cfq-iosched.c 95 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "blk.h"
  18. #include "cfq.h"
  19. static struct blkio_policy_type blkio_policy_cfq;
  20. /*
  21. * tunables
  22. */
  23. /* max queue in one round of service */
  24. static const int cfq_quantum = 8;
  25. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  26. /* maximum backwards seek, in KiB */
  27. static const int cfq_back_max = 16 * 1024;
  28. /* penalty of a backwards seek */
  29. static const int cfq_back_penalty = 2;
  30. static const int cfq_slice_sync = HZ / 10;
  31. static int cfq_slice_async = HZ / 25;
  32. static const int cfq_slice_async_rq = 2;
  33. static int cfq_slice_idle = HZ / 125;
  34. static int cfq_group_idle = HZ / 125;
  35. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  36. static const int cfq_hist_divisor = 4;
  37. /*
  38. * offset from end of service tree
  39. */
  40. #define CFQ_IDLE_DELAY (HZ / 5)
  41. /*
  42. * below this threshold, we consider thinktime immediate
  43. */
  44. #define CFQ_MIN_TT (2)
  45. #define CFQ_SLICE_SCALE (5)
  46. #define CFQ_HW_QUEUE_MIN (5)
  47. #define CFQ_SERVICE_SHIFT 12
  48. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  49. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  50. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  51. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  52. #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
  53. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
  54. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
  55. static struct kmem_cache *cfq_pool;
  56. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  57. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  58. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  59. #define sample_valid(samples) ((samples) > 80)
  60. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  61. struct cfq_ttime {
  62. unsigned long last_end_request;
  63. unsigned long ttime_total;
  64. unsigned long ttime_samples;
  65. unsigned long ttime_mean;
  66. };
  67. /*
  68. * Most of our rbtree usage is for sorting with min extraction, so
  69. * if we cache the leftmost node we don't have to walk down the tree
  70. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  71. * move this into the elevator for the rq sorting as well.
  72. */
  73. struct cfq_rb_root {
  74. struct rb_root rb;
  75. struct rb_node *left;
  76. unsigned count;
  77. unsigned total_weight;
  78. u64 min_vdisktime;
  79. struct cfq_ttime ttime;
  80. };
  81. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
  82. .ttime = {.last_end_request = jiffies,},}
  83. /*
  84. * Per process-grouping structure
  85. */
  86. struct cfq_queue {
  87. /* reference count */
  88. int ref;
  89. /* various state flags, see below */
  90. unsigned int flags;
  91. /* parent cfq_data */
  92. struct cfq_data *cfqd;
  93. /* service_tree member */
  94. struct rb_node rb_node;
  95. /* service_tree key */
  96. unsigned long rb_key;
  97. /* prio tree member */
  98. struct rb_node p_node;
  99. /* prio tree root we belong to, if any */
  100. struct rb_root *p_root;
  101. /* sorted list of pending requests */
  102. struct rb_root sort_list;
  103. /* if fifo isn't expired, next request to serve */
  104. struct request *next_rq;
  105. /* requests queued in sort_list */
  106. int queued[2];
  107. /* currently allocated requests */
  108. int allocated[2];
  109. /* fifo list of requests in sort_list */
  110. struct list_head fifo;
  111. /* time when queue got scheduled in to dispatch first request. */
  112. unsigned long dispatch_start;
  113. unsigned int allocated_slice;
  114. unsigned int slice_dispatch;
  115. /* time when first request from queue completed and slice started. */
  116. unsigned long slice_start;
  117. unsigned long slice_end;
  118. long slice_resid;
  119. /* pending priority requests */
  120. int prio_pending;
  121. /* number of requests that are on the dispatch list or inside driver */
  122. int dispatched;
  123. /* io prio of this group */
  124. unsigned short ioprio, org_ioprio;
  125. unsigned short ioprio_class;
  126. pid_t pid;
  127. u32 seek_history;
  128. sector_t last_request_pos;
  129. struct cfq_rb_root *service_tree;
  130. struct cfq_queue *new_cfqq;
  131. struct cfq_group *cfqg;
  132. /* Number of sectors dispatched from queue in single dispatch round */
  133. unsigned long nr_sectors;
  134. };
  135. /*
  136. * First index in the service_trees.
