITE(reg, dpll);
  1231. POSTING_READ(reg);
  1232. udelay(150); /* wait for warmup */
  1233. I915_WRITE(reg, dpll);
  1234. POSTING_READ(reg);
  1235. udelay(150); /* wait for warmup */
  1236. }
  1237. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1238. {
  1239. struct drm_device *dev = crtc->base.dev;
  1240. struct drm_i915_private *dev_priv = dev->dev_private;
  1241. int reg = DPLL(crtc->pipe);
  1242. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1243. assert_pipe_disabled(dev_priv, crtc->pipe);
  1244. /* No really, not for ILK+ */
  1245. BUG_ON(dev_priv->info->gen >= 5);
  1246. /* PLL is protected by panel, make sure we can write it */
  1247. if (IS_MOBILE(dev) && !IS_I830(dev))
  1248. assert_panel_unlocked(dev_priv, crtc->pipe);
  1249. I915_WRITE(reg, dpll);
  1250. /* Wait for the clocks to stabilize. */
  1251. POSTING_READ(reg);
  1252. udelay(150);
  1253. if (INTEL_INFO(dev)->gen >= 4) {
  1254. I915_WRITE(DPLL_MD(crtc->pipe),
  1255. crtc->config.dpll_hw_state.dpll_md);
  1256. } else {
  1257. /* The pixel multiplier can only be updated once the
  1258. * DPLL is enabled and the clocks are stable.
  1259. *
  1260. * So write it again.
  1261. */
  1262. I915_WRITE(reg, dpll);
  1263. }
  1264. /* We do this three times for luck */
  1265. I915_WRITE(reg, dpll);
  1266. POSTING_READ(reg);
  1267. udelay(150); /* wait for warmup */
  1268. I915_WRITE(reg, dpll);
  1269. POSTING_READ(reg);
  1270. udelay(150); /* wait for warmup */
  1271. I915_WRITE(reg, dpll);
  1272. POSTING_READ(reg);
  1273. udelay(150); /* wait for warmup */
  1274. }
  1275. /**
  1276. * i9xx_disable_pll - disable a PLL
  1277. * @dev_priv: i915 private structure
  1278. * @pipe: pipe PLL to disable
  1279. *
  1280. * Disable the PLL for @pipe, making sure the pipe is off first.
  1281. *
  1282. * Note! This is for pre-ILK only.
  1283. */
  1284. static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1285. {
  1286. /* Don't disable pipe A or pipe A PLLs if needed */
  1287. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1288. return;
  1289. /* Make sure the pipe isn't still relying on us */
  1290. assert_pipe_disabled(dev_priv, pipe);
  1291. I915_WRITE(DPLL(pipe), 0);
  1292. POSTING_READ(DPLL(pipe));
  1293. }
  1294. static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1295. {
  1296. u32 val = 0;
  1297. /* Make sure the pipe isn't still relying on us */
  1298. assert_pipe_disabled(dev_priv, pipe);
  1299. /* Leave integrated clock source enabled */
  1300. if (pipe == PIPE_B)
  1301. val = DPLL_INTEGRATED_CRI_CLK_VLV;
  1302. I915_WRITE(DPLL(pipe), val);
  1303. POSTING_READ(DPLL(pipe));
  1304. }
  1305. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1306. {
  1307. u32 port_mask;
  1308. if (!port)
  1309. port_mask = DPLL_PORTB_READY_MASK;
  1310. else
  1311. port_mask = DPLL_PORTC_READY_MASK;
  1312. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1313. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1314. 'B' + port, I915_READ(DPLL(0)));
  1315. }
  1316. /**
  1317. * ironlake_enable_shared_dpll - enable PCH PLL
  1318. * @dev_priv: i915 private structure
  1319. * @pipe: pipe PLL to enable
  1320. *
  1321. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1322. * drives the transcoder clock.
  1323. */
  1324. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1325. {
  1326. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1327. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1328. /* PCH PLLs only available on ILK, SNB and IVB */
  1329. BUG_ON(dev_priv->info->gen < 5);
  1330. if (WARN_ON(pll == NULL))
  1331. return;
  1332. if (WARN_ON(pll->refcount == 0))
  1333. return;
  1334. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1335. pll->name, pll->active, pll->on,
  1336. crtc->base.base.id);
  1337. if (pll->active++) {
  1338. WARN_ON(!pll->on);
  1339. assert_shared_dpll_enabled(dev_priv, pll);
  1340. return;
  1341. }
  1342. WARN_ON(pll->on);
  1343. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1344. pll->enable(dev_priv, pll);
  1345. pll->on = true;
  1346. }
  1347. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1348. {
  1349. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1350. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1351. /* PCH only available on ILK+ */
  1352. BUG_ON(dev_priv->info->gen < 5);
  1353. if (WARN_ON(pll == NULL))
  1354. return;
  1355. if (WARN_ON(pll->refcount == 0))
  1356. return;
  1357. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1358. pll->name, pll->active, pll->on,
  1359. crtc->base.base.id);
  1360. if (WARN_ON(pll->active == 0)) {
  1361. assert_shared_dpll_disabled(dev_priv, pll);
  1362. return;
  1363. }
  1364. assert_shared_dpll_enabled(dev_priv, pll);
  1365. WARN_ON(!pll->on);
  1366. if (--pll->active)
  1367. return;
  1368. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1369. pll->disable(dev_priv, pll);
  1370. pll->on = false;
  1371. }
  1372. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1373. enum pipe pipe)
  1374. {
  1375. struct drm_device *dev = dev_priv->dev;
  1376. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1377. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1378. uint32_t reg, val, pipeconf_val;
  1379. /* PCH only available on ILK+ */
  1380. BUG_ON(dev_priv->info->gen < 5);
  1381. /* Make sure PCH DPLL is enabled */
  1382. assert_shared_dpll_enabled(dev_priv,
  1383. intel_crtc_to_shared_dpll(intel_crtc));
  1384. /* FDI must be feeding us bits for PCH ports */
  1385. assert_fdi_tx_enabled(dev_priv, pipe);
  1386. assert_fdi_rx_enabled(dev_priv, pipe);
  1387. if (HAS_PCH_CPT(dev)) {
  1388. /* Workaround: Set the timing override bit before enabling the
  1389. * pch transcoder. */
  1390. reg = TRANS_CHICKEN2(pipe);
  1391. val = I915_READ(reg);
  1392. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1393. I915_WRITE(reg, val);
  1394. }
  1395. reg = PCH_TRANSCONF(pipe);
  1396. val = I915_READ(reg);
  1397. pipeconf_val = I915_READ(PIPECONF(pipe));
  1398. if (HAS_PCH_IBX(dev_priv->dev)) {
  1399. /*
  1400. * make the BPC in transcoder be consistent with
  1401. * that in pipeconf reg.
  1402. */
  1403. val &= ~PIPECONF_BPC_MASK;
  1404. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1405. }
  1406. val &= ~TRANS_INTERLACE_MASK;
  1407. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1408. if (HAS_PCH_IBX(dev_priv->dev) &&
  1409. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1410. val |= TRANS_LEGACY_INTERLACED_ILK;
  1411. else
  1412. val |= TRANS_INTERLACED;
  1413. else
  1414. val |= TRANS_PROGRESSIVE;
  1415. I915_WRITE(reg, val | TRANS_ENABLE);
  1416. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1417. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1418. }
  1419. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1420. enum transcoder cpu_transcoder)
  1421. {
  1422. u32 val, pipeconf_val;
  1423. /* PCH only available on ILK+ */
  1424. BUG_ON(dev_priv->info->gen < 5);
  1425. /* FDI must be feeding us bits for PCH ports */
  1426. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1427. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1428. /* Workaround: set timing override bit. */
  1429. val = I915_READ(_TRANSA_CHICKEN2);
  1430. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1431. I915_WRITE(_TRANSA_CHICKEN2, val);
  1432. val = TRANS_ENABLE;
  1433. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1434. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1435. PIPECONF_INTERLACED_ILK)
  1436. val |= TRANS_INTERLACED;
  1437. else
  1438. val |= TRANS_PROGRESSIVE;
  1439. I915_WRITE(LPT_TRANSCONF, val);
  1440. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1441. DRM_ERROR("Failed to enable PCH transcoder\n");
  1442. }
  1443. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1444. enum pipe pipe)
  1445. {
  1446. struct drm_device *dev = dev_priv->dev;
  1447. uint32_t reg, val;
  1448. /* FDI relies on the transcoder */
  1449. assert_fdi_tx_disabled(dev_priv, pipe);
  1450. assert_fdi_rx_disabled(dev_priv, pipe);
  1451. /* Ports must be off as well */
  1452. assert_pch_ports_disabled(dev_priv, pipe);
  1453. reg = PCH_TRANSCONF(pipe);
  1454. val = I915_READ(reg);
  1455. val &= ~TRANS_ENABLE;
  1456. I915_WRITE(reg, val);
  1457. /* wait for PCH transcoder off, transcoder state */
  1458. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1459. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1460. if (!HAS_PCH_IBX(dev)) {
  1461. /* Workaround: Clear the timing override chicken bit again. */
  1462. reg = TRANS_CHICKEN2(pipe);
  1463. val = I915_READ(reg);
  1464. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1465. I915_WRITE(reg, val);
  1466. }
  1467. }
  1468. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1469. {
  1470. u32 val;
  1471. val = I915_READ(LPT_TRANSCONF);
  1472. val &= ~TRANS_ENABLE;
  1473. I915_WRITE(LPT_TRANSCONF, val);
  1474. /* wait for PCH transcoder off, transcoder state */
  1475. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1476. DRM_ERROR("Failed to disable PCH transcoder\n");
  1477. /* Workaround: clear timing override bit. */
  1478. val = I915_READ(_TRANSA_CHICKEN2);
  1479. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1480. I915_WRITE(_TRANSA_CHICKEN2, val);
  1481. }
  1482. /**
  1483. * intel_enable_pipe - enable a pipe, asserting requirements
  1484. * @dev_priv: i915 private structure
  1485. * @pipe: pipe to enable
  1486. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1487. *
  1488. * Enable @pipe, making sure that various hardware specific requirements
  1489. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1490. *
  1491. * @pipe should be %PIPE_A or %PIPE_B.
  1492. *
  1493. * Will wait until the pipe is actually running (i.e. first vblank) before
  1494. * returning.
  1495. */
  1496. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1497. bool pch_port, bool dsi)
  1498. {
  1499. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1500. pipe);
  1501. enum pipe pch_transcoder;
  1502. int reg;
  1503. u32 val;
  1504. assert_planes_disabled(dev_priv, pipe);
  1505. assert_cursor_disabled(dev_priv, pipe);
  1506. assert_sprites_disabled(dev_priv, pipe);
  1507. if (HAS_PCH_LPT(dev_priv->dev))
  1508. pch_transcoder = TRANSCODER_A;
  1509. else
  1510. pch_transcoder = pipe;
  1511. /*
  1512. * A pipe without a PLL won't actually be able to drive bits from
  1513. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1514. * need the check.
  1515. */
  1516. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1517. if (dsi)
  1518. assert_dsi_pll_enabled(dev_priv);
  1519. else
  1520. assert_pll_enabled(dev_priv, pipe);
  1521. else {
  1522. if (pch_port) {
  1523. /* if driving the PCH, we need FDI enabled */
  1524. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1525. assert_fdi_tx_pll_enabled(dev_priv,
  1526. (enum pipe) cpu_transcoder);
  1527. }
  1528. /* FIXME: assert CPU port conditions for SNB+ */
  1529. }
  1530. reg = PIPECONF(cpu_transcoder);
  1531. val = I915_READ(reg);
  1532. if (val & PIPECONF_ENABLE)
  1533. return;
  1534. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1535. intel_wait_for_vblank(dev_priv->dev, pipe);
  1536. }
  1537. /**
  1538. * intel_disable_pipe - disable a pipe, asserting requirements
  1539. * @dev_priv: i915 private structure
  1540. * @pipe: pipe to disable
  1541. *
  1542. * Disable @pipe, making sure that various hardware specific requirements
  1543. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1544. *
  1545. * @pipe should be %PIPE_A or %PIPE_B.
  1546. *
  1547. * Will wait until the pipe has shut down before returning.
  1548. */
  1549. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1550. enum pipe pipe)
  1551. {
  1552. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1553. pipe);
  1554. int reg;
  1555. u32 val;
  1556. /*
  1557. * Make sure planes won't keep trying to pump pixels to us,
  1558. * or we might hang the display.
  1559. */
  1560. assert_planes_disabled(dev_priv, pipe);
  1561. assert_cursor_disabled(dev_priv, pipe);
  1562. assert_sprites_disabled(dev_priv, pipe);
  1563. /* Don't disable pipe A or pipe A PLLs if needed */
  1564. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1565. return;
  1566. reg = PIPECONF(cpu_transcoder);
  1567. val = I915_READ(reg);
  1568. if ((val & PIPECONF_ENABLE) == 0)
  1569. return;
  1570. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1571. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1572. }
  1573. /*
  1574. * Plane regs are double buffered, going from enabled->disabled needs a
  1575. * trigger in order to latch. The display address reg provides this.
  1576. */
  1577. void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
  1578. enum plane plane)
  1579. {
  1580. u32 reg = dev_priv->info->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
  1581. I915_WRITE(reg, I915_READ(reg));
  1582. POSTING_READ(reg);
  1583. }
  1584. /**
  1585. * intel_enable_primary_plane - enable the primary plane on a given pipe
  1586. * @dev_priv: i915 private structure
  1587. * @plane: plane to enable
  1588. * @pipe: pipe being fed
  1589. *
  1590. * Enable @plane on @pipe, making sure that @pipe is running first.
  1591. */
  1592. static void intel_enable_primary_plane(struct drm_i915_private *dev_priv,
  1593. enum plane plane, enum pipe pipe)
  1594. {
  1595. struct intel_crtc *intel_crtc =
  1596. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  1597. int reg;
  1598. u32 val;
  1599. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1600. assert_pipe_enabled(dev_priv, pipe);
  1601. WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
  1602. intel_crtc->primary_enabled = true;
  1603. reg = DSPCNTR(plane);
  1604. val = I915_READ(reg);
  1605. if (val & DISPLAY_PLANE_ENABLE)
  1606. return;
  1607. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1608. intel_flush_primary_plane(dev_priv, plane);
  1609. intel_wait_for_vblank(dev_priv->dev, pipe);
  1610. }
  1611. /**
  1612. * intel_disable_primary_plane - disable the primary plane
  1613. * @dev_priv: i915 private structure
  1614. * @plane: plane to disable
  1615. * @pipe: pipe consuming the data
  1616. *
  1617. * Disable @plane; should be an independent operation.
  1618. */
  1619. static void intel_disable_primary_plane(struct drm_i915_private *dev_priv,
  1620. enum plane plane, enum pipe pipe)
  1621. {
  1622. struct intel_crtc *intel_crtc =
  1623. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  1624. int reg;
  1625. u32 val;
  1626. WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
  1627. intel_crtc->primary_enabled = false;
  1628. reg = DSPCNTR(plane);
  1629. val = I915_READ(reg);
  1630. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1631. return;
  1632. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1633. intel_flush_primary_plane(dev_priv, plane);
  1634. intel_wait_for_vblank(dev_priv->dev, pipe);
  1635. }
  1636. static bool need_vtd_wa(struct drm_device *dev)
  1637. {
  1638. #ifdef CONFIG_INTEL_IOMMU
  1639. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1640. return true;
  1641. #endif
  1642. return false;
  1643. }
  1644. int
  1645. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1646. struct drm_i915_gem_object *obj,
  1647. struct intel_ring_buffer *pipelined)
  1648. {
  1649. struct drm_i915_private *dev_priv = dev->dev_private;
  1650. u32 alignment;
  1651. int ret;
  1652. switch (obj->tiling_mode) {
  1653. case I915_TILING_NONE:
  1654. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1655. alignment = 128 * 1024;
  1656. else if (INTEL_INFO(dev)->gen >= 4)
  1657. alignment = 4 * 1024;
  1658. else
  1659. alignment = 64 * 1024;
  1660. break;
  1661. case I915_TILING_X:
  1662. /* pin() will align the object as required by fence */
  1663. alignment = 0;
  1664. break;
  1665. case I915_TILING_Y:
  1666. WARN(1, "Y tiled bo slipped through, driver bug!\n");
  1667. return -EINVAL;
  1668. default:
  1669. BUG();
  1670. }
  1671. /* Note that the w/a also requires 64 PTE of padding following the
  1672. * bo. We currently fill all unused PTE with the shadow page and so
  1673. * we should always have valid PTE following the scanout preventing
  1674. * the VT-d warning.
  1675. */
  1676. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1677. alignment = 256 * 1024;
  1678. dev_priv->mm.interruptible = false;
  1679. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1680. if (ret)
  1681. goto err_interruptible;
  1682. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1683. * fence, whereas 965+ only requires a fence if using
  1684. * framebuffer compression. For simplicity, we always install
  1685. * a fence as the cost is not that onerous.
  1686. */
  1687. ret = i915_gem_object_get_fence(obj);
  1688. if (ret)
  1689. goto err_unpin;
  1690. i915_gem_object_pin_fence(obj);
  1691. dev_priv->mm.interruptible = true;
  1692. return 0;
  1693. err_unpin:
  1694. i915_gem_object_unpin_from_display_plane(obj);
  1695. err_interruptible:
  1696. dev_priv->mm.interruptible = true;
  1697. return ret;
  1698. }
  1699. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1700. {
  1701. i915_gem_object_unpin_fence(obj);
  1702. i915_gem_object_unpin_from_display_plane(obj);
  1703. }
  1704. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1705. * is assumed to be a power-of-two. */
  1706. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1707. unsigned int tiling_mode,
  1708. unsigned int cpp,
  1709. unsigned int pitch)
  1710. {
  1711. if (tiling_mode != I915_TILING_NONE) {
  1712. unsigned int tile_rows, tiles;
  1713. tile_rows = *y / 8;
  1714. *y %= 8;
  1715. tiles = *x / (512/cpp);
  1716. *x %= 512/cpp;
  1717. return tile_rows * pitch * 8 + tiles * 4096;
  1718. } else {
  1719. unsigned int offset;
  1720. offset = *y * pitch + *x * cpp;
  1721. *y = 0;
  1722. *x = (offset & 4095) / cpp;
  1723. return offset & -4096;
  1724. }
  1725. }
  1726. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1727. int x, int y)
  1728. {
  1729. struct drm_device *dev = crtc->dev;
  1730. struct drm_i915_private *dev_priv = dev->dev_private;
  1731. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1732. struct intel_framebuffer *intel_fb;
  1733. struct drm_i915_gem_object *obj;
  1734. int plane = intel_crtc->plane;
  1735. unsigned long linear_offset;
  1736. u32 dspcntr;
  1737. u32 reg;
  1738. switch (plane) {
  1739. case 0:
  1740. case 1:
  1741. break;
  1742. default:
  1743. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1744. return -EINVAL;
  1745. }
  1746. intel_fb = to_intel_framebuffer(fb);
  1747. obj = intel_fb->obj;
  1748. reg = DSPCNTR(plane);
  1749. dspcntr = I915_READ(reg);
  1750. /* Mask out pixel format bits in case we change it */
  1751. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1752. switch (fb->pixel_format) {
  1753. case DRM_FORMAT_C8:
  1754. dspcntr |= DISPPLANE_8BPP;
  1755. break;
  1756. case DRM_FORMAT_XRGB1555:
  1757. case DRM_FORMAT_ARGB1555:
  1758. dspcntr |= DISPPLANE_BGRX555;
  1759. break;
  1760. case DRM_FORMAT_RGB565:
  1761. dspcntr |= DISPPLANE_BGRX565;
  1762. break;
  1763. case DRM_FORMAT_XRGB8888:
  1764. case DRM_FORMAT_ARGB8888:
  1765. dspcntr |= DISPPLANE_BGRX888;
  1766. break;
  1767. case DRM_FORMAT_XBGR8888:
  1768. case DRM_FORMAT_ABGR8888:
  1769. dspcntr |= DISPPLANE_RGBX888;
  1770. break;
  1771. case DRM_FORMAT_XRGB2101010:
  1772. case DRM_FORMAT_ARGB2101010:
  1773. dspcntr |= DISPPLANE_BGRX101010;
  1774. break;
  1775. case DRM_FORMAT_XBGR2101010:
  1776. case DRM_FORMAT_ABGR2101010:
  1777. dspcntr |= DISPPLANE_RGBX101010;
  1778. break;
  1779. default:
  1780. BUG();
  1781. }
  1782. if (INTEL_INFO(dev)->gen >= 4) {
  1783. if (obj->tiling_mode != I915_TILING_NONE)
  1784. dspcntr |= DISPPLANE_TILED;
  1785. else
  1786. dspcntr &= ~DISPPLANE_TILED;
  1787. }
  1788. if (IS_G4X(dev))
  1789. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1790. I915_WRITE(reg, dspcntr);
  1791. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1792. if (INTEL_INFO(dev)->gen >= 4) {
  1793. intel_crtc->dspaddr_offset =
  1794. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1795. fb->bits_per_pixel / 8,
  1796. fb->pitches[0]);
  1797. linear_offset -= intel_crtc->dspaddr_offset;
  1798. } else {
  1799. intel_crtc->dspaddr_offset = linear_offset;
  1800. }
  1801. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1802. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1803. fb->pitches[0]);
  1804. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1805. if (INTEL_INFO(dev)->gen >= 4) {
  1806. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1807. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1808. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1809. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1810. } else
  1811. I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  1812. POSTING_READ(reg);
  1813. return 0;
  1814. }
  1815. static int ironlake_update_plane(struct drm_crtc *crtc,
  1816. struct drm_framebuffer *fb, int x, int y)
  1817. {
  1818. struct drm_device *dev = crtc->dev;
  1819. struct drm_i915_private *dev_priv = dev->dev_private;
  1820. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1821. struct intel_framebuffer *intel_fb;
  1822. struct drm_i915_gem_object *obj;
  1823. int plane = intel_crtc->plane;
  1824. unsigned long linear_offset;
  1825. u32 dspcntr;
  1826. u32 reg;
  1827. switch (plane) {
  1828. case 0:
  1829. case 1:
  1830. case 2:
  1831. break;
  1832. default:
  1833. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1834. return -EINVAL;
  1835. }
  1836. intel_fb = to_intel_framebuffer(fb);
  1837. obj = intel_fb->obj;
  1838. reg = DSPCNTR(plane);
  1839. dspcntr = I915_READ(reg);
  1840. /* Mask out pixel format bits in case we change it */
  1841. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1842. switch (fb->pixel_format) {
  1843. case DRM_FORMAT_C8:
  1844. dspcntr |= DISPPLANE_8BPP;
  1845. break;
  1846. case DRM_FORMAT_RGB565:
  1847. dspcntr |= DISPPLANE_BGRX565;
  1848. break;
  1849. case DRM_FORMAT_XRGB8888:
  1850. case DRM_FORMAT_ARGB8888:
  1851. dspcntr |= DISPPLANE_BGRX888;
  1852. break;
  1853. case DRM_FORMAT_XBGR8888:
  1854. case DRM_FORMAT_ABGR8888:
  1855. dspcntr |= DISPPLANE_RGBX888;
  1856. break;
  1857. case DRM_FORMAT_XRGB2101010:
  1858. case DRM_FORMAT_ARGB2101010:
  1859. dspcntr |= DISPPLANE_BGRX101010;
  1860. break;
  1861. case DRM_FORMAT_XBGR2101010:
  1862. case DRM_FORMAT_ABGR2101010:
  1863. dspcntr |= DISPPLANE_RGBX101010;
  1864. break;
  1865. default:
  1866. BUG();
  1867. }
  1868. if (obj->tiling_mode != I915_TILING_NONE)
  1869. dspcntr |= DISPPLANE_TILED;
  1870. else
  1871. dspcntr &= ~DISPPLANE_TILED;
  1872. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1873. dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
  1874. else
  1875. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1876. I915_WRITE(reg, dspcntr);
  1877. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1878. intel_crtc->dspaddr_offset =
  1879. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1880. fb->bits_per_pixel / 8,
  1881. fb->pitches[0]);
  1882. linear_offset -= intel_crtc->dspaddr_offset;
  1883. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1884. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1885. fb->pitches[0]);
  1886. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1887. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1888. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1889. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  1890. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1891. } else {
  1892. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1893. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1894. }
  1895. POSTING_READ(reg);
  1896. return 0;
  1897. }
  1898. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1899. static int
  1900. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1901. int x, int y, enum mode_set_atomic state)
  1902. {
  1903. struct drm_device *dev = crtc->dev;
  1904. struct drm_i915_private *dev_priv = dev->dev_private;
  1905. if (dev_priv->display.disable_fbc)
  1906. dev_priv->display.disable_fbc(dev);
  1907. intel_increase_pllclock(crtc);
  1908. return dev_priv->display.update_plane(crtc, fb, x, y);
  1909. }
  1910. void intel_display_handle_reset(struct drm_device *dev)
  1911. {
  1912. struct drm_i915_private *dev_priv = dev->dev_private;
  1913. struct drm_crtc *crtc;
  1914. /*
  1915. * Flips in the rings have been nuked by the reset,
  1916. * so complete all pending flips so that user space
  1917. * will get its events and not get stuck.
  1918. *
  1919. * Also update the base address of all primary
  1920. * planes to the the last fb to make sure we're
  1921. * showing the correct fb after a reset.
  1922. *
  1923. * Need to make two loops over the crtcs so that we
  1924. * don't try to grab a crtc mutex before the
  1925. * pending_flip_queue really got woken up.
  1926. */
  1927. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1928. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1929. enum plane plane = intel_crtc->plane;
  1930. intel_prepare_page_flip(dev, plane);
  1931. intel_finish_page_flip_plane(dev, plane);
  1932. }
  1933. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1934. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1935. mutex_lock(&crtc->mutex);
  1936. if (intel_crtc->active)
  1937. dev_priv->display.update_plane(crtc, crtc->fb,
  1938. crtc->x, crtc->y);
  1939. mutex_unlock(&crtc->mutex);
  1940. }
  1941. }
  1942. static int
  1943. intel_finish_fb(struct drm_framebuffer *old_fb)
  1944. {
  1945. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1946. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1947. bool was_interruptible = dev_priv->mm.interruptible;
  1948. int ret;
  1949. /* Big Hammer, we also need to ensure that any pending
  1950. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1951. * current scanout is retired before unpinning the old
  1952. * framebuffer.
  1953. *
  1954. * This should only fail upon a hung GPU, in which case we
  1955. * can safely continue.
  1956. */
  1957. dev_priv->mm.interruptible = false;
  1958. ret = i915_gem_object_finish_gpu(obj);
  1959. dev_priv->mm.interruptible = was_interruptible;
  1960. return ret;
  1961. }
  1962. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1963. {
  1964. struct drm_device *dev = crtc->dev;
  1965. struct drm_i915_master_private *master_priv;
  1966. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1967. if (!dev->primary->master)
  1968. return;
  1969. master_priv = dev->primary->master->driver_priv;
  1970. if (!master_priv->sarea_priv)
  1971. return;
  1972. switch (intel_crtc->pipe) {
  1973. case 0:
  1974. master_priv->sarea_priv->pipeA_x = x;
  1975. master_priv->sarea_priv->pipeA_y = y;
  1976. break;
  1977. case 1:
  1978. master_priv->sarea_priv->pipeB_x = x;
  1979. master_priv->sarea_priv->pipeB_y = y;
  1980. break;
  1981. default:
  1982. break;
  1983. }
  1984. }
  1985. static int
  1986. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1987. struct drm_framebuffer *fb)
  1988. {
  1989. struct drm_device *dev = crtc->dev;
  1990. struct drm_i915_private *dev_priv = dev->dev_private;
  1991. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1992. struct drm_framebuffer *old_fb;
  1993. int ret;
  1994. /* no fb bound */
  1995. if (!fb) {
  1996. DRM_ERROR("No FB bound\n");
  1997. return 0;
  1998. }
  1999. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  2000. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  2001. plane_name(intel_crtc->plane),
  2002. INTEL_INFO(dev)->num_pipes);
  2003. return -EINVAL;
  2004. }
  2005. mutex_lock(&dev->struct_mutex);
  2006. ret = intel_pin_and_fence_fb_obj(dev,
  2007. to_intel_framebuffer(fb)->obj,
  2008. NULL);
  2009. if (ret != 0) {
  2010. mutex_unlock(&dev->struct_mutex);
  2011. DRM_ERROR("pin & fence failed\n");
  2012. return ret;
  2013. }
  2014. /*
  2015. * Update pipe size and adjust fitter if needed: the reason for this is
  2016. * that in compute_mode_changes we check the native mode (not the pfit
  2017. * mode) to see if we can flip rather than do a full mode set. In the
  2018. * fastboot case, we'll flip, but if we don't update the pipesrc and
  2019. * pfit state, we'll end up with a big fb scanned out into the wrong
  2020. * sized surface.
  2021. *
  2022. * To fix this properly, we need to hoist the checks up into
  2023. * compute_mode_changes (or above), check the actual pfit state and
  2024. * whether the platform allows pfit disable with pipe active, and only
  2025. * then update the pipesrc and pfit state, even on the flip path.
  2026. */
  2027. if (i915_fastboot) {
  2028. const struct drm_display_mode *adjusted_mode =
  2029. &intel_crtc->config.adjusted_mode;
  2030. I915_WRITE(PIPESRC(intel_crtc->pipe),
  2031. ((adjusted_mode->crtc_hdisplay - 1) << 16) |
  2032. (adjusted_mode->crtc_vdisplay - 1));
  2033. if (!intel_crtc->config.pch_pfit.enabled &&
  2034. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  2035. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2036. I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
  2037. I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
  2038. I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
  2039. }
  2040. }
  2041. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2042. if (ret) {
  2043. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2044. mutex_unlock(&dev->struct_mutex);
  2045. DRM_ERROR("failed to update base address\n");
  2046. return ret;
  2047. }
  2048. old_fb = crtc->fb;
  2049. crtc->fb = fb;
  2050. crtc->x = x;
  2051. crtc->y = y;
  2052. if (old_fb) {
  2053. if (intel_crtc->active && old_fb != fb)
  2054. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2055. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2056. }
  2057. intel_update_fbc(dev);
  2058. intel_edp_psr_update(dev);
  2059. mutex_unlock(&dev->struct_mutex);
  2060. intel_crtc_update_sarea_pos(crtc, x, y);
  2061. return 0;
  2062. }
  2063. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2064. {
  2065. struct drm_device *dev = crtc->dev;
  2066. struct drm_i915_private *dev_priv = dev->dev_private;
  2067. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2068. int pipe = intel_crtc->pipe;
  2069. u32 reg, temp;
  2070. /* enable normal train */
  2071. reg = FDI_TX_CTL(pipe);
  2072. temp = I915_READ(reg);
  2073. if (IS_IVYBRIDGE(dev)) {
  2074. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2075. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2076. } else {
  2077. temp &= ~FDI_LINK_TRAIN_NONE;
  2078. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2079. }
  2080. I915_WRITE(reg, temp);
  2081. reg = FDI_RX_CTL(pipe);
  2082. temp = I915_READ(reg);
  2083. if (HAS_PCH_CPT(dev)) {
  2084. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2085. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2086. } else {
  2087. temp &= ~FDI_LINK_TRAIN_NONE;
  2088. temp |= FDI_LINK_TRAIN_NONE;
  2089. }
  2090. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2091. /* wait one idle pattern time */
  2092. POSTING_READ(reg);
  2093. udelay(1000);
  2094. /* IVB wants error correction enabled */
  2095. if (IS_IVYBRIDGE(dev))
  2096. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2097. FDI_FE_ERRC_ENABLE);
  2098. }
  2099. static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
  2100. {
  2101. return crtc->base.enabled && crtc->active &&
  2102. crtc->config.has_pch_encoder;
  2103. }
  2104. static void ivb_modeset_global_resources(struct drm_device *dev)
  2105. {
  2106. struct drm_i915_private *dev_priv = dev->dev_private;
  2107. struct intel_crtc *pipe_B_crtc =
  2108. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2109. struct intel_crtc *pipe_C_crtc =
  2110. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2111. uint32_t temp;
  2112. /*
  2113. * When everything is off disable fdi C so that we could enable fdi B
  2114. * with all lanes. Note that we don't care about enabled pipes without
  2115. * an enabled pch encoder.
