intel_dp.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include "drmP.h"
  29. #include "drm.h"
  30. #include "drm_crtc.h"
  31. #include "drm_crtc_helper.h"
  32. #include "intel_drv.h"
  33. #include "i915_drm.h"
  34. #include "i915_drv.h"
  35. #include "drm_dp_helper.h"
  36. #define DP_LINK_STATUS_SIZE 6
  37. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  38. #define DP_LINK_CONFIGURATION_SIZE 9
  39. #define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)
  40. struct intel_dp_priv {
  41. uint32_t output_reg;
  42. uint32_t DP;
  43. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  44. bool has_audio;
  45. int dpms_mode;
  46. uint8_t link_bw;
  47. uint8_t lane_count;
  48. uint8_t dpcd[4];
  49. struct intel_encoder *intel_encoder;
  50. struct i2c_adapter adapter;
  51. struct i2c_algo_dp_aux_data algo;
  52. };
  53. static void
  54. intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
  55. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
  56. static void
  57. intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP);
  58. void
  59. intel_edp_link_config (struct intel_encoder *intel_encoder,
  60. int *lane_num, int *link_bw)
  61. {
  62. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  63. *lane_num = dp_priv->lane_count;
  64. if (dp_priv->link_bw == DP_LINK_BW_1_62)
  65. *link_bw = 162000;
  66. else if (dp_priv->link_bw == DP_LINK_BW_2_7)
  67. *link_bw = 270000;
  68. }
  69. static int
  70. intel_dp_max_lane_count(struct intel_encoder *intel_encoder)
  71. {
  72. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  73. int max_lane_count = 4;
  74. if (dp_priv->dpcd[0] >= 0x11) {
  75. max_lane_count = dp_priv->dpcd[2] & 0x1f;
  76. switch (max_lane_count) {
  77. case 1: case 2: case 4:
  78. break;
  79. default:
  80. max_lane_count = 4;
  81. }
  82. }
  83. return max_lane_count;
  84. }
  85. static int
  86. intel_dp_max_link_bw(struct intel_encoder *intel_encoder)
  87. {
  88. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  89. int max_link_bw = dp_priv->dpcd[1];
  90. switch (max_link_bw) {
  91. case DP_LINK_BW_1_62:
  92. case DP_LINK_BW_2_7:
  93. break;
  94. default:
  95. max_link_bw = DP_LINK_BW_1_62;
  96. break;
  97. }
  98. return max_link_bw;
  99. }
  100. static int
  101. intel_dp_link_clock(uint8_t link_bw)
  102. {
  103. if (link_bw == DP_LINK_BW_2_7)
  104. return 270000;
  105. else
  106. return 162000;
  107. }
  108. /* I think this is a fiction */
  109. static int
  110. intel_dp_link_required(struct drm_device *dev,
  111. struct intel_encoder *intel_encoder, int pixel_clock)
  112. {
  113. struct drm_i915_private *dev_priv = dev->dev_private;
  114. if (IS_eDP(intel_encoder))
  115. return (pixel_clock * dev_priv->edp_bpp) / 8;
  116. else
  117. return pixel_clock * 3;
  118. }
  119. static int
  120. intel_dp_mode_valid(struct drm_connector *connector,
  121. struct drm_display_mode *mode)
  122. {
  123. struct intel_encoder *intel_encoder = to_intel_encoder(connector);
  124. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_encoder));
  125. int max_lanes = intel_dp_max_lane_count(intel_encoder);
  126. if (intel_dp_link_required(connector->dev, intel_encoder, mode->clock)
  127. > max_link_clock * max_lanes)
  128. return MODE_CLOCK_HIGH;
  129. if (mode->clock < 10000)
  130. return MODE_CLOCK_LOW;
  131. return MODE_OK;
  132. }
  133. static uint32_t
  134. pack_aux(uint8_t *src, int src_bytes)
  135. {
  136. int i;
  137. uint32_t v = 0;
  138. if (src_bytes > 4)
  139. src_bytes = 4;
  140. for (i = 0; i < src_bytes; i++)
  141. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  142. return v;
  143. }
  144. static void
  145. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  146. {
  147. int i;
  148. if (dst_bytes > 4)
  149. dst_bytes = 4;
  150. for (i = 0; i < dst_bytes; i++)
  151. dst[i] = src >> ((3-i) * 8);
  152. }
  153. /* hrawclock is 1/4 the FSB frequency */
  154. static int
  155. intel_hrawclk(struct drm_device *dev)
  156. {
  157. struct drm_i915_private *dev_priv = dev->dev_private;
  158. uint32_t clkcfg;
  159. clkcfg = I915_READ(CLKCFG);
  160. switch (clkcfg & CLKCFG_FSB_MASK) {
  161. case CLKCFG_FSB_400:
  162. return 100;
  163. case CLKCFG_FSB_533:
  164. return 133;
  165. case CLKCFG_FSB_667:
  166. return 166;
  167. case CLKCFG_FSB_800:
  168. return 200;
  169. case CLKCFG_FSB_1067:
  170. return 266;
  171. case CLKCFG_FSB_1333:
  172. return 333;
  173. /* these two are just a guess; one of them might be right */
  174. case CLKCFG_FSB_1600:
  175. case CLKCFG_FSB_1600_ALT:
  176. return 400;
  177. default:
  178. return 133;
  179. }
  180. }
  181. static int
  182. intel_dp_aux_ch(struct intel_encoder *intel_encoder,
  183. uint8_t *send, int send_bytes,
  184. uint8_t *recv, int recv_size)
  185. {
  186. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  187. uint32_t output_reg = dp_priv->output_reg;
  188. struct drm_device *dev = intel_encoder->base.dev;
  189. struct drm_i915_private *dev_priv = dev->dev_private;
  190. uint32_t ch_ctl = output_reg + 0x10;
  191. uint32_t ch_data = ch_ctl + 4;
  192. int i;
  193. int recv_bytes;
  194. uint32_t ctl;
  195. uint32_t status;
  196. uint32_t aux_clock_divider;
  197. int try, precharge;
  198. /* The clock divider is based off the hrawclk,
  199. * and would like to run at 2MHz. So, take the
  200. * hrawclk value and divide by 2 and use that
