segment.c 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893
  1. /*
  2. * segment.c - NILFS segment constructor.
  3. *
  4. * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21. *
  22. */
  23. #include <linux/pagemap.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/writeback.h>
  26. #include <linux/bio.h>
  27. #include <linux/completion.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/freezer.h>
  31. #include <linux/kthread.h>
  32. #include <linux/crc32.h>
  33. #include <linux/pagevec.h>
  34. #include <linux/slab.h>
  35. #include "nilfs.h"
  36. #include "btnode.h"
  37. #include "page.h"
  38. #include "segment.h"
  39. #include "sufile.h"
  40. #include "cpfile.h"
  41. #include "ifile.h"
  42. #include "segbuf.h"
  43. /*
  44. * Segment constructor
  45. */
  46. #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
  47. #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
  48. appended in collection retry loop */
  49. /* Construction mode */
  50. enum {
  51. SC_LSEG_SR = 1, /* Make a logical segment having a super root */
  52. SC_LSEG_DSYNC, /* Flush data blocks of a given file and make
  53. a logical segment without a super root */
  54. SC_FLUSH_FILE, /* Flush data files, leads to segment writes without
  55. creating a checkpoint */
  56. SC_FLUSH_DAT, /* Flush DAT file. This also creates segments without
  57. a checkpoint */
  58. };
  59. /* Stage numbers of dirty block collection */
  60. enum {
  61. NILFS_ST_INIT = 0,
  62. NILFS_ST_GC, /* Collecting dirty blocks for GC */
  63. NILFS_ST_FILE,
  64. NILFS_ST_IFILE,
  65. NILFS_ST_CPFILE,
  66. NILFS_ST_SUFILE,
  67. NILFS_ST_DAT,
  68. NILFS_ST_SR, /* Super root */
  69. NILFS_ST_DSYNC, /* Data sync blocks */
  70. NILFS_ST_DONE,
  71. };
  72. /* State flags of collection */
  73. #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
  74. #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
  75. #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
  76. #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
  77. /* Operations depending on the construction mode and file type */
  78. struct nilfs_sc_operations {
  79. int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
  80. struct inode *);
  81. int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
  82. struct inode *);
  83. int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
  84. struct inode *);
  85. void (*write_data_binfo)(struct nilfs_sc_info *,
  86. struct nilfs_segsum_pointer *,
  87. union nilfs_binfo *);
  88. void (*write_node_binfo)(struct nilfs_sc_info *,
  89. struct nilfs_segsum_pointer *,
  90. union nilfs_binfo *);
  91. };
  92. /*
  93. * Other definitions
  94. */
  95. static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
  96. static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
  97. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
  98. static void nilfs_dispose_list(struct nilfs_sb_info *, struct list_head *,
  99. int);
  100. #define nilfs_cnt32_gt(a, b) \
  101. (typecheck(__u32, a) && typecheck(__u32, b) && \
  102. ((__s32)(b) - (__s32)(a) < 0))
  103. #define nilfs_cnt32_ge(a, b) \
  104. (typecheck(__u32, a) && typecheck(__u32, b) && \
  105. ((__s32)(a) - (__s32)(b) >= 0))
  106. #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
  107. #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
  108. /*
  109. * Transaction
  110. */
  111. static struct kmem_cache *nilfs_transaction_cachep;
  112. /**
  113. * nilfs_init_transaction_cache - create a cache for nilfs_transaction_info
  114. *
  115. * nilfs_init_transaction_cache() creates a slab cache for the struct
  116. * nilfs_transaction_info.
  117. *
  118. * Return Value: On success, it returns 0. On error, one of the following
  119. * negative error code is returned.
  120. *
  121. * %-ENOMEM - Insufficient memory available.
  122. */
  123. int nilfs_init_transaction_cache(void)
  124. {
  125. nilfs_transaction_cachep =
  126. kmem_cache_create("nilfs2_transaction_cache",
  127. sizeof(struct nilfs_transaction_info),
  128. 0, SLAB_RECLAIM_ACCOUNT, NULL);
  129. return (nilfs_transaction_cachep == NULL) ? -ENOMEM : 0;
  130. }
  131. /**
  132. * nilfs_destroy_transaction_cache - destroy the cache for transaction info
  133. *
  134. * nilfs_destroy_transaction_cache() frees the slab cache for the struct
  135. * nilfs_transaction_info.
  136. */
  137. void nilfs_destroy_transaction_cache(void)
  138. {
  139. kmem_cache_destroy(nilfs_transaction_cachep);
  140. }
  141. static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
  142. {
  143. struct nilfs_transaction_info *cur_ti = current->journal_info;
  144. void *save = NULL;
  145. if (cur_ti) {
  146. if (cur_ti->ti_magic == NILFS_TI_MAGIC)
  147. return ++cur_ti->ti_count;
  148. else {
  149. /*
  150. * If journal_info field is occupied by other FS,
  151. * it is saved and will be restored on
  152. * nilfs_transaction_commit().
  153. */
  154. printk(KERN_WARNING
  155. "NILFS warning: journal info from a different "
  156. "FS\n");
  157. save = current->journal_info;
  158. }
  159. }
  160. if (!ti) {
  161. ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
  162. if (!ti)
  163. return -ENOMEM;
  164. ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
  165. } else {
  166. ti->ti_flags = 0;
  167. }
  168. ti->ti_count = 0;
  169. ti->ti_save = save;
  170. ti->ti_magic = NILFS_TI_MAGIC;
  171. current->journal_info = ti;
  172. return 0;
  173. }
  174. /**
  175. * nilfs_transaction_begin - start indivisible file operations.
  176. * @sb: super block
  177. * @ti: nilfs_transaction_info
  178. * @vacancy_check: flags for vacancy rate checks
  179. *
  180. * nilfs_transaction_begin() acquires a reader/writer semaphore, called
  181. * the segment semaphore, to make a segment construction and write tasks
  182. * exclusive. The function is used with nilfs_transaction_commit() in pairs.
  183. * The region enclosed by these two functions can be nested. To avoid a
  184. * deadlock, the semaphore is only acquired or released in the outermost call.
  185. *
  186. * This function allocates a nilfs_transaction_info struct to keep context
  187. * information on it. It is initialized and hooked onto the current task in
  188. * the outermost call. If a pre-allocated struct is given to @ti, it is used
  189. * instead; otherwise a new struct is assigned from a slab.
  190. *
  191. * When @vacancy_check flag is set, this function will check the amount of
  192. * free space, and will wait for the GC to reclaim disk space if low capacity.
  193. *
  194. * Return Value: On success, 0 is returned. On error, one of the following
  195. * negative error code is returned.
  196. *
  197. * %-ENOMEM - Insufficient memory available.
  198. *
  199. * %-ENOSPC - No space left on device
  200. */
  201. int nilfs_transaction_begin(struct super_block *sb,
  202. struct nilfs_transaction_info *ti,
  203. int vacancy_check)
  204. {
  205. struct nilfs_sb_info *sbi;
  206. struct the_nilfs *nilfs;
  207. int ret = nilfs_prepare_segment_lock(ti);
  208. if (unlikely(ret < 0))
  209. return ret;
  210. if (ret > 0)
  211. return 0;
  212. sbi = NILFS_SB(sb);
  213. nilfs = sbi->s_nilfs;
  214. down_read(&nilfs->ns_segctor_sem);
  215. if (vacancy_check && nilfs_near_disk_full(nilfs)) {
  216. up_read(&nilfs->ns_segctor_sem);
  217. ret = -ENOSPC;
  218. goto failed;
  219. }
  220. return 0;
  221. failed:
  222. ti = current->journal_info;
  223. current->journal_info = ti->ti_save;
  224. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  225. kmem_cache_free(nilfs_transaction_cachep, ti);
  226. return ret;
  227. }
  228. /**
  229. * nilfs_transaction_commit - commit indivisible file operations.
  230. * @sb: super block
  231. *
  232. * nilfs_transaction_commit() releases the read semaphore which is
  233. * acquired by nilfs_transaction_begin(). This is only performed
  234. * in outermost call of this function. If a commit flag is set,
  235. * nilfs_transaction_commit() sets a timer to start the segment
  236. * constructor. If a sync flag is set, it starts construction
  237. * directly.
  238. */
  239. int nilfs_transaction_commit(struct super_block *sb)
  240. {
  241. struct nilfs_transaction_info *ti = current->journal_info;
  242. struct nilfs_sb_info *sbi;
  243. struct nilfs_sc_info *sci;
  244. int err = 0;
  245. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  246. ti->ti_flags |= NILFS_TI_COMMIT;
  247. if (ti->ti_count > 0) {
  248. ti->ti_count--;
  249. return 0;
  250. }
  251. sbi = NILFS_SB(sb);
  252. sci = NILFS_SC(sbi);
  253. if (sci != NULL) {
  254. if (ti->ti_flags & NILFS_TI_COMMIT)
  255. nilfs_segctor_start_timer(sci);
  256. if (atomic_read(&sbi->s_nilfs->ns_ndirtyblks) >
  257. sci->sc_watermark)
  258. nilfs_segctor_do_flush(sci, 0);
  259. }
  260. up_read(&sbi->s_nilfs->ns_segctor_sem);
  261. current->journal_info = ti->ti_save;
  262. if (ti->ti_flags & NILFS_TI_SYNC)
  263. err = nilfs_construct_segment(sb);
  264. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  265. kmem_cache_free(nilfs_transaction_cachep, ti);
  266. return err;
  267. }
  268. void nilfs_transaction_abort(struct super_block *sb)
  269. {
  270. struct nilfs_transaction_info *ti = current->journal_info;
  271. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  272. if (ti->ti_count > 0) {
  273. ti->ti_count--;
  274. return;
  275. }
  276. up_read(&NILFS_SB(sb)->s_nilfs->ns_segctor_sem);
  277. current->journal_info = ti->ti_save;
  278. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  279. kmem_cache_free(nilfs_transaction_cachep, ti);
  280. }
  281. void nilfs_relax_pressure_in_lock(struct super_block *sb)
  282. {
  283. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  284. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  285. struct the_nilfs *nilfs = sbi->s_nilfs;
  286. if (!sci || !sci->sc_flush_request)
  287. return;
  288. set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  289. up_read(&nilfs->ns_segctor_sem);
  290. down_write(&nilfs->ns_segctor_sem);
  291. if (sci->sc_flush_request &&
  292. test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
  293. struct nilfs_transaction_info *ti = current->journal_info;
  294. ti->ti_flags |= NILFS_TI_WRITER;
  295. nilfs_segctor_do_immediate_flush(sci);
  296. ti->ti_flags &= ~NILFS_TI_WRITER;
  297. }
  298. downgrade_write(&nilfs->ns_segctor_sem);
  299. }
  300. static void nilfs_transaction_lock(struct nilfs_sb_info *sbi,
  301. struct nilfs_transaction_info *ti,
  302. int gcflag)
  303. {
  304. struct nilfs_transaction_info *cur_ti = current->journal_info;
  305. WARN_ON(cur_ti);
  306. ti->ti_flags = NILFS_TI_WRITER;
  307. ti->ti_count = 0;
  308. ti->ti_save = cur_ti;
  309. ti->ti_magic = NILFS_TI_MAGIC;
  310. INIT_LIST_HEAD(&ti->ti_garbage);