  2116. */
  2117. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2118. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2119. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2120. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2121. temp = I915_READ(SOUTH_CHICKEN1);
  2122. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2123. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2124. I915_WRITE(SOUTH_CHICKEN1, temp);
  2125. }
  2126. }
  2127. /* The FDI link training functions for ILK/Ibexpeak. */
  2128. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2129. {
  2130. struct drm_device *dev = crtc->dev;
  2131. struct drm_i915_private *dev_priv = dev->dev_private;
  2132. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2133. int pipe = intel_crtc->pipe;
  2134. int plane = intel_crtc->plane;
  2135. u32 reg, temp, tries;
  2136. /* FDI needs bits from pipe & plane first */
  2137. assert_pipe_enabled(dev_priv, pipe);
  2138. assert_plane_enabled(dev_priv, plane);
  2139. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2140. for train result */
  2141. reg = FDI_RX_IMR(pipe);
  2142. temp = I915_READ(reg);
  2143. temp &= ~FDI_RX_SYMBOL_LOCK;
  2144. temp &= ~FDI_RX_BIT_LOCK;
  2145. I915_WRITE(reg, temp);
  2146. I915_READ(reg);
  2147. udelay(150);
  2148. /* enable CPU FDI TX and PCH FDI RX */
  2149. reg = FDI_TX_CTL(pipe);
  2150. temp = I915_READ(reg);
  2151. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2152. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2153. temp &= ~FDI_LINK_TRAIN_NONE;
  2154. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2155. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2156. reg = FDI_RX_CTL(pipe);
  2157. temp = I915_READ(reg);
  2158. temp &= ~FDI_LINK_TRAIN_NONE;
  2159. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2160. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2161. POSTING_READ(reg);
  2162. udelay(150);
  2163. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2164. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2165. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2166. FDI_RX_PHASE_SYNC_POINTER_EN);
  2167. reg = FDI_RX_IIR(pipe);
  2168. for (tries = 0; tries < 5; tries++) {
  2169. temp = I915_READ(reg);
  2170. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2171. if ((temp & FDI_RX_BIT_LOCK)) {
  2172. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2173. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2174. break;
  2175. }
  2176. }
  2177. if (tries == 5)
  2178. DRM_ERROR("FDI train 1 fail!\n");
  2179. /* Train 2 */
  2180. reg = FDI_TX_CTL(pipe);
  2181. temp = I915_READ(reg);
  2182. temp &= ~FDI_LINK_TRAIN_NONE;
  2183. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2184. I915_WRITE(reg, temp);
  2185. reg = FDI_RX_CTL(pipe);
  2186. temp = I915_READ(reg);
  2187. temp &= ~FDI_LINK_TRAIN_NONE;
  2188. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2189. I915_WRITE(reg, temp);
  2190. POSTING_READ(reg);
  2191. udelay(150);
  2192. reg = FDI_RX_IIR(pipe);
  2193. for (tries = 0; tries < 5; tries++) {
  2194. temp = I915_READ(reg);
  2195. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2196. if (temp & FDI_RX_SYMBOL_LOCK) {
  2197. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2198. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2199. break;
  2200. }
  2201. }
  2202. if (tries == 5)
  2203. DRM_ERROR("FDI train 2 fail!\n");
  2204. DRM_DEBUG_KMS("FDI train done\n");
  2205. }
  2206. static const int snb_b_fdi_train_param[] = {
  2207. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2208. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2209. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2210. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2211. };
  2212. /* The FDI link training functions for SNB/Cougarpoint. */
  2213. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2214. {
  2215. struct drm_device *dev = crtc->dev;
  2216. struct drm_i915_private *dev_priv = dev->dev_private;
  2217. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2218. int pipe = intel_crtc->pipe;
  2219. u32 reg, temp, i, retry;
  2220. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2221. for train result */
  2222. reg = FDI_RX_IMR(pipe);
  2223. temp = I915_READ(reg);
  2224. temp &= ~FDI_RX_SYMBOL_LOCK;
  2225. temp &= ~FDI_RX_BIT_LOCK;
  2226. I915_WRITE(reg, temp);
  2227. POSTING_READ(reg);
  2228. udelay(150);
  2229. /* enable CPU FDI TX and PCH FDI RX */
  2230. reg = FDI_TX_CTL(pipe);
  2231. temp = I915_READ(reg);
  2232. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2233. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2234. temp &= ~FDI_LINK_TRAIN_NONE;
  2235. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2236. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2237. /* SNB-B */
  2238. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2239. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2240. I915_WRITE(FDI_RX_MISC(pipe),
  2241. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2242. reg = FDI_RX_CTL(pipe);
  2243. temp = I915_READ(reg);
  2244. if (HAS_PCH_CPT(dev)) {
  2245. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2246. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2247. } else {
  2248. temp &= ~FDI_LINK_TRAIN_NONE;
  2249. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2250. }
  2251. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2252. POSTING_READ(reg);
  2253. udelay(150);
  2254. for (i = 0; i < 4; i++) {
  2255. reg = FDI_TX_CTL(pipe);
  2256. temp = I915_READ(reg);
  2257. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2258. temp |= snb_b_fdi_train_param[i];
  2259. I915_WRITE(reg, temp);
  2260. POSTING_READ(reg);
  2261. udelay(500);
  2262. for (retry = 0; retry < 5; retry++) {
  2263. reg = FDI_RX_IIR(pipe);
  2264. temp = I915_READ(reg);
  2265. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2266. if (temp & FDI_RX_BIT_LOCK) {
  2267. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2268. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2269. break;
  2270. }
  2271. udelay(50);
  2272. }
  2273. if (retry < 5)
  2274. break;
  2275. }
  2276. if (i == 4)
  2277. DRM_ERROR("FDI train 1 fail!\n");
  2278. /* Train 2 */
  2279. reg = FDI_TX_CTL(pipe);
  2280. temp = I915_READ(reg);
  2281. temp &= ~FDI_LINK_TRAIN_NONE;
  2282. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2283. if (IS_GEN6(dev)) {
  2284. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2285. /* SNB-B */
  2286. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2287. }
  2288. I915_WRITE(reg, temp);
  2289. reg = FDI_RX_CTL(pipe);
  2290. temp = I915_READ(reg);
  2291. if (HAS_PCH_CPT(dev)) {
  2292. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2293. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2294. } else {
  2295. temp &= ~FDI_LINK_TRAIN_NONE;
  2296. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2297. }
  2298. I915_WRITE(reg, temp);
  2299. POSTING_READ(reg);
  2300. udelay(150);
  2301. for (i = 0; i < 4; i++) {
  2302. reg = FDI_TX_CTL(pipe);
  2303. temp = I915_READ(reg);
  2304. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2305. temp |= snb_b_fdi_train_param[i];
  2306. I915_WRITE(reg, temp);
  2307. POSTING_READ(reg);
  2308. udelay(500);
  2309. for (retry = 0; retry < 5; retry++) {
  2310. reg = FDI_RX_IIR(pipe);
  2311. temp = I915_READ(reg);
  2312. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2313. if (temp & FDI_RX_SYMBOL_LOCK) {
  2314. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2315. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2316. break;
  2317. }
  2318. udelay(50);
  2319. }
  2320. if (retry < 5)
  2321. break;
  2322. }
  2323. if (i == 4)
  2324. DRM_ERROR("FDI train 2 fail!\n");
  2325. DRM_DEBUG_KMS("FDI train done.\n");
  2326. }
  2327. /* Manual link training for Ivy Bridge A0 parts */
  2328. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2329. {
  2330. struct drm_device *dev = crtc->dev;
  2331. struct drm_i915_private *dev_priv = dev->dev_private;
  2332. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2333. int pipe = intel_crtc->pipe;
  2334. u32 reg, temp, i, j;
  2335. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2336. for train result */
  2337. reg = FDI_RX_IMR(pipe);
  2338. temp = I915_READ(reg);
  2339. temp &= ~FDI_RX_SYMBOL_LOCK;
  2340. temp &= ~FDI_RX_BIT_LOCK;
  2341. I915_WRITE(reg, temp);
  2342. POSTING_READ(reg);
  2343. udelay(150);
  2344. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2345. I915_READ(FDI_RX_IIR(pipe)));
  2346. /* Try each vswing and preemphasis setting twice before moving on */
  2347. for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  2348. /* disable first in case we need to retry */
  2349. reg = FDI_TX_CTL(pipe);
  2350. temp = I915_READ(reg);
  2351. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2352. temp &= ~FDI_TX_ENABLE;
  2353. I915_WRITE(reg, temp);
  2354. reg = FDI_RX_CTL(pipe);
  2355. temp = I915_READ(reg);
  2356. temp &= ~FDI_LINK_TRAIN_AUTO;
  2357. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2358. temp &= ~FDI_RX_ENABLE;
  2359. I915_WRITE(reg, temp);
  2360. /* enable CPU FDI TX and PCH FDI RX */
  2361. reg = FDI_TX_CTL(pipe);
  2362. temp = I915_READ(reg);
  2363. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2364. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2365. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2366. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2367. temp |= snb_b_fdi_train_param[j/2];
  2368. temp |= FDI_COMPOSITE_SYNC;
  2369. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2370. I915_WRITE(FDI_RX_MISC(pipe),
  2371. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2372. reg = FDI_RX_CTL(pipe);
  2373. temp = I915_READ(reg);
  2374. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2375. temp |= FDI_COMPOSITE_SYNC;
  2376. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2377. POSTING_READ(reg);
  2378. udelay(1); /* should be 0.5us */
  2379. for (i = 0; i < 4; i++) {
  2380. reg = FDI_RX_IIR(pipe);
  2381. temp = I915_READ(reg);
  2382. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2383. if (temp & FDI_RX_BIT_LOCK ||
  2384. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2385. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2386. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  2387. i);
  2388. break;
  2389. }
  2390. udelay(1); /* should be 0.5us */
  2391. }
  2392. if (i == 4) {
  2393. DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  2394. continue;
  2395. }
  2396. /* Train 2 */
  2397. reg = FDI_TX_CTL(pipe);
  2398. temp = I915_READ(reg);
  2399. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2400. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2401. I915_WRITE(reg, temp);
  2402. reg = FDI_RX_CTL(pipe);
  2403. temp = I915_READ(reg);
  2404. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2405. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2406. I915_WRITE(reg, temp);
  2407. POSTING_READ(reg);
  2408. udelay(2); /* should be 1.5us */
  2409. for (i = 0; i < 4; i++) {
  2410. reg = FDI_RX_IIR(pipe);
  2411. temp = I915_READ(reg);
  2412. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2413. if (temp & FDI_RX_SYMBOL_LOCK ||
  2414. (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  2415. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2416. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  2417. i);
  2418. goto train_done;
  2419. }
  2420. udelay(2); /* should be 1.5us */
  2421. }
  2422. if (i == 4)
  2423. DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  2424. }
  2425. train_done:
  2426. DRM_DEBUG_KMS("FDI train done.\n");
  2427. }
  2428. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2429. {
  2430. struct drm_device *dev = intel_crtc->base.dev;
  2431. struct drm_i915_private *dev_priv = dev->dev_private;
  2432. int pipe = intel_crtc->pipe;
  2433. u32 reg, temp;
  2434. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2435. reg = FDI_RX_CTL(pipe);
  2436. temp = I915_READ(reg);
  2437. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2438. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2439. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2440. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2441. POSTING_READ(reg);
  2442. udelay(200);
  2443. /* Switch from Rawclk to PCDclk */
  2444. temp = I915_READ(reg);
  2445. I915_WRITE(reg, temp | FDI_PCDCLK);
  2446. POSTING_READ(reg);
  2447. udelay(200);
  2448. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2449. reg = FDI_TX_CTL(pipe);
  2450. temp = I915_READ(reg);
  2451. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2452. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2453. POSTING_READ(reg);
  2454. udelay(100);
  2455. }
  2456. }
  2457. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2458. {
  2459. struct drm_device *dev = intel_crtc->base.dev;
  2460. struct drm_i915_private *dev_priv = dev->dev_private;
  2461. int pipe = intel_crtc->pipe;
  2462. u32 reg, temp;
  2463. /* Switch from PCDclk to Rawclk */
  2464. reg = FDI_RX_CTL(pipe);
  2465. temp = I915_READ(reg);
  2466. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2467. /* Disable CPU FDI TX PLL */
  2468. reg = FDI_TX_CTL(pipe);
  2469. temp = I915_READ(reg);
  2470. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2471. POSTING_READ(reg);
  2472. udelay(100);
  2473. reg = FDI_RX_CTL(pipe);
  2474. temp = I915_READ(reg);
  2475. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2476. /* Wait for the clocks to turn off. */
  2477. POSTING_READ(reg);
  2478. udelay(100);
  2479. }
  2480. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2481. {
  2482. struct drm_device *dev = crtc->dev;
  2483. struct drm_i915_private *dev_priv = dev->dev_private;
  2484. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2485. int pipe = intel_crtc->pipe;
  2486. u32 reg, temp;
  2487. /* disable CPU FDI tx and PCH FDI rx */
  2488. reg = FDI_TX_CTL(pipe);
  2489. temp = I915_READ(reg);
  2490. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2491. POSTING_READ(reg);
  2492. reg = FDI_RX_CTL(pipe);
  2493. temp = I915_READ(reg);
  2494. temp &= ~(0x7 << 16);
  2495. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2496. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2497. POSTING_READ(reg);
  2498. udelay(100);
  2499. /* Ironlake workaround, disable clock pointer after downing FDI */
  2500. if (HAS_PCH_IBX(dev)) {
  2501. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2502. }
  2503. /* still set train pattern 1 */
  2504. reg = FDI_TX_CTL(pipe);
  2505. temp = I915_READ(reg);
  2506. temp &= ~FDI_LINK_TRAIN_NONE;
  2507. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2508. I915_WRITE(reg, temp);
  2509. reg = FDI_RX_CTL(pipe);
  2510. temp = I915_READ(reg);
  2511. if (HAS_PCH_CPT(dev)) {
  2512. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2513. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2514. } else {
  2515. temp &= ~FDI_LINK_TRAIN_NONE;
  2516. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2517. }
  2518. /* BPC in FDI rx is consistent with that in PIPECONF */
  2519. temp &= ~(0x07 << 16);
  2520. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2521. I915_WRITE(reg, temp);
  2522. POSTING_READ(reg);
  2523. udelay(100);
  2524. }
  2525. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2526. {
  2527. struct drm_device *dev = crtc->dev;
  2528. struct drm_i915_private *dev_priv = dev->dev_private;
  2529. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2530. unsigned long flags;
  2531. bool pending;
  2532. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2533. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2534. return false;
  2535. spin_lock_irqsave(&dev->event_lock, flags);
  2536. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2537. spin_unlock_irqrestore(&dev->event_lock, flags);
  2538. return pending;
  2539. }
  2540. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2541. {
  2542. struct drm_device *dev = crtc->dev;
  2543. struct drm_i915_private *dev_priv = dev->dev_private;
  2544. if (crtc->fb == NULL)
  2545. return;
  2546. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2547. wait_event(dev_priv->pending_flip_queue,
  2548. !intel_crtc_has_pending_flip(crtc));
  2549. mutex_lock(&dev->struct_mutex);
  2550. intel_finish_fb(crtc->fb);
  2551. mutex_unlock(&dev->struct_mutex);
  2552. }
  2553. /* Program iCLKIP clock to the desired frequency */
  2554. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2555. {
  2556. struct drm_device *dev = crtc->dev;
  2557. struct drm_i915_private *dev_priv = dev->dev_private;
  2558. int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2559. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2560. u32 temp;
  2561. mutex_lock(&dev_priv->dpio_lock);
  2562. /* It is necessary to ungate the pixclk gate prior to programming
  2563. * the divisors, and gate it back when it is done.
  2564. */
  2565. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2566. /* Disable SSCCTL */
  2567. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2568. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2569. SBI_SSCCTL_DISABLE,
  2570. SBI_ICLK);
  2571. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2572. if (clock == 20000) {
  2573. auxdiv = 1;
  2574. divsel = 0x41;
  2575. phaseinc = 0x20;
  2576. } else {
  2577. /* The iCLK virtual clock root frequency is in MHz,
  2578. * but the adjusted_mode->crtc_clock in in KHz. To get the
  2579. * divisors, it is necessary to divide one by another, so we
  2580. * convert the virtual clock precision to KHz here for higher
  2581. * precision.
  2582. */
  2583. u32 iclk_virtual_root_freq = 172800 * 1000;
  2584. u32 iclk_pi_range = 64;
  2585. u32 desired_divisor, msb_divisor_value, pi_value;
  2586. desired_divisor = (iclk_virtual_root_freq / clock);
  2587. msb_divisor_value = desired_divisor / iclk_pi_range;
  2588. pi_value = desired_divisor % iclk_pi_range;
  2589. auxdiv = 0;
  2590. divsel = msb_divisor_value - 2;
  2591. phaseinc = pi_value;
  2592. }
  2593. /* This should not happen with any sane values */
  2594. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2595. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2596. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2597. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2598. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2599. clock,
  2600. auxdiv,
  2601. divsel,
  2602. phasedir,
  2603. phaseinc);
  2604. /* Program SSCDIVINTPHASE6 */
  2605. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2606. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2607. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2608. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2609. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2610. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2611. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2612. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2613. /* Program SSCAUXDIV */
  2614. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2615. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2616. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2617. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2618. /* Enable modulator and associated divider */
  2619. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2620. temp &= ~SBI_SSCCTL_DISABLE;
  2621. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2622. /* Wait for initialization time */
  2623. udelay(24);
  2624. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2625. mutex_unlock(&dev_priv->dpio_lock);
  2626. }
  2627. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2628. enum pipe pch_transcoder)
  2629. {
  2630. struct drm_device *dev = crtc->base.dev;
  2631. struct drm_i915_private *dev_priv = dev->dev_private;
  2632. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2633. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2634. I915_READ(HTOTAL(cpu_transcoder)));
  2635. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2636. I915_READ(HBLANK(cpu_transcoder)));
  2637. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2638. I915_READ(HSYNC(cpu_transcoder)));
  2639. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2640. I915_READ(VTOTAL(cpu_transcoder)));
  2641. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2642. I915_READ(VBLANK(cpu_transcoder)));
  2643. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2644. I915_READ(VSYNC(cpu_transcoder)));
  2645. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2646. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2647. }
  2648. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  2649. {
  2650. struct drm_i915_private *dev_priv = dev->dev_private;
  2651. uint32_t temp;
  2652. temp = I915_READ(SOUTH_CHICKEN1);
  2653. if (temp & FDI_BC_BIFURCATION_SELECT)
  2654. return;
  2655. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2656. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2657. temp |= FDI_BC_BIFURCATION_SELECT;
  2658. DRM_DEBUG_KMS("enabling fdi C rx\n");
  2659. I915_WRITE(SOUTH_CHICKEN1, temp);
  2660. POSTING_READ(SOUTH_CHICKEN1);
  2661. }
  2662. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  2663. {
  2664. struct drm_device *dev = intel_crtc->base.dev;
  2665. struct drm_i915_private *dev_priv = dev->dev_private;
  2666. switch (intel_crtc->pipe) {
  2667. case PIPE_A:
  2668. break;
  2669. case PIPE_B:
  2670. if (intel_crtc->config.fdi_lanes > 2)
  2671. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  2672. else
  2673. cpt_enable_fdi_bc_bifurcation(dev);
  2674. break;
  2675. case PIPE_C:
  2676. cpt_enable_fdi_bc_bifurcation(dev);
  2677. break;
  2678. default:
  2679. BUG();
  2680. }
  2681. }
  2682. /*
  2683. * Enable PCH resources required for PCH ports:
  2684. * - PCH PLLs
  2685. * - FDI training & RX/TX
  2686. * - update transcoder timings
  2687. * - DP transcoding bits
  2688. * - transcoder
  2689. */
  2690. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2691. {
  2692. struct drm_device *dev = crtc->dev;
  2693. struct drm_i915_private *dev_priv = dev->dev_private;
  2694. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2695. int pipe = intel_crtc->pipe;
  2696. u32 reg, temp;
  2697. assert_pch_transcoder_disabled(dev_priv, pipe);
  2698. if (IS_IVYBRIDGE(dev))
  2699. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  2700. /* Write the TU size bits before fdi link training, so that error
  2701. * detection works. */
  2702. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2703. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2704. /* For PCH output, training FDI link */
  2705. dev_priv->display.fdi_link_train(crtc);
  2706. /* We need to program the right clock selection before writing the pixel
  2707. * mutliplier into the DPLL. */
  2708. if (HAS_PCH_CPT(dev)) {
  2709. u32 sel;
  2710. temp = I915_READ(PCH_DPLL_SEL);
  2711. temp |= TRANS_DPLL_ENABLE(pipe);
  2712. sel = TRANS_DPLLB_SEL(pipe);
  2713. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2714. temp |= sel;
  2715. else
  2716. temp &= ~sel;
  2717. I915_WRITE(PCH_DPLL_SEL, temp);
  2718. }
  2719. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2720. * transcoder, and we actually should do this to not upset any PCH
  2721. * transcoder that already use the clock when we share it.
  2722. *
  2723. * Note that enable_shared_dpll tries to do the right thing, but
  2724. * get_shared_dpll unconditionally resets the pll - we need that to have
  2725. * the right LVDS enable sequence. */
  2726. ironlake_enable_shared_dpll(intel_crtc);
  2727. /* set transcoder timing, panel must allow it */
  2728. assert_panel_unlocked(dev_priv, pipe);
  2729. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2730. intel_fdi_normal_train(crtc);
  2731. /* For PCH DP, enable TRANS_DP_CTL */
  2732. if (HAS_PCH_CPT(dev) &&
  2733. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2734. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2735. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2736. reg = TRANS_DP_CTL(pipe);
  2737. temp = I915_READ(reg);
  2738. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2739. TRANS_DP_SYNC_MASK |
  2740. TRANS_DP_BPC_MASK);
  2741. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2742. TRANS_DP_ENH_FRAMING);
  2743. temp |= bpc << 9; /* same format but at 11:9 */
  2744. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2745. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2746. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2747. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2748. switch (intel_trans_dp_port_sel(crtc)) {
  2749. case PCH_DP_B:
  2750. temp |= TRANS_DP_PORT_SEL_B;
  2751. break;
  2752. case PCH_DP_C:
  2753. temp |= TRANS_DP_PORT_SEL_C;
  2754. break;
  2755. case PCH_DP_D:
  2756. temp |= TRANS_DP_PORT_SEL_D;
  2757. break;
  2758. default:
  2759. BUG();
  2760. }
  2761. I915_WRITE(reg, temp);
  2762. }
  2763. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2764. }
  2765. static void lpt_pch_enable(struct drm_crtc *crtc)
  2766. {
  2767. struct drm_device *dev = crtc->dev;
  2768. struct drm_i915_private *dev_priv = dev->dev_private;
  2769. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2770. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2771. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2772. lpt_program_iclkip(crtc);
  2773. /* Set transcoder timing. */
  2774. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2775. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2776. }
  2777. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2778. {
  2779. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2780. if (pll == NULL)
  2781. return;
  2782. if (pll->refcount == 0) {
  2783. WARN(1, "bad %s refcount\n", pll->name);
  2784. return;
  2785. }
  2786. if (--pll->refcount == 0) {
  2787. WARN_ON(pll->on);
  2788. WARN_ON(pll->active);
  2789. }
  2790. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2791. }
  2792. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2793. {
  2794. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2795. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2796. enum intel_dpll_id i;
  2797. if (pll) {
  2798. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2799. crtc->base.base.id, pll->name);
  2800. intel_put_shared_dpll(crtc);
  2801. }
  2802. if (HAS_PCH_IBX(dev_priv->dev)) {
  2803. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2804. i = (enum intel_dpll_id) crtc->pipe;
  2805. pll = &dev_priv->shared_dplls[i];
  2806. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2807. crtc->base.base.id, pll->name);
  2808. goto found;
  2809. }
  2810. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2811. pll = &dev_priv->shared_dplls[i];
  2812. /* Only want to check enabled timings first */
  2813. if (pll->refcount == 0)
  2814. continue;
  2815. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2816. sizeof(pll->hw_state)) == 0) {
  2817. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2818. crtc->base.base.id,
  2819. pll->name, pll->refcount, pll->active);
  2820. goto found;
  2821. }
  2822. }
  2823. /* Ok no matching timings, maybe there's a free one? */
  2824. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2825. pll = &dev_priv->shared_dplls[i];
  2826. if (pll->refcount == 0) {
  2827. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2828. crtc->base.base.id, pll->name);
  2829. goto found;
  2830. }
  2831. }
  2832. return NULL;
  2833. found:
  2834. crtc->config.shared_dpll = i;
  2835. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2836. pipe_name(crtc->pipe));
  2837. if (pll->active == 0) {
  2838. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2839. sizeof(pll->hw_state));
  2840. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2841. WARN_ON(pll->on);
  2842. assert_shared_dpll_disabled(dev_priv, pll);
  2843. pll->mode_set(dev_priv, pll);
  2844. }
  2845. pll->refcount++;
  2846. return pll;
  2847. }
  2848. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2849. {
  2850. struct drm_i915_private *dev_priv = dev->dev_private;
  2851. int dslreg = PIPEDSL(pipe);
  2852. u32 temp;
  2853. temp = I915_READ(dslreg);
  2854. udelay(500);
  2855. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2856. if (wait_for(I915_READ(dslreg) != temp, 5))
  2857. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2858. }
  2859. }
  2860. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2861. {
  2862. struct drm_device *dev = crtc->base.dev;
  2863. struct drm_i915_private *dev_priv = dev->dev_private;
  2864. int pipe = crtc->pipe;
  2865. if (crtc->config.pch_pfit.enabled) {
  2866. /* Force use of hard-coded filter coefficients
  2867. * as some pre-programmed values are broken,
  2868. * e.g. x201.
  2869. */
  2870. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2871. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2872. PF_PIPE_SEL_IVB(pipe));
  2873. else
  2874. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2875. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2876. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2877. }
  2878. }
  2879. static void intel_enable_planes(struct drm_crtc *crtc)
  2880. {
  2881. struct drm_device *dev = crtc->dev;
  2882. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2883. struct intel_plane *intel_plane;
  2884. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2885. if (intel_plane->pipe == pipe)
  2886. intel_plane_restore(&intel_plane->base);
  2887. }
  2888. static void intel_disable_planes(struct drm_crtc *crtc)
  2889. {
  2890. struct drm_device *dev = crtc->dev;
  2891. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2892. struct intel_plane *intel_plane;
  2893. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2894. if (intel_plane->pipe == pipe)
  2895. intel_plane_disable(&intel_plane->base);
  2896. }
  2897. void hsw_enable_ips(struct intel_crtc *crtc)
  2898. {
  2899. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2900. if (!crtc->config.ips_enabled)
  2901. return;
  2902. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2903. * We guarantee that the plane is enabled by calling intel_enable_ips
  2904. * only after intel_enable_plane. And intel_enable_plane already waits
  2905. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2906. assert_plane_enabled(dev_priv, crtc->plane);
  2907. if (IS_BROADWELL(crtc->base.dev)) {
  2908. mutex_lock(&dev_priv->rps.hw_lock);
  2909. WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
  2910. mutex_unlock(&dev_priv->rps.hw_lock);
  2911. /* Quoting Art Runyan: "its not safe to expect any particular
  2912. * value in IPS_CTL bit 31 after enabling IPS through the
  2913. * mailbox." Therefore we need to defer waiting on the state
  2914. * change.
  2915. * TODO: need to fix this for state checker
  2916. */
  2917. } else {
  2918. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2919. /* The bit only becomes 1 in the next vblank, so this wait here
  2920. * is essentially intel_wait_for_vblank. If we don't have this
  2921. * and don't wait for vblanks until the end of crtc_enable, then
  2922. * the HW state readout code will complain that the expected
  2923. * IPS_CTL value is not the one we read. */
  2924. if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
  2925. DRM_ERROR("Timed out waiting for IPS enable\n");
  2926. }
  2927. }
  2928. void hsw_disable_ips(struct intel_crtc *crtc)
  2929. {
  2930. struct drm_device *dev = crtc->base.dev;
  2931. struct drm_i915_private *dev_priv = dev->dev_private;
  2932. if (!crtc->config.ips_enabled)
  2933. return;
  2934. assert_plane_enabled(dev_priv, crtc->plane);
  2935. if (IS_BROADWELL(crtc->base.dev)) {
  2936. mutex_lock(&dev_priv->rps.hw_lock);
  2937. WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
  2938. mutex_unlock(&dev_priv->rps.hw_lock);
  2939. } else
  2940. I915_WRITE(IPS_CTL, 0);
  2941. POSTING_READ(IPS_CTL);
  2942. /* We need to wait for a vblank before we can disable the plane. */
  2943. intel_wait_for_vblank(dev, crtc->pipe);
  2944. }
  2945. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  2946. static void intel_crtc_load_lut(struct drm_crtc *crtc)
  2947. {
  2948. struct drm_device *dev = crtc->dev;
  2949. struct drm_i915_private *dev_priv = dev->dev_private;
  2950. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2951. enum pipe pipe = intel_crtc->pipe;
  2952. int palreg = PALETTE(pipe);
  2953. int i;
  2954. bool reenable_ips = false;
  2955. /* The clocks have to be on to load the palette. */
  2956. if (!crtc->enabled || !intel_crtc->active)
  2957. return;
  2958. if (!HAS_PCH_SPLIT(dev_priv->dev)) {
  2959. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  2960. assert_dsi_pll_enabled(dev_priv);
  2961. else
  2962. assert_pll_enabled(dev_priv, pipe);
  2963. }
  2964. /* use legacy palette for Ironlake */
  2965. if (HAS_PCH_SPLIT(dev))
  2966. palreg = LGC_PALETTE(pipe);
  2967. /* Workaround : Do not read or write the pipe palette/gamma data while
  2968. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  2969. */
  2970. if (intel_crtc->config.ips_enabled &&
  2971. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  2972. GAMMA_MODE_MODE_SPLIT)) {
  2973. hsw_disable_ips(intel_crtc);
  2974. reenable_ips = true;
  2975. }
  2976. for (i = 0; i < 256; i++) {
  2977. I915_WRITE(palreg + 4 * i,
  2978. (intel_crtc->lut_r[i] << 16) |
  2979. (intel_crtc->lut_g[i] << 8) |
  2980. intel_crtc->lut_b[i]);
  2981. }
  2982. if (reenable_ips)
  2983. hsw_enable_ips(intel_crtc);
  2984. }
  2985. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2986. {
  2987. struct drm_device *dev = crtc->dev;
  2988. struct drm_i915_private *dev_priv = dev->dev_private;
  2989. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2990. struct intel_encoder *encoder;
  2991. int pipe = intel_crtc->pipe;
  2992. int plane = intel_crtc->plane;
  2993. WARN_ON(!crtc->enabled);
  2994. if (intel_crtc->active)
  2995. return;
  2996. intel_crtc->active = true;
  2997. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2998. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2999. for_each_encoder_on_crtc(dev, crtc, encoder)
  3000. if (encoder->pre_enable)
  3001. encoder->pre_enable(encoder);
  3002. if (intel_crtc->config.has_pch_encoder) {
  3003. /* Note: FDI PLL enabling _must_ be done before we enable the
  3004. * cpu pipes, hence this is separate from all the other fdi/pch
  3005. * enabling. */
  3006. ironlake_fdi_pll_enable(intel_crtc);
  3007. } else {
  3008. assert_fdi_tx_disabled(dev_priv, pipe);
  3009. assert_fdi_rx_disabled(dev_priv, pipe);
  3010. }
  3011. ironlake_pfit_enable(intel_crtc);
  3012. /*
  3013. * On ILK+ LUT must be loaded before the pipe is running but with
  3014. * clocks enabled
  3015. */
  3016. intel_crtc_load_lut(crtc);
  3017. intel_update_watermarks(crtc);
  3018. intel_enable_pipe(dev_priv, pipe,
  3019. intel_crtc->config.has_pch_encoder, false);
  3020. intel_enable_primary_plane(dev_priv, plane, pipe);
  3021. intel_enable_planes(crtc);
  3022. intel_crtc_update_cursor(crtc, true);
  3023. if (intel_crtc->config.has_pch_encoder)
  3024. ironlake_pch_enable(crtc);
  3025. mutex_lock(&dev->struct_mutex);
  3026. intel_update_fbc(dev);
  3027. mutex_unlock(&dev->struct_mutex);
  3028. for_each_encoder_on_crtc(dev, crtc, encoder)
  3029. encoder->enable(encoder);
  3030. if (HAS_PCH_CPT(dev))
  3031. cpt_verify_modeset(dev, intel_crtc->pipe);
  3032. /*
  3033. * There seems to be a race in PCH platform hw (at least on some
  3034. * outputs) where an enabled pipe still completes any pageflip right
  3035. * away (as if the pipe is off) instead of waiting for vblank. As soon
  3036. * as the first vblank happend, everything works as expected. Hence just
  3037. * wait for one vblank before returning to avoid strange things
  3038. * happening.
  3039. */
  3040. intel_wait_for_vblank(dev, intel_crtc->pipe);
  3041. }
  3042. /* IPS only exists on ULT machines and is tied to pipe A. */
  3043. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  3044. {
  3045. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  3046. }
  3047. static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
  3048. {
  3049. struct drm_device *dev = crtc->dev;
  3050. struct drm_i915_private *dev_priv = dev->dev_private;
  3051. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3052. int pipe = intel_crtc->pipe;
  3053. int plane = intel_crtc->plane;
  3054. intel_enable_primary_plane(dev_priv, plane, pipe);
  3055. intel_enable_planes(crtc);
  3056. intel_crtc_update_cursor(crtc, true);
  3057. hsw_enable_ips(intel_crtc);
  3058. mutex_lock(&dev->struct_mutex);
  3059. intel_update_fbc(dev);
  3060. mutex_unlock(&dev->struct_mutex);
  3061. }
  3062. static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
  3063. {
  3064. struct drm_device *dev = crtc->dev;
  3065. struct drm_i915_private *dev_priv = dev->dev_private;
  3066. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3067. int pipe = intel_crtc->pipe;
  3068. int plane = intel_crtc->plane;
  3069. intel_crtc_wait_for_pending_flips(crtc);
  3070. drm_vblank_off(dev, pipe);
  3071. /* FBC must be disabled before disabling the plane on HSW. */
  3072. if (dev_priv->fbc.plane == plane)
  3073. intel_disable_fbc(dev);
  3074. hsw_disable_ips(intel_crtc);
  3075. intel_crtc_update_cursor(crtc, false);
  3076. intel_disable_planes(crtc);
  3077. intel_disable_primary_plane(dev_priv, plane, pipe);
  3078. }
  3079. /*
  3080. * This implements the workaround described in the "notes" section of the mode
  3081. * set sequence documentation. When going from no pipes or single pipe to
  3082. * multiple pipes, and planes are enabled after the pipe, we need to wait at
  3083. * least 2 vblanks on the first pipe before enabling planes on the second pipe.
  3084. */
  3085. static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
  3086. {
  3087. struct drm_device *dev = crtc->base.dev;
  3088. struct intel_crtc *crtc_it, *other_active_crtc = NULL;
  3089. /* We want to get the other_active_crtc only if there's only 1 other
  3090. * active crtc. */
  3091. list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
  3092. if (!crtc_it->active || crtc_it == crtc)
  3093. continue;
  3094. if (other_active_crtc)
  3095. return;
  3096. other_active_crtc = crtc_it;
  3097. }
  3098. if (!other_active_crtc)
  3099. return;
  3100. intel_wait_for_vblank(dev, other_active_crtc->pipe);
  3101. intel_wait_for_vblank(dev, other_active_crtc->pipe);
  3102. }
  3103. static void haswell_crtc_enable(struct drm_crtc *crtc)
  3104. {
  3105. struct drm_device *dev = crtc->dev;
  3106. struct drm_i915_private *dev_priv = dev->dev_private;
  3107. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3108. struct intel_encoder *encoder;
  3109. int pipe = intel_crtc->pipe;
  3110. WARN_ON(!crtc->enabled);
  3111. if (intel_crtc->active)
  3112. return;
  3113. intel_crtc->active = true;
  3114. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  3115. if (intel_crtc->config.has_pch_encoder)
  3116. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3117. if (intel_crtc->config.has_pch_encoder)
  3118. dev_priv->display.fdi_link_train(crtc);
  3119. for_each_encoder_on_crtc(dev, crtc, encoder)
  3120. if (encoder->pre_enable)
  3121. encoder->pre_enable(encoder);
  3122. intel_ddi_enable_pipe_clock(intel_crtc);
  3123. ironlake_pfit_enable(intel_crtc);
  3124. /*
  3125. * On ILK+ LUT must be loaded before the pipe is running but with
  3126. * clocks enabled
  3127. */
  3128. intel_crtc_load_lut(crtc);
  3129. intel_ddi_set_pipe_settings(crtc);
  3130. intel_ddi_enable_transcoder_func(crtc);
  3131. intel_update_watermarks(crtc);
  3132. intel_enable_pipe(dev_priv, pipe,
  3133. intel_crtc->config.has_pch_encoder, false);
  3134. if (intel_crtc->config.has_pch_encoder)
  3135. lpt_pch_enable(crtc);
  3136. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3137. encoder->enable(encoder);
  3138. intel_opregion_notify_encoder(encoder, true);
  3139. }
  3140. /* If we change the relative order between pipe/planes enabling, we need
  3141. * to change the workaround. */
  3142. haswell_mode_set_planes_workaround(intel_crtc);
  3143. haswell_crtc_enable_planes(crtc);
  3144. /*
  3145. * There seems to be a race in PCH platform hw (at least on some
  3146. * outputs) where an enabled pipe still completes any pageflip right
  3147. * away (as if the pipe is off) instead of waiting for vblank. As soon
  3148. * as the first vblank happend, everything works as expected. Hence just
  3149. * wait for one vblank before returning to avoid strange things
  3150. * happening.
  3151. */
  3152. intel_wait_for_vblank(dev, intel_crtc->pipe);
  3153. }
  3154. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  3155. {
  3156. struct drm_device *dev = crtc->base.dev;
  3157. struct drm_i915_private *dev_priv = dev->dev_private;
  3158. int pipe = crtc->pipe;
  3159. /* To avoid upsetting the power well on haswell only disable the pfit if
  3160. * it's in use. The hw state code will make sure we get this right. */
  3161. if (crtc->config.pch_pfit.enabled) {
  3162. I915_WRITE(PF_CTL(pipe), 0);
  3163. I915_WRITE(PF_WIN_POS(pipe), 0);
  3164. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3165. }
  3166. }
  3167. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  3168. {
  3169. struct drm_device *dev = crtc->dev;
  3170. struct drm_i915_private *dev_priv = dev->dev_private;
  3171. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3172. struct intel_encoder *encoder;
  3173. int pipe = intel_crtc->pipe;
  3174. int plane = intel_crtc->plane;
  3175. u32 reg, temp;
  3176. if (!intel_crtc->active)
  3177. return;
  3178. for_each_encoder_on_crtc(dev, crtc, encoder)
  3179. encoder->disable(encoder);
  3180. intel_crtc_wait_for_pending_flips(crtc);
  3181. drm_vblank_off(dev, pipe);
  3182. if (dev_priv->fbc.plane == plane)
  3183. intel_disable_fbc(dev);
  3184. intel_crtc_update_cursor(crtc, false);
  3185. intel_disable_planes(crtc);
  3186. intel_disable_primary_plane(dev_priv, plane, pipe);
  3187. if (intel_crtc->config.has_pch_encoder)
  3188. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  3189. intel_disable_pipe(dev_priv, pipe);
  3190. ironlake_pfit_disable(intel_crtc);
  3191. for_each_encoder_on_crtc(dev, crtc, encoder)
  3192. if (encoder->post_disable)
  3193. encoder->post_disable(encoder);
  3194. if (intel_crtc->config.has_pch_encoder) {
  3195. ironlake_fdi_disable(crtc);
  3196. ironlake_disable_pch_transcoder(dev_priv, pipe);
  3197. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  3198. if (HAS_PCH_CPT(dev)) {
  3199. /* disable TRANS_DP_CTL */
  3200. reg = TRANS_DP_CTL(pipe);
  3201. temp = I915_READ(reg);
  3202. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  3203. TRANS_DP_PORT_SEL_MASK);
  3204. temp |= TRANS_DP_PORT_SEL_NONE;
  3205. I915_WRITE(reg, temp);
  3206. /* disable DPLL_SEL */
  3207. temp = I915_READ(PCH_DPLL_SEL);
  3208. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  3209. I915_WRITE(PCH_DPLL_SEL, temp);
  3210. }
  3211. /* disable PCH DPLL */
  3212. intel_disable_shared_dpll(intel_crtc);
  3213. ironlake_fdi_pll_disable(intel_crtc);
  3214. }
  3215. intel_crtc->active = false;
  3216. intel_update_watermarks(crtc);
  3217. mutex_lock(&dev->struct_mutex);
  3218. intel_update_fbc(dev);
  3219. mutex_unlock(&dev->struct_mutex);
  3220. }
  3221. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3222. {
  3223. struct drm_device *dev = crtc->dev;
  3224. struct drm_i915_private *dev_priv = dev->dev_private;
  3225. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3226. struct intel_encoder *encoder;
  3227. int pipe = intel_crtc->pipe;
  3228. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3229. if (!intel_crtc->active)
  3230. return;
  3231. haswell_crtc_disable_planes(crtc);
  3232. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3233. intel_opregion_notify_encoder(encoder, false);
  3234. encoder->disable(encoder);
  3235. }
  3236. if (intel_crtc->config.has_pch_encoder)
  3237. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3238. intel_disable_pipe(dev_priv, pipe);
  3239. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3240. ironlake_pfit_disable(intel_crtc);
  3241. intel_ddi_disable_pipe_clock(intel_crtc);
  3242. for_each_encoder_on_crtc(dev, crtc, encoder)
  3243. if (encoder->post_disable)
  3244. encoder->post_disable(encoder);
  3245. if (intel_crtc->config.has_pch_encoder) {
  3246. lpt_disable_pch_transcoder(dev_priv);
  3247. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3248. intel_ddi_fdi_disable(crtc);
  3249. }
  3250. intel_crtc->active = false;
  3251. intel_update_watermarks(crtc);
  3252. mutex_lock(&dev->struct_mutex);
  3253. intel_update_fbc(dev);
  3254. mutex_unlock(&dev->struct_mutex);
  3255. }
  3256. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3257. {
  3258. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3259. intel_put_shared_dpll(intel_crtc);
  3260. }
  3261. static void haswell_crtc_off(struct drm_crtc *crtc)
  3262. {
  3263. intel_ddi_put_crtc_pll(crtc);
  3264. }
  3265. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3266. {
  3267. if (!enable && intel_crtc->overlay) {
  3268. struct drm_device *dev = intel_crtc->base.dev;
  3269. struct drm_i915_private *dev_priv = dev->dev_private;
  3270. mutex_lock(&dev->struct_mutex);
  3271. dev_priv->mm.interruptible = false;
  3272. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3273. dev_priv->mm.interruptible = true;
  3274. mutex_unlock(&dev->struct_mutex);
  3275. }
  3276. /* Let userspace switch the overlay on again. In most cases userspace
  3277. * has to recompute where to put it anyway.