  137. * IDLE is handled separately, so it has negative index
  138. */
  139. enum wl_prio_t {
  140. BE_WORKLOAD = 0,
  141. RT_WORKLOAD = 1,
  142. IDLE_WORKLOAD = 2,
  143. CFQ_PRIO_NR,
  144. };
  145. /*
  146. * Second index in the service_trees.
  147. */
  148. enum wl_type_t {
  149. ASYNC_WORKLOAD = 0,
  150. SYNC_NOIDLE_WORKLOAD = 1,
  151. SYNC_WORKLOAD = 2
  152. };
  153. /* This is per cgroup per device grouping structure */
  154. struct cfq_group {
  155. /* group service_tree member */
  156. struct rb_node rb_node;
  157. /* group service_tree key */
  158. u64 vdisktime;
  159. unsigned int weight;
  160. unsigned int new_weight;
  161. bool needs_update;
  162. /* number of cfqq currently on this group */
  163. int nr_cfqq;
  164. /*
  165. * Per group busy queues average. Useful for workload slice calc. We
  166. * create the array for each prio class but at run time it is used
  167. * only for RT and BE class and slot for IDLE class remains unused.
  168. * This is primarily done to avoid confusion and a gcc warning.
  169. */
  170. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  171. /*
  172. * rr lists of queues with requests. We maintain service trees for
  173. * RT and BE classes. These trees are subdivided in subclasses
  174. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  175. * class there is no subclassification and all the cfq queues go on
  176. * a single tree service_tree_idle.
  177. * Counts are embedded in the cfq_rb_root
  178. */
  179. struct cfq_rb_root service_trees[2][3];
  180. struct cfq_rb_root service_tree_idle;
  181. unsigned long saved_workload_slice;
  182. enum wl_type_t saved_workload;
  183. enum wl_prio_t saved_serving_prio;
  184. /* number of requests that are on the dispatch list or inside driver */
  185. int dispatched;
  186. struct cfq_ttime ttime;
  187. };
  188. struct cfq_io_cq {
  189. struct io_cq icq; /* must be the first member */
  190. struct cfq_queue *cfqq[2];
  191. struct cfq_ttime ttime;
  192. int ioprio; /* the current ioprio */
  193. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  194. uint64_t blkcg_id; /* the current blkcg ID */
  195. #endif
  196. };
  197. /*
  198. * Per block device queue structure
  199. */
  200. struct cfq_data {
  201. struct request_queue *queue;
  202. /* Root service tree for cfq_groups */
  203. struct cfq_rb_root grp_service_tree;
  204. struct cfq_group *root_group;
  205. /*
  206. * The priority currently being served
  207. */
  208. enum wl_prio_t serving_prio;
  209. enum wl_type_t serving_type;
  210. unsigned long workload_expires;
  211. struct cfq_group *serving_group;
  212. /*
  213. * Each priority tree is sorted by next_request position. These
  214. * trees are used when determining if two or more queues are
  215. * interleaving requests (see cfq_close_cooperator).
  216. */
  217. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  218. unsigned int busy_queues;
  219. unsigned int busy_sync_queues;
  220. int rq_in_driver;
  221. int rq_in_flight[2];
  222. /*
  223. * queue-depth detection
  224. */
  225. int rq_queued;
  226. int hw_tag;
  227. /*
  228. * hw_tag can be
  229. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  230. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  231. * 0 => no NCQ
  232. */
  233. int hw_tag_est_depth;
  234. unsigned int hw_tag_samples;
  235. /*
  236. * idle window management
  237. */
  238. struct timer_list idle_slice_timer;
  239. struct work_struct unplug_work;
  240. struct cfq_queue *active_queue;
  241. struct cfq_io_cq *active_cic;
  242. /*
  243. * async queue for each priority case
  244. */
  245. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  246. struct cfq_queue *async_idle_cfqq;
  247. sector_t last_position;
  248. /*
  249. * tunables, see top of file
  250. */
  251. unsigned int cfq_quantum;
  252. unsigned int cfq_fifo_expire[2];
  253. unsigned int cfq_back_penalty;
  254. unsigned int cfq_back_max;
  255. unsigned int cfq_slice[2];
  256. unsigned int cfq_slice_async_rq;
  257. unsigned int cfq_slice_idle;
  258. unsigned int cfq_group_idle;
  259. unsigned int cfq_latency;
  260. /*
  261. * Fallback dummy cfqq for extreme OOM conditions
  262. */
  263. struct cfq_queue oom_cfqq;
  264. unsigned long last_delayed_sync;
  265. };
  266. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  267. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  268. enum wl_prio_t prio,
  269. enum wl_type_t type)
  270. {
  271. if (!cfqg)
  272. return NULL;
  273. if (prio == IDLE_WORKLOAD)
  274. return &cfqg->service_tree_idle;