  311. current->journal_info = ti;
  312. for (;;) {
  313. down_write(&sbi->s_nilfs->ns_segctor_sem);
  314. if (!test_bit(NILFS_SC_PRIOR_FLUSH, &NILFS_SC(sbi)->sc_flags))
  315. break;
  316. nilfs_segctor_do_immediate_flush(NILFS_SC(sbi));
  317. up_write(&sbi->s_nilfs->ns_segctor_sem);
  318. yield();
  319. }
  320. if (gcflag)
  321. ti->ti_flags |= NILFS_TI_GC;
  322. }
  323. static void nilfs_transaction_unlock(struct nilfs_sb_info *sbi)
  324. {
  325. struct nilfs_transaction_info *ti = current->journal_info;
  326. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  327. BUG_ON(ti->ti_count > 0);
  328. up_write(&sbi->s_nilfs->ns_segctor_sem);
  329. current->journal_info = ti->ti_save;
  330. if (!list_empty(&ti->ti_garbage))
  331. nilfs_dispose_list(sbi, &ti->ti_garbage, 0);
  332. }
  333. static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
  334. struct nilfs_segsum_pointer *ssp,
  335. unsigned bytes)
  336. {
  337. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  338. unsigned blocksize = sci->sc_super->s_blocksize;
  339. void *p;
  340. if (unlikely(ssp->offset + bytes > blocksize)) {
  341. ssp->offset = 0;
  342. BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
  343. &segbuf->sb_segsum_buffers));
  344. ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
  345. }
  346. p = ssp->bh->b_data + ssp->offset;
  347. ssp->offset += bytes;
  348. return p;
  349. }
  350. /**
  351. * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
  352. * @sci: nilfs_sc_info
  353. */
  354. static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
  355. {
  356. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  357. struct buffer_head *sumbh;
  358. unsigned sumbytes;
  359. unsigned flags = 0;
  360. int err;
  361. if (nilfs_doing_gc())
  362. flags = NILFS_SS_GC;
  363. err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime);
  364. if (unlikely(err))
  365. return err;
  366. sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  367. sumbytes = segbuf->sb_sum.sumbytes;
  368. sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
  369. sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
  370. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  371. return 0;
  372. }
  373. static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
  374. {
  375. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  376. if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
  377. return -E2BIG; /* The current segment is filled up
  378. (internal code) */
  379. sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
  380. return nilfs_segctor_reset_segment_buffer(sci);
  381. }
  382. static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
  383. {
  384. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  385. int err;
  386. if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
  387. err = nilfs_segctor_feed_segment(sci);
  388. if (err)
  389. return err;
  390. segbuf = sci->sc_curseg;
  391. }
  392. err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
  393. if (likely(!err))
  394. segbuf->sb_sum.flags |= NILFS_SS_SR;
  395. return err;
  396. }
  397. /*
  398. * Functions for making segment summary and payloads
  399. */
  400. static int nilfs_segctor_segsum_block_required(
  401. struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
  402. unsigned binfo_size)
  403. {
  404. unsigned blocksize = sci->sc_super->s_blocksize;
  405. /* Size of finfo and binfo is enough small against blocksize */
  406. return ssp->offset + binfo_size +
  407. (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
  408. blocksize;
  409. }
  410. static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
  411. struct inode *inode)
  412. {
  413. sci->sc_curseg->sb_sum.nfinfo++;
  414. sci->sc_binfo_ptr = sci->sc_finfo_ptr;
  415. nilfs_segctor_map_segsum_entry(
  416. sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
  417. if (inode->i_sb && !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  418. set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  419. /* skip finfo */
  420. }
  421. static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
  422. struct inode *inode)
  423. {
  424. struct nilfs_finfo *finfo;
  425. struct nilfs_inode_info *ii;
  426. struct nilfs_segment_buffer *segbuf;
  427. if (sci->sc_blk_cnt == 0)
  428. return;
  429. ii = NILFS_I(inode);
  430. finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
  431. sizeof(*finfo));
  432. finfo->fi_ino = cpu_to_le64(inode->i_ino);
  433. finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
  434. finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
  435. finfo->fi_cno = cpu_to_le64(ii->i_cno);
  436. segbuf = sci->sc_curseg;
  437. segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
  438. sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
  439. sci->sc_finfo_ptr = sci->sc_binfo_ptr;
  440. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  441. }
  442. static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
  443. struct buffer_head *bh,
  444. struct inode *inode,
  445. unsigned binfo_size)
  446. {
  447. struct nilfs_segment_buffer *segbuf;
  448. int required, err = 0;
  449. retry:
  450. segbuf = sci->sc_curseg;
  451. required = nilfs_segctor_segsum_block_required(
  452. sci, &sci->sc_binfo_ptr, binfo_size);
  453. if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
  454. nilfs_segctor_end_finfo(sci, inode);
  455. err = nilfs_segctor_feed_segment(sci);
  456. if (err)
  457. return err;
  458. goto retry;
  459. }
  460. if (unlikely(required)) {
  461. err = nilfs_segbuf_extend_segsum(segbuf);
  462. if (unlikely(err))
  463. goto failed;
  464. }
  465. if (sci->sc_blk_cnt == 0)
  466. nilfs_segctor_begin_finfo(sci, inode);
  467. nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
  468. /* Substitution to vblocknr is delayed until update_blocknr() */
  469. nilfs_segbuf_add_file_buffer(segbuf, bh);
  470. sci->sc_blk_cnt++;
  471. failed:
  472. return err;
  473. }
  474. static int nilfs_handle_bmap_error(int err, const char *fname,
  475. struct inode *inode, struct super_block *sb)
  476. {
  477. if (err == -EINVAL) {
  478. nilfs_error(sb, fname, "broken bmap (inode=%lu)\n",
  479. inode->i_ino);
  480. err = -EIO;
  481. }
  482. return err;
  483. }
  484. /*
  485. * Callback functions that enumerate, mark, and collect dirty blocks
  486. */
  487. static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
  488. struct buffer_head *bh, struct inode *inode)
  489. {
  490. int err;
  491. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  492. if (unlikely(err < 0))
  493. return nilfs_handle_bmap_error(err, __func__, inode,
  494. sci->sc_super);
  495. err = nilfs_segctor_add_file_block(sci, bh, inode,
  496. sizeof(struct nilfs_binfo_v));
  497. if (!err)
  498. sci->sc_datablk_cnt++;
  499. return err;
  500. }
  501. static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
  502. struct buffer_head *bh,
  503. struct inode *inode)
  504. {
  505. int err;
  506. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  507. if (unlikely(err < 0))
  508. return nilfs_handle_bmap_error(err, __func__, inode,
  509. sci->sc_super);
  510. return 0;
  511. }
  512. static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
  513. struct buffer_head *bh,
  514. struct inode *inode)
  515. {
  516. WARN_ON(!buffer_dirty(bh));
  517. return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  518. }
  519. static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
  520. struct nilfs_segsum_pointer *ssp,
  521. union nilfs_binfo *binfo)
  522. {
  523. struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
  524. sci, ssp, sizeof(*binfo_v));
  525. *binfo_v = binfo->bi_v;
  526. }
  527. static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
  528. struct nilfs_segsum_pointer *ssp,
  529. union nilfs_binfo *binfo)
  530. {
  531. __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
  532. sci, ssp, sizeof(*vblocknr));
  533. *vblocknr = binfo->bi_v.bi_vblocknr;
  534. }
  535. struct nilfs_sc_operations nilfs_sc_file_ops = {
  536. .collect_data = nilfs_collect_file_data,
  537. .collect_node = nilfs_collect_file_node,
  538. .collect_bmap = nilfs_collect_file_bmap,
  539. .write_data_binfo = nilfs_write_file_data_binfo,
  540. .write_node_binfo = nilfs_write_file_node_binfo,
  541. };
  542. static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
  543. struct buffer_head *bh, struct inode *inode)
  544. {
  545. int err;
  546. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  547. if (unlikely(err < 0))
  548. return nilfs_handle_bmap_error(err, __func__, inode,
  549. sci->sc_super);
  550. err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  551. if (!err)
  552. sci->sc_datablk_cnt++;
  553. return err;
  554. }
  555. static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
  556. struct buffer_head *bh, struct inode *inode)
  557. {
  558. WARN_ON(!buffer_dirty(bh));
  559. return nilfs_segctor_add_file_block(sci, bh, inode,
  560. sizeof(struct nilfs_binfo_dat));
  561. }
  562. static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
  563. struct nilfs_segsum_pointer *ssp,
  564. union nilfs_binfo *binfo)
  565. {
  566. __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
  567. sizeof(*blkoff));
  568. *blkoff = binfo->bi_dat.bi_blkoff;
  569. }
  570. static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
  571. struct nilfs_segsum_pointer *ssp,
  572. union nilfs_binfo *binfo)
  573. {
  574. struct nilfs_binfo_dat *binfo_dat =
  575. nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
  576. *binfo_dat = binfo->bi_dat;
  577. }
  578. struct nilfs_sc_operations nilfs_sc_dat_ops = {
  579. .collect_data = nilfs_collect_dat_data,
  580. .collect_node = nilfs_collect_file_node,
  581. .collect_bmap = nilfs_collect_dat_bmap,
  582. .write_data_binfo = nilfs_write_dat_data_binfo,
  583. .write_node_binfo = nilfs_write_dat_node_binfo,
  584. };
  585. struct nilfs_sc_operations nilfs_sc_dsync_ops = {
  586. .collect_data = nilfs_collect_file_data,
  587. .collect_node = NULL,
  588. .collect_bmap = NULL,
  589. .write_data_binfo = nilfs_write_file_data_binfo,
  590. .write_node_binfo = NULL,
  591. };
  592. static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
  593. struct list_head *listp,
  594. size_t nlimit,
  595. loff_t start, loff_t end)
  596. {
  597. struct address_space *mapping = inode->i_mapping;
  598. struct pagevec pvec;
  599. pgoff_t index = 0, last = ULONG_MAX;
  600. size_t ndirties = 0;
  601. int i;
  602. if (unlikely(start != 0 || end != LLONG_MAX)) {
  603. /*
  604. * A valid range is given for sync-ing data pages. The
  605. * range is rounded to per-page; extra dirty buffers
  606. * may be included if blocksize < pagesize.