  3278. */
  3279. }
  3280. /**
  3281. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3282. * cursor plane briefly if not already running after enabling the display
  3283. * plane.
  3284. * This workaround avoids occasional blank screens when self refresh is
  3285. * enabled.
  3286. */
  3287. static void
  3288. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3289. {
  3290. u32 cntl = I915_READ(CURCNTR(pipe));
  3291. if ((cntl & CURSOR_MODE) == 0) {
  3292. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3293. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3294. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3295. intel_wait_for_vblank(dev_priv->dev, pipe);
  3296. I915_WRITE(CURCNTR(pipe), cntl);
  3297. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3298. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3299. }
  3300. }
  3301. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3302. {
  3303. struct drm_device *dev = crtc->base.dev;
  3304. struct drm_i915_private *dev_priv = dev->dev_private;
  3305. struct intel_crtc_config *pipe_config = &crtc->config;
  3306. if (!crtc->config.gmch_pfit.control)
  3307. return;
  3308. /*
  3309. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3310. * according to register description and PRM.
  3311. */
  3312. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3313. assert_pipe_disabled(dev_priv, crtc->pipe);
  3314. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3315. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3316. /* Border color in case we don't scale up to the full screen. Black by
  3317. * default, change to something else for debugging. */
  3318. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3319. }
  3320. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3321. {
  3322. struct drm_device *dev = crtc->dev;
  3323. struct drm_i915_private *dev_priv = dev->dev_private;
  3324. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3325. struct intel_encoder *encoder;
  3326. int pipe = intel_crtc->pipe;
  3327. int plane = intel_crtc->plane;
  3328. bool is_dsi;
  3329. WARN_ON(!crtc->enabled);
  3330. if (intel_crtc->active)
  3331. return;
  3332. intel_crtc->active = true;
  3333. for_each_encoder_on_crtc(dev, crtc, encoder)
  3334. if (encoder->pre_pll_enable)
  3335. encoder->pre_pll_enable(encoder);
  3336. is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
  3337. if (!is_dsi)
  3338. vlv_enable_pll(intel_crtc);
  3339. for_each_encoder_on_crtc(dev, crtc, encoder)
  3340. if (encoder->pre_enable)
  3341. encoder->pre_enable(encoder);
  3342. i9xx_pfit_enable(intel_crtc);
  3343. intel_crtc_load_lut(crtc);
  3344. intel_update_watermarks(crtc);
  3345. intel_enable_pipe(dev_priv, pipe, false, is_dsi);
  3346. intel_enable_primary_plane(dev_priv, plane, pipe);
  3347. intel_enable_planes(crtc);
  3348. intel_crtc_update_cursor(crtc, true);
  3349. intel_update_fbc(dev);
  3350. for_each_encoder_on_crtc(dev, crtc, encoder)
  3351. encoder->enable(encoder);
  3352. }
  3353. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3354. {
  3355. struct drm_device *dev = crtc->dev;
  3356. struct drm_i915_private *dev_priv = dev->dev_private;
  3357. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3358. struct intel_encoder *encoder;
  3359. int pipe = intel_crtc->pipe;
  3360. int plane = intel_crtc->plane;
  3361. WARN_ON(!crtc->enabled);
  3362. if (intel_crtc->active)
  3363. return;
  3364. intel_crtc->active = true;
  3365. for_each_encoder_on_crtc(dev, crtc, encoder)
  3366. if (encoder->pre_enable)
  3367. encoder->pre_enable(encoder);
  3368. i9xx_enable_pll(intel_crtc);
  3369. i9xx_pfit_enable(intel_crtc);
  3370. intel_crtc_load_lut(crtc);
  3371. intel_update_watermarks(crtc);
  3372. intel_enable_pipe(dev_priv, pipe, false, false);
  3373. intel_enable_primary_plane(dev_priv, plane, pipe);
  3374. intel_enable_planes(crtc);
  3375. /* The fixup needs to happen before cursor is enabled */
  3376. if (IS_G4X(dev))
  3377. g4x_fixup_plane(dev_priv, pipe);
  3378. intel_crtc_update_cursor(crtc, true);
  3379. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3380. intel_crtc_dpms_overlay(intel_crtc, true);
  3381. intel_update_fbc(dev);
  3382. for_each_encoder_on_crtc(dev, crtc, encoder)
  3383. encoder->enable(encoder);
  3384. }
  3385. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3386. {
  3387. struct drm_device *dev = crtc->base.dev;
  3388. struct drm_i915_private *dev_priv = dev->dev_private;
  3389. if (!crtc->config.gmch_pfit.control)
  3390. return;
  3391. assert_pipe_disabled(dev_priv, crtc->pipe);
  3392. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3393. I915_READ(PFIT_CONTROL));
  3394. I915_WRITE(PFIT_CONTROL, 0);
  3395. }
  3396. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3397. {
  3398. struct drm_device *dev = crtc->dev;
  3399. struct drm_i915_private *dev_priv = dev->dev_private;
  3400. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3401. struct intel_encoder *encoder;
  3402. int pipe = intel_crtc->pipe;
  3403. int plane = intel_crtc->plane;
  3404. if (!intel_crtc->active)
  3405. return;
  3406. for_each_encoder_on_crtc(dev, crtc, encoder)
  3407. encoder->disable(encoder);
  3408. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3409. intel_crtc_wait_for_pending_flips(crtc);
  3410. drm_vblank_off(dev, pipe);
  3411. if (dev_priv->fbc.plane == plane)
  3412. intel_disable_fbc(dev);
  3413. intel_crtc_dpms_overlay(intel_crtc, false);
  3414. intel_crtc_update_cursor(crtc, false);
  3415. intel_disable_planes(crtc);
  3416. intel_disable_primary_plane(dev_priv, plane, pipe);
  3417. intel_disable_pipe(dev_priv, pipe);
  3418. i9xx_pfit_disable(intel_crtc);
  3419. for_each_encoder_on_crtc(dev, crtc, encoder)
  3420. if (encoder->post_disable)
  3421. encoder->post_disable(encoder);
  3422. if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  3423. vlv_disable_pll(dev_priv, pipe);
  3424. else if (!IS_VALLEYVIEW(dev))
  3425. i9xx_disable_pll(dev_priv, pipe);
  3426. intel_crtc->active = false;
  3427. intel_update_watermarks(crtc);
  3428. intel_update_fbc(dev);
  3429. }
  3430. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3431. {
  3432. }
  3433. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3434. bool enabled)
  3435. {
  3436. struct drm_device *dev = crtc->dev;
  3437. struct drm_i915_master_private *master_priv;
  3438. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3439. int pipe = intel_crtc->pipe;
  3440. if (!dev->primary->master)
  3441. return;
  3442. master_priv = dev->primary->master->driver_priv;
  3443. if (!master_priv->sarea_priv)
  3444. return;
  3445. switch (pipe) {
  3446. case 0:
  3447. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3448. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3449. break;
  3450. case 1:
  3451. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3452. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3453. break;
  3454. default:
  3455. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3456. break;
  3457. }
  3458. }
  3459. /**
  3460. * Sets the power management mode of the pipe and plane.
  3461. */
  3462. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3463. {
  3464. struct drm_device *dev = crtc->dev;
  3465. struct drm_i915_private *dev_priv = dev->dev_private;
  3466. struct intel_encoder *intel_encoder;
  3467. bool enable = false;
  3468. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3469. enable |= intel_encoder->connectors_active;
  3470. if (enable)
  3471. dev_priv->display.crtc_enable(crtc);
  3472. else
  3473. dev_priv->display.crtc_disable(crtc);
  3474. intel_crtc_update_sarea(crtc, enable);
  3475. }
  3476. static void intel_crtc_disable(struct drm_crtc *crtc)
  3477. {
  3478. struct drm_device *dev = crtc->dev;
  3479. struct drm_connector *connector;
  3480. struct drm_i915_private *dev_priv = dev->dev_private;
  3481. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3482. /* crtc should still be enabled when we disable it. */
  3483. WARN_ON(!crtc->enabled);
  3484. dev_priv->display.crtc_disable(crtc);
  3485. intel_crtc->eld_vld = false;
  3486. intel_crtc_update_sarea(crtc, false);
  3487. dev_priv->display.off(crtc);
  3488. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3489. assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
  3490. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3491. if (crtc->fb) {
  3492. mutex_lock(&dev->struct_mutex);
  3493. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3494. mutex_unlock(&dev->struct_mutex);
  3495. crtc->fb = NULL;
  3496. }
  3497. /* Update computed state. */
  3498. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3499. if (!connector->encoder || !connector->encoder->crtc)
  3500. continue;
  3501. if (connector->encoder->crtc != crtc)
  3502. continue;
  3503. connector->dpms = DRM_MODE_DPMS_OFF;
  3504. to_intel_encoder(connector->encoder)->connectors_active = false;
  3505. }
  3506. }
  3507. void intel_encoder_destroy(struct drm_encoder *encoder)
  3508. {
  3509. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3510. drm_encoder_cleanup(encoder);
  3511. kfree(intel_encoder);
  3512. }
  3513. /* Simple dpms helper for encoders with just one connector, no cloning and only
  3514. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3515. * state of the entire output pipe. */
  3516. static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3517. {
  3518. if (mode == DRM_MODE_DPMS_ON) {
  3519. encoder->connectors_active = true;
  3520. intel_crtc_update_dpms(encoder->base.crtc);
  3521. } else {
  3522. encoder->connectors_active = false;
  3523. intel_crtc_update_dpms(encoder->base.crtc);
  3524. }
  3525. }
  3526. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3527. * internal consistency). */
  3528. static void intel_connector_check_state(struct intel_connector *connector)
  3529. {
  3530. if (connector->get_hw_state(connector)) {
  3531. struct intel_encoder *encoder = connector->encoder;
  3532. struct drm_crtc *crtc;
  3533. bool encoder_enabled;
  3534. enum pipe pipe;
  3535. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3536. connector->base.base.id,
  3537. drm_get_connector_name(&connector->base));
  3538. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3539. "wrong connector dpms state\n");
  3540. WARN(connector->base.encoder != &encoder->base,
  3541. "active connector not linked to encoder\n");
  3542. WARN(!encoder->connectors_active,
  3543. "encoder->connectors_active not set\n");
  3544. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3545. WARN(!encoder_enabled, "encoder not enabled\n");
  3546. if (WARN_ON(!encoder->base.crtc))
  3547. return;
  3548. crtc = encoder->base.crtc;
  3549. WARN(!crtc->enabled, "crtc not enabled\n");
  3550. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3551. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3552. "encoder active on the wrong pipe\n");
  3553. }
  3554. }
  3555. /* Even simpler default implementation, if there's really no special case to
  3556. * consider. */
  3557. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3558. {
  3559. /* All the simple cases only support two dpms states. */
  3560. if (mode != DRM_MODE_DPMS_ON)
  3561. mode = DRM_MODE_DPMS_OFF;
  3562. if (mode == connector->dpms)
  3563. return;
  3564. connector->dpms = mode;
  3565. /* Only need to change hw state when actually enabled */
  3566. if (connector->encoder)
  3567. intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
  3568. intel_modeset_check_state(connector->dev);
  3569. }
  3570. /* Simple connector->get_hw_state implementation for encoders that support only
  3571. * one connector and no cloning and hence the encoder state determines the state
  3572. * of the connector. */
  3573. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3574. {
  3575. enum pipe pipe = 0;
  3576. struct intel_encoder *encoder = connector->encoder;
  3577. return encoder->get_hw_state(encoder, &pipe);
  3578. }
  3579. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3580. struct intel_crtc_config *pipe_config)
  3581. {
  3582. struct drm_i915_private *dev_priv = dev->dev_private;
  3583. struct intel_crtc *pipe_B_crtc =
  3584. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3585. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3586. pipe_name(pipe), pipe_config->fdi_lanes);
  3587. if (pipe_config->fdi_lanes > 4) {
  3588. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3589. pipe_name(pipe), pipe_config->fdi_lanes);
  3590. return false;
  3591. }
  3592. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  3593. if (pipe_config->fdi_lanes > 2) {
  3594. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3595. pipe_config->fdi_lanes);
  3596. return false;
  3597. } else {
  3598. return true;
  3599. }
  3600. }
  3601. if (INTEL_INFO(dev)->num_pipes == 2)
  3602. return true;
  3603. /* Ivybridge 3 pipe is really complicated */
  3604. switch (pipe) {
  3605. case PIPE_A:
  3606. return true;
  3607. case PIPE_B:
  3608. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3609. pipe_config->fdi_lanes > 2) {
  3610. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3611. pipe_name(pipe), pipe_config->fdi_lanes);
  3612. return false;
  3613. }
  3614. return true;
  3615. case PIPE_C:
  3616. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3617. pipe_B_crtc->config.fdi_lanes <= 2) {
  3618. if (pipe_config->fdi_lanes > 2) {
  3619. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3620. pipe_name(pipe), pipe_config->fdi_lanes);
  3621. return false;
  3622. }
  3623. } else {
  3624. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3625. return false;
  3626. }
  3627. return true;
  3628. default:
  3629. BUG();
  3630. }
  3631. }
  3632. #define RETRY 1
  3633. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3634. struct intel_crtc_config *pipe_config)
  3635. {
  3636. struct drm_device *dev = intel_crtc->base.dev;
  3637. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3638. int lane, link_bw, fdi_dotclock;
  3639. bool setup_ok, needs_recompute = false;
  3640. retry:
  3641. /* FDI is a binary signal running at ~2.7GHz, encoding
  3642. * each output octet as 10 bits. The actual frequency
  3643. * is stored as a divider into a 100MHz clock, and the
  3644. * mode pixel clock is stored in units of 1KHz.
  3645. * Hence the bw of each lane in terms of the mode signal
  3646. * is:
  3647. */
  3648. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3649. fdi_dotclock = adjusted_mode->crtc_clock;
  3650. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3651. pipe_config->pipe_bpp);
  3652. pipe_config->fdi_lanes = lane;
  3653. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3654. link_bw, &pipe_config->fdi_m_n);
  3655. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3656. intel_crtc->pipe, pipe_config);
  3657. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3658. pipe_config->pipe_bpp -= 2*3;
  3659. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3660. pipe_config->pipe_bpp);
  3661. needs_recompute = true;
  3662. pipe_config->bw_constrained = true;
  3663. goto retry;
  3664. }
  3665. if (needs_recompute)
  3666. return RETRY;
  3667. return setup_ok ? 0 : -EINVAL;
  3668. }
  3669. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3670. struct intel_crtc_config *pipe_config)
  3671. {
  3672. pipe_config->ips_enabled = i915_enable_ips &&
  3673. hsw_crtc_supports_ips(crtc) &&
  3674. pipe_config->pipe_bpp <= 24;
  3675. }
  3676. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3677. struct intel_crtc_config *pipe_config)
  3678. {
  3679. struct drm_device *dev = crtc->base.dev;
  3680. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3681. /* FIXME should check pixel clock limits on all platforms */
  3682. if (INTEL_INFO(dev)->gen < 4) {
  3683. struct drm_i915_private *dev_priv = dev->dev_private;
  3684. int clock_limit =
  3685. dev_priv->display.get_display_clock_speed(dev);
  3686. /*
  3687. * Enable pixel doubling when the dot clock
  3688. * is > 90% of the (display) core speed.
  3689. *
  3690. * GDG double wide on either pipe,
  3691. * otherwise pipe A only.
  3692. */
  3693. if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
  3694. adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
  3695. clock_limit *= 2;
  3696. pipe_config->double_wide = true;
  3697. }
  3698. if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
  3699. return -EINVAL;
  3700. }
  3701. /*
  3702. * Pipe horizontal size must be even in:
  3703. * - DVO ganged mode
  3704. * - LVDS dual channel mode
  3705. * - Double wide pipe
  3706. */
  3707. if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3708. intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
  3709. pipe_config->pipe_src_w &= ~1;
  3710. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3711. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3712. */
  3713. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3714. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3715. return -EINVAL;
  3716. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3717. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3718. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3719. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3720. * for lvds. */
  3721. pipe_config->pipe_bpp = 8*3;
  3722. }
  3723. if (HAS_IPS(dev))
  3724. hsw_compute_ips_config(crtc, pipe_config);
  3725. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3726. * clock survives for now. */
  3727. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3728. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3729. if (pipe_config->has_pch_encoder)
  3730. return ironlake_fdi_compute_config(crtc, pipe_config);
  3731. return 0;
  3732. }
  3733. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3734. {
  3735. return 400000; /* FIXME */
  3736. }
  3737. static int i945_get_display_clock_speed(struct drm_device *dev)
  3738. {
  3739. return 400000;
  3740. }
  3741. static int i915_get_display_clock_speed(struct drm_device *dev)
  3742. {
  3743. return 333000;
  3744. }
  3745. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3746. {
  3747. return 200000;
  3748. }
  3749. static int pnv_get_display_clock_speed(struct drm_device *dev)
  3750. {
  3751. u16 gcfgc = 0;
  3752. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3753. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3754. case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  3755. return 267000;
  3756. case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  3757. return 333000;
  3758. case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  3759. return 444000;
  3760. case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  3761. return 200000;
  3762. default:
  3763. DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  3764. case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  3765. return 133000;
  3766. case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  3767. return 167000;
  3768. }
  3769. }
  3770. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3771. {
  3772. u16 gcfgc = 0;
  3773. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3774. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3775. return 133000;
  3776. else {
  3777. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3778. case GC_DISPLAY_CLOCK_333_MHZ:
  3779. return 333000;
  3780. default:
  3781. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3782. return 190000;
  3783. }
  3784. }
  3785. }
  3786. static int i865_get_display_clock_speed(struct drm_device *dev)
  3787. {
  3788. return 266000;
  3789. }
  3790. static int i855_get_display_clock_speed(struct drm_device *dev)
  3791. {
  3792. u16 hpllcc = 0;
  3793. /* Assume that the hardware is in the high speed state. This
  3794. * should be the default.
  3795. */
  3796. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3797. case GC_CLOCK_133_200:
  3798. case GC_CLOCK_100_200:
  3799. return 200000;
  3800. case GC_CLOCK_166_250:
  3801. return 250000;
  3802. case GC_CLOCK_100_133:
  3803. return 133000;
  3804. }
  3805. /* Shouldn't happen */
  3806. return 0;
  3807. }
  3808. static int i830_get_display_clock_speed(struct drm_device *dev)
  3809. {
  3810. return 133000;
  3811. }
  3812. static void
  3813. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3814. {
  3815. while (*num > DATA_LINK_M_N_MASK ||
  3816. *den > DATA_LINK_M_N_MASK) {
  3817. *num >>= 1;
  3818. *den >>= 1;
  3819. }
  3820. }
  3821. static void compute_m_n(unsigned int m, unsigned int n,
  3822. uint32_t *ret_m, uint32_t *ret_n)
  3823. {
  3824. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3825. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3826. intel_reduce_m_n_ratio(ret_m, ret_n);
  3827. }
  3828. void
  3829. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3830. int pixel_clock, int link_clock,
  3831. struct intel_link_m_n *m_n)
  3832. {
  3833. m_n->tu = 64;
  3834. compute_m_n(bits_per_pixel * pixel_clock,
  3835. link_clock * nlanes * 8,
  3836. &m_n->gmch_m, &m_n->gmch_n);
  3837. compute_m_n(pixel_clock, link_clock,
  3838. &m_n->link_m, &m_n->link_n);
  3839. }
  3840. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3841. {
  3842. if (i915_panel_use_ssc >= 0)
  3843. return i915_panel_use_ssc != 0;
  3844. return dev_priv->vbt.lvds_use_ssc
  3845. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3846. }
  3847. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3848. {
  3849. struct drm_device *dev = crtc->dev;
  3850. struct drm_i915_private *dev_priv = dev->dev_private;
  3851. int refclk;
  3852. if (IS_VALLEYVIEW(dev)) {
  3853. refclk = 100000;
  3854. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3855. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3856. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3857. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3858. refclk / 1000);
  3859. } else if (!IS_GEN2(dev)) {
  3860. refclk = 96000;
  3861. } else {
  3862. refclk = 48000;
  3863. }
  3864. return refclk;
  3865. }
  3866. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3867. {
  3868. return (1 << dpll->n) << 16 | dpll->m2;
  3869. }
  3870. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3871. {
  3872. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3873. }
  3874. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3875. intel_clock_t *reduced_clock)
  3876. {
  3877. struct drm_device *dev = crtc->base.dev;
  3878. struct drm_i915_private *dev_priv = dev->dev_private;
  3879. int pipe = crtc->pipe;
  3880. u32 fp, fp2 = 0;
  3881. if (IS_PINEVIEW(dev)) {
  3882. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3883. if (reduced_clock)
  3884. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3885. } else {
  3886. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3887. if (reduced_clock)
  3888. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3889. }
  3890. I915_WRITE(FP0(pipe), fp);
  3891. crtc->config.dpll_hw_state.fp0 = fp;
  3892. crtc->lowfreq_avail = false;
  3893. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3894. reduced_clock && i915_powersave) {
  3895. I915_WRITE(FP1(pipe), fp2);
  3896. crtc->config.dpll_hw_state.fp1 = fp2;
  3897. crtc->lowfreq_avail = true;
  3898. } else {
  3899. I915_WRITE(FP1(pipe), fp);
  3900. crtc->config.dpll_hw_state.fp1 = fp;
  3901. }
  3902. }
  3903. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
  3904. pipe)
  3905. {
  3906. u32 reg_val;
  3907. /*
  3908. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3909. * and set it to a reasonable value instead.
  3910. */
  3911. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3912. reg_val &= 0xffffff00;
  3913. reg_val |= 0x00000030;
  3914. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3915. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3916. reg_val &= 0x8cffffff;
  3917. reg_val = 0x8c000000;
  3918. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3919. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3920. reg_val &= 0xffffff00;
  3921. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3922. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3923. reg_val &= 0x00ffffff;
  3924. reg_val |= 0xb0000000;
  3925. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3926. }
  3927. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3928. struct intel_link_m_n *m_n)
  3929. {
  3930. struct drm_device *dev = crtc->base.dev;
  3931. struct drm_i915_private *dev_priv = dev->dev_private;
  3932. int pipe = crtc->pipe;
  3933. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3934. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3935. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3936. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3937. }
  3938. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3939. struct intel_link_m_n *m_n)
  3940. {
  3941. struct drm_device *dev = crtc->base.dev;
  3942. struct drm_i915_private *dev_priv = dev->dev_private;
  3943. int pipe = crtc->pipe;
  3944. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3945. if (INTEL_INFO(dev)->gen >= 5) {
  3946. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3947. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3948. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3949. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3950. } else {
  3951. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3952. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3953. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3954. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3955. }
  3956. }
  3957. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3958. {
  3959. if (crtc->config.has_pch_encoder)
  3960. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3961. else
  3962. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3963. }
  3964. static void vlv_update_pll(struct intel_crtc *crtc)
  3965. {
  3966. struct drm_device *dev = crtc->base.dev;
  3967. struct drm_i915_private *dev_priv = dev->dev_private;
  3968. int pipe = crtc->pipe;
  3969. u32 dpll, mdiv;
  3970. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3971. u32 coreclk, reg_val, dpll_md;
  3972. mutex_lock(&dev_priv->dpio_lock);
  3973. bestn = crtc->config.dpll.n;
  3974. bestm1 = crtc->config.dpll.m1;
  3975. bestm2 = crtc->config.dpll.m2;
  3976. bestp1 = crtc->config.dpll.p1;
  3977. bestp2 = crtc->config.dpll.p2;
  3978. /* See eDP HDMI DPIO driver vbios notes doc */
  3979. /* PLL B needs special handling */
  3980. if (pipe)
  3981. vlv_pllb_recal_opamp(dev_priv, pipe);
  3982. /* Set up Tx target for periodic Rcomp update */
  3983. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
  3984. /* Disable target IRef on PLL */
  3985. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
  3986. reg_val &= 0x00ffffff;
  3987. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
  3988. /* Disable fast lock */
  3989. vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
  3990. /* Set idtafcrecal before PLL is enabled */
  3991. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3992. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3993. mdiv |= ((bestn << DPIO_N_SHIFT));
  3994. mdiv |= (1 << DPIO_K_SHIFT);
  3995. /*
  3996. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3997. * but we don't support that).
  3998. * Note: don't use the DAC post divider as it seems unstable.
  3999. */
  4000. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  4001. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  4002. mdiv |= DPIO_ENABLE_CALIBRATION;
  4003. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  4004. /* Set HBR and RBR LPF coefficients */
  4005. if (crtc->config.port_clock == 162000 ||
  4006. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  4007. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  4008. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  4009. 0x009f0003);
  4010. else
  4011. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  4012. 0x00d0000f);
  4013. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  4014. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  4015. /* Use SSC source */
  4016. if (!pipe)
  4017. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  4018. 0x0df40000);
  4019. else
  4020. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  4021. 0x0df70000);
  4022. } else { /* HDMI or VGA */
  4023. /* Use bend source */
  4024. if (!pipe)
  4025. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  4026. 0x0df70000);
  4027. else
  4028. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  4029. 0x0df40000);
  4030. }
  4031. coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
  4032. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  4033. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  4034. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  4035. coreclk |= 0x01000000;
  4036. vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
  4037. vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
  4038. /* Enable DPIO clock input */
  4039. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  4040. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  4041. /* We should never disable this, set it here for state tracking */
  4042. if (pipe == PIPE_B)
  4043. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  4044. dpll |= DPLL_VCO_ENABLE;
  4045. crtc->config.dpll_hw_state.dpll = dpll;
  4046. dpll_md = (crtc->config.pixel_multiplier - 1)
  4047. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4048. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  4049. if (crtc->config.has_dp_encoder)
  4050. intel_dp_set_m_n(crtc);
  4051. mutex_unlock(&dev_priv->dpio_lock);
  4052. }
  4053. static void i9xx_update_pll(struct intel_crtc *crtc,
  4054. intel_clock_t *reduced_clock,
  4055. int num_connectors)
  4056. {
  4057. struct drm_device *dev = crtc->base.dev;
  4058. struct drm_i915_private *dev_priv = dev->dev_private;
  4059. u32 dpll;
  4060. bool is_sdvo;
  4061. struct dpll *clock = &crtc->config.dpll;
  4062. i9xx_update_pll_dividers(crtc, reduced_clock);
  4063. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  4064. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  4065. dpll = DPLL_VGA_MODE_DIS;
  4066. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  4067. dpll |= DPLLB_MODE_LVDS;
  4068. else
  4069. dpll |= DPLLB_MODE_DAC_SERIAL;
  4070. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4071. dpll |= (crtc->config.pixel_multiplier - 1)
  4072. << SDVO_MULTIPLIER_SHIFT_HIRES;
  4073. }
  4074. if (is_sdvo)
  4075. dpll |= DPLL_SDVO_HIGH_SPEED;
  4076. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  4077. dpll |= DPLL_SDVO_HIGH_SPEED;
  4078. /* compute bitmask from p1 value */
  4079. if (IS_PINEVIEW(dev))
  4080. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  4081. else {
  4082. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4083. if (IS_G4X(dev) && reduced_clock)
  4084. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4085. }
  4086. switch (clock->p2) {
  4087. case 5:
  4088. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4089. break;
  4090. case 7:
  4091. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4092. break;
  4093. case 10:
  4094. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4095. break;
  4096. case 14:
  4097. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4098. break;
  4099. }
  4100. if (INTEL_INFO(dev)->gen >= 4)
  4101. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  4102. if (crtc->config.sdvo_tv_clock)
  4103. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4104. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  4105. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4106. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4107. else
  4108. dpll |= PLL_REF_INPUT_DREFCLK;
  4109. dpll |= DPLL_VCO_ENABLE;
  4110. crtc->config.dpll_hw_state.dpll = dpll;
  4111. if (INTEL_INFO(dev)->gen >= 4) {
  4112. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  4113. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4114. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  4115. }
  4116. if (crtc->config.has_dp_encoder)
  4117. intel_dp_set_m_n(crtc);
  4118. }
  4119. static void i8xx_update_pll(struct intel_crtc *crtc,
  4120. intel_clock_t *reduced_clock,
  4121. int num_connectors)
  4122. {
  4123. struct drm_device *dev = crtc->base.dev;
  4124. struct drm_i915_private *dev_priv = dev->dev_private;
  4125. u32 dpll;
  4126. struct dpll *clock = &crtc->config.dpll;
  4127. i9xx_update_pll_dividers(crtc, reduced_clock);
  4128. dpll = DPLL_VGA_MODE_DIS;
  4129. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  4130. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4131. } else {
  4132. if (clock->p1 == 2)
  4133. dpll |= PLL_P1_DIVIDE_BY_TWO;
  4134. else
  4135. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4136. if (clock->p2 == 4)
  4137. dpll |= PLL_P2_DIVIDE_BY_4;
  4138. }
  4139. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
  4140. dpll |= DPLL_DVO_2X_MODE;
  4141. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  4142. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4143. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4144. else
  4145. dpll |= PLL_REF_INPUT_DREFCLK;
  4146. dpll |= DPLL_VCO_ENABLE;
  4147. crtc->config.dpll_hw_state.dpll = dpll;
  4148. }
  4149. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  4150. {
  4151. struct drm_device *dev = intel_crtc->base.dev;
  4152. struct drm_i915_private *dev_priv = dev->dev_private;
  4153. enum pipe pipe = intel_crtc->pipe;
  4154. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4155. struct drm_display_mode *adjusted_mode =
  4156. &intel_crtc->config.adjusted_mode;
  4157. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  4158. /* We need to be careful not to changed the adjusted mode, for otherwise
  4159. * the hw state checker will get angry at the mismatch. */
  4160. crtc_vtotal = adjusted_mode->crtc_vtotal;
  4161. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  4162. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4163. /* the chip adds 2 halflines automatically */
  4164. crtc_vtotal -= 1;
  4165. crtc_vblank_end -= 1;
  4166. vsyncshift = adjusted_mode->crtc_hsync_start
  4167. - adjusted_mode->crtc_htotal / 2;
  4168. } else {
  4169. vsyncshift = 0;
  4170. }
  4171. if (INTEL_INFO(dev)->gen > 3)
  4172. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  4173. I915_WRITE(HTOTAL(cpu_transcoder),
  4174. (adjusted_mode->crtc_hdisplay - 1) |
  4175. ((adjusted_mode->crtc_htotal - 1) << 16));
  4176. I915_WRITE(HBLANK(cpu_transcoder),
  4177. (adjusted_mode->crtc_hblank_start - 1) |
  4178. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4179. I915_WRITE(HSYNC(cpu_transcoder),
  4180. (adjusted_mode->crtc_hsync_start - 1) |
  4181. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4182. I915_WRITE(VTOTAL(cpu_transcoder),
  4183. (adjusted_mode->crtc_vdisplay - 1) |
  4184. ((crtc_vtotal - 1) << 16));
  4185. I915_WRITE(VBLANK(cpu_transcoder),
  4186. (adjusted_mode->crtc_vblank_start - 1) |
  4187. ((crtc_vblank_end - 1) << 16));
  4188. I915_WRITE(VSYNC(cpu_transcoder),
  4189. (adjusted_mode->crtc_vsync_start - 1) |
  4190. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4191. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  4192. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  4193. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  4194. * bits. */
  4195. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  4196. (pipe == PIPE_B || pipe == PIPE_C))
  4197. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  4198. /* pipesrc controls the size that is scaled from, which should
  4199. * always be the user's requested size.
  4200. */
  4201. I915_WRITE(PIPESRC(pipe),
  4202. ((intel_crtc->config.pipe_src_w - 1) << 16) |
  4203. (intel_crtc->config.pipe_src_h - 1));
  4204. }
  4205. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  4206. struct intel_crtc_config *pipe_config)
  4207. {
  4208. struct drm_device *dev = crtc->base.dev;
  4209. struct drm_i915_private *dev_priv = dev->dev_private;
  4210. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  4211. uint32_t tmp;
  4212. tmp = I915_READ(HTOTAL(cpu_transcoder));
  4213. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  4214. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  4215. tmp = I915_READ(HBLANK(cpu_transcoder));
  4216. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  4217. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  4218. tmp = I915_READ(HSYNC(cpu_transcoder));
  4219. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  4220. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  4221. tmp = I915_READ(VTOTAL(cpu_transcoder));
  4222. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  4223. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4224. tmp = I915_READ(VBLANK(cpu_transcoder));
  4225. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4226. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4227. tmp = I915_READ(VSYNC(cpu_transcoder));
  4228. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4229. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4230. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4231. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4232. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4233. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4234. }
  4235. tmp = I915_READ(PIPESRC(crtc->pipe));
  4236. pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
  4237. pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
  4238. pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
  4239. pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
  4240. }
  4241. static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
  4242. struct intel_crtc_config *pipe_config)
  4243. {
  4244. struct drm_crtc *crtc = &intel_crtc->base;
  4245. crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
  4246. crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
  4247. crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
  4248. crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
  4249. crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
  4250. crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
  4251. crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
  4252. crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
  4253. crtc->mode.flags = pipe_config->adjusted_mode.flags;
  4254. crtc->mode.clock = pipe_config->adjusted_mode.crtc_clock;
  4255. crtc->mode.flags |= pipe_config->adjusted_mode.flags;
  4256. }
  4257. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4258. {
  4259. struct drm_device *dev = intel_crtc->base.dev;
  4260. struct drm_i915_private *dev_priv = dev->dev_private;
  4261. uint32_t pipeconf;
  4262. pipeconf = 0;
  4263. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  4264. I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
  4265. pipeconf |= PIPECONF_ENABLE;
  4266. if (intel_crtc->config.double_wide)
  4267. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4268. /* only g4x and later have fancy bpc/dither controls */
  4269. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4270. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4271. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4272. pipeconf |= PIPECONF_DITHER_EN |
  4273. PIPECONF_DITHER_TYPE_SP;
  4274. switch (intel_crtc->config.pipe_bpp) {
  4275. case 18:
  4276. pipeconf |= PIPECONF_6BPC;
  4277. break;
  4278. case 24:
  4279. pipeconf |= PIPECONF_8BPC;
  4280. break;
  4281. case 30:
  4282. pipeconf |= PIPECONF_10BPC;
  4283. break;
  4284. default:
  4285. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4286. BUG();
  4287. }
  4288. }
  4289. if (HAS_PIPE_CXSR(dev)) {
  4290. if (intel_crtc->lowfreq_avail) {
  4291. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4292. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4293. } else {
  4294. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4295. }
  4296. }
  4297. if (!IS_GEN2(dev) &&
  4298. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4299. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4300. else
  4301. pipeconf |= PIPECONF_PROGRESSIVE;
  4302. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4303. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4304. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4305. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4306. }
  4307. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4308. int x, int y,
  4309. struct drm_framebuffer *fb)
  4310. {
  4311. struct drm_device *dev = crtc->dev;
  4312. struct drm_i915_private *dev_priv = dev->dev_private;
  4313. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4314. int pipe = intel_crtc->pipe;
  4315. int plane = intel_crtc->plane;
  4316. int refclk, num_connectors = 0;
  4317. intel_clock_t clock, reduced_clock;
  4318. u32 dspcntr;
  4319. bool ok, has_reduced_clock = false;
  4320. bool is_lvds = false, is_dsi = false;
  4321. struct intel_encoder *encoder;
  4322. const intel_limit_t *limit;
  4323. int ret;
  4324. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4325. switch (encoder->type) {
  4326. case INTEL_OUTPUT_LVDS:
  4327. is_lvds = true;
  4328. break;
  4329. case INTEL_OUTPUT_DSI:
  4330. is_dsi = true;
  4331. break;
  4332. }
  4333. num_connectors++;
  4334. }
  4335. if (is_dsi)
  4336. goto skip_dpll;
  4337. if (!intel_crtc->config.clock_set) {
  4338. refclk = i9xx_get_refclk(crtc, num_connectors);
  4339. /*
  4340. * Returns a set of divisors for the desired target clock with
  4341. * the given refclk, or FALSE. The returned values represent
  4342. * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
  4343. * 2) / p1 / p2.