  201. */
  202. if (IS_eDP(intel_encoder)) {
  203. if (IS_GEN6(dev))
  204. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  205. else
  206. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  207. } else if (HAS_PCH_SPLIT(dev))
  208. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  209. else
  210. aux_clock_divider = intel_hrawclk(dev) / 2;
  211. if (IS_GEN6(dev))
  212. precharge = 3;
  213. else
  214. precharge = 5;
  215. /* Must try at least 3 times according to DP spec */
  216. for (try = 0; try < 5; try++) {
  217. /* Load the send data into the aux channel data registers */
  218. for (i = 0; i < send_bytes; i += 4) {
  219. uint32_t d = pack_aux(send + i, send_bytes - i);
  220. I915_WRITE(ch_data + i, d);
  221. }
  222. ctl = (DP_AUX_CH_CTL_SEND_BUSY |
  223. DP_AUX_CH_CTL_TIME_OUT_400us |
  224. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  225. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  226. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  227. DP_AUX_CH_CTL_DONE |
  228. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  229. DP_AUX_CH_CTL_RECEIVE_ERROR);
  230. /* Send the command and wait for it to complete */
  231. I915_WRITE(ch_ctl, ctl);
  232. (void) I915_READ(ch_ctl);
  233. for (;;) {
  234. udelay(100);
  235. status = I915_READ(ch_ctl);
  236. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  237. break;
  238. }
  239. /* Clear done status and any errors */
  240. I915_WRITE(ch_ctl, (status |
  241. DP_AUX_CH_CTL_DONE |
  242. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  243. DP_AUX_CH_CTL_RECEIVE_ERROR));
  244. (void) I915_READ(ch_ctl);
  245. if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
  246. break;
  247. }
  248. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  249. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  250. return -EBUSY;
  251. }
  252. /* Check for timeout or receive error.
  253. * Timeouts occur when the sink is not connected
  254. */
  255. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  256. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  257. return -EIO;
  258. }
  259. /* Timeouts occur when the device isn't connected, so they're
  260. * "normal" -- don't fill the kernel log with these */
  261. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  262. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  263. return -ETIMEDOUT;
  264. }
  265. /* Unload any bytes sent back from the other side */
  266. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  267. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  268. if (recv_bytes > recv_size)
  269. recv_bytes = recv_size;
  270. for (i = 0; i < recv_bytes; i += 4) {
  271. uint32_t d = I915_READ(ch_data + i);
  272. unpack_aux(d, recv + i, recv_bytes - i);
  273. }
  274. return recv_bytes;
  275. }
  276. /* Write data to the aux channel in native mode */
  277. static int
  278. intel_dp_aux_native_write(struct intel_encoder *intel_encoder,
  279. uint16_t address, uint8_t *send, int send_bytes)
  280. {
  281. int ret;
  282. uint8_t msg[20];
  283. int msg_bytes;
  284. uint8_t ack;
  285. if (send_bytes > 16)
  286. return -1;
  287. msg[0] = AUX_NATIVE_WRITE << 4;
  288. msg[1] = address >> 8;
  289. msg[2] = address & 0xff;
  290. msg[3] = send_bytes - 1;
  291. memcpy(&msg[4], send, send_bytes);
  292. msg_bytes = send_bytes + 4;
  293. for (;;) {
  294. ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes, &ack, 1);
  295. if (ret < 0)
  296. return ret;
  297. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  298. break;
  299. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  300. udelay(100);
  301. else
  302. return -EIO;
  303. }
  304. return send_bytes;
  305. }
  306. /* Write a single byte to the aux channel in native mode */
  307. static int
  308. intel_dp_aux_native_write_1(struct intel_encoder *intel_encoder,
  309. uint16_t address, uint8_t byte)
  310. {
  311. return intel_dp_aux_native_write(intel_encoder, address, &byte, 1);
  312. }
  313. /* read bytes from a native aux channel */
  314. static int
  315. intel_dp_aux_native_read(struct intel_encoder *intel_encoder,
  316. uint16_t address, uint8_t *recv, int recv_bytes)
  317. {
  318. uint8_t msg[4];
  319. int msg_bytes;
  320. uint8_t reply[20];
  321. int reply_bytes;
  322. uint8_t ack;
  323. int ret;
  324. msg[0] = AUX_NATIVE_READ << 4;
  325. msg[1] = address >> 8;
  326. msg[2] = address & 0xff;
  327. msg[3] = recv_bytes - 1;
  328. msg_bytes = 4;
  329. reply_bytes = recv_bytes + 1;
  330. for (;;) {
  331. ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes,
  332. reply, reply_bytes);
  333. if (ret == 0)
  334. return -EPROTO;
  335. if (ret < 0)
  336. return ret;
  337. ack = reply[0];
  338. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  339. memcpy(recv, reply + 1, ret - 1);
  340. return ret - 1;
  341. }
  342. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  343. udelay(100);
  344. else
  345. return -EIO;
  346. }
  347. }
  348. static int
  349. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  350. uint8_t write_byte, uint8_t *read_byte)
  351. {
  352. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  353. struct intel_dp_priv *dp_priv = container_of(adapter,
  354. struct intel_dp_priv,
  355. adapter);
  356. struct intel_encoder *intel_encoder = dp_priv->intel_encoder;