  275. return &cfqg->service_trees[prio][type];
  276. }
  277. enum cfqq_state_flags {
  278. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  279. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  280. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  281. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  282. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  283. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  284. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  285. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  286. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  287. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  288. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  289. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  290. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  291. };
  292. #define CFQ_CFQQ_FNS(name) \
  293. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  294. { \
  295. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  296. } \
  297. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  298. { \
  299. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  300. } \
  301. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  302. { \
  303. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  304. }
  305. CFQ_CFQQ_FNS(on_rr);
  306. CFQ_CFQQ_FNS(wait_request);
  307. CFQ_CFQQ_FNS(must_dispatch);
  308. CFQ_CFQQ_FNS(must_alloc_slice);
  309. CFQ_CFQQ_FNS(fifo_expire);
  310. CFQ_CFQQ_FNS(idle_window);
  311. CFQ_CFQQ_FNS(prio_changed);
  312. CFQ_CFQQ_FNS(slice_new);
  313. CFQ_CFQQ_FNS(sync);
  314. CFQ_CFQQ_FNS(coop);
  315. CFQ_CFQQ_FNS(split_coop);
  316. CFQ_CFQQ_FNS(deep);
  317. CFQ_CFQQ_FNS(wait_busy);
  318. #undef CFQ_CFQQ_FNS
  319. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  320. static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg)
  321. {
  322. return blkg_to_pdata(blkg, &blkio_policy_cfq);
  323. }
  324. static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg)
  325. {
  326. return pdata_to_blkg(cfqg);
  327. }
  328. static inline void cfqg_get(struct cfq_group *cfqg)
  329. {
  330. return blkg_get(cfqg_to_blkg(cfqg));
  331. }
  332. static inline void cfqg_put(struct cfq_group *cfqg)
  333. {
  334. return blkg_put(cfqg_to_blkg(cfqg));
  335. }
  336. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  337. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  338. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  339. blkg_path(cfqg_to_blkg((cfqq)->cfqg)), ##args)
  340. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  341. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  342. blkg_path(cfqg_to_blkg((cfqg))), ##args) \
  343. #else /* CONFIG_CFQ_GROUP_IOSCHED */
  344. static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg) { return NULL; }
  345. static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg) { return NULL; }
  346. static inline void cfqg_get(struct cfq_group *cfqg) { }
  347. static inline void cfqg_put(struct cfq_group *cfqg) { }
  348. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  349. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  350. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
  351. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  352. #define cfq_log(cfqd, fmt, args...) \
  353. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  354. /* Traverses through cfq group service trees */
  355. #define for_each_cfqg_st(cfqg, i, j, st) \
  356. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  357. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  358. : &cfqg->service_tree_idle; \
  359. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  360. (i == IDLE_WORKLOAD && j == 0); \
  361. j++, st = i < IDLE_WORKLOAD ? \
  362. &cfqg->service_trees[i][j]: NULL) \
  363. static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
  364. struct cfq_ttime *ttime, bool group_idle)
  365. {
  366. unsigned long slice;
  367. if (!sample_valid(ttime->ttime_samples))
  368. return false;
  369. if (group_idle)
  370. slice = cfqd->cfq_group_idle;
  371. else
  372. slice = cfqd->cfq_slice_idle;
  373. return ttime->ttime_mean > slice;
  374. }
  375. static inline bool iops_mode(struct cfq_data *cfqd)
  376. {
  377. /*
  378. * If we are not idling on queues and it is a NCQ drive, parallel
  379. * execution of requests is on and measuring time is not possible
  380. * in most of the cases until and unless we drive shallower queue
  381. * depths and that becomes a performance bottleneck. In such cases
  382. * switch to start providing fairness in terms of number of IOs.