  4344. */
  4345. limit = intel_limit(crtc, refclk);
  4346. ok = dev_priv->display.find_dpll(limit, crtc,
  4347. intel_crtc->config.port_clock,
  4348. refclk, NULL, &clock);
  4349. if (!ok) {
  4350. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4351. return -EINVAL;
  4352. }
  4353. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4354. /*
  4355. * Ensure we match the reduced clock's P to the target
  4356. * clock. If the clocks don't match, we can't switch
  4357. * the display clock by using the FP0/FP1. In such case
  4358. * we will disable the LVDS downclock feature.
  4359. */
  4360. has_reduced_clock =
  4361. dev_priv->display.find_dpll(limit, crtc,
  4362. dev_priv->lvds_downclock,
  4363. refclk, &clock,
  4364. &reduced_clock);
  4365. }
  4366. /* Compat-code for transition, will disappear. */
  4367. intel_crtc->config.dpll.n = clock.n;
  4368. intel_crtc->config.dpll.m1 = clock.m1;
  4369. intel_crtc->config.dpll.m2 = clock.m2;
  4370. intel_crtc->config.dpll.p1 = clock.p1;
  4371. intel_crtc->config.dpll.p2 = clock.p2;
  4372. }
  4373. if (IS_GEN2(dev)) {
  4374. i8xx_update_pll(intel_crtc,
  4375. has_reduced_clock ? &reduced_clock : NULL,
  4376. num_connectors);
  4377. } else if (IS_VALLEYVIEW(dev)) {
  4378. vlv_update_pll(intel_crtc);
  4379. } else {
  4380. i9xx_update_pll(intel_crtc,
  4381. has_reduced_clock ? &reduced_clock : NULL,
  4382. num_connectors);
  4383. }
  4384. skip_dpll:
  4385. /* Set up the display plane register */
  4386. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4387. if (!IS_VALLEYVIEW(dev)) {
  4388. if (pipe == 0)
  4389. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4390. else
  4391. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4392. }
  4393. intel_set_pipe_timings(intel_crtc);
  4394. /* pipesrc and dspsize control the size that is scaled from,
  4395. * which should always be the user's requested size.
  4396. */
  4397. I915_WRITE(DSPSIZE(plane),
  4398. ((intel_crtc->config.pipe_src_h - 1) << 16) |
  4399. (intel_crtc->config.pipe_src_w - 1));
  4400. I915_WRITE(DSPPOS(plane), 0);
  4401. i9xx_set_pipeconf(intel_crtc);
  4402. I915_WRITE(DSPCNTR(plane), dspcntr);
  4403. POSTING_READ(DSPCNTR(plane));
  4404. ret = intel_pipe_set_base(crtc, x, y, fb);
  4405. return ret;
  4406. }
  4407. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4408. struct intel_crtc_config *pipe_config)
  4409. {
  4410. struct drm_device *dev = crtc->base.dev;
  4411. struct drm_i915_private *dev_priv = dev->dev_private;
  4412. uint32_t tmp;
  4413. tmp = I915_READ(PFIT_CONTROL);
  4414. if (!(tmp & PFIT_ENABLE))
  4415. return;
  4416. /* Check whether the pfit is attached to our pipe. */
  4417. if (INTEL_INFO(dev)->gen < 4) {
  4418. if (crtc->pipe != PIPE_B)
  4419. return;
  4420. } else {
  4421. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4422. return;
  4423. }
  4424. pipe_config->gmch_pfit.control = tmp;
  4425. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4426. if (INTEL_INFO(dev)->gen < 5)
  4427. pipe_config->gmch_pfit.lvds_border_bits =
  4428. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4429. }
  4430. static void vlv_crtc_clock_get(struct intel_crtc *crtc,
  4431. struct intel_crtc_config *pipe_config)
  4432. {
  4433. struct drm_device *dev = crtc->base.dev;
  4434. struct drm_i915_private *dev_priv = dev->dev_private;
  4435. int pipe = pipe_config->cpu_transcoder;
  4436. intel_clock_t clock;
  4437. u32 mdiv;
  4438. int refclk = 100000;
  4439. mutex_lock(&dev_priv->dpio_lock);
  4440. mdiv = vlv_dpio_read(dev_priv, pipe, DPIO_DIV(pipe));
  4441. mutex_unlock(&dev_priv->dpio_lock);
  4442. clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
  4443. clock.m2 = mdiv & DPIO_M2DIV_MASK;
  4444. clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
  4445. clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
  4446. clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
  4447. vlv_clock(refclk, &clock);
  4448. /* clock.dot is the fast clock */
  4449. pipe_config->port_clock = clock.dot / 5;
  4450. }
  4451. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4452. struct intel_crtc_config *pipe_config)
  4453. {
  4454. struct drm_device *dev = crtc->base.dev;
  4455. struct drm_i915_private *dev_priv = dev->dev_private;
  4456. uint32_t tmp;
  4457. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4458. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4459. tmp = I915_READ(PIPECONF(crtc->pipe));
  4460. if (!(tmp & PIPECONF_ENABLE))
  4461. return false;
  4462. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4463. switch (tmp & PIPECONF_BPC_MASK) {
  4464. case PIPECONF_6BPC:
  4465. pipe_config->pipe_bpp = 18;
  4466. break;
  4467. case PIPECONF_8BPC:
  4468. pipe_config->pipe_bpp = 24;
  4469. break;
  4470. case PIPECONF_10BPC:
  4471. pipe_config->pipe_bpp = 30;
  4472. break;
  4473. default:
  4474. break;
  4475. }
  4476. }
  4477. if (INTEL_INFO(dev)->gen < 4)
  4478. pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
  4479. intel_get_pipe_timings(crtc, pipe_config);
  4480. i9xx_get_pfit_config(crtc, pipe_config);
  4481. if (INTEL_INFO(dev)->gen >= 4) {
  4482. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4483. pipe_config->pixel_multiplier =
  4484. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4485. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4486. pipe_config->dpll_hw_state.dpll_md = tmp;
  4487. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4488. tmp = I915_READ(DPLL(crtc->pipe));
  4489. pipe_config->pixel_multiplier =
  4490. ((tmp & SDVO_MULTIPLIER_MASK)
  4491. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4492. } else {
  4493. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4494. * port and will be fixed up in the encoder->get_config
  4495. * function. */
  4496. pipe_config->pixel_multiplier = 1;
  4497. }
  4498. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4499. if (!IS_VALLEYVIEW(dev)) {
  4500. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4501. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4502. } else {
  4503. /* Mask out read-only status bits. */
  4504. pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  4505. DPLL_PORTC_READY_MASK |
  4506. DPLL_PORTB_READY_MASK);
  4507. }
  4508. if (IS_VALLEYVIEW(dev))
  4509. vlv_crtc_clock_get(crtc, pipe_config);
  4510. else
  4511. i9xx_crtc_clock_get(crtc, pipe_config);
  4512. return true;
  4513. }
  4514. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4515. {
  4516. struct drm_i915_private *dev_priv = dev->dev_private;
  4517. struct drm_mode_config *mode_config = &dev->mode_config;
  4518. struct intel_encoder *encoder;
  4519. u32 val, final;
  4520. bool has_lvds = false;
  4521. bool has_cpu_edp = false;
  4522. bool has_panel = false;
  4523. bool has_ck505 = false;
  4524. bool can_ssc = false;
  4525. /* We need to take the global config into account */
  4526. list_for_each_entry(encoder, &mode_config->encoder_list,
  4527. base.head) {
  4528. switch (encoder->type) {
  4529. case INTEL_OUTPUT_LVDS:
  4530. has_panel = true;
  4531. has_lvds = true;
  4532. break;
  4533. case INTEL_OUTPUT_EDP:
  4534. has_panel = true;
  4535. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4536. has_cpu_edp = true;
  4537. break;
  4538. }
  4539. }
  4540. if (HAS_PCH_IBX(dev)) {
  4541. has_ck505 = dev_priv->vbt.display_clock_mode;
  4542. can_ssc = has_ck505;
  4543. } else {
  4544. has_ck505 = false;
  4545. can_ssc = true;
  4546. }
  4547. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4548. has_panel, has_lvds, has_ck505);
  4549. /* Ironlake: try to setup display ref clock before DPLL
  4550. * enabling. This is only under driver's control after
  4551. * PCH B stepping, previous chipset stepping should be
  4552. * ignoring this setting.
  4553. */
  4554. val = I915_READ(PCH_DREF_CONTROL);
  4555. /* As we must carefully and slowly disable/enable each source in turn,
  4556. * compute the final state we want first and check if we need to
  4557. * make any changes at all.
  4558. */
  4559. final = val;
  4560. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4561. if (has_ck505)
  4562. final |= DREF_NONSPREAD_CK505_ENABLE;
  4563. else
  4564. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4565. final &= ~DREF_SSC_SOURCE_MASK;
  4566. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4567. final &= ~DREF_SSC1_ENABLE;
  4568. if (has_panel) {
  4569. final |= DREF_SSC_SOURCE_ENABLE;
  4570. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4571. final |= DREF_SSC1_ENABLE;
  4572. if (has_cpu_edp) {
  4573. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4574. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4575. else
  4576. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4577. } else
  4578. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4579. } else {
  4580. final |= DREF_SSC_SOURCE_DISABLE;
  4581. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4582. }
  4583. if (final == val)
  4584. return;
  4585. /* Always enable nonspread source */
  4586. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4587. if (has_ck505)
  4588. val |= DREF_NONSPREAD_CK505_ENABLE;
  4589. else
  4590. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4591. if (has_panel) {
  4592. val &= ~DREF_SSC_SOURCE_MASK;
  4593. val |= DREF_SSC_SOURCE_ENABLE;
  4594. /* SSC must be turned on before enabling the CPU output */
  4595. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4596. DRM_DEBUG_KMS("Using SSC on panel\n");
  4597. val |= DREF_SSC1_ENABLE;
  4598. } else
  4599. val &= ~DREF_SSC1_ENABLE;
  4600. /* Get SSC going before enabling the outputs */
  4601. I915_WRITE(PCH_DREF_CONTROL, val);
  4602. POSTING_READ(PCH_DREF_CONTROL);
  4603. udelay(200);
  4604. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4605. /* Enable CPU source on CPU attached eDP */
  4606. if (has_cpu_edp) {
  4607. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4608. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4609. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4610. }
  4611. else
  4612. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4613. } else
  4614. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4615. I915_WRITE(PCH_DREF_CONTROL, val);
  4616. POSTING_READ(PCH_DREF_CONTROL);
  4617. udelay(200);
  4618. } else {
  4619. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4620. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4621. /* Turn off CPU output */
  4622. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4623. I915_WRITE(PCH_DREF_CONTROL, val);
  4624. POSTING_READ(PCH_DREF_CONTROL);
  4625. udelay(200);
  4626. /* Turn off the SSC source */
  4627. val &= ~DREF_SSC_SOURCE_MASK;
  4628. val |= DREF_SSC_SOURCE_DISABLE;
  4629. /* Turn off SSC1 */
  4630. val &= ~DREF_SSC1_ENABLE;
  4631. I915_WRITE(PCH_DREF_CONTROL, val);
  4632. POSTING_READ(PCH_DREF_CONTROL);
  4633. udelay(200);
  4634. }
  4635. BUG_ON(val != final);
  4636. }
  4637. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  4638. {
  4639. uint32_t tmp;
  4640. tmp = I915_READ(SOUTH_CHICKEN2);
  4641. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4642. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4643. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4644. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4645. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4646. tmp = I915_READ(SOUTH_CHICKEN2);
  4647. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4648. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4649. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4650. FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  4651. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4652. }
  4653. /* WaMPhyProgramming:hsw */
  4654. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  4655. {
  4656. uint32_t tmp;
  4657. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4658. tmp &= ~(0xFF << 24);
  4659. tmp |= (0x12 << 24);
  4660. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4661. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4662. tmp |= (1 << 11);
  4663. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4664. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4665. tmp |= (1 << 11);
  4666. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4667. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4668. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4669. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4670. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4671. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4672. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4673. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4674. tmp &= ~(7 << 13);
  4675. tmp |= (5 << 13);
  4676. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4677. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4678. tmp &= ~(7 << 13);
  4679. tmp |= (5 << 13);
  4680. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4681. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4682. tmp &= ~0xFF;
  4683. tmp |= 0x1C;
  4684. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4685. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4686. tmp &= ~0xFF;
  4687. tmp |= 0x1C;
  4688. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4689. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4690. tmp &= ~(0xFF << 16);
  4691. tmp |= (0x1C << 16);
  4692. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4693. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4694. tmp &= ~(0xFF << 16);
  4695. tmp |= (0x1C << 16);
  4696. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4697. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4698. tmp |= (1 << 27);
  4699. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4700. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4701. tmp |= (1 << 27);
  4702. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4703. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4704. tmp &= ~(0xF << 28);
  4705. tmp |= (4 << 28);
  4706. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4707. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4708. tmp &= ~(0xF << 28);
  4709. tmp |= (4 << 28);
  4710. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4711. }
  4712. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  4713. * Programming" based on the parameters passed:
  4714. * - Sequence to enable CLKOUT_DP
  4715. * - Sequence to enable CLKOUT_DP without spread
  4716. * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  4717. */
  4718. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  4719. bool with_fdi)
  4720. {
  4721. struct drm_i915_private *dev_priv = dev->dev_private;
  4722. uint32_t reg, tmp;
  4723. if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  4724. with_spread = true;
  4725. if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
  4726. with_fdi, "LP PCH doesn't have FDI\n"))
  4727. with_fdi = false;
  4728. mutex_lock(&dev_priv->dpio_lock);
  4729. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4730. tmp &= ~SBI_SSCCTL_DISABLE;
  4731. tmp |= SBI_SSCCTL_PATHALT;
  4732. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4733. udelay(24);
  4734. if (with_spread) {
  4735. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4736. tmp &= ~SBI_SSCCTL_PATHALT;
  4737. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4738. if (with_fdi) {
  4739. lpt_reset_fdi_mphy(dev_priv);
  4740. lpt_program_fdi_mphy(dev_priv);
  4741. }
  4742. }
  4743. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4744. SBI_GEN0 : SBI_DBUFF0;
  4745. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4746. tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4747. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4748. mutex_unlock(&dev_priv->dpio_lock);
  4749. }
  4750. /* Sequence to disable CLKOUT_DP */
  4751. static void lpt_disable_clkout_dp(struct drm_device *dev)
  4752. {
  4753. struct drm_i915_private *dev_priv = dev->dev_private;
  4754. uint32_t reg, tmp;
  4755. mutex_lock(&dev_priv->dpio_lock);
  4756. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4757. SBI_GEN0 : SBI_DBUFF0;
  4758. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4759. tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4760. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4761. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4762. if (!(tmp & SBI_SSCCTL_DISABLE)) {
  4763. if (!(tmp & SBI_SSCCTL_PATHALT)) {
  4764. tmp |= SBI_SSCCTL_PATHALT;
  4765. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4766. udelay(32);
  4767. }
  4768. tmp |= SBI_SSCCTL_DISABLE;
  4769. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4770. }
  4771. mutex_unlock(&dev_priv->dpio_lock);
  4772. }
  4773. static void lpt_init_pch_refclk(struct drm_device *dev)
  4774. {
  4775. struct drm_mode_config *mode_config = &dev->mode_config;
  4776. struct intel_encoder *encoder;
  4777. bool has_vga = false;
  4778. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4779. switch (encoder->type) {
  4780. case INTEL_OUTPUT_ANALOG:
  4781. has_vga = true;
  4782. break;
  4783. }
  4784. }
  4785. if (has_vga)
  4786. lpt_enable_clkout_dp(dev, true, true);
  4787. else
  4788. lpt_disable_clkout_dp(dev);
  4789. }
  4790. /*
  4791. * Initialize reference clocks when the driver loads
  4792. */
  4793. void intel_init_pch_refclk(struct drm_device *dev)
  4794. {
  4795. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4796. ironlake_init_pch_refclk(dev);
  4797. else if (HAS_PCH_LPT(dev))
  4798. lpt_init_pch_refclk(dev);
  4799. }
  4800. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4801. {
  4802. struct drm_device *dev = crtc->dev;
  4803. struct drm_i915_private *dev_priv = dev->dev_private;
  4804. struct intel_encoder *encoder;
  4805. int num_connectors = 0;
  4806. bool is_lvds = false;
  4807. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4808. switch (encoder->type) {
  4809. case INTEL_OUTPUT_LVDS:
  4810. is_lvds = true;
  4811. break;
  4812. }
  4813. num_connectors++;
  4814. }
  4815. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4816. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4817. dev_priv->vbt.lvds_ssc_freq);
  4818. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4819. }
  4820. return 120000;
  4821. }
  4822. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4823. {
  4824. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4825. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4826. int pipe = intel_crtc->pipe;
  4827. uint32_t val;
  4828. val = 0;
  4829. switch (intel_crtc->config.pipe_bpp) {
  4830. case 18:
  4831. val |= PIPECONF_6BPC;
  4832. break;
  4833. case 24:
  4834. val |= PIPECONF_8BPC;
  4835. break;
  4836. case 30:
  4837. val |= PIPECONF_10BPC;
  4838. break;
  4839. case 36:
  4840. val |= PIPECONF_12BPC;
  4841. break;
  4842. default:
  4843. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4844. BUG();
  4845. }
  4846. if (intel_crtc->config.dither)
  4847. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4848. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4849. val |= PIPECONF_INTERLACED_ILK;
  4850. else
  4851. val |= PIPECONF_PROGRESSIVE;
  4852. if (intel_crtc->config.limited_color_range)
  4853. val |= PIPECONF_COLOR_RANGE_SELECT;
  4854. I915_WRITE(PIPECONF(pipe), val);
  4855. POSTING_READ(PIPECONF(pipe));
  4856. }
  4857. /*
  4858. * Set up the pipe CSC unit.
  4859. *
  4860. * Currently only full range RGB to limited range RGB conversion
  4861. * is supported, but eventually this should handle various
  4862. * RGB<->YCbCr scenarios as well.
  4863. */
  4864. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4865. {
  4866. struct drm_device *dev = crtc->dev;
  4867. struct drm_i915_private *dev_priv = dev->dev_private;
  4868. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4869. int pipe = intel_crtc->pipe;
  4870. uint16_t coeff = 0x7800; /* 1.0 */
  4871. /*
  4872. * TODO: Check what kind of values actually come out of the pipe
  4873. * with these coeff/postoff values and adjust to get the best
  4874. * accuracy. Perhaps we even need to take the bpc value into
  4875. * consideration.
  4876. */
  4877. if (intel_crtc->config.limited_color_range)
  4878. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4879. /*
  4880. * GY/GU and RY/RU should be the other way around according
  4881. * to BSpec, but reality doesn't agree. Just set them up in
  4882. * a way that results in the correct picture.
  4883. */
  4884. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4885. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4886. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4887. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4888. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4889. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4890. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4891. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4892. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4893. if (INTEL_INFO(dev)->gen > 6) {
  4894. uint16_t postoff = 0;
  4895. if (intel_crtc->config.limited_color_range)
  4896. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4897. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4898. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4899. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4900. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4901. } else {
  4902. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4903. if (intel_crtc->config.limited_color_range)
  4904. mode |= CSC_BLACK_SCREEN_OFFSET;
  4905. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4906. }
  4907. }
  4908. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4909. {
  4910. struct drm_device *dev = crtc->dev;
  4911. struct drm_i915_private *dev_priv = dev->dev_private;
  4912. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4913. enum pipe pipe = intel_crtc->pipe;
  4914. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4915. uint32_t val;
  4916. val = 0;
  4917. if (IS_HASWELL(dev) && intel_crtc->config.dither)
  4918. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4919. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4920. val |= PIPECONF_INTERLACED_ILK;
  4921. else
  4922. val |= PIPECONF_PROGRESSIVE;
  4923. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4924. POSTING_READ(PIPECONF(cpu_transcoder));
  4925. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4926. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4927. if (IS_BROADWELL(dev)) {
  4928. val = 0;
  4929. switch (intel_crtc->config.pipe_bpp) {
  4930. case 18:
  4931. val |= PIPEMISC_DITHER_6_BPC;
  4932. break;
  4933. case 24:
  4934. val |= PIPEMISC_DITHER_8_BPC;
  4935. break;
  4936. case 30:
  4937. val |= PIPEMISC_DITHER_10_BPC;
  4938. break;
  4939. case 36:
  4940. val |= PIPEMISC_DITHER_12_BPC;
  4941. break;
  4942. default:
  4943. /* Case prevented by pipe_config_set_bpp. */
  4944. BUG();
  4945. }
  4946. if (intel_crtc->config.dither)
  4947. val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
  4948. I915_WRITE(PIPEMISC(pipe), val);
  4949. }
  4950. }
  4951. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4952. intel_clock_t *clock,
  4953. bool *has_reduced_clock,
  4954. intel_clock_t *reduced_clock)
  4955. {
  4956. struct drm_device *dev = crtc->dev;
  4957. struct drm_i915_private *dev_priv = dev->dev_private;
  4958. struct intel_encoder *intel_encoder;
  4959. int refclk;
  4960. const intel_limit_t *limit;
  4961. bool ret, is_lvds = false;
  4962. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4963. switch (intel_encoder->type) {
  4964. case INTEL_OUTPUT_LVDS:
  4965. is_lvds = true;
  4966. break;
  4967. }
  4968. }
  4969. refclk = ironlake_get_refclk(crtc);
  4970. /*
  4971. * Returns a set of divisors for the desired target clock with the given
  4972. * refclk, or FALSE. The returned values represent the clock equation:
  4973. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4974. */
  4975. limit = intel_limit(crtc, refclk);
  4976. ret = dev_priv->display.find_dpll(limit, crtc,
  4977. to_intel_crtc(crtc)->config.port_clock,
  4978. refclk, NULL, clock);
  4979. if (!ret)
  4980. return false;
  4981. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4982. /*
  4983. * Ensure we match the reduced clock's P to the target clock.
  4984. * If the clocks don't match, we can't switch the display clock
  4985. * by using the FP0/FP1. In such case we will disable the LVDS
  4986. * downclock feature.
  4987. */
  4988. *has_reduced_clock =
  4989. dev_priv->display.find_dpll(limit, crtc,
  4990. dev_priv->lvds_downclock,
  4991. refclk, clock,
  4992. reduced_clock);
  4993. }
  4994. return true;
  4995. }
  4996. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4997. {
  4998. /*
  4999. * Account for spread spectrum to avoid
  5000. * oversubscribing the link. Max center spread
  5001. * is 2.5%; use 5% for safety's sake.
  5002. */
  5003. u32 bps = target_clock * bpp * 21 / 20;
  5004. return bps / (link_bw * 8) + 1;
  5005. }
  5006. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  5007. {
  5008. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  5009. }
  5010. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  5011. u32 *fp,
  5012. intel_clock_t *reduced_clock, u32 *fp2)
  5013. {
  5014. struct drm_crtc *crtc = &intel_crtc->base;
  5015. struct drm_device *dev = crtc->dev;
  5016. struct drm_i915_private *dev_priv = dev->dev_private;
  5017. struct intel_encoder *intel_encoder;
  5018. uint32_t dpll;
  5019. int factor, num_connectors = 0;
  5020. bool is_lvds = false, is_sdvo = false;
  5021. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  5022. switch (intel_encoder->type) {
  5023. case INTEL_OUTPUT_LVDS:
  5024. is_lvds = true;
  5025. break;
  5026. case INTEL_OUTPUT_SDVO:
  5027. case INTEL_OUTPUT_HDMI:
  5028. is_sdvo = true;
  5029. break;
  5030. }
  5031. num_connectors++;
  5032. }
  5033. /* Enable autotuning of the PLL clock (if permissible) */
  5034. factor = 21;
  5035. if (is_lvds) {
  5036. if ((intel_panel_use_ssc(dev_priv) &&
  5037. dev_priv->vbt.lvds_ssc_freq == 100) ||
  5038. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  5039. factor = 25;
  5040. } else if (intel_crtc->config.sdvo_tv_clock)
  5041. factor = 20;
  5042. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  5043. *fp |= FP_CB_TUNE;
  5044. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  5045. *fp2 |= FP_CB_TUNE;
  5046. dpll = 0;
  5047. if (is_lvds)
  5048. dpll |= DPLLB_MODE_LVDS;
  5049. else
  5050. dpll |= DPLLB_MODE_DAC_SERIAL;
  5051. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  5052. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  5053. if (is_sdvo)
  5054. dpll |= DPLL_SDVO_HIGH_SPEED;
  5055. if (intel_crtc->config.has_dp_encoder)
  5056. dpll |= DPLL_SDVO_HIGH_SPEED;
  5057. /* compute bitmask from p1 value */
  5058. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  5059. /* also FPA1 */
  5060. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  5061. switch (intel_crtc->config.dpll.p2) {
  5062. case 5:
  5063. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  5064. break;
  5065. case 7:
  5066. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  5067. break;
  5068. case 10:
  5069. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  5070. break;
  5071. case 14:
  5072. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  5073. break;
  5074. }
  5075. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  5076. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  5077. else
  5078. dpll |= PLL_REF_INPUT_DREFCLK;
  5079. return dpll | DPLL_VCO_ENABLE;
  5080. }
  5081. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  5082. int x, int y,
  5083. struct drm_framebuffer *fb)
  5084. {
  5085. struct drm_device *dev = crtc->dev;
  5086. struct drm_i915_private *dev_priv = dev->dev_private;
  5087. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5088. int pipe = intel_crtc->pipe;
  5089. int plane = intel_crtc->plane;
  5090. int num_connectors = 0;
  5091. intel_clock_t clock, reduced_clock;
  5092. u32 dpll = 0, fp = 0, fp2 = 0;
  5093. bool ok, has_reduced_clock = false;
  5094. bool is_lvds = false;
  5095. struct intel_encoder *encoder;
  5096. struct intel_shared_dpll *pll;
  5097. int ret;
  5098. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5099. switch (encoder->type) {
  5100. case INTEL_OUTPUT_LVDS:
  5101. is_lvds = true;
  5102. break;
  5103. }
  5104. num_connectors++;
  5105. }
  5106. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  5107. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  5108. ok = ironlake_compute_clocks(crtc, &clock,
  5109. &has_reduced_clock, &reduced_clock);
  5110. if (!ok && !intel_crtc->config.clock_set) {
  5111. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  5112. return -EINVAL;
  5113. }
  5114. /* Compat-code for transition, will disappear. */
  5115. if (!intel_crtc->config.clock_set) {
  5116. intel_crtc->config.dpll.n = clock.n;
  5117. intel_crtc->config.dpll.m1 = clock.m1;
  5118. intel_crtc->config.dpll.m2 = clock.m2;
  5119. intel_crtc->config.dpll.p1 = clock.p1;
  5120. intel_crtc->config.dpll.p2 = clock.p2;
  5121. }
  5122. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  5123. if (intel_crtc->config.has_pch_encoder) {
  5124. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  5125. if (has_reduced_clock)
  5126. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  5127. dpll = ironlake_compute_dpll(intel_crtc,
  5128. &fp, &reduced_clock,
  5129. has_reduced_clock ? &fp2 : NULL);
  5130. intel_crtc->config.dpll_hw_state.dpll = dpll;
  5131. intel_crtc->config.dpll_hw_state.fp0 = fp;
  5132. if (has_reduced_clock)
  5133. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  5134. else
  5135. intel_crtc->config.dpll_hw_state.fp1 = fp;
  5136. pll = intel_get_shared_dpll(intel_crtc);
  5137. if (pll == NULL) {
  5138. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  5139. pipe_name(pipe));
  5140. return -EINVAL;
  5141. }
  5142. } else
  5143. intel_put_shared_dpll(intel_crtc);
  5144. if (intel_crtc->config.has_dp_encoder)
  5145. intel_dp_set_m_n(intel_crtc);
  5146. if (is_lvds && has_reduced_clock && i915_powersave)
  5147. intel_crtc->lowfreq_avail = true;
  5148. else
  5149. intel_crtc->lowfreq_avail = false;
  5150. intel_set_pipe_timings(intel_crtc);
  5151. if (intel_crtc->config.has_pch_encoder) {
  5152. intel_cpu_transcoder_set_m_n(intel_crtc,
  5153. &intel_crtc->config.fdi_m_n);
  5154. }
  5155. ironlake_set_pipeconf(crtc);
  5156. /* Set up the display plane register */
  5157. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  5158. POSTING_READ(DSPCNTR(plane));
  5159. ret = intel_pipe_set_base(crtc, x, y, fb);
  5160. return ret;
  5161. }
  5162. static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
  5163. struct intel_link_m_n *m_n)
  5164. {
  5165. struct drm_device *dev = crtc->base.dev;
  5166. struct drm_i915_private *dev_priv = dev->dev_private;
  5167. enum pipe pipe = crtc->pipe;
  5168. m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
  5169. m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
  5170. m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
  5171. & ~TU_SIZE_MASK;
  5172. m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
  5173. m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
  5174. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5175. }
  5176. static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
  5177. enum transcoder transcoder,
  5178. struct intel_link_m_n *m_n)
  5179. {
  5180. struct drm_device *dev = crtc->base.dev;
  5181. struct drm_i915_private *dev_priv = dev->dev_private;
  5182. enum pipe pipe = crtc->pipe;
  5183. if (INTEL_INFO(dev)->gen >= 5) {
  5184. m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
  5185. m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
  5186. m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  5187. & ~TU_SIZE_MASK;
  5188. m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  5189. m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  5190. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5191. } else {
  5192. m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
  5193. m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
  5194. m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
  5195. & ~TU_SIZE_MASK;
  5196. m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
  5197. m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
  5198. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5199. }
  5200. }
  5201. void intel_dp_get_m_n(struct intel_crtc *crtc,
  5202. struct intel_crtc_config *pipe_config)
  5203. {
  5204. if (crtc->config.has_pch_encoder)
  5205. intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
  5206. else
  5207. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5208. &pipe_config->dp_m_n);
  5209. }
  5210. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  5211. struct intel_crtc_config *pipe_config)
  5212. {
  5213. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5214. &pipe_config->fdi_m_n);
  5215. }
  5216. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  5217. struct intel_crtc_config *pipe_config)
  5218. {
  5219. struct drm_device *dev = crtc->base.dev;
  5220. struct drm_i915_private *dev_priv = dev->dev_private;
  5221. uint32_t tmp;
  5222. tmp = I915_READ(PF_CTL(crtc->pipe));
  5223. if (tmp & PF_ENABLE) {
  5224. pipe_config->pch_pfit.enabled = true;
  5225. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  5226. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  5227. /* We currently do not free assignements of panel fitters on
  5228. * ivb/hsw (since we don't use the higher upscaling modes which
  5229. * differentiates them) so just WARN about this case for now. */
  5230. if (IS_GEN7(dev)) {
  5231. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  5232. PF_PIPE_SEL_IVB(crtc->pipe));
  5233. }
  5234. }
  5235. }
  5236. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  5237. struct intel_crtc_config *pipe_config)
  5238. {
  5239. struct drm_device *dev = crtc->base.dev;
  5240. struct drm_i915_private *dev_priv = dev->dev_private;
  5241. uint32_t tmp;
  5242. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5243. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5244. tmp = I915_READ(PIPECONF(crtc->pipe));
  5245. if (!(tmp & PIPECONF_ENABLE))
  5246. return false;
  5247. switch (tmp & PIPECONF_BPC_MASK) {
  5248. case PIPECONF_6BPC:
  5249. pipe_config->pipe_bpp = 18;
  5250. break;
  5251. case PIPECONF_8BPC:
  5252. pipe_config->pipe_bpp = 24;
  5253. break;
  5254. case PIPECONF_10BPC:
  5255. pipe_config->pipe_bpp = 30;
  5256. break;
  5257. case PIPECONF_12BPC:
  5258. pipe_config->pipe_bpp = 36;
  5259. break;
  5260. default:
  5261. break;
  5262. }
  5263. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  5264. struct intel_shared_dpll *pll;
  5265. pipe_config->has_pch_encoder = true;
  5266. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  5267. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5268. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5269. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5270. if (HAS_PCH_IBX(dev_priv->dev)) {
  5271. pipe_config->shared_dpll =
  5272. (enum intel_dpll_id) crtc->pipe;
  5273. } else {
  5274. tmp = I915_READ(PCH_DPLL_SEL);
  5275. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  5276. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  5277. else
  5278. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  5279. }
  5280. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  5281. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  5282. &pipe_config->dpll_hw_state));
  5283. tmp = pipe_config->dpll_hw_state.dpll;
  5284. pipe_config->pixel_multiplier =
  5285. ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  5286. >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  5287. ironlake_pch_clock_get(crtc, pipe_config);
  5288. } else {
  5289. pipe_config->pixel_multiplier = 1;
  5290. }
  5291. intel_get_pipe_timings(crtc, pipe_config);
  5292. ironlake_get_pfit_config(crtc, pipe_config);
  5293. return true;
  5294. }
  5295. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  5296. {
  5297. struct drm_device *dev = dev_priv->dev;
  5298. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  5299. struct intel_crtc *crtc;
  5300. unsigned long irqflags;
  5301. uint32_t val;
  5302. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5303. WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
  5304. pipe_name(crtc->pipe));
  5305. WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  5306. WARN(plls->spll_refcount, "SPLL enabled\n");
  5307. WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
  5308. WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
  5309. WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  5310. WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  5311. "CPU PWM1 enabled\n");
  5312. WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  5313. "CPU PWM2 enabled\n");
  5314. WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  5315. "PCH PWM1 enabled\n");
  5316. WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  5317. "Utility pin enabled\n");
  5318. WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  5319. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  5320. val = I915_READ(DEIMR);
  5321. WARN((val & ~DE_PCH_EVENT_IVB) != val,
  5322. "Unexpected DEIMR bits enabled: 0x%x\n", val);
  5323. val = I915_READ(SDEIMR);
  5324. WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
  5325. "Unexpected SDEIMR bits enabled: 0x%x\n", val);
  5326. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  5327. }
  5328. /*
  5329. * This function implements pieces of two sequences from BSpec:
  5330. * - Sequence for display software to disable LCPLL
  5331. * - Sequence for display software to allow package C8+
  5332. * The steps implemented here are just the steps that actually touch the LCPLL
  5333. * register. Callers should take care of disabling all the display engine
  5334. * functions, doing the mode unset, fixing interrupts, etc.
  5335. */
  5336. static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  5337. bool switch_to_fclk, bool allow_power_down)
  5338. {
  5339. uint32_t val;
  5340. assert_can_disable_lcpll(dev_priv);
  5341. val = I915_READ(LCPLL_CTL);
  5342. if (switch_to_fclk) {
  5343. val |= LCPLL_CD_SOURCE_FCLK;
  5344. I915_WRITE(LCPLL_CTL, val);
  5345. if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  5346. LCPLL_CD_SOURCE_FCLK_DONE, 1))
  5347. DRM_ERROR("Switching to FCLK failed\n");
  5348. val = I915_READ(LCPLL_CTL);
  5349. }
  5350. val |= LCPLL_PLL_DISABLE;
  5351. I915_WRITE(LCPLL_CTL, val);
  5352. POSTING_READ(LCPLL_CTL);
  5353. if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  5354. DRM_ERROR("LCPLL still locked\n");
  5355. val = I915_READ(D_COMP);
  5356. val |= D_COMP_COMP_DISABLE;
  5357. mutex_lock(&dev_priv->rps.hw_lock);
  5358. if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
  5359. DRM_ERROR("Failed to disable D_COMP\n");
  5360. mutex_unlock(&dev_priv->rps.hw_lock);
  5361. POSTING_READ(D_COMP);
  5362. ndelay(100);
  5363. if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
  5364. DRM_ERROR("D_COMP RCOMP still in progress\n");
  5365. if (allow_power_down) {
  5366. val = I915_READ(LCPLL_CTL);
  5367. val |= LCPLL_POWER_DOWN_ALLOW;
  5368. I915_WRITE(LCPLL_CTL, val);
  5369. POSTING_READ(LCPLL_CTL);
  5370. }
  5371. }
  5372. /*
  5373. * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  5374. * source.