  357. uint16_t address = algo_data->address;
  358. uint8_t msg[5];
  359. uint8_t reply[2];
  360. int msg_bytes;
  361. int reply_bytes;
  362. int ret;
  363. /* Set up the command byte */
  364. if (mode & MODE_I2C_READ)
  365. msg[0] = AUX_I2C_READ << 4;
  366. else
  367. msg[0] = AUX_I2C_WRITE << 4;
  368. if (!(mode & MODE_I2C_STOP))
  369. msg[0] |= AUX_I2C_MOT << 4;
  370. msg[1] = address >> 8;
  371. msg[2] = address;
  372. switch (mode) {
  373. case MODE_I2C_WRITE:
  374. msg[3] = 0;
  375. msg[4] = write_byte;
  376. msg_bytes = 5;
  377. reply_bytes = 1;
  378. break;
  379. case MODE_I2C_READ:
  380. msg[3] = 0;
  381. msg_bytes = 4;
  382. reply_bytes = 2;
  383. break;
  384. default:
  385. msg_bytes = 3;
  386. reply_bytes = 1;
  387. break;
  388. }
  389. for (;;) {
  390. ret = intel_dp_aux_ch(intel_encoder,
  391. msg, msg_bytes,
  392. reply, reply_bytes);
  393. if (ret < 0) {
  394. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  395. return ret;
  396. }
  397. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  398. case AUX_I2C_REPLY_ACK:
  399. if (mode == MODE_I2C_READ) {
  400. *read_byte = reply[1];
  401. }
  402. return reply_bytes - 1;
  403. case AUX_I2C_REPLY_NACK:
  404. DRM_DEBUG_KMS("aux_ch nack\n");
  405. return -EREMOTEIO;
  406. case AUX_I2C_REPLY_DEFER:
  407. DRM_DEBUG_KMS("aux_ch defer\n");
  408. udelay(100);
  409. break;
  410. default:
  411. DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
  412. return -EREMOTEIO;
  413. }
  414. }
  415. }
  416. static int
  417. intel_dp_i2c_init(struct intel_encoder *intel_encoder, const char *name)
  418. {
  419. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  420. DRM_DEBUG_KMS("i2c_init %s\n", name);
  421. dp_priv->algo.running = false;
  422. dp_priv->algo.address = 0;
  423. dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
  424. memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
  425. dp_priv->adapter.owner = THIS_MODULE;
  426. dp_priv->adapter.class = I2C_CLASS_DDC;
  427. strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
  428. dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
  429. dp_priv->adapter.algo_data = &dp_priv->algo;
  430. dp_priv->adapter.dev.parent = &intel_encoder->base.kdev;
  431. return i2c_dp_aux_add_bus(&dp_priv->adapter);
  432. }
  433. static bool
  434. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  435. struct drm_display_mode *adjusted_mode)
  436. {
  437. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  438. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  439. int lane_count, clock;
  440. int max_lane_count = intel_dp_max_lane_count(intel_encoder);
  441. int max_clock = intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
  442. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  443. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  444. for (clock = 0; clock <= max_clock; clock++) {
  445. int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;
  446. if (intel_dp_link_required(encoder->dev, intel_encoder, mode->clock)
  447. <= link_avail) {
  448. dp_priv->link_bw = bws[clock];
  449. dp_priv->lane_count = lane_count;
  450. adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
  451. DRM_DEBUG_KMS("Display port link bw %02x lane "
  452. "count %d clock %d\n",
  453. dp_priv->link_bw, dp_priv->lane_count,
  454. adjusted_mode->clock);
  455. return true;
  456. }
  457. }
  458. }
  459. return false;
  460. }
  461. struct intel_dp_m_n {
  462. uint32_t tu;
  463. uint32_t gmch_m;
  464. uint32_t gmch_n;
  465. uint32_t link_m;
  466. uint32_t link_n;
  467. };
  468. static void
  469. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  470. {
  471. while (*num > 0xffffff || *den > 0xffffff) {
  472. *num >>= 1;
  473. *den >>= 1;
  474. }
  475. }
  476. static void
  477. intel_dp_compute_m_n(int bytes_per_pixel,
  478. int nlanes,
  479. int pixel_clock,
  480. int link_clock,
  481. struct intel_dp_m_n *m_n)
  482. {
  483. m_n->tu = 64;
  484. m_n->gmch_m = pixel_clock * bytes_per_pixel;
  485. m_n->gmch_n = link_clock * nlanes;
  486. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  487. m_n->link_m = pixel_clock;
  488. m_n->link_n = link_clock;
  489. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  490. }
  491. void
  492. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  493. struct drm_display_mode *adjusted_mode)
  494. {
  495. struct drm_device *dev = crtc->dev;
  496. struct drm_mode_config *mode_config = &dev->mode_config;
  497. struct drm_connector *connector;
  498. struct drm_i915_private *dev_priv = dev->dev_private;
  499. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  500. int lane_count = 4;
  501. struct intel_dp_m_n m_n;
  502. /*
  503. * Find the lane count in the intel_encoder private
  504. */
  505. list_for_each_entry(connector, &mode_config->connector_list, head) {
  506. struct intel_encoder *intel_encoder = to_intel_encoder(connector);
  507. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  508. if (!connector->encoder || connector->encoder->crtc != crtc)
  509. continue;
  510. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
  511. lane_count = dp_priv->lane_count;
  512. break;
  513. }
  514. }
  515. /*
  516. * Compute the GMCH and Link ratios. The '3' here is
  517. * the number of bytes_per_pixel post-LUT, which we always
  518. * set up for 8-bits of R/G/B, or 3 bytes total.