  607. */
  608. index = start >> PAGE_SHIFT;
  609. last = end >> PAGE_SHIFT;
  610. }
  611. pagevec_init(&pvec, 0);
  612. repeat:
  613. if (unlikely(index > last) ||
  614. !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  615. min_t(pgoff_t, last - index,
  616. PAGEVEC_SIZE - 1) + 1))
  617. return ndirties;
  618. for (i = 0; i < pagevec_count(&pvec); i++) {
  619. struct buffer_head *bh, *head;
  620. struct page *page = pvec.pages[i];
  621. if (unlikely(page->index > last))
  622. break;
  623. if (mapping->host) {
  624. lock_page(page);
  625. if (!page_has_buffers(page))
  626. create_empty_buffers(page,
  627. 1 << inode->i_blkbits, 0);
  628. unlock_page(page);
  629. }
  630. bh = head = page_buffers(page);
  631. do {
  632. if (!buffer_dirty(bh))
  633. continue;
  634. get_bh(bh);
  635. list_add_tail(&bh->b_assoc_buffers, listp);
  636. ndirties++;
  637. if (unlikely(ndirties >= nlimit)) {
  638. pagevec_release(&pvec);
  639. cond_resched();
  640. return ndirties;
  641. }
  642. } while (bh = bh->b_this_page, bh != head);
  643. }
  644. pagevec_release(&pvec);
  645. cond_resched();
  646. goto repeat;
  647. }
  648. static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
  649. struct list_head *listp)
  650. {
  651. struct nilfs_inode_info *ii = NILFS_I(inode);
  652. struct address_space *mapping = &ii->i_btnode_cache;
  653. struct pagevec pvec;
  654. struct buffer_head *bh, *head;
  655. unsigned int i;
  656. pgoff_t index = 0;
  657. pagevec_init(&pvec, 0);
  658. while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  659. PAGEVEC_SIZE)) {
  660. for (i = 0; i < pagevec_count(&pvec); i++) {
  661. bh = head = page_buffers(pvec.pages[i]);
  662. do {
  663. if (buffer_dirty(bh)) {
  664. get_bh(bh);
  665. list_add_tail(&bh->b_assoc_buffers,
  666. listp);
  667. }
  668. bh = bh->b_this_page;
  669. } while (bh != head);
  670. }
  671. pagevec_release(&pvec);
  672. cond_resched();
  673. }
  674. }
  675. static void nilfs_dispose_list(struct nilfs_sb_info *sbi,
  676. struct list_head *head, int force)
  677. {
  678. struct nilfs_inode_info *ii, *n;
  679. struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
  680. unsigned nv = 0;
  681. while (!list_empty(head)) {
  682. spin_lock(&sbi->s_inode_lock);
  683. list_for_each_entry_safe(ii, n, head, i_dirty) {
  684. list_del_init(&ii->i_dirty);
  685. if (force) {
  686. if (unlikely(ii->i_bh)) {
  687. brelse(ii->i_bh);
  688. ii->i_bh = NULL;
  689. }
  690. } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  691. set_bit(NILFS_I_QUEUED, &ii->i_state);
  692. list_add_tail(&ii->i_dirty,
  693. &sbi->s_dirty_files);
  694. continue;
  695. }
  696. ivec[nv++] = ii;
  697. if (nv == SC_N_INODEVEC)
  698. break;
  699. }
  700. spin_unlock(&sbi->s_inode_lock);
  701. for (pii = ivec; nv > 0; pii++, nv--)
  702. iput(&(*pii)->vfs_inode);
  703. }
  704. }
  705. static int nilfs_test_metadata_dirty(struct nilfs_sb_info *sbi)
  706. {
  707. struct the_nilfs *nilfs = sbi->s_nilfs;
  708. int ret = 0;
  709. if (nilfs_mdt_fetch_dirty(sbi->s_ifile))
  710. ret++;
  711. if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
  712. ret++;
  713. if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
  714. ret++;
  715. if (ret || nilfs_doing_gc())
  716. if (nilfs_mdt_fetch_dirty(nilfs_dat_inode(nilfs)))
  717. ret++;
  718. return ret;
  719. }
  720. static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
  721. {
  722. return list_empty(&sci->sc_dirty_files) &&
  723. !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
  724. sci->sc_nfreesegs == 0 &&
  725. (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
  726. }
  727. static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
  728. {
  729. struct nilfs_sb_info *sbi = sci->sc_sbi;
  730. int ret = 0;
  731. if (nilfs_test_metadata_dirty(sbi))
  732. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  733. spin_lock(&sbi->s_inode_lock);
  734. if (list_empty(&sbi->s_dirty_files) && nilfs_segctor_clean(sci))
  735. ret++;
  736. spin_unlock(&sbi->s_inode_lock);
  737. return ret;
  738. }
  739. static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
  740. {
  741. struct nilfs_sb_info *sbi = sci->sc_sbi;
  742. struct the_nilfs *nilfs = sbi->s_nilfs;
  743. nilfs_mdt_clear_dirty(sbi->s_ifile);
  744. nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
  745. nilfs_mdt_clear_dirty(nilfs->ns_sufile);
  746. nilfs_mdt_clear_dirty(nilfs_dat_inode(nilfs));
  747. }
  748. static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
  749. {
  750. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  751. struct buffer_head *bh_cp;
  752. struct nilfs_checkpoint *raw_cp;
  753. int err;
  754. /* XXX: this interface will be changed */
  755. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
  756. &raw_cp, &bh_cp);
  757. if (likely(!err)) {
  758. /* The following code is duplicated with cpfile. But, it is
  759. needed to collect the checkpoint even if it was not newly
  760. created */
  761. nilfs_mdt_mark_buffer_dirty(bh_cp);
  762. nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
  763. nilfs_cpfile_put_checkpoint(
  764. nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  765. } else
  766. WARN_ON(err == -EINVAL || err == -ENOENT);
  767. return err;
  768. }
  769. static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
  770. {
  771. struct nilfs_sb_info *sbi = sci->sc_sbi;
  772. struct the_nilfs *nilfs = sbi->s_nilfs;
  773. struct buffer_head *bh_cp;
  774. struct nilfs_checkpoint *raw_cp;
  775. int err;
  776. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
  777. &raw_cp, &bh_cp);
  778. if (unlikely(err)) {
  779. WARN_ON(err == -EINVAL || err == -ENOENT);
  780. goto failed_ibh;
  781. }
  782. raw_cp->cp_snapshot_list.ssl_next = 0;
  783. raw_cp->cp_snapshot_list.ssl_prev = 0;
  784. raw_cp->cp_inodes_count =
  785. cpu_to_le64(atomic_read(&sbi->s_inodes_count));
  786. raw_cp->cp_blocks_count =
  787. cpu_to_le64(atomic_read(&sbi->s_blocks_count));
  788. raw_cp->cp_nblk_inc =
  789. cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
  790. raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
  791. raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
  792. if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  793. nilfs_checkpoint_clear_minor(raw_cp);
  794. else
  795. nilfs_checkpoint_set_minor(raw_cp);
  796. nilfs_write_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode, 1);
  797. nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  798. return 0;
  799. failed_ibh:
  800. return err;
  801. }
  802. static void nilfs_fill_in_file_bmap(struct inode *ifile,
  803. struct nilfs_inode_info *ii)
  804. {
  805. struct buffer_head *ibh;
  806. struct nilfs_inode *raw_inode;
  807. if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
  808. ibh = ii->i_bh;
  809. BUG_ON(!ibh);
  810. raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
  811. ibh);
  812. nilfs_bmap_write(ii->i_bmap, raw_inode);
  813. nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
  814. }
  815. }
  816. static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci,
  817. struct inode *ifile)
  818. {
  819. struct nilfs_inode_info *ii;
  820. list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
  821. nilfs_fill_in_file_bmap(ifile, ii);
  822. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  823. }
  824. }
  825. static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
  826. struct the_nilfs *nilfs)
  827. {
  828. struct buffer_head *bh_sr;
  829. struct nilfs_super_root *raw_sr;
  830. unsigned isz = nilfs->ns_inode_size;
  831. bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
  832. raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
  833. raw_sr->sr_bytes = cpu_to_le16(NILFS_SR_BYTES);
  834. raw_sr->sr_nongc_ctime
  835. = cpu_to_le64(nilfs_doing_gc() ?
  836. nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
  837. raw_sr->sr_flags = 0;
  838. nilfs_write_inode_common(nilfs_dat_inode(nilfs), (void *)raw_sr +
  839. NILFS_SR_DAT_OFFSET(isz), 1);
  840. nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
  841. NILFS_SR_CPFILE_OFFSET(isz), 1);
  842. nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
  843. NILFS_SR_SUFILE_OFFSET(isz), 1);
  844. }
  845. static void nilfs_redirty_inodes(struct list_head *head)
  846. {
  847. struct nilfs_inode_info *ii;
  848. list_for_each_entry(ii, head, i_dirty) {
  849. if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
  850. clear_bit(NILFS_I_COLLECTED, &ii->i_state);
  851. }
  852. }
  853. static void nilfs_drop_collected_inodes(struct list_head *head)
  854. {
  855. struct nilfs_inode_info *ii;
  856. list_for_each_entry(ii, head, i_dirty) {
  857. if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
  858. continue;
  859. clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
  860. set_bit(NILFS_I_UPDATED, &ii->i_state);
  861. }
  862. }
  863. static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
  864. struct inode *inode,
  865. struct list_head *listp,
  866. int (*collect)(struct nilfs_sc_info *,
  867. struct buffer_head *,
  868. struct inode *))
  869. {
  870. struct buffer_head *bh, *n;
  871. int err = 0;
  872. if (collect) {
  873. list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
  874. list_del_init(&bh->b_assoc_buffers);
  875. err = collect(sci, bh, inode);
  876. brelse(bh);
  877. if (unlikely(err))
  878. goto dispose_buffers;
  879. }
  880. return 0;
  881. }
  882. dispose_buffers:
  883. while (!list_empty(listp)) {
  884. bh = list_entry(listp->next, struct buffer_head,
  885. b_assoc_buffers);
  886. list_del_init(&bh->b_assoc_buffers);
  887. brelse(bh);
  888. }
  889. return err;
  890. }
  891. static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
  892. {
  893. /* Remaining number of blocks within segment buffer */
  894. return sci->sc_segbuf_nblocks -
  895. (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
  896. }
  897. static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
  898. struct inode *inode,
  899. struct nilfs_sc_operations *sc_ops)
  900. {
  901. LIST_HEAD(data_buffers);
  902. LIST_HEAD(node_buffers);
  903. int err;
  904. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  905. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  906. n = nilfs_lookup_dirty_data_buffers(
  907. inode, &data_buffers, rest + 1, 0, LLONG_MAX);
  908. if (n > rest) {
  909. err = nilfs_segctor_apply_buffers(
  910. sci, inode, &data_buffers,
  911. sc_ops->collect_data);
  912. BUG_ON(!err); /* always receive -E2BIG or true error */
  913. goto break_or_fail;
  914. }
  915. }
  916. nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
  917. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  918. err = nilfs_segctor_apply_buffers(
  919. sci, inode, &data_buffers, sc_ops->collect_data);
  920. if (unlikely(err)) {
  921. /* dispose node list */
  922. nilfs_segctor_apply_buffers(
  923. sci, inode, &node_buffers, NULL);
  924. goto break_or_fail;
  925. }
  926. sci->sc_stage.flags |= NILFS_CF_NODE;
  927. }
  928. /* Collect node */
  929. err = nilfs_segctor_apply_buffers(
  930. sci, inode, &node_buffers, sc_ops->collect_node);
  931. if (unlikely(err))
  932. goto break_or_fail;
  933. nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
  934. err = nilfs_segctor_apply_buffers(
  935. sci, inode, &node_buffers, sc_ops->collect_bmap);
  936. if (unlikely(err))
  937. goto break_or_fail;
  938. nilfs_segctor_end_finfo(sci, inode);
  939. sci->sc_stage.flags &= ~NILFS_CF_NODE;
  940. break_or_fail:
  941. return err;
  942. }
  943. static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
  944. struct inode *inode)
  945. {
  946. LIST_HEAD(data_buffers);
  947. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  948. int err;
  949. n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
  950. sci->sc_dsync_start,
  951. sci->sc_dsync_end);
  952. err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
  953. nilfs_collect_file_data);
  954. if (!err) {
  955. nilfs_segctor_end_finfo(sci, inode);
  956. BUG_ON(n > rest);
  957. /* always receive -E2BIG or true error if n > rest */
  958. }
  959. return err;
  960. }
  961. static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
  962. {
  963. struct nilfs_sb_info *sbi = sci->sc_sbi;
  964. struct the_nilfs *nilfs = sbi->s_nilfs;
  965. struct list_head *head;
  966. struct nilfs_inode_info *ii;
  967. size_t ndone;
  968. int err = 0;
  969. switch (sci->sc_stage.scnt) {