  5375. */
  5376. static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  5377. {
  5378. uint32_t val;
  5379. val = I915_READ(LCPLL_CTL);
  5380. if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  5381. LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  5382. return;
  5383. /* Make sure we're not on PC8 state before disabling PC8, otherwise
  5384. * we'll hang the machine! */
  5385. dev_priv->uncore.funcs.force_wake_get(dev_priv);
  5386. if (val & LCPLL_POWER_DOWN_ALLOW) {
  5387. val &= ~LCPLL_POWER_DOWN_ALLOW;
  5388. I915_WRITE(LCPLL_CTL, val);
  5389. POSTING_READ(LCPLL_CTL);
  5390. }
  5391. val = I915_READ(D_COMP);
  5392. val |= D_COMP_COMP_FORCE;
  5393. val &= ~D_COMP_COMP_DISABLE;
  5394. mutex_lock(&dev_priv->rps.hw_lock);
  5395. if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
  5396. DRM_ERROR("Failed to enable D_COMP\n");
  5397. mutex_unlock(&dev_priv->rps.hw_lock);
  5398. POSTING_READ(D_COMP);
  5399. val = I915_READ(LCPLL_CTL);
  5400. val &= ~LCPLL_PLL_DISABLE;
  5401. I915_WRITE(LCPLL_CTL, val);
  5402. if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  5403. DRM_ERROR("LCPLL not locked yet\n");
  5404. if (val & LCPLL_CD_SOURCE_FCLK) {
  5405. val = I915_READ(LCPLL_CTL);
  5406. val &= ~LCPLL_CD_SOURCE_FCLK;
  5407. I915_WRITE(LCPLL_CTL, val);
  5408. if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  5409. LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  5410. DRM_ERROR("Switching back to LCPLL failed\n");
  5411. }
  5412. dev_priv->uncore.funcs.force_wake_put(dev_priv);
  5413. }
  5414. void hsw_enable_pc8_work(struct work_struct *__work)
  5415. {
  5416. struct drm_i915_private *dev_priv =
  5417. container_of(to_delayed_work(__work), struct drm_i915_private,
  5418. pc8.enable_work);
  5419. struct drm_device *dev = dev_priv->dev;
  5420. uint32_t val;
  5421. if (dev_priv->pc8.enabled)
  5422. return;
  5423. DRM_DEBUG_KMS("Enabling package C8+\n");
  5424. dev_priv->pc8.enabled = true;
  5425. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5426. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5427. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5428. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5429. }
  5430. lpt_disable_clkout_dp(dev);
  5431. hsw_pc8_disable_interrupts(dev);
  5432. hsw_disable_lcpll(dev_priv, true, true);
  5433. }
  5434. static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5435. {
  5436. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5437. WARN(dev_priv->pc8.disable_count < 1,
  5438. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5439. dev_priv->pc8.disable_count--;
  5440. if (dev_priv->pc8.disable_count != 0)
  5441. return;
  5442. schedule_delayed_work(&dev_priv->pc8.enable_work,
  5443. msecs_to_jiffies(i915_pc8_timeout));
  5444. }
  5445. static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5446. {
  5447. struct drm_device *dev = dev_priv->dev;
  5448. uint32_t val;
  5449. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5450. WARN(dev_priv->pc8.disable_count < 0,
  5451. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5452. dev_priv->pc8.disable_count++;
  5453. if (dev_priv->pc8.disable_count != 1)
  5454. return;
  5455. cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
  5456. if (!dev_priv->pc8.enabled)
  5457. return;
  5458. DRM_DEBUG_KMS("Disabling package C8+\n");
  5459. hsw_restore_lcpll(dev_priv);
  5460. hsw_pc8_restore_interrupts(dev);
  5461. lpt_init_pch_refclk(dev);
  5462. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5463. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5464. val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  5465. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5466. }
  5467. intel_prepare_ddi(dev);
  5468. i915_gem_init_swizzling(dev);
  5469. mutex_lock(&dev_priv->rps.hw_lock);
  5470. gen6_update_ring_freq(dev);
  5471. mutex_unlock(&dev_priv->rps.hw_lock);
  5472. dev_priv->pc8.enabled = false;
  5473. }
  5474. void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5475. {
  5476. mutex_lock(&dev_priv->pc8.lock);
  5477. __hsw_enable_package_c8(dev_priv);
  5478. mutex_unlock(&dev_priv->pc8.lock);
  5479. }
  5480. void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5481. {
  5482. mutex_lock(&dev_priv->pc8.lock);
  5483. __hsw_disable_package_c8(dev_priv);
  5484. mutex_unlock(&dev_priv->pc8.lock);
  5485. }
  5486. static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
  5487. {
  5488. struct drm_device *dev = dev_priv->dev;
  5489. struct intel_crtc *crtc;
  5490. uint32_t val;
  5491. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5492. if (crtc->base.enabled)
  5493. return false;
  5494. /* This case is still possible since we have the i915.disable_power_well
  5495. * parameter and also the KVMr or something else might be requesting the
  5496. * power well. */
  5497. val = I915_READ(HSW_PWR_WELL_DRIVER);
  5498. if (val != 0) {
  5499. DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
  5500. return false;
  5501. }
  5502. return true;
  5503. }
  5504. /* Since we're called from modeset_global_resources there's no way to
  5505. * symmetrically increase and decrease the refcount, so we use
  5506. * dev_priv->pc8.requirements_met to track whether we already have the refcount
  5507. * or not.
  5508. */
  5509. static void hsw_update_package_c8(struct drm_device *dev)
  5510. {
  5511. struct drm_i915_private *dev_priv = dev->dev_private;
  5512. bool allow;
  5513. if (!i915_enable_pc8)
  5514. return;
  5515. mutex_lock(&dev_priv->pc8.lock);
  5516. allow = hsw_can_enable_package_c8(dev_priv);
  5517. if (allow == dev_priv->pc8.requirements_met)
  5518. goto done;
  5519. dev_priv->pc8.requirements_met = allow;
  5520. if (allow)
  5521. __hsw_enable_package_c8(dev_priv);
  5522. else
  5523. __hsw_disable_package_c8(dev_priv);
  5524. done:
  5525. mutex_unlock(&dev_priv->pc8.lock);
  5526. }
  5527. static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
  5528. {
  5529. if (!dev_priv->pc8.gpu_idle) {
  5530. dev_priv->pc8.gpu_idle = true;
  5531. hsw_enable_package_c8(dev_priv);
  5532. }
  5533. }
  5534. static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
  5535. {
  5536. if (dev_priv->pc8.gpu_idle) {
  5537. dev_priv->pc8.gpu_idle = false;
  5538. hsw_disable_package_c8(dev_priv);
  5539. }
  5540. }
  5541. #define for_each_power_domain(domain, mask) \
  5542. for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
  5543. if ((1 << (domain)) & (mask))
  5544. static unsigned long get_pipe_power_domains(struct drm_device *dev,
  5545. enum pipe pipe, bool pfit_enabled)
  5546. {
  5547. unsigned long mask;
  5548. enum transcoder transcoder;
  5549. transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
  5550. mask = BIT(POWER_DOMAIN_PIPE(pipe));
  5551. mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
  5552. if (pfit_enabled)
  5553. mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
  5554. return mask;
  5555. }
  5556. void intel_display_set_init_power(struct drm_device *dev, bool enable)
  5557. {
  5558. struct drm_i915_private *dev_priv = dev->dev_private;
  5559. if (dev_priv->power_domains.init_power_on == enable)
  5560. return;
  5561. if (enable)
  5562. intel_display_power_get(dev, POWER_DOMAIN_INIT);
  5563. else
  5564. intel_display_power_put(dev, POWER_DOMAIN_INIT);
  5565. dev_priv->power_domains.init_power_on = enable;
  5566. }
  5567. static void modeset_update_power_wells(struct drm_device *dev)
  5568. {
  5569. unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
  5570. struct intel_crtc *crtc;
  5571. /*
  5572. * First get all needed power domains, then put all unneeded, to avoid
  5573. * any unnecessary toggling of the power wells.
  5574. */
  5575. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  5576. enum intel_display_power_domain domain;
  5577. if (!crtc->base.enabled)
  5578. continue;
  5579. pipe_domains[crtc->pipe] = get_pipe_power_domains(dev,
  5580. crtc->pipe,
  5581. crtc->config.pch_pfit.enabled);
  5582. for_each_power_domain(domain, pipe_domains[crtc->pipe])
  5583. intel_display_power_get(dev, domain);
  5584. }
  5585. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  5586. enum intel_display_power_domain domain;
  5587. for_each_power_domain(domain, crtc->enabled_power_domains)
  5588. intel_display_power_put(dev, domain);
  5589. crtc->enabled_power_domains = pipe_domains[crtc->pipe];
  5590. }
  5591. intel_display_set_init_power(dev, false);
  5592. }
  5593. static void haswell_modeset_global_resources(struct drm_device *dev)
  5594. {
  5595. modeset_update_power_wells(dev);
  5596. hsw_update_package_c8(dev);
  5597. }
  5598. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  5599. int x, int y,
  5600. struct drm_framebuffer *fb)
  5601. {
  5602. struct drm_device *dev = crtc->dev;
  5603. struct drm_i915_private *dev_priv = dev->dev_private;
  5604. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5605. int plane = intel_crtc->plane;
  5606. int ret;
  5607. if (!intel_ddi_pll_mode_set(crtc))
  5608. return -EINVAL;
  5609. if (intel_crtc->config.has_dp_encoder)
  5610. intel_dp_set_m_n(intel_crtc);
  5611. intel_crtc->lowfreq_avail = false;
  5612. intel_set_pipe_timings(intel_crtc);
  5613. if (intel_crtc->config.has_pch_encoder) {
  5614. intel_cpu_transcoder_set_m_n(intel_crtc,
  5615. &intel_crtc->config.fdi_m_n);
  5616. }
  5617. haswell_set_pipeconf(crtc);
  5618. intel_set_pipe_csc(crtc);
  5619. /* Set up the display plane register */
  5620. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5621. POSTING_READ(DSPCNTR(plane));
  5622. ret = intel_pipe_set_base(crtc, x, y, fb);
  5623. return ret;
  5624. }
  5625. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5626. struct intel_crtc_config *pipe_config)
  5627. {
  5628. struct drm_device *dev = crtc->base.dev;
  5629. struct drm_i915_private *dev_priv = dev->dev_private;
  5630. enum intel_display_power_domain pfit_domain;
  5631. uint32_t tmp;
  5632. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5633. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5634. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  5635. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5636. enum pipe trans_edp_pipe;
  5637. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5638. default:
  5639. WARN(1, "unknown pipe linked to edp transcoder\n");
  5640. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5641. case TRANS_DDI_EDP_INPUT_A_ON:
  5642. trans_edp_pipe = PIPE_A;
  5643. break;
  5644. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5645. trans_edp_pipe = PIPE_B;
  5646. break;
  5647. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5648. trans_edp_pipe = PIPE_C;
  5649. break;
  5650. }
  5651. if (trans_edp_pipe == crtc->pipe)
  5652. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5653. }
  5654. if (!intel_display_power_enabled(dev,
  5655. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5656. return false;
  5657. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5658. if (!(tmp & PIPECONF_ENABLE))
  5659. return false;
  5660. /*
  5661. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5662. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5663. * the PCH transcoder is on.
  5664. */
  5665. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5666. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5667. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5668. pipe_config->has_pch_encoder = true;
  5669. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5670. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5671. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5672. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5673. }
  5674. intel_get_pipe_timings(crtc, pipe_config);
  5675. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5676. if (intel_display_power_enabled(dev, pfit_domain))
  5677. ironlake_get_pfit_config(crtc, pipe_config);
  5678. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5679. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5680. pipe_config->pixel_multiplier = 1;
  5681. return true;
  5682. }
  5683. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5684. int x, int y,
  5685. struct drm_framebuffer *fb)
  5686. {
  5687. struct drm_device *dev = crtc->dev;
  5688. struct drm_i915_private *dev_priv = dev->dev_private;
  5689. struct intel_encoder *encoder;
  5690. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5691. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5692. int pipe = intel_crtc->pipe;
  5693. int ret;
  5694. drm_vblank_pre_modeset(dev, pipe);
  5695. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5696. drm_vblank_post_modeset(dev, pipe);
  5697. if (ret != 0)
  5698. return ret;
  5699. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5700. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5701. encoder->base.base.id,
  5702. drm_get_encoder_name(&encoder->base),
  5703. mode->base.id, mode->name);
  5704. encoder->mode_set(encoder);
  5705. }
  5706. return 0;
  5707. }
  5708. static struct {
  5709. int clock;
  5710. u32 config;
  5711. } hdmi_audio_clock[] = {
  5712. { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
  5713. { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
  5714. { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
  5715. { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
  5716. { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
  5717. { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
  5718. { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
  5719. { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
  5720. { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
  5721. { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
  5722. };
  5723. /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
  5724. static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
  5725. {
  5726. int i;
  5727. for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
  5728. if (mode->clock == hdmi_audio_clock[i].clock)
  5729. break;
  5730. }
  5731. if (i == ARRAY_SIZE(hdmi_audio_clock)) {
  5732. DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
  5733. i = 1;
  5734. }
  5735. DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
  5736. hdmi_audio_clock[i].clock,
  5737. hdmi_audio_clock[i].config);
  5738. return hdmi_audio_clock[i].config;
  5739. }
  5740. static bool intel_eld_uptodate(struct drm_connector *connector,
  5741. int reg_eldv, uint32_t bits_eldv,
  5742. int reg_elda, uint32_t bits_elda,
  5743. int reg_edid)
  5744. {
  5745. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5746. uint8_t *eld = connector->eld;
  5747. uint32_t i;
  5748. i = I915_READ(reg_eldv);
  5749. i &= bits_eldv;
  5750. if (!eld[0])
  5751. return !i;
  5752. if (!i)
  5753. return false;
  5754. i = I915_READ(reg_elda);
  5755. i &= ~bits_elda;
  5756. I915_WRITE(reg_elda, i);
  5757. for (i = 0; i < eld[2]; i++)
  5758. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5759. return false;
  5760. return true;
  5761. }
  5762. static void g4x_write_eld(struct drm_connector *connector,
  5763. struct drm_crtc *crtc,
  5764. struct drm_display_mode *mode)
  5765. {
  5766. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5767. uint8_t *eld = connector->eld;
  5768. uint32_t eldv;
  5769. uint32_t len;
  5770. uint32_t i;
  5771. i = I915_READ(G4X_AUD_VID_DID);
  5772. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5773. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5774. else
  5775. eldv = G4X_ELDV_DEVCTG;
  5776. if (intel_eld_uptodate(connector,
  5777. G4X_AUD_CNTL_ST, eldv,
  5778. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5779. G4X_HDMIW_HDMIEDID))
  5780. return;
  5781. i = I915_READ(G4X_AUD_CNTL_ST);
  5782. i &= ~(eldv | G4X_ELD_ADDR);
  5783. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5784. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5785. if (!eld[0])
  5786. return;
  5787. len = min_t(uint8_t, eld[2], len);
  5788. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5789. for (i = 0; i < len; i++)
  5790. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5791. i = I915_READ(G4X_AUD_CNTL_ST);
  5792. i |= eldv;
  5793. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5794. }
  5795. static void haswell_write_eld(struct drm_connector *connector,
  5796. struct drm_crtc *crtc,
  5797. struct drm_display_mode *mode)
  5798. {
  5799. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5800. uint8_t *eld = connector->eld;
  5801. struct drm_device *dev = crtc->dev;
  5802. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5803. uint32_t eldv;
  5804. uint32_t i;
  5805. int len;
  5806. int pipe = to_intel_crtc(crtc)->pipe;
  5807. int tmp;
  5808. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5809. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5810. int aud_config = HSW_AUD_CFG(pipe);
  5811. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5812. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5813. /* Audio output enable */
  5814. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5815. tmp = I915_READ(aud_cntrl_st2);
  5816. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5817. I915_WRITE(aud_cntrl_st2, tmp);
  5818. /* Wait for 1 vertical blank */
  5819. intel_wait_for_vblank(dev, pipe);
  5820. /* Set ELD valid state */
  5821. tmp = I915_READ(aud_cntrl_st2);
  5822. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
  5823. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5824. I915_WRITE(aud_cntrl_st2, tmp);
  5825. tmp = I915_READ(aud_cntrl_st2);
  5826. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
  5827. /* Enable HDMI mode */
  5828. tmp = I915_READ(aud_config);
  5829. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
  5830. /* clear N_programing_enable and N_value_index */
  5831. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5832. I915_WRITE(aud_config, tmp);
  5833. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5834. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5835. intel_crtc->eld_vld = true;
  5836. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5837. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5838. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5839. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5840. } else {
  5841. I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
  5842. }
  5843. if (intel_eld_uptodate(connector,
  5844. aud_cntrl_st2, eldv,
  5845. aud_cntl_st, IBX_ELD_ADDRESS,
  5846. hdmiw_hdmiedid))
  5847. return;
  5848. i = I915_READ(aud_cntrl_st2);
  5849. i &= ~eldv;
  5850. I915_WRITE(aud_cntrl_st2, i);
  5851. if (!eld[0])
  5852. return;
  5853. i = I915_READ(aud_cntl_st);
  5854. i &= ~IBX_ELD_ADDRESS;
  5855. I915_WRITE(aud_cntl_st, i);
  5856. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5857. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5858. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5859. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5860. for (i = 0; i < len; i++)
  5861. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5862. i = I915_READ(aud_cntrl_st2);
  5863. i |= eldv;
  5864. I915_WRITE(aud_cntrl_st2, i);
  5865. }
  5866. static void ironlake_write_eld(struct drm_connector *connector,
  5867. struct drm_crtc *crtc,
  5868. struct drm_display_mode *mode)
  5869. {
  5870. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5871. uint8_t *eld = connector->eld;
  5872. uint32_t eldv;
  5873. uint32_t i;
  5874. int len;
  5875. int hdmiw_hdmiedid;
  5876. int aud_config;
  5877. int aud_cntl_st;
  5878. int aud_cntrl_st2;
  5879. int pipe = to_intel_crtc(crtc)->pipe;
  5880. if (HAS_PCH_IBX(connector->dev)) {
  5881. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5882. aud_config = IBX_AUD_CFG(pipe);
  5883. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5884. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5885. } else if (IS_VALLEYVIEW(connector->dev)) {
  5886. hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
  5887. aud_config = VLV_AUD_CFG(pipe);
  5888. aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
  5889. aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
  5890. } else {
  5891. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5892. aud_config = CPT_AUD_CFG(pipe);
  5893. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5894. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5895. }
  5896. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5897. if (IS_VALLEYVIEW(connector->dev)) {
  5898. struct intel_encoder *intel_encoder;
  5899. struct intel_digital_port *intel_dig_port;
  5900. intel_encoder = intel_attached_encoder(connector);
  5901. intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  5902. i = intel_dig_port->port;
  5903. } else {
  5904. i = I915_READ(aud_cntl_st);
  5905. i = (i >> 29) & DIP_PORT_SEL_MASK;
  5906. /* DIP_Port_Select, 0x1 = PortB */
  5907. }
  5908. if (!i) {
  5909. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5910. /* operate blindly on all ports */
  5911. eldv = IBX_ELD_VALIDB;
  5912. eldv |= IBX_ELD_VALIDB << 4;
  5913. eldv |= IBX_ELD_VALIDB << 8;
  5914. } else {
  5915. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5916. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5917. }
  5918. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5919. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5920. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5921. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5922. } else {
  5923. I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
  5924. }
  5925. if (intel_eld_uptodate(connector,
  5926. aud_cntrl_st2, eldv,
  5927. aud_cntl_st, IBX_ELD_ADDRESS,
  5928. hdmiw_hdmiedid))
  5929. return;
  5930. i = I915_READ(aud_cntrl_st2);
  5931. i &= ~eldv;
  5932. I915_WRITE(aud_cntrl_st2, i);
  5933. if (!eld[0])
  5934. return;
  5935. i = I915_READ(aud_cntl_st);
  5936. i &= ~IBX_ELD_ADDRESS;
  5937. I915_WRITE(aud_cntl_st, i);
  5938. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5939. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5940. for (i = 0; i < len; i++)
  5941. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5942. i = I915_READ(aud_cntrl_st2);
  5943. i |= eldv;
  5944. I915_WRITE(aud_cntrl_st2, i);
  5945. }
  5946. void intel_write_eld(struct drm_encoder *encoder,
  5947. struct drm_display_mode *mode)
  5948. {
  5949. struct drm_crtc *crtc = encoder->crtc;
  5950. struct drm_connector *connector;
  5951. struct drm_device *dev = encoder->dev;
  5952. struct drm_i915_private *dev_priv = dev->dev_private;
  5953. connector = drm_select_eld(encoder, mode);
  5954. if (!connector)
  5955. return;
  5956. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5957. connector->base.id,
  5958. drm_get_connector_name(connector),
  5959. connector->encoder->base.id,
  5960. drm_get_encoder_name(connector->encoder));
  5961. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5962. if (dev_priv->display.write_eld)
  5963. dev_priv->display.write_eld(connector, crtc, mode);
  5964. }
  5965. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5966. {
  5967. struct drm_device *dev = crtc->dev;
  5968. struct drm_i915_private *dev_priv = dev->dev_private;
  5969. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5970. bool visible = base != 0;
  5971. u32 cntl;
  5972. if (intel_crtc->cursor_visible == visible)
  5973. return;
  5974. cntl = I915_READ(_CURACNTR);
  5975. if (visible) {
  5976. /* On these chipsets we can only modify the base whilst
  5977. * the cursor is disabled.
  5978. */
  5979. I915_WRITE(_CURABASE, base);
  5980. cntl &= ~(CURSOR_FORMAT_MASK);
  5981. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5982. cntl |= CURSOR_ENABLE |
  5983. CURSOR_GAMMA_ENABLE |
  5984. CURSOR_FORMAT_ARGB;
  5985. } else
  5986. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5987. I915_WRITE(_CURACNTR, cntl);
  5988. intel_crtc->cursor_visible = visible;
  5989. }
  5990. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5991. {
  5992. struct drm_device *dev = crtc->dev;
  5993. struct drm_i915_private *dev_priv = dev->dev_private;
  5994. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5995. int pipe = intel_crtc->pipe;
  5996. bool visible = base != 0;
  5997. if (intel_crtc->cursor_visible != visible) {
  5998. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5999. if (base) {
  6000. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  6001. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  6002. cntl |= pipe << 28; /* Connect to correct pipe */
  6003. } else {
  6004. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  6005. cntl |= CURSOR_MODE_DISABLE;
  6006. }
  6007. I915_WRITE(CURCNTR(pipe), cntl);
  6008. intel_crtc->cursor_visible = visible;
  6009. }
  6010. /* and commit changes on next vblank */
  6011. I915_WRITE(CURBASE(pipe), base);
  6012. }
  6013. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  6014. {
  6015. struct drm_device *dev = crtc->dev;
  6016. struct drm_i915_private *dev_priv = dev->dev_private;
  6017. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6018. int pipe = intel_crtc->pipe;
  6019. bool visible = base != 0;
  6020. if (intel_crtc->cursor_visible != visible) {
  6021. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  6022. if (base) {
  6023. cntl &= ~CURSOR_MODE;
  6024. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  6025. } else {
  6026. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  6027. cntl |= CURSOR_MODE_DISABLE;
  6028. }
  6029. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  6030. cntl |= CURSOR_PIPE_CSC_ENABLE;
  6031. cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
  6032. }
  6033. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  6034. intel_crtc->cursor_visible = visible;
  6035. }
  6036. /* and commit changes on next vblank */
  6037. I915_WRITE(CURBASE_IVB(pipe), base);
  6038. }
  6039. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  6040. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  6041. bool on)
  6042. {
  6043. struct drm_device *dev = crtc->dev;
  6044. struct drm_i915_private *dev_priv = dev->dev_private;
  6045. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6046. int pipe = intel_crtc->pipe;
  6047. int x = intel_crtc->cursor_x;
  6048. int y = intel_crtc->cursor_y;
  6049. u32 base = 0, pos = 0;
  6050. bool visible;
  6051. if (on)
  6052. base = intel_crtc->cursor_addr;
  6053. if (x >= intel_crtc->config.pipe_src_w)
  6054. base = 0;
  6055. if (y >= intel_crtc->config.pipe_src_h)
  6056. base = 0;
  6057. if (x < 0) {
  6058. if (x + intel_crtc->cursor_width <= 0)
  6059. base = 0;
  6060. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  6061. x = -x;
  6062. }
  6063. pos |= x << CURSOR_X_SHIFT;
  6064. if (y < 0) {
  6065. if (y + intel_crtc->cursor_height <= 0)
  6066. base = 0;
  6067. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  6068. y = -y;
  6069. }
  6070. pos |= y << CURSOR_Y_SHIFT;
  6071. visible = base != 0;
  6072. if (!visible && !intel_crtc->cursor_visible)
  6073. return;
  6074. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  6075. I915_WRITE(CURPOS_IVB(pipe), pos);
  6076. ivb_update_cursor(crtc, base);
  6077. } else {
  6078. I915_WRITE(CURPOS(pipe), pos);
  6079. if (IS_845G(dev) || IS_I865G(dev))
  6080. i845_update_cursor(crtc, base);
  6081. else
  6082. i9xx_update_cursor(crtc, base);
  6083. }
  6084. }
  6085. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  6086. struct drm_file *file,
  6087. uint32_t handle,
  6088. uint32_t width, uint32_t height)
  6089. {
  6090. struct drm_device *dev = crtc->dev;
  6091. struct drm_i915_private *dev_priv = dev->dev_private;
  6092. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6093. struct drm_i915_gem_object *obj;
  6094. uint32_t addr;
  6095. int ret;
  6096. /* if we want to turn off the cursor ignore width and height */
  6097. if (!handle) {
  6098. DRM_DEBUG_KMS("cursor off\n");
  6099. addr = 0;
  6100. obj = NULL;
  6101. mutex_lock(&dev->struct_mutex);
  6102. goto finish;
  6103. }
  6104. /* Currently we only support 64x64 cursors */
  6105. if (width != 64 || height != 64) {
  6106. DRM_ERROR("we currently only support 64x64 cursors\n");
  6107. return -EINVAL;
  6108. }
  6109. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  6110. if (&obj->base == NULL)
  6111. return -ENOENT;
  6112. if (obj->base.size < width * height * 4) {
  6113. DRM_ERROR("buffer is to small\n");
  6114. ret = -ENOMEM;
  6115. goto fail;
  6116. }
  6117. /* we only need to pin inside GTT if cursor is non-phy */
  6118. mutex_lock(&dev->struct_mutex);
  6119. if (!dev_priv->info->cursor_needs_physical) {
  6120. unsigned alignment;
  6121. if (obj->tiling_mode) {
  6122. DRM_ERROR("cursor cannot be tiled\n");
  6123. ret = -EINVAL;
  6124. goto fail_locked;
  6125. }
  6126. /* Note that the w/a also requires 2 PTE of padding following
  6127. * the bo. We currently fill all unused PTE with the shadow
  6128. * page and so we should always have valid PTE following the
  6129. * cursor preventing the VT-d warning.
  6130. */
  6131. alignment = 0;
  6132. if (need_vtd_wa(dev))
  6133. alignment = 64*1024;
  6134. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  6135. if (ret) {
  6136. DRM_ERROR("failed to move cursor bo into the GTT\n");
  6137. goto fail_locked;
  6138. }
  6139. ret = i915_gem_object_put_fence(obj);
  6140. if (ret) {
  6141. DRM_ERROR("failed to release fence for cursor");
  6142. goto fail_unpin;
  6143. }
  6144. addr = i915_gem_obj_ggtt_offset(obj);
  6145. } else {
  6146. int align = IS_I830(dev) ? 16 * 1024 : 256;
  6147. ret = i915_gem_attach_phys_object(dev, obj,
  6148. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  6149. align);
  6150. if (ret) {
  6151. DRM_ERROR("failed to attach phys object\n");
  6152. goto fail_locked;
  6153. }
  6154. addr = obj->phys_obj->handle->busaddr;
  6155. }
  6156. if (IS_GEN2(dev))
  6157. I915_WRITE(CURSIZE, (height << 12) | width);
  6158. finish:
  6159. if (intel_crtc->cursor_bo) {
  6160. if (dev_priv->info->cursor_needs_physical) {
  6161. if (intel_crtc->cursor_bo != obj)
  6162. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  6163. } else
  6164. i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
  6165. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  6166. }
  6167. mutex_unlock(&dev->struct_mutex);
  6168. intel_crtc->cursor_addr = addr;
  6169. intel_crtc->cursor_bo = obj;
  6170. intel_crtc->cursor_width = width;
  6171. intel_crtc->cursor_height = height;
  6172. if (intel_crtc->active)
  6173. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  6174. return 0;
  6175. fail_unpin:
  6176. i915_gem_object_unpin_from_display_plane(obj);
  6177. fail_locked:
  6178. mutex_unlock(&dev->struct_mutex);
  6179. fail:
  6180. drm_gem_object_unreference_unlocked(&obj->base);
  6181. return ret;
  6182. }
  6183. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  6184. {
  6185. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6186. intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
  6187. intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
  6188. if (intel_crtc->active)
  6189. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  6190. return 0;
  6191. }
  6192. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  6193. u16 *blue, uint32_t start, uint32_t size)
  6194. {
  6195. int end = (start + size > 256) ? 256 : start + size, i;
  6196. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6197. for (i = start; i < end; i++) {
  6198. intel_crtc->lut_r[i] = red[i] >> 8;
  6199. intel_crtc->lut_g[i] = green[i] >> 8;
  6200. intel_crtc->lut_b[i] = blue[i] >> 8;
  6201. }
  6202. intel_crtc_load_lut(crtc);
  6203. }
  6204. /* VESA 640x480x72Hz mode to set on the pipe */
  6205. static struct drm_display_mode load_detect_mode = {
  6206. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  6207. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  6208. };
  6209. static struct drm_framebuffer *
  6210. intel_framebuffer_create(struct drm_device *dev,
  6211. struct drm_mode_fb_cmd2 *mode_cmd,
  6212. struct drm_i915_gem_object *obj)
  6213. {
  6214. struct intel_framebuffer *intel_fb;
  6215. int ret;
  6216. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  6217. if (!intel_fb) {
  6218. drm_gem_object_unreference_unlocked(&obj->base);
  6219. return ERR_PTR(-ENOMEM);
  6220. }
  6221. ret = i915_mutex_lock_interruptible(dev);
  6222. if (ret)
  6223. goto err;
  6224. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  6225. mutex_unlock(&dev->struct_mutex);
  6226. if (ret)
  6227. goto err;
  6228. return &intel_fb->base;
  6229. err:
  6230. drm_gem_object_unreference_unlocked(&obj->base);
  6231. kfree(intel_fb);
  6232. return ERR_PTR(ret);
  6233. }
  6234. static u32
  6235. intel_framebuffer_pitch_for_width(int width, int bpp)
  6236. {
  6237. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  6238. return ALIGN(pitch, 64);
  6239. }
  6240. static u32
  6241. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  6242. {
  6243. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  6244. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  6245. }
  6246. static struct drm_framebuffer *
  6247. intel_framebuffer_create_for_mode(struct drm_device *dev,
  6248. struct drm_display_mode *mode,
  6249. int depth, int bpp)
  6250. {
  6251. struct drm_i915_gem_object *obj;
  6252. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  6253. obj = i915_gem_alloc_object(dev,
  6254. intel_framebuffer_size_for_mode(mode, bpp));
  6255. if (obj == NULL)
  6256. return ERR_PTR(-ENOMEM);
  6257. mode_cmd.width = mode->hdisplay;
  6258. mode_cmd.height = mode->vdisplay;
  6259. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  6260. bpp);
  6261. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  6262. return intel_framebuffer_create(dev, &mode_cmd, obj);
  6263. }
  6264. static struct drm_framebuffer *
  6265. mode_fits_in_fbdev(struct drm_device *dev,
  6266. struct drm_display_mode *mode)
  6267. {
  6268. #ifdef CONFIG_DRM_I915_FBDEV
  6269. struct drm_i915_private *dev_priv = dev->dev_private;
  6270. struct drm_i915_gem_object *obj;
  6271. struct drm_framebuffer *fb;
  6272. if (dev_priv->fbdev == NULL)
  6273. return NULL;
  6274. obj = dev_priv->fbdev->ifb.obj;
  6275. if (obj == NULL)
  6276. return NULL;
  6277. fb = &dev_priv->fbdev->ifb.base;
  6278. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  6279. fb->bits_per_pixel))
  6280. return NULL;
  6281. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  6282. return NULL;
  6283. return fb;
  6284. #else
  6285. return NULL;
  6286. #endif
  6287. }
  6288. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  6289. struct drm_display_mode *mode,
  6290. struct intel_load_detect_pipe *old)
  6291. {
  6292. struct intel_crtc *intel_crtc;
  6293. struct intel_encoder *intel_encoder =
  6294. intel_attached_encoder(connector);
  6295. struct drm_crtc *possible_crtc;
  6296. struct drm_encoder *encoder = &intel_encoder->base;
  6297. struct drm_crtc *crtc = NULL;
  6298. struct drm_device *dev = encoder->dev;
  6299. struct drm_framebuffer *fb;
  6300. int i = -1;
  6301. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6302. connector->base.id, drm_get_connector_name(connector),
  6303. encoder->base.id, drm_get_encoder_name(encoder));
  6304. /*
  6305. * Algorithm gets a little messy:
  6306. *
  6307. * - if the connector already has an assigned crtc, use it (but make
  6308. * sure it's on first)
  6309. *
  6310. * - try to find the first unused crtc that can drive this connector,
  6311. * and use that if we find one
  6312. */
  6313. /* See if we already have a CRTC for this connector */
  6314. if (encoder->crtc) {
  6315. crtc = encoder->crtc;
  6316. mutex_lock(&crtc->mutex);
  6317. old->dpms_mode = connector->dpms;
  6318. old->load_detect_temp = false;
  6319. /* Make sure the crtc and connector are running */
  6320. if (connector->dpms != DRM_MODE_DPMS_ON)
  6321. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  6322. return true;
  6323. }
  6324. /* Find an unused one (if possible) */
  6325. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  6326. i++;
  6327. if (!(encoder->possible_crtcs & (1 << i)))
  6328. continue;
  6329. if (!possible_crtc->enabled) {
  6330. crtc = possible_crtc;
  6331. break;
  6332. }
  6333. }
  6334. /*
  6335. * If we didn't find an unused CRTC, don't use any.
  6336. */
  6337. if (!crtc) {
  6338. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  6339. return false;
  6340. }
  6341. mutex_lock(&crtc->mutex);
  6342. intel_encoder->new_crtc = to_intel_crtc(crtc);
  6343. to_intel_connector(connector)->new_encoder = intel_encoder;
  6344. intel_crtc = to_intel_crtc(crtc);
  6345. old->dpms_mode = connector->dpms;
  6346. old->load_detect_temp = true;
  6347. old->release_fb = NULL;
  6348. if (!mode)
  6349. mode = &load_detect_mode;
  6350. /* We need a framebuffer large enough to accommodate all accesses
  6351. * that the plane may generate whilst we perform load detection.
  6352. * We can not rely on the fbcon either being present (we get called
  6353. * during its initialisation to detect all boot displays, or it may
  6354. * not even exist) or that it is large enough to satisfy the
  6355. * requested mode.