  519. */
  520. intel_dp_compute_m_n(3, lane_count,
  521. mode->clock, adjusted_mode->clock, &m_n);
  522. if (HAS_PCH_SPLIT(dev)) {
  523. if (intel_crtc->pipe == 0) {
  524. I915_WRITE(TRANSA_DATA_M1,
  525. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  526. m_n.gmch_m);
  527. I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
  528. I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
  529. I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
  530. } else {
  531. I915_WRITE(TRANSB_DATA_M1,
  532. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  533. m_n.gmch_m);
  534. I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
  535. I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
  536. I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
  537. }
  538. } else {
  539. if (intel_crtc->pipe == 0) {
  540. I915_WRITE(PIPEA_GMCH_DATA_M,
  541. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  542. m_n.gmch_m);
  543. I915_WRITE(PIPEA_GMCH_DATA_N,
  544. m_n.gmch_n);
  545. I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
  546. I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
  547. } else {
  548. I915_WRITE(PIPEB_GMCH_DATA_M,
  549. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  550. m_n.gmch_m);
  551. I915_WRITE(PIPEB_GMCH_DATA_N,
  552. m_n.gmch_n);
  553. I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
  554. I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
  555. }
  556. }
  557. }
  558. static void
  559. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  560. struct drm_display_mode *adjusted_mode)
  561. {
  562. struct drm_device *dev = encoder->dev;
  563. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  564. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  565. struct drm_crtc *crtc = intel_encoder->enc.crtc;
  566. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  567. dp_priv->DP = (DP_VOLTAGE_0_4 |
  568. DP_PRE_EMPHASIS_0 |
  569. DP_SYNC_VS_HIGH |
  570. DP_SYNC_HS_HIGH);
  571. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  572. dp_priv->DP |= DP_LINK_TRAIN_OFF_CPT;
  573. else
  574. dp_priv->DP |= DP_LINK_TRAIN_OFF;
  575. switch (dp_priv->lane_count) {
  576. case 1:
  577. dp_priv->DP |= DP_PORT_WIDTH_1;
  578. break;
  579. case 2:
  580. dp_priv->DP |= DP_PORT_WIDTH_2;
  581. break;
  582. case 4:
  583. dp_priv->DP |= DP_PORT_WIDTH_4;
  584. break;
  585. }
  586. if (dp_priv->has_audio)
  587. dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
  588. memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  589. dp_priv->link_configuration[0] = dp_priv->link_bw;
  590. dp_priv->link_configuration[1] = dp_priv->lane_count;
  591. /*
  592. * Check for DPCD version > 1.1,
  593. * enable enahanced frame stuff in that case
  594. */
  595. if (dp_priv->dpcd[0] >= 0x11) {
  596. dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  597. dp_priv->DP |= DP_ENHANCED_FRAMING;
  598. }
  599. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  600. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  601. dp_priv->DP |= DP_PIPEB_SELECT;
  602. if (IS_eDP(intel_encoder)) {
  603. /* don't miss out required setting for eDP */
  604. dp_priv->DP |= DP_PLL_ENABLE;
  605. if (adjusted_mode->clock < 200000)
  606. dp_priv->DP |= DP_PLL_FREQ_160MHZ;
  607. else
  608. dp_priv->DP |= DP_PLL_FREQ_270MHZ;
  609. }
  610. }
  611. static void ironlake_edp_backlight_on (struct drm_device *dev)
  612. {
  613. struct drm_i915_private *dev_priv = dev->dev_private;
  614. u32 pp;
  615. DRM_DEBUG_KMS("\n");
  616. pp = I915_READ(PCH_PP_CONTROL);
  617. pp |= EDP_BLC_ENABLE;
  618. I915_WRITE(PCH_PP_CONTROL, pp);
  619. }
  620. static void ironlake_edp_backlight_off (struct drm_device *dev)
  621. {
  622. struct drm_i915_private *dev_priv = dev->dev_private;
  623. u32 pp;
  624. DRM_DEBUG_KMS("\n");
  625. pp = I915_READ(PCH_PP_CONTROL);
  626. pp &= ~EDP_BLC_ENABLE;
  627. I915_WRITE(PCH_PP_CONTROL, pp);
  628. }
  629. static void
  630. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  631. {
  632. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  633. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  634. struct drm_device *dev = intel_encoder->base.dev;
  635. struct drm_i915_private *dev_priv = dev->dev_private;
  636. uint32_t dp_reg = I915_READ(dp_priv->output_reg);
  637. if (mode != DRM_MODE_DPMS_ON) {
  638. if (dp_reg & DP_PORT_EN) {
  639. intel_dp_link_down(intel_encoder, dp_priv->DP);
  640. if (IS_eDP(intel_encoder))
  641. ironlake_edp_backlight_off(dev);
  642. }
  643. } else {
  644. if (!(dp_reg & DP_PORT_EN)) {
  645. intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
  646. if (IS_eDP(intel_encoder))
  647. ironlake_edp_backlight_on(dev);
  648. }
  649. }
  650. dp_priv->dpms_mode = mode;
  651. }
  652. /*
  653. * Fetch AUX CH registers 0x202 - 0x207 which contain
  654. * link status information
  655. */
  656. static bool
  657. intel_dp_get_link_status(struct intel_encoder *intel_encoder,
  658. uint8_t link_status[DP_LINK_STATUS_SIZE])
  659. {
  660. int ret;
  661. ret = intel_dp_aux_native_read(intel_encoder,
  662. DP_LANE0_1_STATUS,
  663. link_status, DP_LINK_STATUS_SIZE);
  664. if (ret != DP_LINK_STATUS_SIZE)
  665. return false;
  666. return true;
  667. }
  668. static uint8_t
  669. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  670. int r)
  671. {
  672. return link_status[r - DP_LANE0_1_STATUS];
  673. }
  674. static uint8_t
  675. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  676. int lane)
  677. {
  678. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  679. int s = ((lane & 1) ?