  970. case NILFS_ST_INIT:
  971. /* Pre-processes */
  972. sci->sc_stage.flags = 0;
  973. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
  974. sci->sc_nblk_inc = 0;
  975. sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
  976. if (mode == SC_LSEG_DSYNC) {
  977. sci->sc_stage.scnt = NILFS_ST_DSYNC;
  978. goto dsync_mode;
  979. }
  980. }
  981. sci->sc_stage.dirty_file_ptr = NULL;
  982. sci->sc_stage.gc_inode_ptr = NULL;
  983. if (mode == SC_FLUSH_DAT) {
  984. sci->sc_stage.scnt = NILFS_ST_DAT;
  985. goto dat_stage;
  986. }
  987. sci->sc_stage.scnt++; /* Fall through */
  988. case NILFS_ST_GC:
  989. if (nilfs_doing_gc()) {
  990. head = &sci->sc_gc_inodes;
  991. ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
  992. head, i_dirty);
  993. list_for_each_entry_continue(ii, head, i_dirty) {
  994. err = nilfs_segctor_scan_file(
  995. sci, &ii->vfs_inode,
  996. &nilfs_sc_file_ops);
  997. if (unlikely(err)) {
  998. sci->sc_stage.gc_inode_ptr = list_entry(
  999. ii->i_dirty.prev,
  1000. struct nilfs_inode_info,
  1001. i_dirty);
  1002. goto break_or_fail;
  1003. }
  1004. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  1005. }
  1006. sci->sc_stage.gc_inode_ptr = NULL;
  1007. }
  1008. sci->sc_stage.scnt++; /* Fall through */
  1009. case NILFS_ST_FILE:
  1010. head = &sci->sc_dirty_files;
  1011. ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
  1012. i_dirty);
  1013. list_for_each_entry_continue(ii, head, i_dirty) {
  1014. clear_bit(NILFS_I_DIRTY, &ii->i_state);
  1015. err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
  1016. &nilfs_sc_file_ops);
  1017. if (unlikely(err)) {
  1018. sci->sc_stage.dirty_file_ptr =
  1019. list_entry(ii->i_dirty.prev,
  1020. struct nilfs_inode_info,
  1021. i_dirty);
  1022. goto break_or_fail;
  1023. }
  1024. /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
  1025. /* XXX: required ? */
  1026. }
  1027. sci->sc_stage.dirty_file_ptr = NULL;
  1028. if (mode == SC_FLUSH_FILE) {
  1029. sci->sc_stage.scnt = NILFS_ST_DONE;
  1030. return 0;
  1031. }
  1032. sci->sc_stage.scnt++;
  1033. sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
  1034. /* Fall through */
  1035. case NILFS_ST_IFILE:
  1036. err = nilfs_segctor_scan_file(sci, sbi->s_ifile,
  1037. &nilfs_sc_file_ops);
  1038. if (unlikely(err))
  1039. break;
  1040. sci->sc_stage.scnt++;
  1041. /* Creating a checkpoint */
  1042. err = nilfs_segctor_create_checkpoint(sci);
  1043. if (unlikely(err))
  1044. break;
  1045. /* Fall through */
  1046. case NILFS_ST_CPFILE:
  1047. err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
  1048. &nilfs_sc_file_ops);
  1049. if (unlikely(err))
  1050. break;
  1051. sci->sc_stage.scnt++; /* Fall through */
  1052. case NILFS_ST_SUFILE:
  1053. err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
  1054. sci->sc_nfreesegs, &ndone);
  1055. if (unlikely(err)) {
  1056. nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1057. sci->sc_freesegs, ndone,
  1058. NULL);
  1059. break;
  1060. }
  1061. sci->sc_stage.flags |= NILFS_CF_SUFREED;
  1062. err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
  1063. &nilfs_sc_file_ops);
  1064. if (unlikely(err))
  1065. break;
  1066. sci->sc_stage.scnt++; /* Fall through */
  1067. case NILFS_ST_DAT:
  1068. dat_stage:
  1069. err = nilfs_segctor_scan_file(sci, nilfs_dat_inode(nilfs),
  1070. &nilfs_sc_dat_ops);
  1071. if (unlikely(err))
  1072. break;
  1073. if (mode == SC_FLUSH_DAT) {
  1074. sci->sc_stage.scnt = NILFS_ST_DONE;
  1075. return 0;
  1076. }
  1077. sci->sc_stage.scnt++; /* Fall through */
  1078. case NILFS_ST_SR:
  1079. if (mode == SC_LSEG_SR) {
  1080. /* Appending a super root */
  1081. err = nilfs_segctor_add_super_root(sci);
  1082. if (unlikely(err))
  1083. break;
  1084. }
  1085. /* End of a logical segment */
  1086. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1087. sci->sc_stage.scnt = NILFS_ST_DONE;
  1088. return 0;
  1089. case NILFS_ST_DSYNC:
  1090. dsync_mode:
  1091. sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
  1092. ii = sci->sc_dsync_inode;
  1093. if (!test_bit(NILFS_I_BUSY, &ii->i_state))
  1094. break;
  1095. err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
  1096. if (unlikely(err))
  1097. break;
  1098. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1099. sci->sc_stage.scnt = NILFS_ST_DONE;
  1100. return 0;
  1101. case NILFS_ST_DONE:
  1102. return 0;
  1103. default:
  1104. BUG();
  1105. }
  1106. break_or_fail:
  1107. return err;
  1108. }
  1109. /**
  1110. * nilfs_segctor_begin_construction - setup segment buffer to make a new log
  1111. * @sci: nilfs_sc_info
  1112. * @nilfs: nilfs object
  1113. */
  1114. static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
  1115. struct the_nilfs *nilfs)
  1116. {
  1117. struct nilfs_segment_buffer *segbuf, *prev;
  1118. __u64 nextnum;
  1119. int err, alloc = 0;
  1120. segbuf = nilfs_segbuf_new(sci->sc_super);
  1121. if (unlikely(!segbuf))
  1122. return -ENOMEM;
  1123. if (list_empty(&sci->sc_write_logs)) {
  1124. nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
  1125. nilfs->ns_pseg_offset, nilfs);
  1126. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1127. nilfs_shift_to_next_segment(nilfs);
  1128. nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
  1129. }
  1130. segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
  1131. nextnum = nilfs->ns_nextnum;
  1132. if (nilfs->ns_segnum == nilfs->ns_nextnum)
  1133. /* Start from the head of a new full segment */
  1134. alloc++;
  1135. } else {
  1136. /* Continue logs */
  1137. prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1138. nilfs_segbuf_map_cont(segbuf, prev);
  1139. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
  1140. nextnum = prev->sb_nextnum;
  1141. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1142. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1143. segbuf->sb_sum.seg_seq++;
  1144. alloc++;
  1145. }
  1146. }
  1147. err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
  1148. if (err)
  1149. goto failed;
  1150. if (alloc) {
  1151. err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
  1152. if (err)
  1153. goto failed;
  1154. }
  1155. nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
  1156. BUG_ON(!list_empty(&sci->sc_segbufs));
  1157. list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
  1158. sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
  1159. return 0;
  1160. failed:
  1161. nilfs_segbuf_free(segbuf);
  1162. return err;
  1163. }
  1164. static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
  1165. struct the_nilfs *nilfs, int nadd)
  1166. {
  1167. struct nilfs_segment_buffer *segbuf, *prev;
  1168. struct inode *sufile = nilfs->ns_sufile;
  1169. __u64 nextnextnum;
  1170. LIST_HEAD(list);
  1171. int err, ret, i;
  1172. prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1173. /*
  1174. * Since the segment specified with nextnum might be allocated during
  1175. * the previous construction, the buffer including its segusage may
  1176. * not be dirty. The following call ensures that the buffer is dirty
  1177. * and will pin the buffer on memory until the sufile is written.
  1178. */
  1179. err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
  1180. if (unlikely(err))
  1181. return err;
  1182. for (i = 0; i < nadd; i++) {
  1183. /* extend segment info */
  1184. err = -ENOMEM;
  1185. segbuf = nilfs_segbuf_new(sci->sc_super);
  1186. if (unlikely(!segbuf))
  1187. goto failed;
  1188. /* map this buffer to region of segment on-disk */
  1189. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1190. sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
  1191. /* allocate the next next full segment */
  1192. err = nilfs_sufile_alloc(sufile, &nextnextnum);
  1193. if (unlikely(err))
  1194. goto failed_segbuf;
  1195. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
  1196. nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
  1197. list_add_tail(&segbuf->sb_list, &list);
  1198. prev = segbuf;
  1199. }
  1200. list_splice_tail(&list, &sci->sc_segbufs);
  1201. return 0;
  1202. failed_segbuf:
  1203. nilfs_segbuf_free(segbuf);
  1204. failed:
  1205. list_for_each_entry(segbuf, &list, sb_list) {
  1206. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1207. WARN_ON(ret); /* never fails */
  1208. }
  1209. nilfs_destroy_logs(&list);
  1210. return err;
  1211. }
  1212. static void nilfs_free_incomplete_logs(struct list_head *logs,
  1213. struct the_nilfs *nilfs)
  1214. {
  1215. struct nilfs_segment_buffer *segbuf, *prev;
  1216. struct inode *sufile = nilfs->ns_sufile;
  1217. int ret;
  1218. segbuf = NILFS_FIRST_SEGBUF(logs);
  1219. if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
  1220. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1221. WARN_ON(ret); /* never fails */
  1222. }
  1223. if (atomic_read(&segbuf->sb_err)) {
  1224. /* Case 1: The first segment failed */
  1225. if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
  1226. /* Case 1a: Partial segment appended into an existing
  1227. segment */
  1228. nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
  1229. segbuf->sb_fseg_end);
  1230. else /* Case 1b: New full segment */
  1231. set_nilfs_discontinued(nilfs);
  1232. }
  1233. prev = segbuf;
  1234. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1235. if (prev->sb_nextnum != segbuf->sb_nextnum) {
  1236. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1237. WARN_ON(ret); /* never fails */
  1238. }
  1239. if (atomic_read(&segbuf->sb_err) &&
  1240. segbuf->sb_segnum != nilfs->ns_nextnum)
  1241. /* Case 2: extended segment (!= next) failed */
  1242. nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
  1243. prev = segbuf;
  1244. }
  1245. }
  1246. static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
  1247. struct inode *sufile)
  1248. {
  1249. struct nilfs_segment_buffer *segbuf;
  1250. unsigned long live_blocks;
  1251. int ret;
  1252. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1253. live_blocks = segbuf->sb_sum.nblocks +
  1254. (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
  1255. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1256. live_blocks,
  1257. sci->sc_seg_ctime);
  1258. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1259. }
  1260. }
  1261. static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
  1262. {
  1263. struct nilfs_segment_buffer *segbuf;
  1264. int ret;
  1265. segbuf = NILFS_FIRST_SEGBUF(logs);
  1266. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1267. segbuf->sb_pseg_start -
  1268. segbuf->sb_fseg_start, 0);
  1269. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1270. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1271. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1272. 0, 0);
  1273. WARN_ON(ret); /* always succeed */
  1274. }
  1275. }
  1276. static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
  1277. struct nilfs_segment_buffer *last,
  1278. struct inode *sufile)
  1279. {
  1280. struct nilfs_segment_buffer *segbuf = last;
  1281. int ret;
  1282. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1283. sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
  1284. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1285. WARN_ON(ret);
  1286. }
  1287. nilfs_truncate_logs(&sci->sc_segbufs, last);
  1288. }
  1289. static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
  1290. struct the_nilfs *nilfs, int mode)
  1291. {
  1292. struct nilfs_cstage prev_stage = sci->sc_stage;
  1293. int err, nadd = 1;
  1294. /* Collection retry loop */
  1295. for (;;) {
  1296. sci->sc_nblk_this_inc = 0;
  1297. sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1298. err = nilfs_segctor_reset_segment_buffer(sci);
  1299. if (unlikely(err))
  1300. goto failed;
  1301. err = nilfs_segctor_collect_blocks(sci, mode);
  1302. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  1303. if (!err)
  1304. break;
  1305. if (unlikely(err != -E2BIG))
  1306. goto failed;
  1307. /* The current segment is filled up */
  1308. if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
  1309. break;
  1310. nilfs_clear_logs(&sci->sc_segbufs);
  1311. err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
  1312. if (unlikely(err))
  1313. return err;
  1314. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1315. err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1316. sci->sc_freesegs,
  1317. sci->sc_nfreesegs,
  1318. NULL);
  1319. WARN_ON(err); /* do not happen */