  383. */
  384. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  385. return true;
  386. else
  387. return false;
  388. }
  389. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  390. {
  391. if (cfq_class_idle(cfqq))
  392. return IDLE_WORKLOAD;
  393. if (cfq_class_rt(cfqq))
  394. return RT_WORKLOAD;
  395. return BE_WORKLOAD;
  396. }
  397. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  398. {
  399. if (!cfq_cfqq_sync(cfqq))
  400. return ASYNC_WORKLOAD;
  401. if (!cfq_cfqq_idle_window(cfqq))
  402. return SYNC_NOIDLE_WORKLOAD;
  403. return SYNC_WORKLOAD;
  404. }
  405. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  406. struct cfq_data *cfqd,
  407. struct cfq_group *cfqg)
  408. {
  409. if (wl == IDLE_WORKLOAD)
  410. return cfqg->service_tree_idle.count;
  411. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  412. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  413. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  414. }
  415. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  416. struct cfq_group *cfqg)
  417. {
  418. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  419. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  420. }
  421. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  422. static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
  423. struct cfq_io_cq *cic, struct bio *bio,
  424. gfp_t gfp_mask);
  425. static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
  426. {
  427. /* cic->icq is the first member, %NULL will convert to %NULL */
  428. return container_of(icq, struct cfq_io_cq, icq);
  429. }
  430. static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
  431. struct io_context *ioc)
  432. {
  433. if (ioc)
  434. return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
  435. return NULL;
  436. }
  437. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
  438. {
  439. return cic->cfqq[is_sync];
  440. }
  441. static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
  442. bool is_sync)
  443. {
  444. cic->cfqq[is_sync] = cfqq;
  445. }
  446. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
  447. {
  448. return cic->icq.q->elevator->elevator_data;
  449. }
  450. /*
  451. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  452. * set (in which case it could also be direct WRITE).
  453. */
  454. static inline bool cfq_bio_sync(struct bio *bio)
  455. {
  456. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  457. }
  458. /*
  459. * scheduler run of queue, if there are requests pending and no one in the
  460. * driver that will restart queueing
  461. */
  462. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  463. {
  464. if (cfqd->busy_queues) {
  465. cfq_log(cfqd, "schedule dispatch");
  466. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  467. }
  468. }
  469. /*
  470. * Scale schedule slice based on io priority. Use the sync time slice only
  471. * if a queue is marked sync and has sync io queued. A sync queue with async
  472. * io only, should not get full sync slice length.
  473. */
  474. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  475. unsigned short prio)
  476. {
  477. const int base_slice = cfqd->cfq_slice[sync];
  478. WARN_ON(prio >= IOPRIO_BE_NR);
  479. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  480. }
  481. static inline int
  482. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  483. {
  484. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  485. }
  486. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  487. {
  488. u64 d = delta << CFQ_SERVICE_SHIFT;
  489. d = d * BLKIO_WEIGHT_DEFAULT;
  490. do_div(d, cfqg->weight);
  491. return d;
  492. }
  493. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  494. {
  495. s64 delta = (s64)(vdisktime - min_vdisktime);
  496. if (delta > 0)
  497. min_vdisktime = vdisktime;
  498. return min_vdisktime;
  499. }
  500. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  501. {
  502. s64 delta = (s64)(vdisktime - min_vdisktime);
  503. if (delta < 0)
  504. min_vdisktime = vdisktime;
  505. return min_vdisktime;
  506. }
  507. static void update_min_vdisktime(struct cfq_rb_root *st)
  508. {
  509. struct cfq_group *cfqg;
  510. if (st->left) {
  511. cfqg = rb_entry_cfqg(st->left);
  512. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  513. cfqg->vdisktime);
  514. }
  515. }
  516. /*
  517. * get averaged number of queues of RT/BE priority.