  680. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  681. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  682. uint8_t l = intel_dp_link_status(link_status, i);
  683. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  684. }
  685. static uint8_t
  686. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  687. int lane)
  688. {
  689. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  690. int s = ((lane & 1) ?
  691. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  692. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  693. uint8_t l = intel_dp_link_status(link_status, i);
  694. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  695. }
  696. #if 0
  697. static char *voltage_names[] = {
  698. "0.4V", "0.6V", "0.8V", "1.2V"
  699. };
  700. static char *pre_emph_names[] = {
  701. "0dB", "3.5dB", "6dB", "9.5dB"
  702. };
  703. static char *link_train_names[] = {
  704. "pattern 1", "pattern 2", "idle", "off"
  705. };
  706. #endif
  707. /*
  708. * These are source-specific values; current Intel hardware supports
  709. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  710. */
  711. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  712. static uint8_t
  713. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  714. {
  715. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  716. case DP_TRAIN_VOLTAGE_SWING_400:
  717. return DP_TRAIN_PRE_EMPHASIS_6;
  718. case DP_TRAIN_VOLTAGE_SWING_600:
  719. return DP_TRAIN_PRE_EMPHASIS_6;
  720. case DP_TRAIN_VOLTAGE_SWING_800:
  721. return DP_TRAIN_PRE_EMPHASIS_3_5;
  722. case DP_TRAIN_VOLTAGE_SWING_1200:
  723. default:
  724. return DP_TRAIN_PRE_EMPHASIS_0;
  725. }
  726. }
  727. static void
  728. intel_get_adjust_train(struct intel_encoder *intel_encoder,
  729. uint8_t link_status[DP_LINK_STATUS_SIZE],
  730. int lane_count,
  731. uint8_t train_set[4])
  732. {
  733. uint8_t v = 0;
  734. uint8_t p = 0;
  735. int lane;
  736. for (lane = 0; lane < lane_count; lane++) {
  737. uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
  738. uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
  739. if (this_v > v)
  740. v = this_v;
  741. if (this_p > p)
  742. p = this_p;
  743. }
  744. if (v >= I830_DP_VOLTAGE_MAX)
  745. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  746. if (p >= intel_dp_pre_emphasis_max(v))
  747. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  748. for (lane = 0; lane < 4; lane++)
  749. train_set[lane] = v | p;
  750. }
  751. static uint32_t
  752. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  753. {
  754. uint32_t signal_levels = 0;
  755. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  756. case DP_TRAIN_VOLTAGE_SWING_400:
  757. default:
  758. signal_levels |= DP_VOLTAGE_0_4;
  759. break;
  760. case DP_TRAIN_VOLTAGE_SWING_600:
  761. signal_levels |= DP_VOLTAGE_0_6;
  762. break;
  763. case DP_TRAIN_VOLTAGE_SWING_800:
  764. signal_levels |= DP_VOLTAGE_0_8;
  765. break;
  766. case DP_TRAIN_VOLTAGE_SWING_1200:
  767. signal_levels |= DP_VOLTAGE_1_2;
  768. break;
  769. }
  770. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  771. case DP_TRAIN_PRE_EMPHASIS_0:
  772. default:
  773. signal_levels |= DP_PRE_EMPHASIS_0;
  774. break;
  775. case DP_TRAIN_PRE_EMPHASIS_3_5:
  776. signal_levels |= DP_PRE_EMPHASIS_3_5;
  777. break;
  778. case DP_TRAIN_PRE_EMPHASIS_6:
  779. signal_levels |= DP_PRE_EMPHASIS_6;
  780. break;
  781. case DP_TRAIN_PRE_EMPHASIS_9_5:
  782. signal_levels |= DP_PRE_EMPHASIS_9_5;
  783. break;
  784. }
  785. return signal_levels;
  786. }
  787. /* Gen6's DP voltage swing and pre-emphasis control */
  788. static uint32_t
  789. intel_gen6_edp_signal_levels(uint8_t train_set)
  790. {
  791. switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
  792. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  793. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  794. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  795. return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
  796. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  797. return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
  798. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  799. return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
  800. default:
  801. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
  802. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  803. }
  804. }
  805. static uint8_t
  806. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  807. int lane)
  808. {
  809. int i = DP_LANE0_1_STATUS + (lane >> 1);
  810. int s = (lane & 1) * 4;
  811. uint8_t l = intel_dp_link_status(link_status, i);
  812. return (l >> s) & 0xf;
  813. }
  814. /* Check for clock recovery is done on all channels */
  815. static bool
  816. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  817. {
  818. int lane;
  819. uint8_t lane_status;
  820. for (lane = 0; lane < lane_count; lane++) {
  821. lane_status = intel_get_lane_status(link_status, lane);
  822. if ((lane_status & DP_LANE_CR_DONE) == 0)
  823. return false;
  824. }
  825. return true;
  826. }
  827. /* Check to see if channel eq is done on all channels */
  828. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  829. DP_LANE_CHANNEL_EQ_DONE|\
  830. DP_LANE_SYMBOL_LOCKED)
  831. static bool
  832. intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  833. {
  834. uint8_t lane_align;
  835. uint8_t lane_status;
  836. int lane;