  1320. }
  1321. nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
  1322. sci->sc_stage = prev_stage;
  1323. }
  1324. nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
  1325. return 0;
  1326. failed:
  1327. return err;
  1328. }
  1329. static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
  1330. struct buffer_head *new_bh)
  1331. {
  1332. BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
  1333. list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
  1334. /* The caller must release old_bh */
  1335. }
  1336. static int
  1337. nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
  1338. struct nilfs_segment_buffer *segbuf,
  1339. int mode)
  1340. {
  1341. struct inode *inode = NULL;
  1342. sector_t blocknr;
  1343. unsigned long nfinfo = segbuf->sb_sum.nfinfo;
  1344. unsigned long nblocks = 0, ndatablk = 0;
  1345. struct nilfs_sc_operations *sc_op = NULL;
  1346. struct nilfs_segsum_pointer ssp;
  1347. struct nilfs_finfo *finfo = NULL;
  1348. union nilfs_binfo binfo;
  1349. struct buffer_head *bh, *bh_org;
  1350. ino_t ino = 0;
  1351. int err = 0;
  1352. if (!nfinfo)
  1353. goto out;
  1354. blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
  1355. ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  1356. ssp.offset = sizeof(struct nilfs_segment_summary);
  1357. list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
  1358. if (bh == segbuf->sb_super_root)
  1359. break;
  1360. if (!finfo) {
  1361. finfo = nilfs_segctor_map_segsum_entry(
  1362. sci, &ssp, sizeof(*finfo));
  1363. ino = le64_to_cpu(finfo->fi_ino);
  1364. nblocks = le32_to_cpu(finfo->fi_nblocks);
  1365. ndatablk = le32_to_cpu(finfo->fi_ndatablk);
  1366. if (buffer_nilfs_node(bh))
  1367. inode = NILFS_BTNC_I(bh->b_page->mapping);
  1368. else
  1369. inode = NILFS_AS_I(bh->b_page->mapping);
  1370. if (mode == SC_LSEG_DSYNC)
  1371. sc_op = &nilfs_sc_dsync_ops;
  1372. else if (ino == NILFS_DAT_INO)
  1373. sc_op = &nilfs_sc_dat_ops;
  1374. else /* file blocks */
  1375. sc_op = &nilfs_sc_file_ops;
  1376. }
  1377. bh_org = bh;
  1378. get_bh(bh_org);
  1379. err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
  1380. &binfo);
  1381. if (bh != bh_org)
  1382. nilfs_list_replace_buffer(bh_org, bh);
  1383. brelse(bh_org);
  1384. if (unlikely(err))
  1385. goto failed_bmap;
  1386. if (ndatablk > 0)
  1387. sc_op->write_data_binfo(sci, &ssp, &binfo);
  1388. else
  1389. sc_op->write_node_binfo(sci, &ssp, &binfo);
  1390. blocknr++;
  1391. if (--nblocks == 0) {
  1392. finfo = NULL;
  1393. if (--nfinfo == 0)
  1394. break;
  1395. } else if (ndatablk > 0)
  1396. ndatablk--;
  1397. }
  1398. out:
  1399. return 0;
  1400. failed_bmap:
  1401. err = nilfs_handle_bmap_error(err, __func__, inode, sci->sc_super);
  1402. return err;
  1403. }
  1404. static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
  1405. {
  1406. struct nilfs_segment_buffer *segbuf;
  1407. int err;
  1408. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1409. err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
  1410. if (unlikely(err))
  1411. return err;
  1412. nilfs_segbuf_fill_in_segsum(segbuf);
  1413. }
  1414. return 0;
  1415. }
  1416. static int
  1417. nilfs_copy_replace_page_buffers(struct page *page, struct list_head *out)
  1418. {
  1419. struct page *clone_page;
  1420. struct buffer_head *bh, *head, *bh2;
  1421. void *kaddr;
  1422. bh = head = page_buffers(page);
  1423. clone_page = nilfs_alloc_private_page(bh->b_bdev, bh->b_size, 0);
  1424. if (unlikely(!clone_page))
  1425. return -ENOMEM;
  1426. bh2 = page_buffers(clone_page);
  1427. kaddr = kmap_atomic(page, KM_USER0);
  1428. do {
  1429. if (list_empty(&bh->b_assoc_buffers))
  1430. continue;
  1431. get_bh(bh2);
  1432. page_cache_get(clone_page); /* for each bh */
  1433. memcpy(bh2->b_data, kaddr + bh_offset(bh), bh2->b_size);
  1434. bh2->b_blocknr = bh->b_blocknr;
  1435. list_replace(&bh->b_assoc_buffers, &bh2->b_assoc_buffers);
  1436. list_add_tail(&bh->b_assoc_buffers, out);
  1437. } while (bh = bh->b_this_page, bh2 = bh2->b_this_page, bh != head);
  1438. kunmap_atomic(kaddr, KM_USER0);
  1439. if (!TestSetPageWriteback(clone_page))
  1440. inc_zone_page_state(clone_page, NR_WRITEBACK);
  1441. unlock_page(clone_page);
  1442. return 0;
  1443. }
  1444. static int nilfs_test_page_to_be_frozen(struct page *page)
  1445. {
  1446. struct address_space *mapping = page->mapping;
  1447. if (!mapping || !mapping->host || S_ISDIR(mapping->host->i_mode))
  1448. return 0;
  1449. if (page_mapped(page)) {
  1450. ClearPageChecked(page);
  1451. return 1;
  1452. }
  1453. return PageChecked(page);
  1454. }
  1455. static int nilfs_begin_page_io(struct page *page, struct list_head *out)
  1456. {
  1457. if (!page || PageWriteback(page))
  1458. /* For split b-tree node pages, this function may be called
  1459. twice. We ignore the 2nd or later calls by this check. */
  1460. return 0;
  1461. lock_page(page);
  1462. clear_page_dirty_for_io(page);
  1463. set_page_writeback(page);
  1464. unlock_page(page);
  1465. if (nilfs_test_page_to_be_frozen(page)) {
  1466. int err = nilfs_copy_replace_page_buffers(page, out);
  1467. if (unlikely(err))
  1468. return err;
  1469. }
  1470. return 0;
  1471. }
  1472. static int nilfs_segctor_prepare_write(struct nilfs_sc_info *sci,
  1473. struct page **failed_page)
  1474. {
  1475. struct nilfs_segment_buffer *segbuf;
  1476. struct page *bd_page = NULL, *fs_page = NULL;
  1477. struct list_head *list = &sci->sc_copied_buffers;
  1478. int err;
  1479. *failed_page = NULL;
  1480. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1481. struct buffer_head *bh;
  1482. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1483. b_assoc_buffers) {
  1484. if (bh->b_page != bd_page) {
  1485. if (bd_page) {
  1486. lock_page(bd_page);
  1487. clear_page_dirty_for_io(bd_page);
  1488. set_page_writeback(bd_page);
  1489. unlock_page(bd_page);
  1490. }
  1491. bd_page = bh->b_page;
  1492. }
  1493. }
  1494. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1495. b_assoc_buffers) {
  1496. if (bh == segbuf->sb_super_root) {
  1497. if (bh->b_page != bd_page) {
  1498. lock_page(bd_page);
  1499. clear_page_dirty_for_io(bd_page);
  1500. set_page_writeback(bd_page);
  1501. unlock_page(bd_page);
  1502. bd_page = bh->b_page;
  1503. }
  1504. break;
  1505. }
  1506. if (bh->b_page != fs_page) {
  1507. err = nilfs_begin_page_io(fs_page, list);
  1508. if (unlikely(err)) {
  1509. *failed_page = fs_page;
  1510. goto out;
  1511. }
  1512. fs_page = bh->b_page;
  1513. }
  1514. }
  1515. }
  1516. if (bd_page) {
  1517. lock_page(bd_page);
  1518. clear_page_dirty_for_io(bd_page);
  1519. set_page_writeback(bd_page);
  1520. unlock_page(bd_page);
  1521. }
  1522. err = nilfs_begin_page_io(fs_page, list);
  1523. if (unlikely(err))
  1524. *failed_page = fs_page;
  1525. out:
  1526. return err;
  1527. }
  1528. static int nilfs_segctor_write(struct nilfs_sc_info *sci,
  1529. struct the_nilfs *nilfs)
  1530. {
  1531. int ret;
  1532. ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
  1533. list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
  1534. return ret;
  1535. }
  1536. static void __nilfs_end_page_io(struct page *page, int err)
  1537. {
  1538. if (!err) {
  1539. if (!nilfs_page_buffers_clean(page))
  1540. __set_page_dirty_nobuffers(page);
  1541. ClearPageError(page);
  1542. } else {
  1543. __set_page_dirty_nobuffers(page);
  1544. SetPageError(page);
  1545. }
  1546. if (buffer_nilfs_allocated(page_buffers(page))) {
  1547. if (TestClearPageWriteback(page))
  1548. dec_zone_page_state(page, NR_WRITEBACK);
  1549. } else
  1550. end_page_writeback(page);
  1551. }
  1552. static void nilfs_end_page_io(struct page *page, int err)
  1553. {
  1554. if (!page)
  1555. return;
  1556. if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
  1557. /*
  1558. * For b-tree node pages, this function may be called twice
  1559. * or more because they might be split in a segment.
  1560. */
  1561. if (PageDirty(page)) {
  1562. /*
  1563. * For pages holding split b-tree node buffers, dirty
  1564. * flag on the buffers may be cleared discretely.
  1565. * In that case, the page is once redirtied for
  1566. * remaining buffers, and it must be cancelled if
  1567. * all the buffers get cleaned later.
  1568. */
  1569. lock_page(page);
  1570. if (nilfs_page_buffers_clean(page))
  1571. __nilfs_clear_page_dirty(page);
  1572. unlock_page(page);
  1573. }
  1574. return;
  1575. }
  1576. __nilfs_end_page_io(page, err);
  1577. }
  1578. static void nilfs_clear_copied_buffers(struct list_head *list, int err)
  1579. {
  1580. struct buffer_head *bh, *head;
  1581. struct page *page;
  1582. while (!list_empty(list)) {
  1583. bh = list_entry(list->next, struct buffer_head,
  1584. b_assoc_buffers);
  1585. page = bh->b_page;
  1586. page_cache_get(page);
  1587. head = bh = page_buffers(page);
  1588. do {
  1589. if (!list_empty(&bh->b_assoc_buffers)) {
  1590. list_del_init(&bh->b_assoc_buffers);
  1591. if (!err) {
  1592. set_buffer_uptodate(bh);
  1593. clear_buffer_dirty(bh);
  1594. clear_buffer_nilfs_volatile(bh);
  1595. }
  1596. brelse(bh); /* for b_assoc_buffers */
  1597. }
  1598. } while ((bh = bh->b_this_page) != head);
  1599. __nilfs_end_page_io(page, err);
  1600. page_cache_release(page);
  1601. }
  1602. }
  1603. static void nilfs_abort_logs(struct list_head *logs, struct page *failed_page,
  1604. int err)
  1605. {
  1606. struct nilfs_segment_buffer *segbuf;
  1607. struct page *bd_page = NULL, *fs_page = NULL;
  1608. struct buffer_head *bh;
  1609. if (list_empty(logs))
  1610. return;
  1611. list_for_each_entry(segbuf, logs, sb_list) {
  1612. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1613. b_assoc_buffers) {
  1614. if (bh->b_page != bd_page) {
  1615. if (bd_page)
  1616. end_page_writeback(bd_page);
  1617. bd_page = bh->b_page;
  1618. }
  1619. }
  1620. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1621. b_assoc_buffers) {
  1622. if (bh == segbuf->sb_super_root) {
  1623. if (bh->b_page != bd_page) {
  1624. end_page_writeback(bd_page);
  1625. bd_page = bh->b_page;
  1626. }
  1627. break;
  1628. }
  1629. if (bh->b_page != fs_page) {
  1630. nilfs_end_page_io(fs_page, err);
  1631. if (fs_page && fs_page == failed_page)
  1632. return;
  1633. fs_page = bh->b_page;
  1634. }
  1635. }
  1636. }
  1637. if (bd_page)
  1638. end_page_writeback(bd_page);
  1639. nilfs_end_page_io(fs_page, err);
  1640. }
  1641. static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
  1642. struct the_nilfs *nilfs, int err)
  1643. {
  1644. LIST_HEAD(logs);
  1645. int ret;
  1646. list_splice_tail_init(&sci->sc_write_logs, &logs);
  1647. ret = nilfs_wait_on_logs(&logs);
  1648. nilfs_abort_logs(&logs, NULL, ret ? : err);
  1649. list_splice_tail_init(&sci->sc_segbufs, &logs);
  1650. nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
  1651. nilfs_free_incomplete_logs(&logs, nilfs);
  1652. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, err);
  1653. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1654. ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1655. sci->sc_freesegs,
  1656. sci->sc_nfreesegs,
  1657. NULL);
  1658. WARN_ON(ret); /* do not happen */
  1659. }
  1660. nilfs_destroy_logs(&logs);
  1661. }
  1662. static void nilfs_set_next_segment(struct the_nilfs *nilfs,
  1663. struct nilfs_segment_buffer *segbuf)
  1664. {
  1665. nilfs->ns_segnum = segbuf->sb_segnum;
  1666. nilfs->ns_nextnum = segbuf->sb_nextnum;
  1667. nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
  1668. + segbuf->sb_sum.nblocks;
  1669. nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
  1670. nilfs->ns_ctime = segbuf->sb_sum.ctime;
  1671. }
  1672. static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
  1673. {
  1674. struct nilfs_segment_buffer *segbuf;
  1675. struct page *bd_page = NULL, *fs_page = NULL;
  1676. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  1677. int update_sr = false;
  1678. list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
  1679. struct buffer_head *bh;
  1680. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1681. b_assoc_buffers) {
  1682. set_buffer_uptodate(bh);
  1683. clear_buffer_dirty(bh);
  1684. if (bh->b_page != bd_page) {
  1685. if (bd_page)
  1686. end_page_writeback(bd_page);
  1687. bd_page = bh->b_page;
  1688. }
  1689. }
  1690. /*
  1691. * We assume that the buffers which belong to the same page
  1692. * continue over the buffer list.