  6356. */
  6357. fb = mode_fits_in_fbdev(dev, mode);
  6358. if (fb == NULL) {
  6359. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  6360. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  6361. old->release_fb = fb;
  6362. } else
  6363. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  6364. if (IS_ERR(fb)) {
  6365. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  6366. mutex_unlock(&crtc->mutex);
  6367. return false;
  6368. }
  6369. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  6370. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  6371. if (old->release_fb)
  6372. old->release_fb->funcs->destroy(old->release_fb);
  6373. mutex_unlock(&crtc->mutex);
  6374. return false;
  6375. }
  6376. /* let the connector get through one full cycle before testing */
  6377. intel_wait_for_vblank(dev, intel_crtc->pipe);
  6378. return true;
  6379. }
  6380. void intel_release_load_detect_pipe(struct drm_connector *connector,
  6381. struct intel_load_detect_pipe *old)
  6382. {
  6383. struct intel_encoder *intel_encoder =
  6384. intel_attached_encoder(connector);
  6385. struct drm_encoder *encoder = &intel_encoder->base;
  6386. struct drm_crtc *crtc = encoder->crtc;
  6387. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6388. connector->base.id, drm_get_connector_name(connector),
  6389. encoder->base.id, drm_get_encoder_name(encoder));
  6390. if (old->load_detect_temp) {
  6391. to_intel_connector(connector)->new_encoder = NULL;
  6392. intel_encoder->new_crtc = NULL;
  6393. intel_set_mode(crtc, NULL, 0, 0, NULL);
  6394. if (old->release_fb) {
  6395. drm_framebuffer_unregister_private(old->release_fb);
  6396. drm_framebuffer_unreference(old->release_fb);
  6397. }
  6398. mutex_unlock(&crtc->mutex);
  6399. return;
  6400. }
  6401. /* Switch crtc and encoder back off if necessary */
  6402. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  6403. connector->funcs->dpms(connector, old->dpms_mode);
  6404. mutex_unlock(&crtc->mutex);
  6405. }
  6406. static int i9xx_pll_refclk(struct drm_device *dev,
  6407. const struct intel_crtc_config *pipe_config)
  6408. {
  6409. struct drm_i915_private *dev_priv = dev->dev_private;
  6410. u32 dpll = pipe_config->dpll_hw_state.dpll;
  6411. if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
  6412. return dev_priv->vbt.lvds_ssc_freq * 1000;
  6413. else if (HAS_PCH_SPLIT(dev))
  6414. return 120000;
  6415. else if (!IS_GEN2(dev))
  6416. return 96000;
  6417. else
  6418. return 48000;
  6419. }
  6420. /* Returns the clock of the currently programmed mode of the given pipe. */
  6421. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  6422. struct intel_crtc_config *pipe_config)
  6423. {
  6424. struct drm_device *dev = crtc->base.dev;
  6425. struct drm_i915_private *dev_priv = dev->dev_private;
  6426. int pipe = pipe_config->cpu_transcoder;
  6427. u32 dpll = pipe_config->dpll_hw_state.dpll;
  6428. u32 fp;
  6429. intel_clock_t clock;
  6430. int refclk = i9xx_pll_refclk(dev, pipe_config);
  6431. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  6432. fp = pipe_config->dpll_hw_state.fp0;
  6433. else
  6434. fp = pipe_config->dpll_hw_state.fp1;
  6435. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  6436. if (IS_PINEVIEW(dev)) {
  6437. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  6438. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6439. } else {
  6440. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  6441. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6442. }
  6443. if (!IS_GEN2(dev)) {
  6444. if (IS_PINEVIEW(dev))
  6445. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  6446. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  6447. else
  6448. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  6449. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6450. switch (dpll & DPLL_MODE_MASK) {
  6451. case DPLLB_MODE_DAC_SERIAL:
  6452. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  6453. 5 : 10;
  6454. break;
  6455. case DPLLB_MODE_LVDS:
  6456. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  6457. 7 : 14;
  6458. break;
  6459. default:
  6460. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  6461. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  6462. return;
  6463. }
  6464. if (IS_PINEVIEW(dev))
  6465. pineview_clock(refclk, &clock);
  6466. else
  6467. i9xx_clock(refclk, &clock);
  6468. } else {
  6469. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  6470. if (is_lvds) {
  6471. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  6472. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6473. clock.p2 = 14;
  6474. } else {
  6475. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  6476. clock.p1 = 2;
  6477. else {
  6478. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  6479. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  6480. }
  6481. if (dpll & PLL_P2_DIVIDE_BY_4)
  6482. clock.p2 = 4;
  6483. else
  6484. clock.p2 = 2;
  6485. }
  6486. i9xx_clock(refclk, &clock);
  6487. }
  6488. /*
  6489. * This value includes pixel_multiplier. We will use
  6490. * port_clock to compute adjusted_mode.crtc_clock in the
  6491. * encoder's get_config() function.
  6492. */
  6493. pipe_config->port_clock = clock.dot;
  6494. }
  6495. int intel_dotclock_calculate(int link_freq,
  6496. const struct intel_link_m_n *m_n)
  6497. {
  6498. /*
  6499. * The calculation for the data clock is:
  6500. * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
  6501. * But we want to avoid losing precison if possible, so:
  6502. * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
  6503. *
  6504. * and the link clock is simpler:
  6505. * link_clock = (m * link_clock) / n
  6506. */
  6507. if (!m_n->link_n)
  6508. return 0;
  6509. return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
  6510. }
  6511. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  6512. struct intel_crtc_config *pipe_config)
  6513. {
  6514. struct drm_device *dev = crtc->base.dev;
  6515. /* read out port_clock from the DPLL */
  6516. i9xx_crtc_clock_get(crtc, pipe_config);
  6517. /*
  6518. * This value does not include pixel_multiplier.
  6519. * We will check that port_clock and adjusted_mode.crtc_clock
  6520. * agree once we know their relationship in the encoder's
  6521. * get_config() function.
  6522. */
  6523. pipe_config->adjusted_mode.crtc_clock =
  6524. intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
  6525. &pipe_config->fdi_m_n);
  6526. }
  6527. /** Returns the currently programmed mode of the given pipe. */
  6528. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6529. struct drm_crtc *crtc)
  6530. {
  6531. struct drm_i915_private *dev_priv = dev->dev_private;
  6532. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6533. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  6534. struct drm_display_mode *mode;
  6535. struct intel_crtc_config pipe_config;
  6536. int htot = I915_READ(HTOTAL(cpu_transcoder));
  6537. int hsync = I915_READ(HSYNC(cpu_transcoder));
  6538. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  6539. int vsync = I915_READ(VSYNC(cpu_transcoder));
  6540. enum pipe pipe = intel_crtc->pipe;
  6541. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6542. if (!mode)
  6543. return NULL;
  6544. /*
  6545. * Construct a pipe_config sufficient for getting the clock info
  6546. * back out of crtc_clock_get.
  6547. *
  6548. * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  6549. * to use a real value here instead.
  6550. */
  6551. pipe_config.cpu_transcoder = (enum transcoder) pipe;
  6552. pipe_config.pixel_multiplier = 1;
  6553. pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
  6554. pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
  6555. pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
  6556. i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  6557. mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
  6558. mode->hdisplay = (htot & 0xffff) + 1;
  6559. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6560. mode->hsync_start = (hsync & 0xffff) + 1;
  6561. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6562. mode->vdisplay = (vtot & 0xffff) + 1;
  6563. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6564. mode->vsync_start = (vsync & 0xffff) + 1;
  6565. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6566. drm_mode_set_name(mode);
  6567. return mode;
  6568. }
  6569. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6570. {
  6571. struct drm_device *dev = crtc->dev;
  6572. drm_i915_private_t *dev_priv = dev->dev_private;
  6573. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6574. int pipe = intel_crtc->pipe;
  6575. int dpll_reg = DPLL(pipe);
  6576. int dpll;
  6577. if (HAS_PCH_SPLIT(dev))
  6578. return;
  6579. if (!dev_priv->lvds_downclock_avail)
  6580. return;
  6581. dpll = I915_READ(dpll_reg);
  6582. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6583. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6584. assert_panel_unlocked(dev_priv, pipe);
  6585. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6586. I915_WRITE(dpll_reg, dpll);
  6587. intel_wait_for_vblank(dev, pipe);
  6588. dpll = I915_READ(dpll_reg);
  6589. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6590. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6591. }
  6592. }
  6593. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6594. {
  6595. struct drm_device *dev = crtc->dev;
  6596. drm_i915_private_t *dev_priv = dev->dev_private;
  6597. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6598. if (HAS_PCH_SPLIT(dev))
  6599. return;
  6600. if (!dev_priv->lvds_downclock_avail)
  6601. return;
  6602. /*
  6603. * Since this is called by a timer, we should never get here in
  6604. * the manual case.
  6605. */
  6606. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6607. int pipe = intel_crtc->pipe;
  6608. int dpll_reg = DPLL(pipe);
  6609. int dpll;
  6610. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6611. assert_panel_unlocked(dev_priv, pipe);
  6612. dpll = I915_READ(dpll_reg);
  6613. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6614. I915_WRITE(dpll_reg, dpll);
  6615. intel_wait_for_vblank(dev, pipe);
  6616. dpll = I915_READ(dpll_reg);
  6617. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6618. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6619. }
  6620. }
  6621. void intel_mark_busy(struct drm_device *dev)
  6622. {
  6623. struct drm_i915_private *dev_priv = dev->dev_private;
  6624. hsw_package_c8_gpu_busy(dev_priv);
  6625. i915_update_gfx_val(dev_priv);
  6626. }
  6627. void intel_mark_idle(struct drm_device *dev)
  6628. {
  6629. struct drm_i915_private *dev_priv = dev->dev_private;
  6630. struct drm_crtc *crtc;
  6631. hsw_package_c8_gpu_idle(dev_priv);
  6632. if (!i915_powersave)
  6633. return;
  6634. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6635. if (!crtc->fb)
  6636. continue;
  6637. intel_decrease_pllclock(crtc);
  6638. }
  6639. if (dev_priv->info->gen >= 6)
  6640. gen6_rps_idle(dev->dev_private);
  6641. }
  6642. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  6643. struct intel_ring_buffer *ring)
  6644. {
  6645. struct drm_device *dev = obj->base.dev;
  6646. struct drm_crtc *crtc;
  6647. if (!i915_powersave)
  6648. return;
  6649. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6650. if (!crtc->fb)
  6651. continue;
  6652. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  6653. continue;
  6654. intel_increase_pllclock(crtc);
  6655. if (ring && intel_fbc_enabled(dev))
  6656. ring->fbc_dirty = true;
  6657. }
  6658. }
  6659. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6660. {
  6661. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6662. struct drm_device *dev = crtc->dev;
  6663. struct intel_unpin_work *work;
  6664. unsigned long flags;
  6665. spin_lock_irqsave(&dev->event_lock, flags);
  6666. work = intel_crtc->unpin_work;
  6667. intel_crtc->unpin_work = NULL;
  6668. spin_unlock_irqrestore(&dev->event_lock, flags);
  6669. if (work) {
  6670. cancel_work_sync(&work->work);
  6671. kfree(work);
  6672. }
  6673. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  6674. drm_crtc_cleanup(crtc);
  6675. kfree(intel_crtc);
  6676. }
  6677. static void intel_unpin_work_fn(struct work_struct *__work)
  6678. {
  6679. struct intel_unpin_work *work =
  6680. container_of(__work, struct intel_unpin_work, work);
  6681. struct drm_device *dev = work->crtc->dev;
  6682. mutex_lock(&dev->struct_mutex);
  6683. intel_unpin_fb_obj(work->old_fb_obj);
  6684. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6685. drm_gem_object_unreference(&work->old_fb_obj->base);
  6686. intel_update_fbc(dev);
  6687. mutex_unlock(&dev->struct_mutex);
  6688. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6689. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6690. kfree(work);
  6691. }
  6692. static void do_intel_finish_page_flip(struct drm_device *dev,
  6693. struct drm_crtc *crtc)
  6694. {
  6695. drm_i915_private_t *dev_priv = dev->dev_private;
  6696. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6697. struct intel_unpin_work *work;
  6698. unsigned long flags;
  6699. /* Ignore early vblank irqs */
  6700. if (intel_crtc == NULL)
  6701. return;
  6702. spin_lock_irqsave(&dev->event_lock, flags);
  6703. work = intel_crtc->unpin_work;
  6704. /* Ensure we don't miss a work->pending update ... */
  6705. smp_rmb();
  6706. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6707. spin_unlock_irqrestore(&dev->event_lock, flags);
  6708. return;
  6709. }
  6710. /* and that the unpin work is consistent wrt ->pending. */
  6711. smp_rmb();
  6712. intel_crtc->unpin_work = NULL;
  6713. if (work->event)
  6714. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6715. drm_vblank_put(dev, intel_crtc->pipe);
  6716. spin_unlock_irqrestore(&dev->event_lock, flags);
  6717. wake_up_all(&dev_priv->pending_flip_queue);
  6718. queue_work(dev_priv->wq, &work->work);
  6719. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6720. }
  6721. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6722. {
  6723. drm_i915_private_t *dev_priv = dev->dev_private;
  6724. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6725. do_intel_finish_page_flip(dev, crtc);
  6726. }
  6727. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6728. {
  6729. drm_i915_private_t *dev_priv = dev->dev_private;
  6730. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6731. do_intel_finish_page_flip(dev, crtc);
  6732. }
  6733. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6734. {
  6735. drm_i915_private_t *dev_priv = dev->dev_private;
  6736. struct intel_crtc *intel_crtc =
  6737. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6738. unsigned long flags;
  6739. /* NB: An MMIO update of the plane base pointer will also
  6740. * generate a page-flip completion irq, i.e. every modeset
  6741. * is also accompanied by a spurious intel_prepare_page_flip().
  6742. */
  6743. spin_lock_irqsave(&dev->event_lock, flags);
  6744. if (intel_crtc->unpin_work)
  6745. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6746. spin_unlock_irqrestore(&dev->event_lock, flags);
  6747. }
  6748. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6749. {
  6750. /* Ensure that the work item is consistent when activating it ... */
  6751. smp_wmb();
  6752. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6753. /* and that it is marked active as soon as the irq could fire. */
  6754. smp_wmb();
  6755. }
  6756. static int intel_gen2_queue_flip(struct drm_device *dev,
  6757. struct drm_crtc *crtc,
  6758. struct drm_framebuffer *fb,
  6759. struct drm_i915_gem_object *obj,
  6760. uint32_t flags)
  6761. {
  6762. struct drm_i915_private *dev_priv = dev->dev_private;
  6763. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6764. u32 flip_mask;
  6765. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6766. int ret;
  6767. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6768. if (ret)
  6769. goto err;
  6770. ret = intel_ring_begin(ring, 6);
  6771. if (ret)
  6772. goto err_unpin;
  6773. /* Can't queue multiple flips, so wait for the previous
  6774. * one to finish before executing the next.
  6775. */
  6776. if (intel_crtc->plane)
  6777. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6778. else
  6779. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6780. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6781. intel_ring_emit(ring, MI_NOOP);
  6782. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6783. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6784. intel_ring_emit(ring, fb->pitches[0]);
  6785. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6786. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6787. intel_mark_page_flip_active(intel_crtc);
  6788. __intel_ring_advance(ring);
  6789. return 0;
  6790. err_unpin:
  6791. intel_unpin_fb_obj(obj);
  6792. err:
  6793. return ret;
  6794. }
  6795. static int intel_gen3_queue_flip(struct drm_device *dev,
  6796. struct drm_crtc *crtc,
  6797. struct drm_framebuffer *fb,
  6798. struct drm_i915_gem_object *obj,
  6799. uint32_t flags)
  6800. {
  6801. struct drm_i915_private *dev_priv = dev->dev_private;
  6802. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6803. u32 flip_mask;
  6804. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6805. int ret;
  6806. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6807. if (ret)
  6808. goto err;
  6809. ret = intel_ring_begin(ring, 6);
  6810. if (ret)
  6811. goto err_unpin;
  6812. if (intel_crtc->plane)
  6813. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6814. else
  6815. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6816. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6817. intel_ring_emit(ring, MI_NOOP);
  6818. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6819. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6820. intel_ring_emit(ring, fb->pitches[0]);
  6821. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6822. intel_ring_emit(ring, MI_NOOP);
  6823. intel_mark_page_flip_active(intel_crtc);
  6824. __intel_ring_advance(ring);
  6825. return 0;
  6826. err_unpin:
  6827. intel_unpin_fb_obj(obj);
  6828. err:
  6829. return ret;
  6830. }
  6831. static int intel_gen4_queue_flip(struct drm_device *dev,
  6832. struct drm_crtc *crtc,
  6833. struct drm_framebuffer *fb,
  6834. struct drm_i915_gem_object *obj,
  6835. uint32_t flags)
  6836. {
  6837. struct drm_i915_private *dev_priv = dev->dev_private;
  6838. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6839. uint32_t pf, pipesrc;
  6840. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6841. int ret;
  6842. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6843. if (ret)
  6844. goto err;
  6845. ret = intel_ring_begin(ring, 4);
  6846. if (ret)
  6847. goto err_unpin;
  6848. /* i965+ uses the linear or tiled offsets from the
  6849. * Display Registers (which do not change across a page-flip)
  6850. * so we need only reprogram the base address.
  6851. */
  6852. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6853. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6854. intel_ring_emit(ring, fb->pitches[0]);
  6855. intel_ring_emit(ring,
  6856. (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
  6857. obj->tiling_mode);
  6858. /* XXX Enabling the panel-fitter across page-flip is so far
  6859. * untested on non-native modes, so ignore it for now.
  6860. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6861. */
  6862. pf = 0;
  6863. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6864. intel_ring_emit(ring, pf | pipesrc);
  6865. intel_mark_page_flip_active(intel_crtc);
  6866. __intel_ring_advance(ring);
  6867. return 0;
  6868. err_unpin:
  6869. intel_unpin_fb_obj(obj);
  6870. err:
  6871. return ret;
  6872. }
  6873. static int intel_gen6_queue_flip(struct drm_device *dev,
  6874. struct drm_crtc *crtc,
  6875. struct drm_framebuffer *fb,
  6876. struct drm_i915_gem_object *obj,
  6877. uint32_t flags)
  6878. {
  6879. struct drm_i915_private *dev_priv = dev->dev_private;
  6880. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6881. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6882. uint32_t pf, pipesrc;
  6883. int ret;
  6884. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6885. if (ret)
  6886. goto err;
  6887. ret = intel_ring_begin(ring, 4);
  6888. if (ret)
  6889. goto err_unpin;
  6890. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6891. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6892. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6893. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6894. /* Contrary to the suggestions in the documentation,
  6895. * "Enable Panel Fitter" does not seem to be required when page
  6896. * flipping with a non-native mode, and worse causes a normal
  6897. * modeset to fail.
  6898. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6899. */
  6900. pf = 0;
  6901. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6902. intel_ring_emit(ring, pf | pipesrc);
  6903. intel_mark_page_flip_active(intel_crtc);
  6904. __intel_ring_advance(ring);
  6905. return 0;
  6906. err_unpin:
  6907. intel_unpin_fb_obj(obj);
  6908. err:
  6909. return ret;
  6910. }
  6911. static int intel_gen7_queue_flip(struct drm_device *dev,
  6912. struct drm_crtc *crtc,
  6913. struct drm_framebuffer *fb,
  6914. struct drm_i915_gem_object *obj,
  6915. uint32_t flags)
  6916. {
  6917. struct drm_i915_private *dev_priv = dev->dev_private;
  6918. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6919. struct intel_ring_buffer *ring;
  6920. uint32_t plane_bit = 0;
  6921. int len, ret;
  6922. ring = obj->ring;
  6923. if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
  6924. ring = &dev_priv->ring[BCS];
  6925. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6926. if (ret)
  6927. goto err;
  6928. switch(intel_crtc->plane) {
  6929. case PLANE_A:
  6930. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6931. break;
  6932. case PLANE_B:
  6933. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6934. break;
  6935. case PLANE_C:
  6936. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6937. break;
  6938. default:
  6939. WARN_ONCE(1, "unknown plane in flip command\n");
  6940. ret = -ENODEV;
  6941. goto err_unpin;
  6942. }
  6943. len = 4;
  6944. if (ring->id == RCS)
  6945. len += 6;
  6946. ret = intel_ring_begin(ring, len);
  6947. if (ret)
  6948. goto err_unpin;
  6949. /* Unmask the flip-done completion message. Note that the bspec says that
  6950. * we should do this for both the BCS and RCS, and that we must not unmask
  6951. * more than one flip event at any time (or ensure that one flip message
  6952. * can be sent by waiting for flip-done prior to queueing new flips).
  6953. * Experimentation says that BCS works despite DERRMR masking all
  6954. * flip-done completion events and that unmasking all planes at once
  6955. * for the RCS also doesn't appear to drop events. Setting the DERRMR
  6956. * to zero does lead to lockups within MI_DISPLAY_FLIP.
  6957. */
  6958. if (ring->id == RCS) {
  6959. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  6960. intel_ring_emit(ring, DERRMR);
  6961. intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  6962. DERRMR_PIPEB_PRI_FLIP_DONE |
  6963. DERRMR_PIPEC_PRI_FLIP_DONE));
  6964. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
  6965. intel_ring_emit(ring, DERRMR);
  6966. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  6967. }
  6968. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6969. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6970. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6971. intel_ring_emit(ring, (MI_NOOP));
  6972. intel_mark_page_flip_active(intel_crtc);
  6973. __intel_ring_advance(ring);
  6974. return 0;
  6975. err_unpin:
  6976. intel_unpin_fb_obj(obj);
  6977. err:
  6978. return ret;
  6979. }
  6980. static int intel_default_queue_flip(struct drm_device *dev,
  6981. struct drm_crtc *crtc,
  6982. struct drm_framebuffer *fb,
  6983. struct drm_i915_gem_object *obj,
  6984. uint32_t flags)
  6985. {
  6986. return -ENODEV;
  6987. }
  6988. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6989. struct drm_framebuffer *fb,
  6990. struct drm_pending_vblank_event *event,
  6991. uint32_t page_flip_flags)
  6992. {
  6993. struct drm_device *dev = crtc->dev;
  6994. struct drm_i915_private *dev_priv = dev->dev_private;
  6995. struct drm_framebuffer *old_fb = crtc->fb;
  6996. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6997. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6998. struct intel_unpin_work *work;
  6999. unsigned long flags;
  7000. int ret;
  7001. /* Can't change pixel format via MI display flips. */
  7002. if (fb->pixel_format != crtc->fb->pixel_format)
  7003. return -EINVAL;
  7004. /*
  7005. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  7006. * Note that pitch changes could also affect these register.
  7007. */
  7008. if (INTEL_INFO(dev)->gen > 3 &&
  7009. (fb->offsets[0] != crtc->fb->offsets[0] ||
  7010. fb->pitches[0] != crtc->fb->pitches[0]))
  7011. return -EINVAL;
  7012. work = kzalloc(sizeof(*work), GFP_KERNEL);
  7013. if (work == NULL)
  7014. return -ENOMEM;
  7015. work->event = event;
  7016. work->crtc = crtc;
  7017. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  7018. INIT_WORK(&work->work, intel_unpin_work_fn);
  7019. ret = drm_vblank_get(dev, intel_crtc->pipe);
  7020. if (ret)
  7021. goto free_work;
  7022. /* We borrow the event spin lock for protecting unpin_work */
  7023. spin_lock_irqsave(&dev->event_lock, flags);
  7024. if (intel_crtc->unpin_work) {
  7025. spin_unlock_irqrestore(&dev->event_lock, flags);
  7026. kfree(work);
  7027. drm_vblank_put(dev, intel_crtc->pipe);
  7028. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  7029. return -EBUSY;
  7030. }
  7031. intel_crtc->unpin_work = work;
  7032. spin_unlock_irqrestore(&dev->event_lock, flags);
  7033. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  7034. flush_workqueue(dev_priv->wq);
  7035. ret = i915_mutex_lock_interruptible(dev);
  7036. if (ret)
  7037. goto cleanup;
  7038. /* Reference the objects for the scheduled work. */
  7039. drm_gem_object_reference(&work->old_fb_obj->base);
  7040. drm_gem_object_reference(&obj->base);
  7041. crtc->fb = fb;
  7042. work->pending_flip_obj = obj;
  7043. work->enable_stall_check = true;
  7044. atomic_inc(&intel_crtc->unpin_work_count);
  7045. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  7046. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
  7047. if (ret)
  7048. goto cleanup_pending;
  7049. intel_disable_fbc(dev);
  7050. intel_mark_fb_busy(obj, NULL);
  7051. mutex_unlock(&dev->struct_mutex);
  7052. trace_i915_flip_request(intel_crtc->plane, obj);
  7053. return 0;
  7054. cleanup_pending:
  7055. atomic_dec(&intel_crtc->unpin_work_count);
  7056. crtc->fb = old_fb;
  7057. drm_gem_object_unreference(&work->old_fb_obj->base);
  7058. drm_gem_object_unreference(&obj->base);
  7059. mutex_unlock(&dev->struct_mutex);
  7060. cleanup:
  7061. spin_lock_irqsave(&dev->event_lock, flags);
  7062. intel_crtc->unpin_work = NULL;
  7063. spin_unlock_irqrestore(&dev->event_lock, flags);
  7064. drm_vblank_put(dev, intel_crtc->pipe);
  7065. free_work:
  7066. kfree(work);
  7067. return ret;
  7068. }
  7069. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  7070. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  7071. .load_lut = intel_crtc_load_lut,
  7072. };
  7073. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  7074. struct drm_crtc *crtc)
  7075. {
  7076. struct drm_device *dev;
  7077. struct drm_crtc *tmp;
  7078. int crtc_mask = 1;
  7079. WARN(!crtc, "checking null crtc?\n");
  7080. dev = crtc->dev;
  7081. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  7082. if (tmp == crtc)
  7083. break;
  7084. crtc_mask <<= 1;
  7085. }
  7086. if (encoder->possible_crtcs & crtc_mask)
  7087. return true;
  7088. return false;
  7089. }
  7090. /**
  7091. * intel_modeset_update_staged_output_state
  7092. *
  7093. * Updates the staged output configuration state, e.g. after we've read out the
  7094. * current hw state.
  7095. */
  7096. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  7097. {
  7098. struct intel_encoder *encoder;
  7099. struct intel_connector *connector;
  7100. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7101. base.head) {
  7102. connector->new_encoder =
  7103. to_intel_encoder(connector->base.encoder);
  7104. }
  7105. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7106. base.head) {
  7107. encoder->new_crtc =
  7108. to_intel_crtc(encoder->base.crtc);
  7109. }
  7110. }
  7111. /**
  7112. * intel_modeset_commit_output_state
  7113. *
  7114. * This function copies the stage display pipe configuration to the real one.
  7115. */
  7116. static void intel_modeset_commit_output_state(struct drm_device *dev)
  7117. {
  7118. struct intel_encoder *encoder;
  7119. struct intel_connector *connector;
  7120. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7121. base.head) {
  7122. connector->base.encoder = &connector->new_encoder->base;
  7123. }
  7124. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7125. base.head) {
  7126. encoder->base.crtc = &encoder->new_crtc->base;
  7127. }
  7128. }
  7129. static void
  7130. connected_sink_compute_bpp(struct intel_connector * connector,
  7131. struct intel_crtc_config *pipe_config)
  7132. {
  7133. int bpp = pipe_config->pipe_bpp;
  7134. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  7135. connector->base.base.id,
  7136. drm_get_connector_name(&connector->base));
  7137. /* Don't use an invalid EDID bpc value */
  7138. if (connector->base.display_info.bpc &&
  7139. connector->base.display_info.bpc * 3 < bpp) {
  7140. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  7141. bpp, connector->base.display_info.bpc*3);
  7142. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  7143. }
  7144. /* Clamp bpp to 8 on screens without EDID 1.4 */
  7145. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  7146. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  7147. bpp);
  7148. pipe_config->pipe_bpp = 24;
  7149. }
  7150. }
  7151. static int
  7152. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  7153. struct drm_framebuffer *fb,
  7154. struct intel_crtc_config *pipe_config)
  7155. {
  7156. struct drm_device *dev = crtc->base.dev;
  7157. struct intel_connector *connector;
  7158. int bpp;
  7159. switch (fb->pixel_format) {
  7160. case DRM_FORMAT_C8:
  7161. bpp = 8*3; /* since we go through a colormap */
  7162. break;
  7163. case DRM_FORMAT_XRGB1555:
  7164. case DRM_FORMAT_ARGB1555:
  7165. /* checked in intel_framebuffer_init already */
  7166. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  7167. return -EINVAL;
  7168. case DRM_FORMAT_RGB565:
  7169. bpp = 6*3; /* min is 18bpp */
  7170. break;
  7171. case DRM_FORMAT_XBGR8888:
  7172. case DRM_FORMAT_ABGR8888:
  7173. /* checked in intel_framebuffer_init already */
  7174. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  7175. return -EINVAL;
  7176. case DRM_FORMAT_XRGB8888:
  7177. case DRM_FORMAT_ARGB8888:
  7178. bpp = 8*3;
  7179. break;
  7180. case DRM_FORMAT_XRGB2101010:
  7181. case DRM_FORMAT_ARGB2101010:
  7182. case DRM_FORMAT_XBGR2101010:
  7183. case DRM_FORMAT_ABGR2101010:
  7184. /* checked in intel_framebuffer_init already */
  7185. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  7186. return -EINVAL;
  7187. bpp = 10*3;
  7188. break;
  7189. /* TODO: gen4+ supports 16 bpc floating point, too. */
  7190. default:
  7191. DRM_DEBUG_KMS("unsupported depth\n");
  7192. return -EINVAL;
  7193. }
  7194. pipe_config->pipe_bpp = bpp;
  7195. /* Clamp display bpp to EDID value */
  7196. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7197. base.head) {
  7198. if (!connector->new_encoder ||
  7199. connector->new_encoder->new_crtc != crtc)
  7200. continue;
  7201. connected_sink_compute_bpp(connector, pipe_config);
  7202. }
  7203. return bpp;
  7204. }
  7205. static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
  7206. {
  7207. DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
  7208. "type: 0x%x flags: 0x%x\n",
  7209. mode->crtc_clock,
  7210. mode->crtc_hdisplay, mode->crtc_hsync_start,
  7211. mode->crtc_hsync_end, mode->crtc_htotal,
  7212. mode->crtc_vdisplay, mode->crtc_vsync_start,
  7213. mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
  7214. }
  7215. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  7216. struct intel_crtc_config *pipe_config,
  7217. const char *context)
  7218. {
  7219. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  7220. context, pipe_name(crtc->pipe));
  7221. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  7222. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  7223. pipe_config->pipe_bpp, pipe_config->dither);
  7224. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  7225. pipe_config->has_pch_encoder,
  7226. pipe_config->fdi_lanes,
  7227. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  7228. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  7229. pipe_config->fdi_m_n.tu);
  7230. DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  7231. pipe_config->has_dp_encoder,
  7232. pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
  7233. pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
  7234. pipe_config->dp_m_n.tu);
  7235. DRM_DEBUG_KMS("requested mode:\n");
  7236. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  7237. DRM_DEBUG_KMS("adjusted mode:\n");
  7238. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  7239. intel_dump_crtc_timings(&pipe_config->adjusted_mode);
  7240. DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
  7241. DRM_DEBUG_KMS("pipe src size: %dx%d\n",
  7242. pipe_config->pipe_src_w, pipe_config->pipe_src_h);
  7243. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  7244. pipe_config->gmch_pfit.control,
  7245. pipe_config->gmch_pfit.pgm_ratios,
  7246. pipe_config->gmch_pfit.lvds_border_bits);
  7247. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
  7248. pipe_config->pch_pfit.pos,
  7249. pipe_config->pch_pfit.size,
  7250. pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
  7251. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  7252. DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
  7253. }
  7254. static bool check_encoder_cloning(struct drm_crtc *crtc)
  7255. {
  7256. int num_encoders = 0;
  7257. bool uncloneable_encoders = false;
  7258. struct intel_encoder *encoder;
  7259. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  7260. base.head) {
  7261. if (&encoder->new_crtc->base != crtc)
  7262. continue;
  7263. num_encoders++;
  7264. if (!encoder->cloneable)
  7265. uncloneable_encoders = true;
  7266. }
  7267. return !(num_encoders > 1 && uncloneable_encoders);
  7268. }
  7269. static struct intel_crtc_config *
  7270. intel_modeset_pipe_config(struct drm_crtc *crtc,
  7271. struct drm_framebuffer *fb,
  7272. struct drm_display_mode *mode)
  7273. {
  7274. struct drm_device *dev = crtc->dev;
  7275. struct intel_encoder *encoder;
  7276. struct intel_crtc_config *pipe_config;
  7277. int plane_bpp, ret = -EINVAL;
  7278. bool retry = true;
  7279. if (!check_encoder_cloning(crtc)) {
  7280. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  7281. return ERR_PTR(-EINVAL);
  7282. }
  7283. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  7284. if (!pipe_config)
  7285. return ERR_PTR(-ENOMEM);
  7286. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  7287. drm_mode_copy(&pipe_config->requested_mode, mode);
  7288. pipe_config->cpu_transcoder =
  7289. (enum transcoder) to_intel_crtc(crtc)->pipe;
  7290. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  7291. /*
  7292. * Sanitize sync polarity flags based on requested ones. If neither
  7293. * positive or negative polarity is requested, treat this as meaning
  7294. * negative polarity.
  7295. */
  7296. if (!(pipe_config->adjusted_mode.flags &
  7297. (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  7298. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  7299. if (!(pipe_config->adjusted_mode.flags &
  7300. (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  7301. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  7302. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  7303. * plane pixel format and any sink constraints into account. Returns the
  7304. * source plane bpp so that dithering can be selected on mismatches
  7305. * after encoders and crtc also have had their say. */
  7306. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  7307. fb, pipe_config);
  7308. if (plane_bpp < 0)
  7309. goto fail;
  7310. /*
  7311. * Determine the real pipe dimensions. Note that stereo modes can
  7312. * increase the actual pipe size due to the frame doubling and
  7313. * insertion of additional space for blanks between the frame. This
  7314. * is stored in the crtc timings. We use the requested mode to do this
  7315. * computation to clearly distinguish it from the adjusted mode, which
  7316. * can be changed by the connectors in the below retry loop.
  7317. */
  7318. drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
  7319. pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
  7320. pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
  7321. encoder_retry:
  7322. /* Ensure the port clock defaults are reset when retrying. */
  7323. pipe_config->port_clock = 0;
  7324. pipe_config->pixel_multiplier = 1;
  7325. /* Fill in default crtc timings, allow encoders to overwrite them. */
  7326. drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
  7327. /* Pass our mode to the connectors and the CRTC to give them a chance to
  7328. * adjust it according to limitations or connector properties, and also
  7329. * a chance to reject the mode entirely.
  7330. */
  7331. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7332. base.head) {
  7333. if (&encoder->new_crtc->base != crtc)
  7334. continue;
  7335. if (!(encoder->compute_config(encoder, pipe_config))) {
  7336. DRM_DEBUG_KMS("Encoder config failure\n");
  7337. goto fail;
  7338. }
  7339. }
  7340. /* Set default port clock if not overwritten by the encoder. Needs to be
  7341. * done afterwards in case the encoder adjusts the mode. */
  7342. if (!pipe_config->port_clock)
  7343. pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
  7344. * pipe_config->pixel_multiplier;
  7345. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  7346. if (ret < 0) {
  7347. DRM_DEBUG_KMS("CRTC fixup failed\n");
  7348. goto fail;
  7349. }
  7350. if (ret == RETRY) {
  7351. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  7352. ret = -EINVAL;
  7353. goto fail;
  7354. }
  7355. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  7356. retry = false;
  7357. goto encoder_retry;
  7358. }
  7359. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  7360. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  7361. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  7362. return pipe_config;
  7363. fail:
  7364. kfree(pipe_config);
  7365. return ERR_PTR(ret);
  7366. }
  7367. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  7368. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  7369. static void
  7370. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  7371. unsigned *prepare_pipes, unsigned *disable_pipes)
  7372. {
  7373. struct intel_crtc *intel_crtc;
  7374. struct drm_device *dev = crtc->dev;
  7375. struct intel_encoder *encoder;
  7376. struct intel_connector *connector;
  7377. struct drm_crtc *tmp_crtc;
  7378. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  7379. /* Check which crtcs have changed outputs connected to them, these need
  7380. * to be part of the prepare_pipes mask. We don't (yet) support global
  7381. * modeset across multiple crtcs, so modeset_pipes will only have one
  7382. * bit set at most. */
  7383. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7384. base.head) {
  7385. if (connector->base.encoder == &connector->new_encoder->base)
  7386. continue;
  7387. if (connector->base.encoder) {
  7388. tmp_crtc = connector->base.encoder->crtc;
  7389. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7390. }
  7391. if (connector->new_encoder)
  7392. *prepare_pipes |=
  7393. 1 << connector->new_encoder->new_crtc->pipe;
  7394. }
  7395. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7396. base.head) {
  7397. if (encoder->base.crtc == &encoder->new_crtc->base)
  7398. continue;
  7399. if (encoder->base.crtc) {
  7400. tmp_crtc = encoder->base.crtc;
  7401. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7402. }
  7403. if (encoder->new_crtc)
  7404. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  7405. }
  7406. /* Check for any pipes that will be fully disabled ... */
  7407. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7408. base.head) {
  7409. bool used = false;
  7410. /* Don't try to disable disabled crtcs. */
  7411. if (!intel_crtc->base.enabled)
  7412. continue;
  7413. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7414. base.head) {
  7415. if (encoder->new_crtc == intel_crtc)
  7416. used = true;
  7417. }
  7418. if (!used)
  7419. *disable_pipes |= 1 << intel_crtc->pipe;
  7420. }
  7421. /* set_mode is also used to update properties on life display pipes. */
  7422. intel_crtc = to_intel_crtc(crtc);
  7423. if (crtc->enabled)
  7424. *prepare_pipes |= 1 << intel_crtc->pipe;
  7425. /*
  7426. * For simplicity do a full modeset on any pipe where the output routing
  7427. * changed. We could be more clever, but that would require us to be
  7428. * more careful with calling the relevant encoder->mode_set functions.