  837. lane_align = intel_dp_link_status(link_status,
  838. DP_LANE_ALIGN_STATUS_UPDATED);
  839. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  840. return false;
  841. for (lane = 0; lane < lane_count; lane++) {
  842. lane_status = intel_get_lane_status(link_status, lane);
  843. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  844. return false;
  845. }
  846. return true;
  847. }
  848. static bool
  849. intel_dp_set_link_train(struct intel_encoder *intel_encoder,
  850. uint32_t dp_reg_value,
  851. uint8_t dp_train_pat,
  852. uint8_t train_set[4],
  853. bool first)
  854. {
  855. struct drm_device *dev = intel_encoder->base.dev;
  856. struct drm_i915_private *dev_priv = dev->dev_private;
  857. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  858. int ret;
  859. I915_WRITE(dp_priv->output_reg, dp_reg_value);
  860. POSTING_READ(dp_priv->output_reg);
  861. if (first)
  862. intel_wait_for_vblank(dev);
  863. intel_dp_aux_native_write_1(intel_encoder,
  864. DP_TRAINING_PATTERN_SET,
  865. dp_train_pat);
  866. ret = intel_dp_aux_native_write(intel_encoder,
  867. DP_TRAINING_LANE0_SET, train_set, 4);
  868. if (ret != 4)
  869. return false;
  870. return true;
  871. }
  872. static void
  873. intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
  874. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
  875. {
  876. struct drm_device *dev = intel_encoder->base.dev;
  877. struct drm_i915_private *dev_priv = dev->dev_private;
  878. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  879. uint8_t train_set[4];
  880. uint8_t link_status[DP_LINK_STATUS_SIZE];
  881. int i;
  882. uint8_t voltage;
  883. bool clock_recovery = false;
  884. bool channel_eq = false;
  885. bool first = true;
  886. int tries;
  887. u32 reg;
  888. /* Write the link configuration data */
  889. intel_dp_aux_native_write(intel_encoder, DP_LINK_BW_SET,
  890. link_configuration, DP_LINK_CONFIGURATION_SIZE);
  891. DP |= DP_PORT_EN;
  892. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  893. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  894. else
  895. DP &= ~DP_LINK_TRAIN_MASK;
  896. memset(train_set, 0, 4);
  897. voltage = 0xff;
  898. tries = 0;
  899. clock_recovery = false;
  900. for (;;) {
  901. /* Use train_set[0] to set the voltage and pre emphasis values */
  902. uint32_t signal_levels;
  903. if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
  904. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  905. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  906. } else {
  907. signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
  908. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  909. }
  910. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  911. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  912. else
  913. reg = DP | DP_LINK_TRAIN_PAT_1;
  914. if (!intel_dp_set_link_train(intel_encoder, reg,
  915. DP_TRAINING_PATTERN_1, train_set, first))
  916. break;
  917. first = false;
  918. /* Set training pattern 1 */
  919. udelay(100);
  920. if (!intel_dp_get_link_status(intel_encoder, link_status))
  921. break;
  922. if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
  923. clock_recovery = true;
  924. break;
  925. }
  926. /* Check to see if we've tried the max voltage */
  927. for (i = 0; i < dp_priv->lane_count; i++)
  928. if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  929. break;
  930. if (i == dp_priv->lane_count)
  931. break;
  932. /* Check to see if we've tried the same voltage 5 times */
  933. if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  934. ++tries;
  935. if (tries == 5)
  936. break;
  937. } else
  938. tries = 0;
  939. voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  940. /* Compute new train_set as requested by target */
  941. intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
  942. }
  943. /* channel equalization */
  944. tries = 0;
  945. channel_eq = false;
  946. for (;;) {
  947. /* Use train_set[0] to set the voltage and pre emphasis values */
  948. uint32_t signal_levels;
  949. if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
  950. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  951. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  952. } else {
  953. signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
  954. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  955. }
  956. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  957. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  958. else
  959. reg = DP | DP_LINK_TRAIN_PAT_2;
  960. /* channel eq pattern */
  961. if (!intel_dp_set_link_train(intel_encoder, reg,
  962. DP_TRAINING_PATTERN_2, train_set,
  963. false))
  964. break;
  965. udelay(400);
  966. if (!intel_dp_get_link_status(intel_encoder, link_status))
  967. break;
  968. if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
  969. channel_eq = true;
  970. break;
  971. }
  972. /* Try 5 times */
  973. if (tries > 5)
  974. break;
  975. /* Compute new train_set as requested by target */
  976. intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
  977. ++tries;
  978. }
  979. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  980. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  981. else
  982. reg = DP | DP_LINK_TRAIN_OFF;
  983. I915_WRITE(dp_priv->output_reg, reg);
  984. POSTING_READ(dp_priv->output_reg);
  985. intel_dp_aux_native_write_1(intel_encoder,
  986. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  987. }