  1693. * Under this assumption, the last BHs of pages is
  1694. * identifiable by the discontinuity of bh->b_page
  1695. * (page != fs_page).
  1696. *
  1697. * For B-tree node blocks, however, this assumption is not
  1698. * guaranteed. The cleanup code of B-tree node pages needs
  1699. * special care.
  1700. */
  1701. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1702. b_assoc_buffers) {
  1703. set_buffer_uptodate(bh);
  1704. clear_buffer_dirty(bh);
  1705. clear_buffer_nilfs_volatile(bh);
  1706. if (bh == segbuf->sb_super_root) {
  1707. if (bh->b_page != bd_page) {
  1708. end_page_writeback(bd_page);
  1709. bd_page = bh->b_page;
  1710. }
  1711. update_sr = true;
  1712. break;
  1713. }
  1714. if (bh->b_page != fs_page) {
  1715. nilfs_end_page_io(fs_page, 0);
  1716. fs_page = bh->b_page;
  1717. }
  1718. }
  1719. if (!NILFS_SEG_SIMPLEX(&segbuf->sb_sum)) {
  1720. if (NILFS_SEG_LOGBGN(&segbuf->sb_sum)) {
  1721. set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1722. sci->sc_lseg_stime = jiffies;
  1723. }
  1724. if (NILFS_SEG_LOGEND(&segbuf->sb_sum))
  1725. clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1726. }
  1727. }
  1728. /*
  1729. * Since pages may continue over multiple segment buffers,
  1730. * end of the last page must be checked outside of the loop.
  1731. */
  1732. if (bd_page)
  1733. end_page_writeback(bd_page);
  1734. nilfs_end_page_io(fs_page, 0);
  1735. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, 0);
  1736. nilfs_drop_collected_inodes(&sci->sc_dirty_files);
  1737. if (nilfs_doing_gc()) {
  1738. nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
  1739. if (update_sr)
  1740. nilfs_commit_gcdat_inode(nilfs);
  1741. } else
  1742. nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
  1743. sci->sc_nblk_inc += sci->sc_nblk_this_inc;
  1744. segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1745. nilfs_set_next_segment(nilfs, segbuf);
  1746. if (update_sr) {
  1747. nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
  1748. segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
  1749. set_nilfs_sb_dirty(nilfs);
  1750. clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  1751. clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1752. set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1753. nilfs_segctor_clear_metadata_dirty(sci);
  1754. } else
  1755. clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1756. }
  1757. static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
  1758. {
  1759. int ret;
  1760. ret = nilfs_wait_on_logs(&sci->sc_write_logs);
  1761. if (!ret) {
  1762. nilfs_segctor_complete_write(sci);
  1763. nilfs_destroy_logs(&sci->sc_write_logs);
  1764. }
  1765. return ret;
  1766. }
  1767. static int nilfs_segctor_check_in_files(struct nilfs_sc_info *sci,
  1768. struct nilfs_sb_info *sbi)
  1769. {
  1770. struct nilfs_inode_info *ii, *n;
  1771. __u64 cno = sbi->s_nilfs->ns_cno;
  1772. spin_lock(&sbi->s_inode_lock);
  1773. retry:
  1774. list_for_each_entry_safe(ii, n, &sbi->s_dirty_files, i_dirty) {
  1775. if (!ii->i_bh) {
  1776. struct buffer_head *ibh;
  1777. int err;
  1778. spin_unlock(&sbi->s_inode_lock);
  1779. err = nilfs_ifile_get_inode_block(
  1780. sbi->s_ifile, ii->vfs_inode.i_ino, &ibh);
  1781. if (unlikely(err)) {
  1782. nilfs_warning(sbi->s_super, __func__,
  1783. "failed to get inode block.\n");
  1784. return err;
  1785. }
  1786. nilfs_mdt_mark_buffer_dirty(ibh);
  1787. nilfs_mdt_mark_dirty(sbi->s_ifile);
  1788. spin_lock(&sbi->s_inode_lock);
  1789. if (likely(!ii->i_bh))
  1790. ii->i_bh = ibh;
  1791. else
  1792. brelse(ibh);
  1793. goto retry;
  1794. }
  1795. ii->i_cno = cno;
  1796. clear_bit(NILFS_I_QUEUED, &ii->i_state);
  1797. set_bit(NILFS_I_BUSY, &ii->i_state);
  1798. list_del(&ii->i_dirty);
  1799. list_add_tail(&ii->i_dirty, &sci->sc_dirty_files);
  1800. }
  1801. spin_unlock(&sbi->s_inode_lock);
  1802. NILFS_I(sbi->s_ifile)->i_cno = cno;
  1803. return 0;
  1804. }
  1805. static void nilfs_segctor_check_out_files(struct nilfs_sc_info *sci,
  1806. struct nilfs_sb_info *sbi)
  1807. {
  1808. struct nilfs_transaction_info *ti = current->journal_info;
  1809. struct nilfs_inode_info *ii, *n;
  1810. __u64 cno = sbi->s_nilfs->ns_cno;
  1811. spin_lock(&sbi->s_inode_lock);
  1812. list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
  1813. if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
  1814. test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  1815. /* The current checkpoint number (=nilfs->ns_cno) is
  1816. changed between check-in and check-out only if the
  1817. super root is written out. So, we can update i_cno
  1818. for the inodes that remain in the dirty list. */
  1819. ii->i_cno = cno;
  1820. continue;
  1821. }
  1822. clear_bit(NILFS_I_BUSY, &ii->i_state);
  1823. brelse(ii->i_bh);
  1824. ii->i_bh = NULL;
  1825. list_del(&ii->i_dirty);
  1826. list_add_tail(&ii->i_dirty, &ti->ti_garbage);
  1827. }
  1828. spin_unlock(&sbi->s_inode_lock);
  1829. }
  1830. /*
  1831. * Main procedure of segment constructor
  1832. */
  1833. static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
  1834. {
  1835. struct nilfs_sb_info *sbi = sci->sc_sbi;
  1836. struct the_nilfs *nilfs = sbi->s_nilfs;
  1837. struct page *failed_page;
  1838. int err;
  1839. sci->sc_stage.scnt = NILFS_ST_INIT;
  1840. err = nilfs_segctor_check_in_files(sci, sbi);
  1841. if (unlikely(err))
  1842. goto out;
  1843. if (nilfs_test_metadata_dirty(sbi))
  1844. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1845. if (nilfs_segctor_clean(sci))
  1846. goto out;
  1847. do {
  1848. sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
  1849. err = nilfs_segctor_begin_construction(sci, nilfs);
  1850. if (unlikely(err))
  1851. goto out;
  1852. /* Update time stamp */
  1853. sci->sc_seg_ctime = get_seconds();
  1854. err = nilfs_segctor_collect(sci, nilfs, mode);
  1855. if (unlikely(err))
  1856. goto failed;
  1857. /* Avoid empty segment */
  1858. if (sci->sc_stage.scnt == NILFS_ST_DONE &&
  1859. NILFS_SEG_EMPTY(&sci->sc_curseg->sb_sum)) {
  1860. nilfs_segctor_abort_construction(sci, nilfs, 1);
  1861. goto out;
  1862. }
  1863. err = nilfs_segctor_assign(sci, mode);
  1864. if (unlikely(err))
  1865. goto failed;
  1866. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1867. nilfs_segctor_fill_in_file_bmap(sci, sbi->s_ifile);
  1868. if (mode == SC_LSEG_SR &&
  1869. sci->sc_stage.scnt >= NILFS_ST_CPFILE) {
  1870. err = nilfs_segctor_fill_in_checkpoint(sci);
  1871. if (unlikely(err))
  1872. goto failed_to_write;
  1873. nilfs_segctor_fill_in_super_root(sci, nilfs);
  1874. }
  1875. nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
  1876. /* Write partial segments */
  1877. err = nilfs_segctor_prepare_write(sci, &failed_page);
  1878. if (err) {
  1879. nilfs_abort_logs(&sci->sc_segbufs, failed_page, err);
  1880. goto failed_to_write;
  1881. }
  1882. nilfs_add_checksums_on_logs(&sci->sc_segbufs,
  1883. nilfs->ns_crc_seed);
  1884. err = nilfs_segctor_write(sci, nilfs);
  1885. if (unlikely(err))
  1886. goto failed_to_write;
  1887. if (sci->sc_stage.scnt == NILFS_ST_DONE ||
  1888. nilfs->ns_blocksize_bits != PAGE_CACHE_SHIFT) {
  1889. /*
  1890. * At this point, we avoid double buffering
  1891. * for blocksize < pagesize because page dirty
  1892. * flag is turned off during write and dirty
  1893. * buffers are not properly collected for
  1894. * pages crossing over segments.
  1895. */
  1896. err = nilfs_segctor_wait(sci);
  1897. if (err)
  1898. goto failed_to_write;
  1899. }
  1900. } while (sci->sc_stage.scnt != NILFS_ST_DONE);
  1901. out:
  1902. nilfs_segctor_check_out_files(sci, sbi);
  1903. return err;
  1904. failed_to_write:
  1905. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1906. nilfs_redirty_inodes(&sci->sc_dirty_files);
  1907. failed:
  1908. if (nilfs_doing_gc())
  1909. nilfs_redirty_inodes(&sci->sc_gc_inodes);
  1910. nilfs_segctor_abort_construction(sci, nilfs, err);
  1911. goto out;
  1912. }
  1913. /**
  1914. * nilfs_segctor_start_timer - set timer of background write
  1915. * @sci: nilfs_sc_info
  1916. *
  1917. * If the timer has already been set, it ignores the new request.