  7429. */
  7430. if (*prepare_pipes)
  7431. *modeset_pipes = *prepare_pipes;
  7432. /* ... and mask these out. */
  7433. *modeset_pipes &= ~(*disable_pipes);
  7434. *prepare_pipes &= ~(*disable_pipes);
  7435. /*
  7436. * HACK: We don't (yet) fully support global modesets. intel_set_config
  7437. * obies this rule, but the modeset restore mode of
  7438. * intel_modeset_setup_hw_state does not.
  7439. */
  7440. *modeset_pipes &= 1 << intel_crtc->pipe;
  7441. *prepare_pipes &= 1 << intel_crtc->pipe;
  7442. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  7443. *modeset_pipes, *prepare_pipes, *disable_pipes);
  7444. }
  7445. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  7446. {
  7447. struct drm_encoder *encoder;
  7448. struct drm_device *dev = crtc->dev;
  7449. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  7450. if (encoder->crtc == crtc)
  7451. return true;
  7452. return false;
  7453. }
  7454. static void
  7455. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  7456. {
  7457. struct intel_encoder *intel_encoder;
  7458. struct intel_crtc *intel_crtc;
  7459. struct drm_connector *connector;
  7460. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  7461. base.head) {
  7462. if (!intel_encoder->base.crtc)
  7463. continue;
  7464. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  7465. if (prepare_pipes & (1 << intel_crtc->pipe))
  7466. intel_encoder->connectors_active = false;
  7467. }
  7468. intel_modeset_commit_output_state(dev);
  7469. /* Update computed state. */
  7470. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7471. base.head) {
  7472. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  7473. }
  7474. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7475. if (!connector->encoder || !connector->encoder->crtc)
  7476. continue;
  7477. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  7478. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  7479. struct drm_property *dpms_property =
  7480. dev->mode_config.dpms_property;
  7481. connector->dpms = DRM_MODE_DPMS_ON;
  7482. drm_object_property_set_value(&connector->base,
  7483. dpms_property,
  7484. DRM_MODE_DPMS_ON);
  7485. intel_encoder = to_intel_encoder(connector->encoder);
  7486. intel_encoder->connectors_active = true;
  7487. }
  7488. }
  7489. }
  7490. static bool intel_fuzzy_clock_check(int clock1, int clock2)
  7491. {
  7492. int diff;
  7493. if (clock1 == clock2)
  7494. return true;
  7495. if (!clock1 || !clock2)
  7496. return false;
  7497. diff = abs(clock1 - clock2);
  7498. if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  7499. return true;
  7500. return false;
  7501. }
  7502. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  7503. list_for_each_entry((intel_crtc), \
  7504. &(dev)->mode_config.crtc_list, \
  7505. base.head) \
  7506. if (mask & (1 <<(intel_crtc)->pipe))
  7507. static bool
  7508. intel_pipe_config_compare(struct drm_device *dev,
  7509. struct intel_crtc_config *current_config,
  7510. struct intel_crtc_config *pipe_config)
  7511. {
  7512. #define PIPE_CONF_CHECK_X(name) \
  7513. if (current_config->name != pipe_config->name) { \
  7514. DRM_ERROR("mismatch in " #name " " \
  7515. "(expected 0x%08x, found 0x%08x)\n", \
  7516. current_config->name, \
  7517. pipe_config->name); \
  7518. return false; \
  7519. }
  7520. #define PIPE_CONF_CHECK_I(name) \
  7521. if (current_config->name != pipe_config->name) { \
  7522. DRM_ERROR("mismatch in " #name " " \
  7523. "(expected %i, found %i)\n", \
  7524. current_config->name, \
  7525. pipe_config->name); \
  7526. return false; \
  7527. }
  7528. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  7529. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  7530. DRM_ERROR("mismatch in " #name "(" #mask ") " \
  7531. "(expected %i, found %i)\n", \
  7532. current_config->name & (mask), \
  7533. pipe_config->name & (mask)); \
  7534. return false; \
  7535. }
  7536. #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
  7537. if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
  7538. DRM_ERROR("mismatch in " #name " " \
  7539. "(expected %i, found %i)\n", \
  7540. current_config->name, \
  7541. pipe_config->name); \
  7542. return false; \
  7543. }
  7544. #define PIPE_CONF_QUIRK(quirk) \
  7545. ((current_config->quirks | pipe_config->quirks) & (quirk))
  7546. PIPE_CONF_CHECK_I(cpu_transcoder);
  7547. PIPE_CONF_CHECK_I(has_pch_encoder);
  7548. PIPE_CONF_CHECK_I(fdi_lanes);
  7549. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  7550. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  7551. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  7552. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  7553. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  7554. PIPE_CONF_CHECK_I(has_dp_encoder);
  7555. PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
  7556. PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
  7557. PIPE_CONF_CHECK_I(dp_m_n.link_m);
  7558. PIPE_CONF_CHECK_I(dp_m_n.link_n);
  7559. PIPE_CONF_CHECK_I(dp_m_n.tu);
  7560. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  7561. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  7562. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  7563. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  7564. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  7565. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  7566. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  7567. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  7568. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  7569. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  7570. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  7571. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  7572. PIPE_CONF_CHECK_I(pixel_multiplier);
  7573. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7574. DRM_MODE_FLAG_INTERLACE);
  7575. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  7576. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7577. DRM_MODE_FLAG_PHSYNC);
  7578. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7579. DRM_MODE_FLAG_NHSYNC);
  7580. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7581. DRM_MODE_FLAG_PVSYNC);
  7582. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7583. DRM_MODE_FLAG_NVSYNC);
  7584. }
  7585. PIPE_CONF_CHECK_I(pipe_src_w);
  7586. PIPE_CONF_CHECK_I(pipe_src_h);
  7587. PIPE_CONF_CHECK_I(gmch_pfit.control);
  7588. /* pfit ratios are autocomputed by the hw on gen4+ */
  7589. if (INTEL_INFO(dev)->gen < 4)
  7590. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  7591. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  7592. PIPE_CONF_CHECK_I(pch_pfit.enabled);
  7593. if (current_config->pch_pfit.enabled) {
  7594. PIPE_CONF_CHECK_I(pch_pfit.pos);
  7595. PIPE_CONF_CHECK_I(pch_pfit.size);
  7596. }
  7597. PIPE_CONF_CHECK_I(ips_enabled);
  7598. PIPE_CONF_CHECK_I(double_wide);
  7599. PIPE_CONF_CHECK_I(shared_dpll);
  7600. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  7601. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  7602. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  7603. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  7604. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
  7605. PIPE_CONF_CHECK_I(pipe_bpp);
  7606. if (!IS_HASWELL(dev)) {
  7607. PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
  7608. PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
  7609. }
  7610. #undef PIPE_CONF_CHECK_X
  7611. #undef PIPE_CONF_CHECK_I
  7612. #undef PIPE_CONF_CHECK_FLAGS
  7613. #undef PIPE_CONF_CHECK_CLOCK_FUZZY
  7614. #undef PIPE_CONF_QUIRK
  7615. return true;
  7616. }
  7617. static void
  7618. check_connector_state(struct drm_device *dev)
  7619. {
  7620. struct intel_connector *connector;
  7621. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7622. base.head) {
  7623. /* This also checks the encoder/connector hw state with the
  7624. * ->get_hw_state callbacks. */
  7625. intel_connector_check_state(connector);
  7626. WARN(&connector->new_encoder->base != connector->base.encoder,
  7627. "connector's staged encoder doesn't match current encoder\n");
  7628. }
  7629. }
  7630. static void
  7631. check_encoder_state(struct drm_device *dev)
  7632. {
  7633. struct intel_encoder *encoder;
  7634. struct intel_connector *connector;
  7635. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7636. base.head) {
  7637. bool enabled = false;
  7638. bool active = false;
  7639. enum pipe pipe, tracked_pipe;
  7640. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  7641. encoder->base.base.id,
  7642. drm_get_encoder_name(&encoder->base));
  7643. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  7644. "encoder's stage crtc doesn't match current crtc\n");
  7645. WARN(encoder->connectors_active && !encoder->base.crtc,
  7646. "encoder's active_connectors set, but no crtc\n");
  7647. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7648. base.head) {
  7649. if (connector->base.encoder != &encoder->base)
  7650. continue;
  7651. enabled = true;
  7652. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  7653. active = true;
  7654. }
  7655. WARN(!!encoder->base.crtc != enabled,
  7656. "encoder's enabled state mismatch "
  7657. "(expected %i, found %i)\n",
  7658. !!encoder->base.crtc, enabled);
  7659. WARN(active && !encoder->base.crtc,
  7660. "active encoder with no crtc\n");
  7661. WARN(encoder->connectors_active != active,
  7662. "encoder's computed active state doesn't match tracked active state "
  7663. "(expected %i, found %i)\n", active, encoder->connectors_active);
  7664. active = encoder->get_hw_state(encoder, &pipe);
  7665. WARN(active != encoder->connectors_active,
  7666. "encoder's hw state doesn't match sw tracking "
  7667. "(expected %i, found %i)\n",
  7668. encoder->connectors_active, active);
  7669. if (!encoder->base.crtc)
  7670. continue;
  7671. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  7672. WARN(active && pipe != tracked_pipe,
  7673. "active encoder's pipe doesn't match"
  7674. "(expected %i, found %i)\n",
  7675. tracked_pipe, pipe);
  7676. }
  7677. }
  7678. static void
  7679. check_crtc_state(struct drm_device *dev)
  7680. {
  7681. drm_i915_private_t *dev_priv = dev->dev_private;
  7682. struct intel_crtc *crtc;
  7683. struct intel_encoder *encoder;
  7684. struct intel_crtc_config pipe_config;
  7685. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7686. base.head) {
  7687. bool enabled = false;
  7688. bool active = false;
  7689. memset(&pipe_config, 0, sizeof(pipe_config));
  7690. DRM_DEBUG_KMS("[CRTC:%d]\n",
  7691. crtc->base.base.id);
  7692. WARN(crtc->active && !crtc->base.enabled,
  7693. "active crtc, but not enabled in sw tracking\n");
  7694. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7695. base.head) {
  7696. if (encoder->base.crtc != &crtc->base)
  7697. continue;
  7698. enabled = true;
  7699. if (encoder->connectors_active)
  7700. active = true;
  7701. }
  7702. WARN(active != crtc->active,
  7703. "crtc's computed active state doesn't match tracked active state "
  7704. "(expected %i, found %i)\n", active, crtc->active);
  7705. WARN(enabled != crtc->base.enabled,
  7706. "crtc's computed enabled state doesn't match tracked enabled state "
  7707. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  7708. active = dev_priv->display.get_pipe_config(crtc,
  7709. &pipe_config);
  7710. /* hw state is inconsistent with the pipe A quirk */
  7711. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  7712. active = crtc->active;
  7713. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7714. base.head) {
  7715. enum pipe pipe;
  7716. if (encoder->base.crtc != &crtc->base)
  7717. continue;
  7718. if (encoder->get_config &&
  7719. encoder->get_hw_state(encoder, &pipe))
  7720. encoder->get_config(encoder, &pipe_config);
  7721. }
  7722. WARN(crtc->active != active,
  7723. "crtc active state doesn't match with hw state "
  7724. "(expected %i, found %i)\n", crtc->active, active);
  7725. if (active &&
  7726. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  7727. WARN(1, "pipe state doesn't match!\n");
  7728. intel_dump_pipe_config(crtc, &pipe_config,
  7729. "[hw state]");
  7730. intel_dump_pipe_config(crtc, &crtc->config,
  7731. "[sw state]");
  7732. }
  7733. }
  7734. }
  7735. static void
  7736. check_shared_dpll_state(struct drm_device *dev)
  7737. {
  7738. drm_i915_private_t *dev_priv = dev->dev_private;
  7739. struct intel_crtc *crtc;
  7740. struct intel_dpll_hw_state dpll_hw_state;
  7741. int i;
  7742. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7743. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  7744. int enabled_crtcs = 0, active_crtcs = 0;
  7745. bool active;
  7746. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  7747. DRM_DEBUG_KMS("%s\n", pll->name);
  7748. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  7749. WARN(pll->active > pll->refcount,
  7750. "more active pll users than references: %i vs %i\n",
  7751. pll->active, pll->refcount);
  7752. WARN(pll->active && !pll->on,
  7753. "pll in active use but not on in sw tracking\n");
  7754. WARN(pll->on && !pll->active,
  7755. "pll in on but not on in use in sw tracking\n");
  7756. WARN(pll->on != active,
  7757. "pll on state mismatch (expected %i, found %i)\n",
  7758. pll->on, active);
  7759. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7760. base.head) {
  7761. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  7762. enabled_crtcs++;
  7763. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  7764. active_crtcs++;
  7765. }
  7766. WARN(pll->active != active_crtcs,
  7767. "pll active crtcs mismatch (expected %i, found %i)\n",
  7768. pll->active, active_crtcs);
  7769. WARN(pll->refcount != enabled_crtcs,
  7770. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  7771. pll->refcount, enabled_crtcs);
  7772. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  7773. sizeof(dpll_hw_state)),
  7774. "pll hw state mismatch\n");
  7775. }
  7776. }
  7777. void
  7778. intel_modeset_check_state(struct drm_device *dev)
  7779. {
  7780. check_connector_state(dev);
  7781. check_encoder_state(dev);
  7782. check_crtc_state(dev);
  7783. check_shared_dpll_state(dev);
  7784. }
  7785. void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
  7786. int dotclock)
  7787. {
  7788. /*
  7789. * FDI already provided one idea for the dotclock.
  7790. * Yell if the encoder disagrees.
  7791. */
  7792. WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
  7793. "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
  7794. pipe_config->adjusted_mode.crtc_clock, dotclock);
  7795. }
  7796. static int __intel_set_mode(struct drm_crtc *crtc,
  7797. struct drm_display_mode *mode,
  7798. int x, int y, struct drm_framebuffer *fb)
  7799. {
  7800. struct drm_device *dev = crtc->dev;
  7801. drm_i915_private_t *dev_priv = dev->dev_private;
  7802. struct drm_display_mode *saved_mode, *saved_hwmode;
  7803. struct intel_crtc_config *pipe_config = NULL;
  7804. struct intel_crtc *intel_crtc;
  7805. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  7806. int ret = 0;
  7807. saved_mode = kcalloc(2, sizeof(*saved_mode), GFP_KERNEL);
  7808. if (!saved_mode)
  7809. return -ENOMEM;
  7810. saved_hwmode = saved_mode + 1;
  7811. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  7812. &prepare_pipes, &disable_pipes);
  7813. *saved_hwmode = crtc->hwmode;
  7814. *saved_mode = crtc->mode;
  7815. /* Hack: Because we don't (yet) support global modeset on multiple
  7816. * crtcs, we don't keep track of the new mode for more than one crtc.
  7817. * Hence simply check whether any bit is set in modeset_pipes in all the
  7818. * pieces of code that are not yet converted to deal with mutliple crtcs
  7819. * changing their mode at the same time. */
  7820. if (modeset_pipes) {
  7821. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  7822. if (IS_ERR(pipe_config)) {
  7823. ret = PTR_ERR(pipe_config);
  7824. pipe_config = NULL;
  7825. goto out;
  7826. }
  7827. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  7828. "[modeset]");
  7829. }
  7830. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7831. intel_crtc_disable(&intel_crtc->base);
  7832. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7833. if (intel_crtc->base.enabled)
  7834. dev_priv->display.crtc_disable(&intel_crtc->base);
  7835. }
  7836. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7837. * to set it here already despite that we pass it down the callchain.
  7838. */
  7839. if (modeset_pipes) {
  7840. crtc->mode = *mode;
  7841. /* mode_set/enable/disable functions rely on a correct pipe
  7842. * config. */
  7843. to_intel_crtc(crtc)->config = *pipe_config;
  7844. }
  7845. /* Only after disabling all output pipelines that will be changed can we
  7846. * update the the output configuration. */
  7847. intel_modeset_update_state(dev, prepare_pipes);
  7848. if (dev_priv->display.modeset_global_resources)
  7849. dev_priv->display.modeset_global_resources(dev);
  7850. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7851. * on the DPLL.
  7852. */
  7853. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7854. ret = intel_crtc_mode_set(&intel_crtc->base,
  7855. x, y, fb);
  7856. if (ret)
  7857. goto done;
  7858. }
  7859. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7860. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7861. dev_priv->display.crtc_enable(&intel_crtc->base);
  7862. if (modeset_pipes) {
  7863. /* Store real post-adjustment hardware mode. */
  7864. crtc->hwmode = pipe_config->adjusted_mode;
  7865. /* Calculate and store various constants which
  7866. * are later needed by vblank and swap-completion
  7867. * timestamping. They are derived from true hwmode.
  7868. */
  7869. drm_calc_timestamping_constants(crtc);
  7870. }
  7871. /* FIXME: add subpixel order */
  7872. done:
  7873. if (ret && crtc->enabled) {
  7874. crtc->hwmode = *saved_hwmode;
  7875. crtc->mode = *saved_mode;
  7876. }
  7877. out:
  7878. kfree(pipe_config);
  7879. kfree(saved_mode);
  7880. return ret;
  7881. }
  7882. static int intel_set_mode(struct drm_crtc *crtc,
  7883. struct drm_display_mode *mode,
  7884. int x, int y, struct drm_framebuffer *fb)
  7885. {
  7886. int ret;
  7887. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7888. if (ret == 0)
  7889. intel_modeset_check_state(crtc->dev);
  7890. return ret;
  7891. }
  7892. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7893. {
  7894. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7895. }
  7896. #undef for_each_intel_crtc_masked
  7897. static void intel_set_config_free(struct intel_set_config *config)
  7898. {
  7899. if (!config)
  7900. return;
  7901. kfree(config->save_connector_encoders);
  7902. kfree(config->save_encoder_crtcs);
  7903. kfree(config);
  7904. }
  7905. static int intel_set_config_save_state(struct drm_device *dev,
  7906. struct intel_set_config *config)
  7907. {
  7908. struct drm_encoder *encoder;
  7909. struct drm_connector *connector;
  7910. int count;
  7911. config->save_encoder_crtcs =
  7912. kcalloc(dev->mode_config.num_encoder,
  7913. sizeof(struct drm_crtc *), GFP_KERNEL);
  7914. if (!config->save_encoder_crtcs)
  7915. return -ENOMEM;
  7916. config->save_connector_encoders =
  7917. kcalloc(dev->mode_config.num_connector,
  7918. sizeof(struct drm_encoder *), GFP_KERNEL);
  7919. if (!config->save_connector_encoders)
  7920. return -ENOMEM;
  7921. /* Copy data. Note that driver private data is not affected.
  7922. * Should anything bad happen only the expected state is
  7923. * restored, not the drivers personal bookkeeping.
  7924. */
  7925. count = 0;
  7926. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7927. config->save_encoder_crtcs[count++] = encoder->crtc;
  7928. }
  7929. count = 0;
  7930. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7931. config->save_connector_encoders[count++] = connector->encoder;
  7932. }
  7933. return 0;
  7934. }
  7935. static void intel_set_config_restore_state(struct drm_device *dev,
  7936. struct intel_set_config *config)
  7937. {
  7938. struct intel_encoder *encoder;
  7939. struct intel_connector *connector;
  7940. int count;
  7941. count = 0;
  7942. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7943. encoder->new_crtc =
  7944. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7945. }
  7946. count = 0;
  7947. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7948. connector->new_encoder =
  7949. to_intel_encoder(config->save_connector_encoders[count++]);
  7950. }
  7951. }
  7952. static bool
  7953. is_crtc_connector_off(struct drm_mode_set *set)
  7954. {
  7955. int i;
  7956. if (set->num_connectors == 0)
  7957. return false;
  7958. if (WARN_ON(set->connectors == NULL))
  7959. return false;
  7960. for (i = 0; i < set->num_connectors; i++)
  7961. if (set->connectors[i]->encoder &&
  7962. set->connectors[i]->encoder->crtc == set->crtc &&
  7963. set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
  7964. return true;
  7965. return false;
  7966. }
  7967. static void
  7968. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7969. struct intel_set_config *config)
  7970. {
  7971. /* We should be able to check here if the fb has the same properties
  7972. * and then just flip_or_move it */
  7973. if (is_crtc_connector_off(set)) {
  7974. config->mode_changed = true;
  7975. } else if (set->crtc->fb != set->fb) {
  7976. /* If we have no fb then treat it as a full mode set */
  7977. if (set->crtc->fb == NULL) {
  7978. struct intel_crtc *intel_crtc =
  7979. to_intel_crtc(set->crtc);
  7980. if (intel_crtc->active && i915_fastboot) {
  7981. DRM_DEBUG_KMS("crtc has no fb, will flip\n");
  7982. config->fb_changed = true;
  7983. } else {
  7984. DRM_DEBUG_KMS("inactive crtc, full mode set\n");
  7985. config->mode_changed = true;
  7986. }
  7987. } else if (set->fb == NULL) {
  7988. config->mode_changed = true;
  7989. } else if (set->fb->pixel_format !=
  7990. set->crtc->fb->pixel_format) {
  7991. config->mode_changed = true;
  7992. } else {
  7993. config->fb_changed = true;
  7994. }
  7995. }
  7996. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7997. config->fb_changed = true;
  7998. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7999. DRM_DEBUG_KMS("modes are different, full mode set\n");
  8000. drm_mode_debug_printmodeline(&set->crtc->mode);
  8001. drm_mode_debug_printmodeline(set->mode);
  8002. config->mode_changed = true;
  8003. }
  8004. DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
  8005. set->crtc->base.id, config->mode_changed, config->fb_changed);
  8006. }
  8007. static int
  8008. intel_modeset_stage_output_state(struct drm_device *dev,
  8009. struct drm_mode_set *set,
  8010. struct intel_set_config *config)
  8011. {
  8012. struct drm_crtc *new_crtc;
  8013. struct intel_connector *connector;
  8014. struct intel_encoder *encoder;
  8015. int ro;
  8016. /* The upper layers ensure that we either disable a crtc or have a list
  8017. * of connectors. For paranoia, double-check this. */
  8018. WARN_ON(!set->fb && (set->num_connectors != 0));
  8019. WARN_ON(set->fb && (set->num_connectors == 0));
  8020. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8021. base.head) {
  8022. /* Otherwise traverse passed in connector list and get encoders
  8023. * for them. */
  8024. for (ro = 0; ro < set->num_connectors; ro++) {
  8025. if (set->connectors[ro] == &connector->base) {
  8026. connector->new_encoder = connector->encoder;
  8027. break;
  8028. }
  8029. }
  8030. /* If we disable the crtc, disable all its connectors. Also, if
  8031. * the connector is on the changing crtc but not on the new
  8032. * connector list, disable it. */
  8033. if ((!set->fb || ro == set->num_connectors) &&
  8034. connector->base.encoder &&
  8035. connector->base.encoder->crtc == set->crtc) {
  8036. connector->new_encoder = NULL;
  8037. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  8038. connector->base.base.id,
  8039. drm_get_connector_name(&connector->base));
  8040. }
  8041. if (&connector->new_encoder->base != connector->base.encoder) {
  8042. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  8043. config->mode_changed = true;
  8044. }
  8045. }
  8046. /* connector->new_encoder is now updated for all connectors. */
  8047. /* Update crtc of enabled connectors. */
  8048. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8049. base.head) {
  8050. if (!connector->new_encoder)
  8051. continue;
  8052. new_crtc = connector->new_encoder->base.crtc;
  8053. for (ro = 0; ro < set->num_connectors; ro++) {
  8054. if (set->connectors[ro] == &connector->base)
  8055. new_crtc = set->crtc;
  8056. }
  8057. /* Make sure the new CRTC will work with the encoder */
  8058. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  8059. new_crtc)) {
  8060. return -EINVAL;
  8061. }
  8062. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  8063. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  8064. connector->base.base.id,
  8065. drm_get_connector_name(&connector->base),
  8066. new_crtc->base.id);
  8067. }
  8068. /* Check for any encoders that needs to be disabled. */
  8069. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8070. base.head) {
  8071. list_for_each_entry(connector,
  8072. &dev->mode_config.connector_list,
  8073. base.head) {
  8074. if (connector->new_encoder == encoder) {
  8075. WARN_ON(!connector->new_encoder->new_crtc);
  8076. goto next_encoder;
  8077. }
  8078. }
  8079. encoder->new_crtc = NULL;
  8080. next_encoder:
  8081. /* Only now check for crtc changes so we don't miss encoders
  8082. * that will be disabled. */
  8083. if (&encoder->new_crtc->base != encoder->base.crtc) {
  8084. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  8085. config->mode_changed = true;
  8086. }
  8087. }
  8088. /* Now we've also updated encoder->new_crtc for all encoders. */
  8089. return 0;
  8090. }
  8091. static int intel_crtc_set_config(struct drm_mode_set *set)
  8092. {
  8093. struct drm_device *dev;
  8094. struct drm_mode_set save_set;
  8095. struct intel_set_config *config;
  8096. int ret;
  8097. BUG_ON(!set);
  8098. BUG_ON(!set->crtc);
  8099. BUG_ON(!set->crtc->helper_private);
  8100. /* Enforce sane interface api - has been abused by the fb helper. */
  8101. BUG_ON(!set->mode && set->fb);
  8102. BUG_ON(set->fb && set->num_connectors == 0);
  8103. if (set->fb) {
  8104. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  8105. set->crtc->base.id, set->fb->base.id,
  8106. (int)set->num_connectors, set->x, set->y);
  8107. } else {
  8108. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  8109. }
  8110. dev = set->crtc->dev;
  8111. ret = -ENOMEM;
  8112. config = kzalloc(sizeof(*config), GFP_KERNEL);
  8113. if (!config)
  8114. goto out_config;
  8115. ret = intel_set_config_save_state(dev, config);
  8116. if (ret)
  8117. goto out_config;
  8118. save_set.crtc = set->crtc;
  8119. save_set.mode = &set->crtc->mode;
  8120. save_set.x = set->crtc->x;
  8121. save_set.y = set->crtc->y;
  8122. save_set.fb = set->crtc->fb;
  8123. /* Compute whether we need a full modeset, only an fb base update or no
  8124. * change at all. In the future we might also check whether only the
  8125. * mode changed, e.g. for LVDS where we only change the panel fitter in
  8126. * such cases. */
  8127. intel_set_config_compute_mode_changes(set, config);
  8128. ret = intel_modeset_stage_output_state(dev, set, config);
  8129. if (ret)
  8130. goto fail;
  8131. if (config->mode_changed) {
  8132. ret = intel_set_mode(set->crtc, set->mode,
  8133. set->x, set->y, set->fb);
  8134. } else if (config->fb_changed) {
  8135. intel_crtc_wait_for_pending_flips(set->crtc);
  8136. ret = intel_pipe_set_base(set->crtc,
  8137. set->x, set->y, set->fb);
  8138. }
  8139. if (ret) {
  8140. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  8141. set->crtc->base.id, ret);
  8142. fail:
  8143. intel_set_config_restore_state(dev, config);
  8144. /* Try to restore the config */
  8145. if (config->mode_changed &&
  8146. intel_set_mode(save_set.crtc, save_set.mode,
  8147. save_set.x, save_set.y, save_set.fb))
  8148. DRM_ERROR("failed to restore config after modeset failure\n");
  8149. }
  8150. out_config:
  8151. intel_set_config_free(config);
  8152. return ret;
  8153. }
  8154. static const struct drm_crtc_funcs intel_crtc_funcs = {
  8155. .cursor_set = intel_crtc_cursor_set,
  8156. .cursor_move = intel_crtc_cursor_move,
  8157. .gamma_set = intel_crtc_gamma_set,
  8158. .set_config = intel_crtc_set_config,
  8159. .destroy = intel_crtc_destroy,
  8160. .page_flip = intel_crtc_page_flip,
  8161. };
  8162. static void intel_cpu_pll_init(struct drm_device *dev)
  8163. {
  8164. if (HAS_DDI(dev))
  8165. intel_ddi_pll_init(dev);
  8166. }
  8167. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  8168. struct intel_shared_dpll *pll,
  8169. struct intel_dpll_hw_state *hw_state)
  8170. {
  8171. uint32_t val;
  8172. val = I915_READ(PCH_DPLL(pll->id));
  8173. hw_state->dpll = val;
  8174. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  8175. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  8176. return val & DPLL_VCO_ENABLE;
  8177. }
  8178. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  8179. struct intel_shared_dpll *pll)
  8180. {
  8181. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  8182. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  8183. }
  8184. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  8185. struct intel_shared_dpll *pll)
  8186. {
  8187. /* PCH refclock must be enabled first */
  8188. assert_pch_refclk_enabled(dev_priv);
  8189. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  8190. /* Wait for the clocks to stabilize. */
  8191. POSTING_READ(PCH_DPLL(pll->id));
  8192. udelay(150);
  8193. /* The pixel multiplier can only be updated once the
  8194. * DPLL is enabled and the clocks are stable.
  8195. *
  8196. * So write it again.