  988. static void
  989. intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP)
  990. {
  991. struct drm_device *dev = intel_encoder->base.dev;
  992. struct drm_i915_private *dev_priv = dev->dev_private;
  993. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  994. DRM_DEBUG_KMS("\n");
  995. if (IS_eDP(intel_encoder)) {
  996. DP &= ~DP_PLL_ENABLE;
  997. I915_WRITE(dp_priv->output_reg, DP);
  998. POSTING_READ(dp_priv->output_reg);
  999. udelay(100);
  1000. }
  1001. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder)) {
  1002. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1003. I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1004. POSTING_READ(dp_priv->output_reg);
  1005. } else {
  1006. DP &= ~DP_LINK_TRAIN_MASK;
  1007. I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1008. POSTING_READ(dp_priv->output_reg);
  1009. }
  1010. udelay(17000);
  1011. if (IS_eDP(intel_encoder))
  1012. DP |= DP_LINK_TRAIN_OFF;
  1013. I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
  1014. POSTING_READ(dp_priv->output_reg);
  1015. }
  1016. /*
  1017. * According to DP spec
  1018. * 5.1.2:
  1019. * 1. Read DPCD
  1020. * 2. Configure link according to Receiver Capabilities
  1021. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1022. * 4. Check link status on receipt of hot-plug interrupt
  1023. */
  1024. static void
  1025. intel_dp_check_link_status(struct intel_encoder *intel_encoder)
  1026. {
  1027. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1028. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1029. if (!intel_encoder->enc.crtc)
  1030. return;
  1031. if (!intel_dp_get_link_status(intel_encoder, link_status)) {
  1032. intel_dp_link_down(intel_encoder, dp_priv->DP);
  1033. return;
  1034. }
  1035. if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
  1036. intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
  1037. }
  1038. static enum drm_connector_status
  1039. ironlake_dp_detect(struct drm_connector *connector)
  1040. {
  1041. struct intel_encoder *intel_encoder = to_intel_encoder(connector);
  1042. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1043. enum drm_connector_status status;
  1044. status = connector_status_disconnected;
  1045. if (intel_dp_aux_native_read(intel_encoder,
  1046. 0x000, dp_priv->dpcd,
  1047. sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
  1048. {
  1049. if (dp_priv->dpcd[0] != 0)
  1050. status = connector_status_connected;
  1051. }
  1052. return status;
  1053. }
  1054. /**
  1055. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1056. *
  1057. * \return true if DP port is connected.
  1058. * \return false if DP port is disconnected.
  1059. */
  1060. static enum drm_connector_status
  1061. intel_dp_detect(struct drm_connector *connector)
  1062. {
  1063. struct intel_encoder *intel_encoder = to_intel_encoder(connector);
  1064. struct drm_device *dev = intel_encoder->base.dev;
  1065. struct drm_i915_private *dev_priv = dev->dev_private;
  1066. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1067. uint32_t temp, bit;
  1068. enum drm_connector_status status;
  1069. dp_priv->has_audio = false;
  1070. if (HAS_PCH_SPLIT(dev))
  1071. return ironlake_dp_detect(connector);
  1072. temp = I915_READ(PORT_HOTPLUG_EN);
  1073. I915_WRITE(PORT_HOTPLUG_EN,
  1074. temp |
  1075. DPB_HOTPLUG_INT_EN |
  1076. DPC_HOTPLUG_INT_EN |
  1077. DPD_HOTPLUG_INT_EN);
  1078. POSTING_READ(PORT_HOTPLUG_EN);
  1079. switch (dp_priv->output_reg) {
  1080. case DP_B:
  1081. bit = DPB_HOTPLUG_INT_STATUS;
  1082. break;
  1083. case DP_C:
  1084. bit = DPC_HOTPLUG_INT_STATUS;
  1085. break;
  1086. case DP_D:
  1087. bit = DPD_HOTPLUG_INT_STATUS;
  1088. break;
  1089. default:
  1090. return connector_status_unknown;
  1091. }
  1092. temp = I915_READ(PORT_HOTPLUG_STAT);
  1093. if ((temp & bit) == 0)
  1094. return connector_status_disconnected;
  1095. status = connector_status_disconnected;
  1096. if (intel_dp_aux_native_read(intel_encoder,
  1097. 0x000, dp_priv->dpcd,
  1098. sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
  1099. {
  1100. if (dp_priv->dpcd[0] != 0)
  1101. status = connector_status_connected;
  1102. }
  1103. return status;
  1104. }
  1105. static int intel_dp_get_modes(struct drm_connector *connector)
  1106. {
  1107. struct intel_encoder *intel_encoder = to_intel_encoder(connector);
  1108. struct drm_device *dev = intel_encoder->base.dev;
  1109. struct drm_i915_private *dev_priv = dev->dev_private;
  1110. int ret;
  1111. /* We should parse the EDID data and find out if it has an audio sink
  1112. */
  1113. ret = intel_ddc_get_modes(connector, intel_encoder->ddc_bus);
  1114. if (ret)
  1115. return ret;
  1116. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1117. if (IS_eDP(intel_encoder)) {
  1118. if (dev_priv->panel_fixed_mode != NULL) {
  1119. struct drm_display_mode *mode;
  1120. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1121. drm_mode_probed_add(connector, mode);
  1122. return 1;
  1123. }
  1124. }
  1125. return 0;
  1126. }
  1127. static void
  1128. intel_dp_destroy (struct drm_connector *connector)
  1129. {
  1130. struct intel_encoder *intel_encoder = to_intel_encoder(connector);
  1131. if (intel_encoder->i2c_bus)
  1132. intel_i2c_destroy(intel_encoder->i2c_bus);
  1133. drm_sysfs_connector_remove(connector);
  1134. drm_connector_cleanup(connector);
  1135. kfree(intel_encoder);
  1136. }