  1918. * This function MUST be called within a section locking the segment
  1919. * semaphore.
  1920. */
  1921. static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
  1922. {
  1923. spin_lock(&sci->sc_state_lock);
  1924. if (sci->sc_timer && !(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
  1925. sci->sc_timer->expires = jiffies + sci->sc_interval;
  1926. add_timer(sci->sc_timer);
  1927. sci->sc_state |= NILFS_SEGCTOR_COMMIT;
  1928. }
  1929. spin_unlock(&sci->sc_state_lock);
  1930. }
  1931. static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
  1932. {
  1933. spin_lock(&sci->sc_state_lock);
  1934. if (!(sci->sc_flush_request & (1 << bn))) {
  1935. unsigned long prev_req = sci->sc_flush_request;
  1936. sci->sc_flush_request |= (1 << bn);
  1937. if (!prev_req)
  1938. wake_up(&sci->sc_wait_daemon);
  1939. }
  1940. spin_unlock(&sci->sc_state_lock);
  1941. }
  1942. /**
  1943. * nilfs_flush_segment - trigger a segment construction for resource control
  1944. * @sb: super block
  1945. * @ino: inode number of the file to be flushed out.
  1946. */
  1947. void nilfs_flush_segment(struct super_block *sb, ino_t ino)
  1948. {
  1949. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  1950. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  1951. if (!sci || nilfs_doing_construction())
  1952. return;
  1953. nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
  1954. /* assign bit 0 to data files */
  1955. }
  1956. struct nilfs_segctor_wait_request {
  1957. wait_queue_t wq;
  1958. __u32 seq;
  1959. int err;
  1960. atomic_t done;
  1961. };
  1962. static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
  1963. {
  1964. struct nilfs_segctor_wait_request wait_req;
  1965. int err = 0;
  1966. spin_lock(&sci->sc_state_lock);
  1967. init_wait(&wait_req.wq);
  1968. wait_req.err = 0;
  1969. atomic_set(&wait_req.done, 0);
  1970. wait_req.seq = ++sci->sc_seq_request;
  1971. spin_unlock(&sci->sc_state_lock);
  1972. init_waitqueue_entry(&wait_req.wq, current);
  1973. add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
  1974. set_current_state(TASK_INTERRUPTIBLE);
  1975. wake_up(&sci->sc_wait_daemon);
  1976. for (;;) {
  1977. if (atomic_read(&wait_req.done)) {
  1978. err = wait_req.err;
  1979. break;
  1980. }
  1981. if (!signal_pending(current)) {
  1982. schedule();
  1983. continue;
  1984. }
  1985. err = -ERESTARTSYS;
  1986. break;
  1987. }
  1988. finish_wait(&sci->sc_wait_request, &wait_req.wq);
  1989. return err;
  1990. }
  1991. static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
  1992. {
  1993. struct nilfs_segctor_wait_request *wrq, *n;
  1994. unsigned long flags;
  1995. spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
  1996. list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
  1997. wq.task_list) {
  1998. if (!atomic_read(&wrq->done) &&
  1999. nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
  2000. wrq->err = err;
  2001. atomic_set(&wrq->done, 1);
  2002. }
  2003. if (atomic_read(&wrq->done)) {
  2004. wrq->wq.func(&wrq->wq,
  2005. TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  2006. 0, NULL);
  2007. }
  2008. }
  2009. spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
  2010. }
  2011. /**
  2012. * nilfs_construct_segment - construct a logical segment
  2013. * @sb: super block
  2014. *
  2015. * Return Value: On success, 0 is retured. On errors, one of the following
  2016. * negative error code is returned.
  2017. *
  2018. * %-EROFS - Read only filesystem.
  2019. *
  2020. * %-EIO - I/O error
  2021. *
  2022. * %-ENOSPC - No space left on device (only in a panic state).
  2023. *
  2024. * %-ERESTARTSYS - Interrupted.
  2025. *
  2026. * %-ENOMEM - Insufficient memory available.
  2027. */
  2028. int nilfs_construct_segment(struct super_block *sb)
  2029. {
  2030. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2031. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2032. struct nilfs_transaction_info *ti;
  2033. int err;
  2034. if (!sci)
  2035. return -EROFS;
  2036. /* A call inside transactions causes a deadlock. */
  2037. BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
  2038. err = nilfs_segctor_sync(sci);
  2039. return err;
  2040. }
  2041. /**
  2042. * nilfs_construct_dsync_segment - construct a data-only logical segment
  2043. * @sb: super block
  2044. * @inode: inode whose data blocks should be written out
  2045. * @start: start byte offset
  2046. * @end: end byte offset (inclusive)
  2047. *
  2048. * Return Value: On success, 0 is retured. On errors, one of the following
  2049. * negative error code is returned.
  2050. *
  2051. * %-EROFS - Read only filesystem.
  2052. *
  2053. * %-EIO - I/O error
  2054. *
  2055. * %-ENOSPC - No space left on device (only in a panic state).
  2056. *
  2057. * %-ERESTARTSYS - Interrupted.
  2058. *
  2059. * %-ENOMEM - Insufficient memory available.
  2060. */
  2061. int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
  2062. loff_t start, loff_t end)
  2063. {
  2064. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2065. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2066. struct nilfs_inode_info *ii;
  2067. struct nilfs_transaction_info ti;
  2068. int err = 0;
  2069. if (!sci)
  2070. return -EROFS;
  2071. nilfs_transaction_lock(sbi, &ti, 0);
  2072. ii = NILFS_I(inode);
  2073. if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
  2074. nilfs_test_opt(sbi, STRICT_ORDER) ||
  2075. test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2076. nilfs_discontinued(sbi->s_nilfs)) {
  2077. nilfs_transaction_unlock(sbi);
  2078. err = nilfs_segctor_sync(sci);
  2079. return err;
  2080. }
  2081. spin_lock(&sbi->s_inode_lock);
  2082. if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
  2083. !test_bit(NILFS_I_BUSY, &ii->i_state)) {
  2084. spin_unlock(&sbi->s_inode_lock);
  2085. nilfs_transaction_unlock(sbi);
  2086. return 0;
  2087. }
  2088. spin_unlock(&sbi->s_inode_lock);
  2089. sci->sc_dsync_inode = ii;
  2090. sci->sc_dsync_start = start;
  2091. sci->sc_dsync_end = end;
  2092. err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
  2093. nilfs_transaction_unlock(sbi);
  2094. return err;
  2095. }
  2096. #define FLUSH_FILE_BIT (0x1) /* data file only */
  2097. #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
  2098. /**
  2099. * nilfs_segctor_accept - record accepted sequence count of log-write requests
  2100. * @sci: segment constructor object
  2101. */
  2102. static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
  2103. {
  2104. spin_lock(&sci->sc_state_lock);
  2105. sci->sc_seq_accepted = sci->sc_seq_request;
  2106. spin_unlock(&sci->sc_state_lock);
  2107. if (sci->sc_timer)
  2108. del_timer_sync(sci->sc_timer);
  2109. }
  2110. /**
  2111. * nilfs_segctor_notify - notify the result of request to caller threads
  2112. * @sci: segment constructor object
  2113. * @mode: mode of log forming
  2114. * @err: error code to be notified
  2115. */
  2116. static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
  2117. {
  2118. /* Clear requests (even when the construction failed) */
  2119. spin_lock(&sci->sc_state_lock);
  2120. if (mode == SC_LSEG_SR) {
  2121. sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
  2122. sci->sc_seq_done = sci->sc_seq_accepted;
  2123. nilfs_segctor_wakeup(sci, err);
  2124. sci->sc_flush_request = 0;
  2125. } else {
  2126. if (mode == SC_FLUSH_FILE)
  2127. sci->sc_flush_request &= ~FLUSH_FILE_BIT;
  2128. else if (mode == SC_FLUSH_DAT)
  2129. sci->sc_flush_request &= ~FLUSH_DAT_BIT;
  2130. /* re-enable timer if checkpoint creation was not done */
  2131. if (sci->sc_timer && (sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2132. time_before(jiffies, sci->sc_timer->expires))
  2133. add_timer(sci->sc_timer);
  2134. }
  2135. spin_unlock(&sci->sc_state_lock);
  2136. }
  2137. /**
  2138. * nilfs_segctor_construct - form logs and write them to disk
  2139. * @sci: segment constructor object
  2140. * @mode: mode of log forming
  2141. */
  2142. static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
  2143. {
  2144. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2145. struct the_nilfs *nilfs = sbi->s_nilfs;
  2146. int err = 0;
  2147. nilfs_segctor_accept(sci);
  2148. if (nilfs_discontinued(nilfs))
  2149. mode = SC_LSEG_SR;
  2150. if (!nilfs_segctor_confirm(sci))
  2151. err = nilfs_segctor_do_construct(sci, mode);
  2152. if (likely(!err)) {
  2153. if (mode != SC_FLUSH_DAT)
  2154. atomic_set(&nilfs->ns_ndirtyblks, 0);
  2155. if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
  2156. nilfs_discontinued(nilfs)) {
  2157. down_write(&nilfs->ns_sem);
  2158. err = nilfs_commit_super(
  2159. sbi, nilfs_altsb_need_update(nilfs));
  2160. up_write(&nilfs->ns_sem);
  2161. }
  2162. }
  2163. nilfs_segctor_notify(sci, mode, err);
  2164. return err;
  2165. }
  2166. static void nilfs_construction_timeout(unsigned long data)
  2167. {
  2168. struct task_struct *p = (struct task_struct *)data;
  2169. wake_up_process(p);
  2170. }
  2171. static void
  2172. nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
  2173. {
  2174. struct nilfs_inode_info *ii, *n;
  2175. list_for_each_entry_safe(ii, n, head, i_dirty) {
  2176. if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
  2177. continue;
  2178. hlist_del_init(&ii->vfs_inode.i_hash);
  2179. list_del_init(&ii->i_dirty);
  2180. nilfs_clear_gcinode(&ii->vfs_inode);
  2181. }
  2182. }
  2183. int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
  2184. void **kbufs)
  2185. {
  2186. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2187. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2188. struct the_nilfs *nilfs = sbi->s_nilfs;
  2189. struct nilfs_transaction_info ti;
  2190. int err;
  2191. if (unlikely(!sci))
  2192. return -EROFS;
  2193. nilfs_transaction_lock(sbi, &ti, 1);
  2194. err = nilfs_init_gcdat_inode(nilfs);
  2195. if (unlikely(err))
  2196. goto out_unlock;
  2197. err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
  2198. if (unlikely(err))
  2199. goto out_unlock;
  2200. sci->sc_freesegs = kbufs[4];
  2201. sci->sc_nfreesegs = argv[4].v_nmembs;
  2202. list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
  2203. for (;;) {
  2204. err = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2205. nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
  2206. if (likely(!err))
  2207. break;
  2208. nilfs_warning(sb, __func__,
  2209. "segment construction failed. (err=%d)", err);
  2210. set_current_state(TASK_INTERRUPTIBLE);
  2211. schedule_timeout(sci->sc_interval);
  2212. }
  2213. if (nilfs_test_opt(sbi, DISCARD)) {
  2214. int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
  2215. sci->sc_nfreesegs);
  2216. if (ret) {
  2217. printk(KERN_WARNING
  2218. "NILFS warning: error %d on discard request, "
  2219. "turning discards off for the device\n", ret);
  2220. nilfs_clear_opt(sbi, DISCARD);
  2221. }
  2222. }
  2223. out_unlock:
  2224. sci->sc_freesegs = NULL;
  2225. sci->sc_nfreesegs = 0;
  2226. nilfs_clear_gcdat_inode(nilfs);
  2227. nilfs_transaction_unlock(sbi);
  2228. return err;
  2229. }
  2230. static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
  2231. {
  2232. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2233. struct nilfs_transaction_info ti;
  2234. nilfs_transaction_lock(sbi, &ti, 0);
  2235. nilfs_segctor_construct(sci, mode);
  2236. /*
  2237. * Unclosed segment should be retried. We do this using sc_timer.