  8197. */
  8198. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  8199. POSTING_READ(PCH_DPLL(pll->id));
  8200. udelay(200);
  8201. }
  8202. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  8203. struct intel_shared_dpll *pll)
  8204. {
  8205. struct drm_device *dev = dev_priv->dev;
  8206. struct intel_crtc *crtc;
  8207. /* Make sure no transcoder isn't still depending on us. */
  8208. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  8209. if (intel_crtc_to_shared_dpll(crtc) == pll)
  8210. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  8211. }
  8212. I915_WRITE(PCH_DPLL(pll->id), 0);
  8213. POSTING_READ(PCH_DPLL(pll->id));
  8214. udelay(200);
  8215. }
  8216. static char *ibx_pch_dpll_names[] = {
  8217. "PCH DPLL A",
  8218. "PCH DPLL B",
  8219. };
  8220. static void ibx_pch_dpll_init(struct drm_device *dev)
  8221. {
  8222. struct drm_i915_private *dev_priv = dev->dev_private;
  8223. int i;
  8224. dev_priv->num_shared_dpll = 2;
  8225. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8226. dev_priv->shared_dplls[i].id = i;
  8227. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  8228. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  8229. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  8230. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  8231. dev_priv->shared_dplls[i].get_hw_state =
  8232. ibx_pch_dpll_get_hw_state;
  8233. }
  8234. }
  8235. static void intel_shared_dpll_init(struct drm_device *dev)
  8236. {
  8237. struct drm_i915_private *dev_priv = dev->dev_private;
  8238. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  8239. ibx_pch_dpll_init(dev);
  8240. else
  8241. dev_priv->num_shared_dpll = 0;
  8242. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  8243. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  8244. dev_priv->num_shared_dpll);
  8245. }
  8246. static void intel_crtc_init(struct drm_device *dev, int pipe)
  8247. {
  8248. drm_i915_private_t *dev_priv = dev->dev_private;
  8249. struct intel_crtc *intel_crtc;
  8250. int i;
  8251. intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
  8252. if (intel_crtc == NULL)
  8253. return;
  8254. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  8255. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  8256. for (i = 0; i < 256; i++) {
  8257. intel_crtc->lut_r[i] = i;
  8258. intel_crtc->lut_g[i] = i;
  8259. intel_crtc->lut_b[i] = i;
  8260. }
  8261. /* Swap pipes & planes for FBC on pre-965 */
  8262. intel_crtc->pipe = pipe;
  8263. intel_crtc->plane = pipe;
  8264. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  8265. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  8266. intel_crtc->plane = !pipe;
  8267. }
  8268. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  8269. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  8270. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  8271. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  8272. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  8273. }
  8274. enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
  8275. {
  8276. struct drm_encoder *encoder = connector->base.encoder;
  8277. WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
  8278. if (!encoder)
  8279. return INVALID_PIPE;
  8280. return to_intel_crtc(encoder->crtc)->pipe;
  8281. }
  8282. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  8283. struct drm_file *file)
  8284. {
  8285. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  8286. struct drm_mode_object *drmmode_obj;
  8287. struct intel_crtc *crtc;
  8288. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  8289. return -ENODEV;
  8290. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  8291. DRM_MODE_OBJECT_CRTC);
  8292. if (!drmmode_obj) {
  8293. DRM_ERROR("no such CRTC id\n");
  8294. return -ENOENT;
  8295. }
  8296. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  8297. pipe_from_crtc_id->pipe = crtc->pipe;
  8298. return 0;
  8299. }
  8300. static int intel_encoder_clones(struct intel_encoder *encoder)
  8301. {
  8302. struct drm_device *dev = encoder->base.dev;
  8303. struct intel_encoder *source_encoder;
  8304. int index_mask = 0;
  8305. int entry = 0;
  8306. list_for_each_entry(source_encoder,
  8307. &dev->mode_config.encoder_list, base.head) {
  8308. if (encoder == source_encoder)
  8309. index_mask |= (1 << entry);
  8310. /* Intel hw has only one MUX where enocoders could be cloned. */
  8311. if (encoder->cloneable && source_encoder->cloneable)
  8312. index_mask |= (1 << entry);
  8313. entry++;
  8314. }
  8315. return index_mask;
  8316. }
  8317. static bool has_edp_a(struct drm_device *dev)
  8318. {
  8319. struct drm_i915_private *dev_priv = dev->dev_private;
  8320. if (!IS_MOBILE(dev))
  8321. return false;
  8322. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  8323. return false;
  8324. if (IS_GEN5(dev) &&
  8325. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  8326. return false;
  8327. return true;
  8328. }
  8329. static void intel_setup_outputs(struct drm_device *dev)
  8330. {
  8331. struct drm_i915_private *dev_priv = dev->dev_private;
  8332. struct intel_encoder *encoder;
  8333. bool dpd_is_edp = false;
  8334. intel_lvds_init(dev);
  8335. if (!IS_ULT(dev))
  8336. intel_crt_init(dev);
  8337. if (HAS_DDI(dev)) {
  8338. int found;
  8339. /* Haswell uses DDI functions to detect digital outputs */
  8340. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  8341. /* DDI A only supports eDP */
  8342. if (found)
  8343. intel_ddi_init(dev, PORT_A);
  8344. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  8345. * register */
  8346. found = I915_READ(SFUSE_STRAP);
  8347. if (found & SFUSE_STRAP_DDIB_DETECTED)
  8348. intel_ddi_init(dev, PORT_B);
  8349. if (found & SFUSE_STRAP_DDIC_DETECTED)
  8350. intel_ddi_init(dev, PORT_C);
  8351. if (found & SFUSE_STRAP_DDID_DETECTED)
  8352. intel_ddi_init(dev, PORT_D);
  8353. } else if (HAS_PCH_SPLIT(dev)) {
  8354. int found;
  8355. dpd_is_edp = intel_dpd_is_edp(dev);
  8356. if (has_edp_a(dev))
  8357. intel_dp_init(dev, DP_A, PORT_A);
  8358. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  8359. /* PCH SDVOB multiplex with HDMIB */
  8360. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  8361. if (!found)
  8362. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  8363. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  8364. intel_dp_init(dev, PCH_DP_B, PORT_B);
  8365. }
  8366. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  8367. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  8368. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  8369. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  8370. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  8371. intel_dp_init(dev, PCH_DP_C, PORT_C);
  8372. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  8373. intel_dp_init(dev, PCH_DP_D, PORT_D);
  8374. } else if (IS_VALLEYVIEW(dev)) {
  8375. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  8376. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  8377. PORT_B);
  8378. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  8379. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  8380. }
  8381. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
  8382. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
  8383. PORT_C);
  8384. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  8385. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
  8386. PORT_C);
  8387. }
  8388. intel_dsi_init(dev);
  8389. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  8390. bool found = false;
  8391. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8392. DRM_DEBUG_KMS("probing SDVOB\n");
  8393. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  8394. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  8395. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  8396. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  8397. }
  8398. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  8399. intel_dp_init(dev, DP_B, PORT_B);
  8400. }
  8401. /* Before G4X SDVOC doesn't have its own detect register */
  8402. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8403. DRM_DEBUG_KMS("probing SDVOC\n");
  8404. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  8405. }
  8406. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  8407. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  8408. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  8409. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  8410. }
  8411. if (SUPPORTS_INTEGRATED_DP(dev))
  8412. intel_dp_init(dev, DP_C, PORT_C);
  8413. }
  8414. if (SUPPORTS_INTEGRATED_DP(dev) &&
  8415. (I915_READ(DP_D) & DP_DETECTED))
  8416. intel_dp_init(dev, DP_D, PORT_D);
  8417. } else if (IS_GEN2(dev))
  8418. intel_dvo_init(dev);
  8419. if (SUPPORTS_TV(dev))
  8420. intel_tv_init(dev);
  8421. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  8422. encoder->base.possible_crtcs = encoder->crtc_mask;
  8423. encoder->base.possible_clones =
  8424. intel_encoder_clones(encoder);
  8425. }
  8426. intel_init_pch_refclk(dev);
  8427. drm_helper_move_panel_connectors_to_head(dev);
  8428. }
  8429. void intel_framebuffer_fini(struct intel_framebuffer *fb)
  8430. {
  8431. drm_framebuffer_cleanup(&fb->base);
  8432. WARN_ON(!fb->obj->framebuffer_references--);
  8433. drm_gem_object_unreference_unlocked(&fb->obj->base);
  8434. }
  8435. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  8436. {
  8437. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8438. intel_framebuffer_fini(intel_fb);
  8439. kfree(intel_fb);
  8440. }
  8441. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  8442. struct drm_file *file,
  8443. unsigned int *handle)
  8444. {
  8445. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8446. struct drm_i915_gem_object *obj = intel_fb->obj;
  8447. return drm_gem_handle_create(file, &obj->base, handle);
  8448. }
  8449. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  8450. .destroy = intel_user_framebuffer_destroy,
  8451. .create_handle = intel_user_framebuffer_create_handle,
  8452. };
  8453. int intel_framebuffer_init(struct drm_device *dev,
  8454. struct intel_framebuffer *intel_fb,
  8455. struct drm_mode_fb_cmd2 *mode_cmd,
  8456. struct drm_i915_gem_object *obj)
  8457. {
  8458. int aligned_height, tile_height;
  8459. int pitch_limit;
  8460. int ret;
  8461. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  8462. if (obj->tiling_mode == I915_TILING_Y) {
  8463. DRM_DEBUG("hardware does not support tiling Y\n");
  8464. return -EINVAL;
  8465. }
  8466. if (mode_cmd->pitches[0] & 63) {
  8467. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  8468. mode_cmd->pitches[0]);
  8469. return -EINVAL;
  8470. }
  8471. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  8472. pitch_limit = 32*1024;
  8473. } else if (INTEL_INFO(dev)->gen >= 4) {
  8474. if (obj->tiling_mode)
  8475. pitch_limit = 16*1024;
  8476. else
  8477. pitch_limit = 32*1024;
  8478. } else if (INTEL_INFO(dev)->gen >= 3) {
  8479. if (obj->tiling_mode)
  8480. pitch_limit = 8*1024;
  8481. else
  8482. pitch_limit = 16*1024;
  8483. } else
  8484. /* XXX DSPC is limited to 4k tiled */
  8485. pitch_limit = 8*1024;
  8486. if (mode_cmd->pitches[0] > pitch_limit) {
  8487. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  8488. obj->tiling_mode ? "tiled" : "linear",
  8489. mode_cmd->pitches[0], pitch_limit);
  8490. return -EINVAL;
  8491. }
  8492. if (obj->tiling_mode != I915_TILING_NONE &&
  8493. mode_cmd->pitches[0] != obj->stride) {
  8494. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  8495. mode_cmd->pitches[0], obj->stride);
  8496. return -EINVAL;
  8497. }
  8498. /* Reject formats not supported by any plane early. */
  8499. switch (mode_cmd->pixel_format) {
  8500. case DRM_FORMAT_C8:
  8501. case DRM_FORMAT_RGB565:
  8502. case DRM_FORMAT_XRGB8888:
  8503. case DRM_FORMAT_ARGB8888:
  8504. break;
  8505. case DRM_FORMAT_XRGB1555:
  8506. case DRM_FORMAT_ARGB1555:
  8507. if (INTEL_INFO(dev)->gen > 3) {
  8508. DRM_DEBUG("unsupported pixel format: %s\n",
  8509. drm_get_format_name(mode_cmd->pixel_format));
  8510. return -EINVAL;
  8511. }
  8512. break;
  8513. case DRM_FORMAT_XBGR8888:
  8514. case DRM_FORMAT_ABGR8888:
  8515. case DRM_FORMAT_XRGB2101010:
  8516. case DRM_FORMAT_ARGB2101010:
  8517. case DRM_FORMAT_XBGR2101010:
  8518. case DRM_FORMAT_ABGR2101010:
  8519. if (INTEL_INFO(dev)->gen < 4) {
  8520. DRM_DEBUG("unsupported pixel format: %s\n",
  8521. drm_get_format_name(mode_cmd->pixel_format));
  8522. return -EINVAL;
  8523. }
  8524. break;
  8525. case DRM_FORMAT_YUYV:
  8526. case DRM_FORMAT_UYVY:
  8527. case DRM_FORMAT_YVYU:
  8528. case DRM_FORMAT_VYUY:
  8529. if (INTEL_INFO(dev)->gen < 5) {
  8530. DRM_DEBUG("unsupported pixel format: %s\n",
  8531. drm_get_format_name(mode_cmd->pixel_format));
  8532. return -EINVAL;
  8533. }
  8534. break;
  8535. default:
  8536. DRM_DEBUG("unsupported pixel format: %s\n",
  8537. drm_get_format_name(mode_cmd->pixel_format));
  8538. return -EINVAL;
  8539. }
  8540. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  8541. if (mode_cmd->offsets[0] != 0)
  8542. return -EINVAL;
  8543. tile_height = IS_GEN2(dev) ? 16 : 8;
  8544. aligned_height = ALIGN(mode_cmd->height,
  8545. obj->tiling_mode ? tile_height : 1);
  8546. /* FIXME drm helper for size checks (especially planar formats)? */
  8547. if (obj->base.size < aligned_height * mode_cmd->pitches[0])
  8548. return -EINVAL;
  8549. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  8550. intel_fb->obj = obj;
  8551. intel_fb->obj->framebuffer_references++;
  8552. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  8553. if (ret) {
  8554. DRM_ERROR("framebuffer init failed %d\n", ret);
  8555. return ret;
  8556. }
  8557. return 0;
  8558. }
  8559. static struct drm_framebuffer *
  8560. intel_user_framebuffer_create(struct drm_device *dev,
  8561. struct drm_file *filp,
  8562. struct drm_mode_fb_cmd2 *mode_cmd)
  8563. {
  8564. struct drm_i915_gem_object *obj;
  8565. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  8566. mode_cmd->handles[0]));
  8567. if (&obj->base == NULL)
  8568. return ERR_PTR(-ENOENT);
  8569. return intel_framebuffer_create(dev, mode_cmd, obj);
  8570. }
  8571. #ifndef CONFIG_DRM_I915_FBDEV
  8572. static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
  8573. {
  8574. }
  8575. #endif
  8576. static const struct drm_mode_config_funcs intel_mode_funcs = {
  8577. .fb_create = intel_user_framebuffer_create,
  8578. .output_poll_changed = intel_fbdev_output_poll_changed,
  8579. };
  8580. /* Set up chip specific display functions */
  8581. static void intel_init_display(struct drm_device *dev)
  8582. {
  8583. struct drm_i915_private *dev_priv = dev->dev_private;
  8584. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  8585. dev_priv->display.find_dpll = g4x_find_best_dpll;
  8586. else if (IS_VALLEYVIEW(dev))
  8587. dev_priv->display.find_dpll = vlv_find_best_dpll;
  8588. else if (IS_PINEVIEW(dev))
  8589. dev_priv->display.find_dpll = pnv_find_best_dpll;
  8590. else
  8591. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  8592. if (HAS_DDI(dev)) {
  8593. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  8594. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  8595. dev_priv->display.crtc_enable = haswell_crtc_enable;
  8596. dev_priv->display.crtc_disable = haswell_crtc_disable;
  8597. dev_priv->display.off = haswell_crtc_off;
  8598. dev_priv->display.update_plane = ironlake_update_plane;
  8599. } else if (HAS_PCH_SPLIT(dev)) {
  8600. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  8601. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  8602. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  8603. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  8604. dev_priv->display.off = ironlake_crtc_off;
  8605. dev_priv->display.update_plane = ironlake_update_plane;
  8606. } else if (IS_VALLEYVIEW(dev)) {
  8607. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8608. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8609. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  8610. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8611. dev_priv->display.off = i9xx_crtc_off;
  8612. dev_priv->display.update_plane = i9xx_update_plane;
  8613. } else {
  8614. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8615. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8616. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  8617. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8618. dev_priv->display.off = i9xx_crtc_off;
  8619. dev_priv->display.update_plane = i9xx_update_plane;
  8620. }
  8621. /* Returns the core display clock speed */
  8622. if (IS_VALLEYVIEW(dev))
  8623. dev_priv->display.get_display_clock_speed =
  8624. valleyview_get_display_clock_speed;
  8625. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  8626. dev_priv->display.get_display_clock_speed =
  8627. i945_get_display_clock_speed;
  8628. else if (IS_I915G(dev))
  8629. dev_priv->display.get_display_clock_speed =
  8630. i915_get_display_clock_speed;
  8631. else if (IS_I945GM(dev) || IS_845G(dev))
  8632. dev_priv->display.get_display_clock_speed =
  8633. i9xx_misc_get_display_clock_speed;
  8634. else if (IS_PINEVIEW(dev))
  8635. dev_priv->display.get_display_clock_speed =
  8636. pnv_get_display_clock_speed;
  8637. else if (IS_I915GM(dev))
  8638. dev_priv->display.get_display_clock_speed =
  8639. i915gm_get_display_clock_speed;
  8640. else if (IS_I865G(dev))
  8641. dev_priv->display.get_display_clock_speed =
  8642. i865_get_display_clock_speed;
  8643. else if (IS_I85X(dev))
  8644. dev_priv->display.get_display_clock_speed =
  8645. i855_get_display_clock_speed;
  8646. else /* 852, 830 */
  8647. dev_priv->display.get_display_clock_speed =
  8648. i830_get_display_clock_speed;
  8649. if (HAS_PCH_SPLIT(dev)) {
  8650. if (IS_GEN5(dev)) {
  8651. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  8652. dev_priv->display.write_eld = ironlake_write_eld;
  8653. } else if (IS_GEN6(dev)) {
  8654. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  8655. dev_priv->display.write_eld = ironlake_write_eld;
  8656. } else if (IS_IVYBRIDGE(dev)) {
  8657. /* FIXME: detect B0+ stepping and use auto training */
  8658. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  8659. dev_priv->display.write_eld = ironlake_write_eld;
  8660. dev_priv->display.modeset_global_resources =
  8661. ivb_modeset_global_resources;
  8662. } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
  8663. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  8664. dev_priv->display.write_eld = haswell_write_eld;
  8665. dev_priv->display.modeset_global_resources =
  8666. haswell_modeset_global_resources;
  8667. }
  8668. } else if (IS_G4X(dev)) {
  8669. dev_priv->display.write_eld = g4x_write_eld;
  8670. } else if (IS_VALLEYVIEW(dev))
  8671. dev_priv->display.write_eld = ironlake_write_eld;
  8672. /* Default just returns -ENODEV to indicate unsupported */
  8673. dev_priv->display.queue_flip = intel_default_queue_flip;
  8674. switch (INTEL_INFO(dev)->gen) {
  8675. case 2:
  8676. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  8677. break;
  8678. case 3:
  8679. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  8680. break;
  8681. case 4:
  8682. case 5:
  8683. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  8684. break;
  8685. case 6:
  8686. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  8687. break;
  8688. case 7:
  8689. case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
  8690. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  8691. break;
  8692. }
  8693. }
  8694. /*
  8695. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  8696. * resume, or other times. This quirk makes sure that's the case for
  8697. * affected systems.
  8698. */
  8699. static void quirk_pipea_force(struct drm_device *dev)
  8700. {
  8701. struct drm_i915_private *dev_priv = dev->dev_private;
  8702. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  8703. DRM_INFO("applying pipe a force quirk\n");
  8704. }
  8705. /*
  8706. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  8707. */
  8708. static void quirk_ssc_force_disable(struct drm_device *dev)
  8709. {
  8710. struct drm_i915_private *dev_priv = dev->dev_private;
  8711. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  8712. DRM_INFO("applying lvds SSC disable quirk\n");
  8713. }
  8714. /*
  8715. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  8716. * brightness value
  8717. */
  8718. static void quirk_invert_brightness(struct drm_device *dev)
  8719. {
  8720. struct drm_i915_private *dev_priv = dev->dev_private;
  8721. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  8722. DRM_INFO("applying inverted panel brightness quirk\n");
  8723. }
  8724. /*
  8725. * Some machines (Dell XPS13) suffer broken backlight controls if
  8726. * BLM_PCH_PWM_ENABLE is set.
  8727. */
  8728. static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
  8729. {
  8730. struct drm_i915_private *dev_priv = dev->dev_private;
  8731. dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
  8732. DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
  8733. }
  8734. struct intel_quirk {
  8735. int device;
  8736. int subsystem_vendor;
  8737. int subsystem_device;
  8738. void (*hook)(struct drm_device *dev);
  8739. };
  8740. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  8741. struct intel_dmi_quirk {
  8742. void (*hook)(struct drm_device *dev);
  8743. const struct dmi_system_id (*dmi_id_list)[];
  8744. };
  8745. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  8746. {
  8747. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  8748. return 1;
  8749. }
  8750. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  8751. {
  8752. .dmi_id_list = &(const struct dmi_system_id[]) {
  8753. {
  8754. .callback = intel_dmi_reverse_brightness,
  8755. .ident = "NCR Corporation",
  8756. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  8757. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  8758. },
  8759. },
  8760. { } /* terminating entry */
  8761. },
  8762. .hook = quirk_invert_brightness,
  8763. },
  8764. };
  8765. static struct intel_quirk intel_quirks[] = {
  8766. /* HP Mini needs pipe A force quirk (LP: #322104) */
  8767. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  8768. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  8769. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  8770. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  8771. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  8772. /* 830 needs to leave pipe A & dpll A up */
  8773. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8774. /* Lenovo U160 cannot use SSC on LVDS */
  8775. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8776. /* Sony Vaio Y cannot use SSC on LVDS */
  8777. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8778. /*
  8779. * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
  8780. * seem to use inverted backlight PWM.
  8781. */
  8782. { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
  8783. /* Dell XPS13 HD Sandy Bridge */
  8784. { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
  8785. /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
  8786. { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
  8787. };
  8788. static void intel_init_quirks(struct drm_device *dev)
  8789. {
  8790. struct pci_dev *d = dev->pdev;
  8791. int i;
  8792. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8793. struct intel_quirk *q = &intel_quirks[i];
  8794. if (d->device == q->device &&
  8795. (d->subsystem_vendor == q->subsystem_vendor ||
  8796. q->subsystem_vendor == PCI_ANY_ID) &&
  8797. (d->subsystem_device == q->subsystem_device ||
  8798. q->subsystem_device == PCI_ANY_ID))
  8799. q->hook(dev);
  8800. }
  8801. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  8802. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  8803. intel_dmi_quirks[i].hook(dev);
  8804. }
  8805. }
  8806. /* Disable the VGA plane that we never use */
  8807. static void i915_disable_vga(struct drm_device *dev)
  8808. {
  8809. struct drm_i915_private *dev_priv = dev->dev_private;
  8810. u8 sr1;
  8811. u32 vga_reg = i915_vgacntrl_reg(dev);
  8812. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8813. outb(SR01, VGA_SR_INDEX);
  8814. sr1 = inb(VGA_SR_DATA);
  8815. outb(sr1 | 1<<5, VGA_SR_DATA);
  8816. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8817. udelay(300);
  8818. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8819. POSTING_READ(vga_reg);
  8820. }
  8821. void intel_modeset_init_hw(struct drm_device *dev)
  8822. {
  8823. struct drm_i915_private *dev_priv = dev->dev_private;
  8824. intel_prepare_ddi(dev);
  8825. intel_init_clock_gating(dev);
  8826. /* Enable the CRI clock source so we can get at the display */
  8827. if (IS_VALLEYVIEW(dev))
  8828. I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
  8829. DPLL_INTEGRATED_CRI_CLK_VLV);
  8830. intel_init_dpio(dev);
  8831. mutex_lock(&dev->struct_mutex);
  8832. intel_enable_gt_powersave(dev);
  8833. mutex_unlock(&dev->struct_mutex);
  8834. }
  8835. void intel_modeset_suspend_hw(struct drm_device *dev)
  8836. {
  8837. intel_suspend_hw(dev);
  8838. }
  8839. void intel_modeset_init(struct drm_device *dev)
  8840. {
  8841. struct drm_i915_private *dev_priv = dev->dev_private;
  8842. int i, j, ret;
  8843. drm_mode_config_init(dev);
  8844. dev->mode_config.min_width = 0;
  8845. dev->mode_config.min_height = 0;
  8846. dev->mode_config.preferred_depth = 24;
  8847. dev->mode_config.prefer_shadow = 1;
  8848. dev->mode_config.funcs = &intel_mode_funcs;
  8849. intel_init_quirks(dev);
  8850. intel_init_pm(dev);
  8851. if (INTEL_INFO(dev)->num_pipes == 0)
  8852. return;
  8853. intel_init_display(dev);
  8854. if (IS_GEN2(dev)) {
  8855. dev->mode_config.max_width = 2048;
  8856. dev->mode_config.max_height = 2048;
  8857. } else if (IS_GEN3(dev)) {
  8858. dev->mode_config.max_width = 4096;
  8859. dev->mode_config.max_height = 4096;
  8860. } else {
  8861. dev->mode_config.max_width = 8192;
  8862. dev->mode_config.max_height = 8192;
  8863. }
  8864. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  8865. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8866. INTEL_INFO(dev)->num_pipes,
  8867. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  8868. for_each_pipe(i) {
  8869. intel_crtc_init(dev, i);
  8870. for (j = 0; j < dev_priv->num_plane; j++) {
  8871. ret = intel_plane_init(dev, i, j);
  8872. if (ret)
  8873. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  8874. pipe_name(i), sprite_name(i, j), ret);
  8875. }
  8876. }
  8877. intel_cpu_pll_init(dev);
  8878. intel_shared_dpll_init(dev);
  8879. /* Just disable it once at startup */
  8880. i915_disable_vga(dev);
  8881. intel_setup_outputs(dev);
  8882. /* Just in case the BIOS is doing something questionable. */
  8883. intel_disable_fbc(dev);
  8884. }
  8885. static void
  8886. intel_connector_break_all_links(struct intel_connector *connector)
  8887. {
  8888. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8889. connector->base.encoder = NULL;
  8890. connector->encoder->connectors_active = false;
  8891. connector->encoder->base.crtc = NULL;
  8892. }
  8893. static void intel_enable_pipe_a(struct drm_device *dev)
  8894. {
  8895. struct intel_connector *connector;
  8896. struct drm_connector *crt = NULL;
  8897. struct intel_load_detect_pipe load_detect_temp;
  8898. /* We can't just switch on the pipe A, we need to set things up with a
  8899. * proper mode and output configuration. As a gross hack, enable pipe A
  8900. * by enabling the load detect pipe once. */
  8901. list_for_each_entry(connector,
  8902. &dev->mode_config.connector_list,
  8903. base.head) {
  8904. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8905. crt = &connector->base;
  8906. break;
  8907. }
  8908. }
  8909. if (!crt)
  8910. return;
  8911. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8912. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8913. }
  8914. static bool
  8915. intel_check_plane_mapping(struct intel_crtc *crtc)
  8916. {
  8917. struct drm_device *dev = crtc->base.dev;
  8918. struct drm_i915_private *dev_priv = dev->dev_private;
  8919. u32 reg, val;
  8920. if (INTEL_INFO(dev)->num_pipes == 1)
  8921. return true;
  8922. reg = DSPCNTR(!crtc->plane);
  8923. val = I915_READ(reg);
  8924. if ((val & DISPLAY_PLANE_ENABLE) &&
  8925. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8926. return false;
  8927. return true;
  8928. }
  8929. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8930. {
  8931. struct drm_device *dev = crtc->base.dev;
  8932. struct drm_i915_private *dev_priv = dev->dev_private;
  8933. u32 reg;
  8934. /* Clear any frame start delays used for debugging left by the BIOS */
  8935. reg = PIPECONF(crtc->config.cpu_transcoder);
  8936. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8937. /* We need to sanitize the plane -> pipe mapping first because this will
  8938. * disable the crtc (and hence change the state) if it is wrong. Note
  8939. * that gen4+ has a fixed plane -> pipe mapping. */
  8940. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8941. struct intel_connector *connector;
  8942. bool plane;
  8943. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8944. crtc->base.base.id);
  8945. /* Pipe has the wrong plane attached and the plane is active.
  8946. * Temporarily change the plane mapping and disable everything
  8947. * ... */
  8948. plane = crtc->plane;
  8949. crtc->plane = !plane;
  8950. dev_priv->display.crtc_disable(&crtc->base);
  8951. crtc->plane = plane;
  8952. /* ... and break all links. */
  8953. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8954. base.head) {
  8955. if (connector->encoder->base.crtc != &crtc->base)
  8956. continue;
  8957. intel_connector_break_all_links(connector);
  8958. }
  8959. WARN_ON(crtc->active);
  8960. crtc->base.enabled = false;
  8961. }
  8962. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8963. crtc->pipe == PIPE_A && !crtc->active) {
  8964. /* BIOS forgot to enable pipe A, this mostly happens after
  8965. * resume. Force-enable the pipe to fix this, the update_dpms
  8966. * call below we restore the pipe to the right state, but leave
  8967. * the required bits on. */
  8968. intel_enable_pipe_a(dev);
  8969. }
  8970. /* Adjust the state of the output pipe according to whether we
  8971. * have active connectors/encoders. */
  8972. intel_crtc_update_dpms(&crtc->base);
  8973. if (crtc->active != crtc->base.enabled) {
  8974. struct intel_encoder *encoder;
  8975. /* This can happen either due to bugs in the get_hw_state
  8976. * functions or because the pipe is force-enabled due to the
  8977. * pipe A quirk. */
  8978. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8979. crtc->base.base.id,
  8980. crtc->base.enabled ? "enabled" : "disabled",
  8981. crtc->active ? "enabled" : "disabled");
  8982. crtc->base.enabled = crtc->active;
  8983. /* Because we only establish the connector -> encoder ->
  8984. * crtc links if something is active, this means the
  8985. * crtc is now deactivated. Break the links. connector
  8986. * -> encoder links are only establish when things are
  8987. * actually up, hence no need to break them. */
  8988. WARN_ON(crtc->active);
  8989. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8990. WARN_ON(encoder->connectors_active);
  8991. encoder->base.crtc = NULL;
  8992. }
  8993. }
  8994. }
  8995. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8996. {
  8997. struct intel_connector *connector;
  8998. struct drm_device *dev = encoder->base.dev;
  8999. /* We need to check both for a crtc link (meaning that the
  9000. * encoder is active and trying to read from a pipe) and the
  9001. * pipe itself being active. */
  9002. bool has_active_crtc = encoder->base.crtc &&
  9003. to_intel_crtc(encoder->base.crtc)->active;
  9004. if (encoder->connectors_active && !has_active_crtc) {
  9005. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  9006. encoder->base.base.id,
  9007. drm_get_encoder_name(&encoder->base));
  9008. /* Connector is active, but has no active pipe. This is
  9009. * fallout from our resume register restoring. Disable
  9010. * the encoder manually again. */
  9011. if (encoder->base.crtc) {
  9012. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  9013. encoder->base.base.id,
  9014. drm_get_encoder_name(&encoder->base));
  9015. encoder->disable(encoder);
  9016. }
  9017. /* Inconsistent output/port/pipe state happens presumably due to
  9018. * a bug in one of the get_hw_state functions. Or someplace else
  9019. * in our code, like the register restore mess on resume. Clamp
  9020. * things to off as a safer default. */
  9021. list_for_each_entry(connector,
  9022. &dev->mode_config.connector_list,
  9023. base.head) {
  9024. if (connector->encoder != encoder)
  9025. continue;
  9026. intel_connector_break_all_links(connector);
  9027. }
  9028. }
  9029. /* Enabled encoders without active connectors will be fixed in
  9030. * the crtc fixup. */
  9031. }
  9032. void i915_redisable_vga(struct drm_device *dev)
  9033. {
  9034. struct drm_i915_private *dev_priv = dev->dev_private;
  9035. u32 vga_reg = i915_vgacntrl_reg(dev);
  9036. /* This function can be called both from intel_modeset_setup_hw_state or
  9037. * at a very early point in our resume sequence, where the power well
  9038. * structures are not yet restored. Since this function is at a very
  9039. * paranoid "someone might have enabled VGA while we were not looking"
  9040. * level, just check if the power well is enabled instead of trying to
  9041. * follow the "don't touch the power well if we don't need it" policy
  9042. * the rest of the driver uses. */
  9043. if (HAS_POWER_WELL(dev) &&
  9044. (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
  9045. return;
  9046. if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
  9047. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  9048. i915_disable_vga(dev);
  9049. }
  9050. }
  9051. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  9052. {
  9053. struct drm_i915_private *dev_priv = dev->dev_private;
  9054. enum pipe pipe;
  9055. struct intel_crtc *crtc;
  9056. struct intel_encoder *encoder;
  9057. struct intel_connector *connector;
  9058. int i;
  9059. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  9060. base.head) {
  9061. memset(&crtc->config, 0, sizeof(crtc->config));
  9062. crtc->active = dev_priv->display.get_pipe_config(crtc,
  9063. &crtc->config);
  9064. crtc->base.enabled = crtc->active;
  9065. crtc->primary_enabled = crtc->active;
  9066. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  9067. crtc->base.base.id,
  9068. crtc->active ? "enabled" : "disabled");
  9069. }
  9070. /* FIXME: Smash this into the new shared dpll infrastructure. */
  9071. if (HAS_DDI(dev))
  9072. intel_ddi_setup_hw_pll_state(dev);
  9073. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  9074. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  9075. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  9076. pll->active = 0;
  9077. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  9078. base.head) {
  9079. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  9080. pll->active++;
  9081. }
  9082. pll->refcount = pll->active;
  9083. DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
  9084. pll->name, pll->refcount, pll->on);
  9085. }
  9086. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  9087. base.head) {
  9088. pipe = 0;
  9089. if (encoder->get_hw_state(encoder, &pipe)) {
  9090. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  9091. encoder->base.crtc = &crtc->base;
  9092. if (encoder->get_config)
  9093. encoder->get_config(encoder, &crtc->config);
  9094. } else {
  9095. encoder->base.crtc = NULL;
  9096. }
  9097. encoder->connectors_active = false;
  9098. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
  9099. encoder->base.base.id,
  9100. drm_get_encoder_name(&encoder->base),
  9101. encoder->base.crtc ? "enabled" : "disabled",
  9102. pipe_name(pipe));
  9103. }
  9104. list_for_each_entry(connector, &dev->mode_config.connector_list,
  9105. base.head) {
  9106. if (connector->get_hw_state(connector)) {
  9107. connector->base.dpms = DRM_MODE_DPMS_ON;
  9108. connector->encoder->connectors_active = true;
  9109. connector->base.encoder = &connector->encoder->base;
  9110. } else {
  9111. connector->base.dpms = DRM_MODE_DPMS_OFF;
  9112. connector->base.encoder = NULL;
  9113. }
  9114. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  9115. connector->base.base.id,
  9116. drm_get_connector_name(&connector->base),
  9117. connector->base.encoder ? "enabled" : "disabled");
  9118. }
  9119. }
  9120. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  9121. * and i915 state tracking structures. */
  9122. void intel_modeset_setup_hw_state(struct drm_device *dev,
  9123. bool force_restore)
  9124. {
  9125. struct drm_i915_private *dev_priv = dev->dev_private;
  9126. enum pipe pipe;
  9127. struct intel_crtc *crtc;
  9128. struct intel_encoder *encoder;
  9129. int i;
  9130. intel_modeset_readout_hw_state(dev);
  9131. /*
  9132. * Now that we have the config, copy it to each CRTC struct
  9133. * Note that this could go away if we move to using crtc_config
  9134. * checking everywhere.
  9135. */
  9136. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  9137. base.head) {
  9138. if (crtc->active && i915_fastboot) {
  9139. intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
  9140. DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
  9141. crtc->base.base.id);
  9142. drm_mode_debug_printmodeline(&crtc->base.mode);
  9143. }
  9144. }
  9145. /* HW state is read out, now we need to sanitize this mess. */
  9146. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  9147. base.head) {
  9148. intel_sanitize_encoder(encoder);
  9149. }
  9150. for_each_pipe(pipe) {
  9151. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  9152. intel_sanitize_crtc(crtc);
  9153. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  9154. }
  9155. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  9156. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  9157. if (!pll->on || pll->active)
  9158. continue;
  9159. DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  9160. pll->disable(dev_priv, pll);
  9161. pll->on = false;
  9162. }
  9163. if (IS_HASWELL(dev))
  9164. ilk_wm_get_hw_state(dev);
  9165. if (force_restore) {
  9166. i915_redisable_vga(dev);
  9167. /*
  9168. * We need to use raw interfaces for restoring state to avoid
  9169. * checking (bogus) intermediate states.
  9170. */
  9171. for_each_pipe(pipe) {
  9172. struct drm_crtc *crtc =
  9173. dev_priv->pipe_to_crtc_mapping[pipe];
  9174. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  9175. crtc->fb);
  9176. }
  9177. } else {
  9178. intel_modeset_update_staged_output_state(dev);
  9179. }
  9180. intel_modeset_check_state(dev);
  9181. drm_mode_config_reset(dev);
  9182. }
  9183. void intel_modeset_gem_init(struct drm_device *dev)
  9184. {
  9185. intel_modeset_init_hw(dev);
  9186. intel_setup_overlay(dev);
  9187. intel_modeset_setup_hw_state(dev, false);
  9188. }
  9189. void intel_modeset_cleanup(struct drm_device *dev)
  9190. {
  9191. struct drm_i915_private *dev_priv = dev->dev_private;
  9192. struct drm_crtc *crtc;
  9193. struct drm_connector *connector;
  9194. /*
  9195. * Interrupts and polling as the first thing to avoid creating havoc.
  9196. * Too much stuff here (turning of rps, connectors, ...) would
  9197. * experience fancy races otherwise.
  9198. */
  9199. drm_irq_uninstall(dev);
  9200. cancel_work_sync(&dev_priv->hotplug_work);
  9201. /*
  9202. * Due to the hpd irq storm handling the hotplug work can re-arm the
  9203. * poll handlers. Hence disable polling after hpd handling is shut down.
  9204. */
  9205. drm_kms_helper_poll_fini(dev);
  9206. mutex_lock(&dev->struct_mutex);
  9207. intel_unregister_dsm_handler();
  9208. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  9209. /* Skip inactive CRTCs */
  9210. if (!crtc->fb)
  9211. continue;
  9212. intel_increase_pllclock(crtc);
  9213. }
  9214. intel_disable_fbc(dev);
  9215. intel_disable_gt_powersave(dev);
  9216. ironlake_teardown_rc6(dev);
  9217. mutex_unlock(&dev->struct_mutex);
  9218. /* flush any delayed tasks or pending work */
  9219. flush_scheduled_work();
  9220. /* destroy backlight, if any, before the connectors */
  9221. intel_panel_destroy_backlight(dev);
  9222. /* destroy the sysfs files before encoders/connectors */
  9223. list_for_each_entry(connector, &dev->mode_config.connector_list, head)
  9224. drm_sysfs_connector_remove(connector);
  9225. drm_mode_config_cleanup(dev);
  9226. intel_cleanup_overlay(dev);
  9227. }
  9228. /*
  9229. * Return which encoder is currently attached for connector.
  9230. */
  9231. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  9232. {
  9233. return &intel_attached_encoder(connector)->base;
  9234. }
  9235. void intel_connector_attach_encoder(struct intel_connector *connector,
  9236. struct intel_encoder *encoder)
  9237. {
  9238. connector->encoder = encoder;
  9239. drm_mode_connector_attach_encoder(&connector->base,
  9240. &encoder->base);
  9241. }
  9242. /*
  9243. * set vga decode state - true == enable VGA decode
  9244. */
  9245. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  9246. {
  9247. struct drm_i915_private *dev_priv = dev->dev_private;
  9248. u16 gmch_ctrl;
  9249. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  9250. if (state)
  9251. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  9252. else
  9253. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  9254. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  9255. return 0;
  9256. }
  9257. struct intel_display_error_state {
  9258. u32 power_well_driver;
  9259. int num_transcoders;
  9260. struct intel_cursor_error_state {
  9261. u32 control;
  9262. u32 position;
  9263. u32 base;
  9264. u32 size;
  9265. } cursor[I915_MAX_PIPES];
  9266. struct intel_pipe_error_state {
  9267. u32 source;
  9268. } pipe[I915_MAX_PIPES];
  9269. struct intel_plane_error_state {
  9270. u32 control;
  9271. u32 stride;
  9272. u32 size;
  9273. u32 pos;
  9274. u32 addr;
  9275. u32 surface;
  9276. u32 tile_offset;
  9277. } plane[I915_MAX_PIPES];
  9278. struct intel_transcoder_error_state {
  9279. enum transcoder cpu_transcoder;
  9280. u32 conf;
  9281. u32 htotal;
  9282. u32 hblank;
  9283. u32 hsync;
  9284. u32 vtotal;
  9285. u32 vblank;
  9286. u32 vsync;
  9287. } transcoder[4];
  9288. };
  9289. struct intel_display_error_state *
  9290. intel_display_capture_error_state(struct drm_device *dev)
  9291. {
  9292. drm_i915_private_t *dev_priv = dev->dev_private;
  9293. struct intel_display_error_state *error;
  9294. int transcoders[] = {
  9295. TRANSCODER_A,
  9296. TRANSCODER_B,
  9297. TRANSCODER_C,
  9298. TRANSCODER_EDP,
  9299. };
  9300. int i;
  9301. if (INTEL_INFO(dev)->num_pipes == 0)
  9302. return NULL;
  9303. error = kzalloc(sizeof(*error), GFP_ATOMIC);
  9304. if (error == NULL)
  9305. return NULL;
  9306. if (HAS_POWER_WELL(dev))
  9307. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  9308. for_each_pipe(i) {
  9309. if (!intel_display_power_enabled(dev, POWER_DOMAIN_PIPE(i)))
  9310. continue;
  9311. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  9312. error->cursor[i].control = I915_READ(CURCNTR(i));
  9313. error->cursor[i].position = I915_READ(CURPOS(i));
  9314. error->cursor[i].base = I915_READ(CURBASE(i));
  9315. } else {
  9316. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  9317. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  9318. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  9319. }
  9320. error->plane[i].control = I915_READ(DSPCNTR(i));
  9321. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  9322. if (INTEL_INFO(dev)->gen <= 3) {
  9323. error->plane[i].size = I915_READ(DSPSIZE(i));
  9324. error->plane[i].pos = I915_READ(DSPPOS(i));
  9325. }
  9326. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9327. error->plane[i].addr = I915_READ(DSPADDR(i));
  9328. if (INTEL_INFO(dev)->gen >= 4) {
  9329. error->plane[i].surface = I915_READ(DSPSURF(i));
  9330. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  9331. }
  9332. error->pipe[i].source = I915_READ(PIPESRC(i));
  9333. }
  9334. error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  9335. if (HAS_DDI(dev_priv->dev))
  9336. error->num_transcoders++; /* Account for eDP. */
  9337. for (i = 0; i < error->num_transcoders; i++) {
  9338. enum transcoder cpu_transcoder = transcoders[i];
  9339. if (!intel_display_power_enabled(dev,
  9340. POWER_DOMAIN_TRANSCODER(cpu_transcoder)))
  9341. continue;
  9342. error->transcoder[i].cpu_transcoder = cpu_transcoder;
  9343. error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  9344. error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  9345. error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  9346. error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  9347. error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  9348. error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  9349. error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  9350. }
  9351. return error;
  9352. }
  9353. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  9354. void
  9355. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  9356. struct drm_device *dev,
  9357. struct intel_display_error_state *error)
  9358. {
  9359. int i;
  9360. if (!error)
  9361. return;
  9362. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  9363. if (HAS_POWER_WELL(dev))
  9364. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  9365. error->power_well_driver);
  9366. for_each_pipe(i) {
  9367. err_printf(m, "Pipe [%d]:\n", i);
  9368. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  9369. err_printf(m, "Plane [%d]:\n", i);
  9370. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  9371. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  9372. if (INTEL_INFO(dev)->gen <= 3) {
  9373. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  9374. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  9375. }
  9376. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9377. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  9378. if (INTEL_INFO(dev)->gen >= 4) {
  9379. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  9380. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  9381. }
  9382. err_printf(m, "Cursor [%d]:\n", i);
  9383. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  9384. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  9385. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  9386. }
  9387. for (i = 0; i < error->num_transcoders; i++) {
  9388. err_printf(m, "CPU transcoder: %c\n",
  9389. transcoder_name(error->transcoder[i].cpu_transcoder));
  9390. err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
  9391. err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
  9392. err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
  9393. err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
  9394. err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
  9395. err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
  9396. err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
  9397. }
  9398. }