  1137. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1138. .dpms = intel_dp_dpms,
  1139. .mode_fixup = intel_dp_mode_fixup,
  1140. .prepare = intel_encoder_prepare,
  1141. .mode_set = intel_dp_mode_set,
  1142. .commit = intel_encoder_commit,
  1143. };
  1144. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1145. .dpms = drm_helper_connector_dpms,
  1146. .detect = intel_dp_detect,
  1147. .fill_modes = drm_helper_probe_single_connector_modes,
  1148. .destroy = intel_dp_destroy,
  1149. };
  1150. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1151. .get_modes = intel_dp_get_modes,
  1152. .mode_valid = intel_dp_mode_valid,
  1153. .best_encoder = intel_best_encoder,
  1154. };
  1155. static void intel_dp_enc_destroy(struct drm_encoder *encoder)
  1156. {
  1157. drm_encoder_cleanup(encoder);
  1158. }
  1159. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1160. .destroy = intel_dp_enc_destroy,
  1161. };
  1162. void
  1163. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1164. {
  1165. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1166. if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
  1167. intel_dp_check_link_status(intel_encoder);
  1168. }
  1169. /* Return which DP Port should be selected for Transcoder DP control */
  1170. int
  1171. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1172. {
  1173. struct drm_device *dev = crtc->dev;
  1174. struct drm_mode_config *mode_config = &dev->mode_config;
  1175. struct drm_encoder *encoder;
  1176. struct intel_encoder *intel_encoder = NULL;
  1177. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1178. if (!encoder || encoder->crtc != crtc)
  1179. continue;
  1180. intel_encoder = enc_to_intel_encoder(encoder);
  1181. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
  1182. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1183. return dp_priv->output_reg;
  1184. }
  1185. }
  1186. return -1;
  1187. }
  1188. void
  1189. intel_dp_init(struct drm_device *dev, int output_reg)
  1190. {
  1191. struct drm_i915_private *dev_priv = dev->dev_private;
  1192. struct drm_connector *connector;
  1193. struct intel_encoder *intel_encoder;
  1194. struct intel_dp_priv *dp_priv;
  1195. const char *name = NULL;
  1196. intel_encoder = kcalloc(sizeof(struct intel_encoder) +
  1197. sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
  1198. if (!intel_encoder)
  1199. return;
  1200. dp_priv = (struct intel_dp_priv *)(intel_encoder + 1);
  1201. connector = &intel_encoder->base;
  1202. drm_connector_init(dev, connector, &intel_dp_connector_funcs,
  1203. DRM_MODE_CONNECTOR_DisplayPort);
  1204. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1205. if (output_reg == DP_A)
  1206. intel_encoder->type = INTEL_OUTPUT_EDP;
  1207. else
  1208. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1209. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1210. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1211. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1212. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1213. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1214. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1215. if (IS_eDP(intel_encoder))
  1216. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1217. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1218. connector->interlace_allowed = true;
  1219. connector->doublescan_allowed = 0;
  1220. dp_priv->intel_encoder = intel_encoder;
  1221. dp_priv->output_reg = output_reg;
  1222. dp_priv->has_audio = false;
  1223. dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
  1224. intel_encoder->dev_priv = dp_priv;
  1225. drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
  1226. DRM_MODE_ENCODER_TMDS);
  1227. drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
  1228. drm_mode_connector_attach_encoder(&intel_encoder->base,
  1229. &intel_encoder->enc);
  1230. drm_sysfs_connector_add(connector);
  1231. /* Set up the DDC bus. */
  1232. switch (output_reg) {
  1233. case DP_A:
  1234. name = "DPDDC-A";
  1235. break;
  1236. case DP_B:
  1237. case PCH_DP_B:
  1238. dev_priv->hotplug_supported_mask |=
  1239. HDMIB_HOTPLUG_INT_STATUS;
  1240. name = "DPDDC-B";
  1241. break;
  1242. case DP_C:
  1243. case PCH_DP_C:
  1244. dev_priv->hotplug_supported_mask |=
  1245. HDMIC_HOTPLUG_INT_STATUS;
  1246. name = "DPDDC-C";
  1247. break;
  1248. case DP_D:
  1249. case PCH_DP_D:
  1250. dev_priv->hotplug_supported_mask |=
  1251. HDMID_HOTPLUG_INT_STATUS;
  1252. name = "DPDDC-D";
  1253. break;
  1254. }
  1255. intel_dp_i2c_init(intel_encoder, name);
  1256. intel_encoder->ddc_bus = &dp_priv->adapter;
  1257. intel_encoder->hot_plug = intel_dp_hot_plug;
  1258. if (output_reg == DP_A) {
  1259. /* initialize panel mode from VBT if available for eDP */
  1260. if (dev_priv->lfp_lvds_vbt_mode) {
  1261. dev_priv->panel_fixed_mode =
  1262. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1263. if (dev_priv->panel_fixed_mode) {
  1264. dev_priv->panel_fixed_mode->type |=
  1265. DRM_MODE_TYPE_PREFERRED;
  1266. }
  1267. }
  1268. }
  1269. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1270. * 0xd. Failure to do so will result in spurious interrupts being
  1271. * generated on the port when a cable is not attached.
  1272. */
  1273. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1274. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1275. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1276. }
  1277. }