  2238. * Timeout of sc_timer will invoke complete construction which leads
  2239. * to close the current logical segment.
  2240. */
  2241. if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
  2242. nilfs_segctor_start_timer(sci);
  2243. nilfs_transaction_unlock(sbi);
  2244. }
  2245. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
  2246. {
  2247. int mode = 0;
  2248. int err;
  2249. spin_lock(&sci->sc_state_lock);
  2250. mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
  2251. SC_FLUSH_DAT : SC_FLUSH_FILE;
  2252. spin_unlock(&sci->sc_state_lock);
  2253. if (mode) {
  2254. err = nilfs_segctor_do_construct(sci, mode);
  2255. spin_lock(&sci->sc_state_lock);
  2256. sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
  2257. ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
  2258. spin_unlock(&sci->sc_state_lock);
  2259. }
  2260. clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  2261. }
  2262. static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
  2263. {
  2264. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2265. time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
  2266. if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
  2267. return SC_FLUSH_FILE;
  2268. else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
  2269. return SC_FLUSH_DAT;
  2270. }
  2271. return SC_LSEG_SR;
  2272. }
  2273. /**
  2274. * nilfs_segctor_thread - main loop of the segment constructor thread.
  2275. * @arg: pointer to a struct nilfs_sc_info.
  2276. *
  2277. * nilfs_segctor_thread() initializes a timer and serves as a daemon
  2278. * to execute segment constructions.
  2279. */
  2280. static int nilfs_segctor_thread(void *arg)
  2281. {
  2282. struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
  2283. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  2284. struct timer_list timer;
  2285. int timeout = 0;
  2286. init_timer(&timer);
  2287. timer.data = (unsigned long)current;
  2288. timer.function = nilfs_construction_timeout;
  2289. sci->sc_timer = &timer;
  2290. /* start sync. */
  2291. sci->sc_task = current;
  2292. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
  2293. printk(KERN_INFO
  2294. "segctord starting. Construction interval = %lu seconds, "
  2295. "CP frequency < %lu seconds\n",
  2296. sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
  2297. spin_lock(&sci->sc_state_lock);
  2298. loop:
  2299. for (;;) {
  2300. int mode;
  2301. if (sci->sc_state & NILFS_SEGCTOR_QUIT)
  2302. goto end_thread;
  2303. if (timeout || sci->sc_seq_request != sci->sc_seq_done)
  2304. mode = SC_LSEG_SR;
  2305. else if (!sci->sc_flush_request)
  2306. break;
  2307. else
  2308. mode = nilfs_segctor_flush_mode(sci);
  2309. spin_unlock(&sci->sc_state_lock);
  2310. nilfs_segctor_thread_construct(sci, mode);
  2311. spin_lock(&sci->sc_state_lock);
  2312. timeout = 0;
  2313. }
  2314. if (freezing(current)) {
  2315. spin_unlock(&sci->sc_state_lock);
  2316. refrigerator();
  2317. spin_lock(&sci->sc_state_lock);
  2318. } else {
  2319. DEFINE_WAIT(wait);
  2320. int should_sleep = 1;
  2321. prepare_to_wait(&sci->sc_wait_daemon, &wait,
  2322. TASK_INTERRUPTIBLE);
  2323. if (sci->sc_seq_request != sci->sc_seq_done)
  2324. should_sleep = 0;
  2325. else if (sci->sc_flush_request)
  2326. should_sleep = 0;
  2327. else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
  2328. should_sleep = time_before(jiffies,
  2329. sci->sc_timer->expires);
  2330. if (should_sleep) {
  2331. spin_unlock(&sci->sc_state_lock);
  2332. schedule();
  2333. spin_lock(&sci->sc_state_lock);
  2334. }
  2335. finish_wait(&sci->sc_wait_daemon, &wait);
  2336. timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2337. time_after_eq(jiffies, sci->sc_timer->expires));
  2338. if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
  2339. set_nilfs_discontinued(nilfs);
  2340. }
  2341. goto loop;
  2342. end_thread:
  2343. spin_unlock(&sci->sc_state_lock);
  2344. del_timer_sync(sci->sc_timer);
  2345. sci->sc_timer = NULL;
  2346. /* end sync. */
  2347. sci->sc_task = NULL;
  2348. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
  2349. return 0;
  2350. }
  2351. static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
  2352. {
  2353. struct task_struct *t;
  2354. t = kthread_run(nilfs_segctor_thread, sci, "segctord");
  2355. if (IS_ERR(t)) {
  2356. int err = PTR_ERR(t);
  2357. printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
  2358. err);
  2359. return err;
  2360. }
  2361. wait_event(sci->sc_wait_task, sci->sc_task != NULL);
  2362. return 0;
  2363. }
  2364. static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
  2365. {
  2366. sci->sc_state |= NILFS_SEGCTOR_QUIT;
  2367. while (sci->sc_task) {
  2368. wake_up(&sci->sc_wait_daemon);
  2369. spin_unlock(&sci->sc_state_lock);
  2370. wait_event(sci->sc_wait_task, sci->sc_task == NULL);
  2371. spin_lock(&sci->sc_state_lock);
  2372. }
  2373. }
  2374. static int nilfs_segctor_init(struct nilfs_sc_info *sci)
  2375. {
  2376. sci->sc_seq_done = sci->sc_seq_request;
  2377. return nilfs_segctor_start_thread(sci);
  2378. }
  2379. /*
  2380. * Setup & clean-up functions
  2381. */
  2382. static struct nilfs_sc_info *nilfs_segctor_new(struct nilfs_sb_info *sbi)
  2383. {
  2384. struct nilfs_sc_info *sci;
  2385. sci = kzalloc(sizeof(*sci), GFP_KERNEL);
  2386. if (!sci)
  2387. return NULL;
  2388. sci->sc_sbi = sbi;
  2389. sci->sc_super = sbi->s_super;
  2390. init_waitqueue_head(&sci->sc_wait_request);
  2391. init_waitqueue_head(&sci->sc_wait_daemon);
  2392. init_waitqueue_head(&sci->sc_wait_task);
  2393. spin_lock_init(&sci->sc_state_lock);
  2394. INIT_LIST_HEAD(&sci->sc_dirty_files);
  2395. INIT_LIST_HEAD(&sci->sc_segbufs);
  2396. INIT_LIST_HEAD(&sci->sc_write_logs);
  2397. INIT_LIST_HEAD(&sci->sc_gc_inodes);
  2398. INIT_LIST_HEAD(&sci->sc_copied_buffers);
  2399. sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
  2400. sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
  2401. sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
  2402. if (sbi->s_interval)
  2403. sci->sc_interval = sbi->s_interval;
  2404. if (sbi->s_watermark)
  2405. sci->sc_watermark = sbi->s_watermark;
  2406. return sci;
  2407. }
  2408. static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
  2409. {
  2410. int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
  2411. /* The segctord thread was stopped and its timer was removed.
  2412. But some tasks remain. */
  2413. do {
  2414. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2415. struct nilfs_transaction_info ti;
  2416. nilfs_transaction_lock(sbi, &ti, 0);
  2417. ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2418. nilfs_transaction_unlock(sbi);
  2419. } while (ret && retrycount-- > 0);
  2420. }
  2421. /**
  2422. * nilfs_segctor_destroy - destroy the segment constructor.
  2423. * @sci: nilfs_sc_info
  2424. *
  2425. * nilfs_segctor_destroy() kills the segctord thread and frees
  2426. * the nilfs_sc_info struct.
  2427. * Caller must hold the segment semaphore.
  2428. */
  2429. static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
  2430. {
  2431. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2432. int flag;
  2433. up_write(&sbi->s_nilfs->ns_segctor_sem);
  2434. spin_lock(&sci->sc_state_lock);
  2435. nilfs_segctor_kill_thread(sci);
  2436. flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
  2437. || sci->sc_seq_request != sci->sc_seq_done);
  2438. spin_unlock(&sci->sc_state_lock);
  2439. if (flag || !nilfs_segctor_confirm(sci))
  2440. nilfs_segctor_write_out(sci);
  2441. WARN_ON(!list_empty(&sci->sc_copied_buffers));
  2442. if (!list_empty(&sci->sc_dirty_files)) {
  2443. nilfs_warning(sbi->s_super, __func__,
  2444. "dirty file(s) after the final construction\n");
  2445. nilfs_dispose_list(sbi, &sci->sc_dirty_files, 1);
  2446. }
  2447. WARN_ON(!list_empty(&sci->sc_segbufs));
  2448. WARN_ON(!list_empty(&sci->sc_write_logs));
  2449. down_write(&sbi->s_nilfs->ns_segctor_sem);
  2450. kfree(sci);
  2451. }
  2452. /**
  2453. * nilfs_attach_segment_constructor - attach a segment constructor
  2454. * @sbi: nilfs_sb_info
  2455. *
  2456. * nilfs_attach_segment_constructor() allocates a struct nilfs_sc_info,
  2457. * initializes it, and starts the segment constructor.
  2458. *
  2459. * Return Value: On success, 0 is returned. On error, one of the following
  2460. * negative error code is returned.
  2461. *
  2462. * %-ENOMEM - Insufficient memory available.
  2463. */
  2464. int nilfs_attach_segment_constructor(struct nilfs_sb_info *sbi)
  2465. {
  2466. struct the_nilfs *nilfs = sbi->s_nilfs;
  2467. int err;
  2468. if (NILFS_SC(sbi)) {
  2469. /*
  2470. * This happens if the filesystem was remounted
  2471. * read/write after nilfs_error degenerated it into a
  2472. * read-only mount.
  2473. */
  2474. nilfs_detach_segment_constructor(sbi);
  2475. }
  2476. sbi->s_sc_info = nilfs_segctor_new(sbi);
  2477. if (!sbi->s_sc_info)
  2478. return -ENOMEM;
  2479. nilfs_attach_writer(nilfs, sbi);
  2480. err = nilfs_segctor_init(NILFS_SC(sbi));
  2481. if (err) {
  2482. nilfs_detach_writer(nilfs, sbi);
  2483. kfree(sbi->s_sc_info);
  2484. sbi->s_sc_info = NULL;
  2485. }
  2486. return err;
  2487. }
  2488. /**
  2489. * nilfs_detach_segment_constructor - destroy the segment constructor
  2490. * @sbi: nilfs_sb_info
  2491. *
  2492. * nilfs_detach_segment_constructor() kills the segment constructor daemon,
  2493. * frees the struct nilfs_sc_info, and destroy the dirty file list.
  2494. */
  2495. void nilfs_detach_segment_constructor(struct nilfs_sb_info *sbi)
  2496. {
  2497. struct the_nilfs *nilfs = sbi->s_nilfs;
  2498. LIST_HEAD(garbage_list);
  2499. down_write(&nilfs->ns_segctor_sem);
  2500. if (NILFS_SC(sbi)) {
  2501. nilfs_segctor_destroy(NILFS_SC(sbi));
  2502. sbi->s_sc_info = NULL;
  2503. }
  2504. /* Force to free the list of dirty files */
  2505. spin_lock(&sbi->s_inode_lock);
  2506. if (!list_empty(&sbi->s_dirty_files)) {
  2507. list_splice_init(&sbi->s_dirty_files, &garbage_list);
  2508. nilfs_warning(sbi->s_super, __func__,
  2509. "Non empty dirty list after the last "
  2510. "segment construction\n");
  2511. }
  2512. spin_unlock(&sbi->s_inode_lock);
  2513. up_write(&nilfs->ns_segctor_sem);
  2514. nilfs_dispose_list(sbi, &garbage_list, 1);
  2515. nilfs_detach_writer(nilfs, sbi);
  2516. }