  518. * average is updated, with a formula that gives more weight to higher numbers,
  519. * to quickly follows sudden increases and decrease slowly
  520. */
  521. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  522. struct cfq_group *cfqg, bool rt)
  523. {
  524. unsigned min_q, max_q;
  525. unsigned mult = cfq_hist_divisor - 1;
  526. unsigned round = cfq_hist_divisor / 2;
  527. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  528. min_q = min(cfqg->busy_queues_avg[rt], busy);
  529. max_q = max(cfqg->busy_queues_avg[rt], busy);
  530. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  531. cfq_hist_divisor;
  532. return cfqg->busy_queues_avg[rt];
  533. }
  534. static inline unsigned
  535. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  536. {
  537. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  538. return cfq_target_latency * cfqg->weight / st->total_weight;
  539. }
  540. static inline unsigned
  541. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  542. {
  543. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  544. if (cfqd->cfq_latency) {
  545. /*
  546. * interested queues (we consider only the ones with the same
  547. * priority class in the cfq group)
  548. */
  549. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  550. cfq_class_rt(cfqq));
  551. unsigned sync_slice = cfqd->cfq_slice[1];
  552. unsigned expect_latency = sync_slice * iq;
  553. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  554. if (expect_latency > group_slice) {
  555. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  556. /* scale low_slice according to IO priority
  557. * and sync vs async */
  558. unsigned low_slice =
  559. min(slice, base_low_slice * slice / sync_slice);
  560. /* the adapted slice value is scaled to fit all iqs
  561. * into the target latency */
  562. slice = max(slice * group_slice / expect_latency,
  563. low_slice);
  564. }
  565. }
  566. return slice;
  567. }
  568. static inline void
  569. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  570. {
  571. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  572. cfqq->slice_start = jiffies;
  573. cfqq->slice_end = jiffies + slice;
  574. cfqq->allocated_slice = slice;
  575. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  576. }
  577. /*
  578. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  579. * isn't valid until the first request from the dispatch is activated
  580. * and the slice time set.
  581. */
  582. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  583. {
  584. if (cfq_cfqq_slice_new(cfqq))
  585. return false;
  586. if (time_before(jiffies, cfqq->slice_end))
  587. return false;
  588. return true;
  589. }
  590. /*
  591. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  592. * We choose the request that is closest to the head right now. Distance
  593. * behind the head is penalized and only allowed to a certain extent.
  594. */
  595. static struct request *
  596. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  597. {
  598. sector_t s1, s2, d1 = 0, d2 = 0;
  599. unsigned long back_max;
  600. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  601. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  602. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  603. if (rq1 == NULL || rq1 == rq2)
  604. return rq2;
  605. if (rq2 == NULL)
  606. return rq1;
  607. if (rq_is_sync(rq1) != rq_is_sync(rq2))
  608. return rq_is_sync(rq1) ? rq1 : rq2;
  609. if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
  610. return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
  611. s1 = blk_rq_pos(rq1);
  612. s2 = blk_rq_pos(rq2);
  613. /*
  614. * by definition, 1KiB is 2 sectors
  615. */
  616. back_max = cfqd->cfq_back_max * 2;
  617. /*
  618. * Strict one way elevator _except_ in the case where we allow
  619. * short backward seeks which are biased as twice the cost of a
  620. * similar forward seek.
  621. */
  622. if (s1 >= last)
  623. d1 = s1 - last;
  624. else if (s1 + back_max >= last)
  625. d1 = (last - s1) * cfqd->cfq_back_penalty;
  626. else
  627. wrap |= CFQ_RQ1_WRAP;
  628. if (s2 >= last)
  629. d2 = s2 - last;
  630. else if (s2 + back_max >= last)
  631. d2 = (last - s2) * cfqd->cfq_back_penalty;
  632. else
  633. wrap |= CFQ_RQ2_WRAP;
  634. /* Found required data */
  635. /*
  636. * By doing switch() on the bit mask "wrap" we avoid having to
  637. * check two variables for all permutations: --> faster!
  638. */
  639. switch (wrap) {
  640. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  641. if (d1 < d2)
  642. return rq1;
  643. else if (d2 < d1)
  644. return rq2;
  645. else {
  646. if (s1 >= s2)
  647. return rq1;
  648. else
  649. return rq2;
  650. }
  651. case CFQ_RQ2_WRAP:
  652. return rq1;
  653. case CFQ_RQ1_WRAP:
  654. return rq2;
  655. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  656. default:
  657. /*
  658. * Since both rqs are wrapped,
  659. * start with the one that's further behind head
  660. * (--> only *one* back seek required),
  661. * since back seek takes more time than forward.
  662. */
  663. if (s1 <= s2)
  664. return rq1;
  665. else
  666. return rq2;
  667. }
  668. }
  669. /*
  670. * The below is leftmost cache rbtree addon
  671. */
  672. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  673. {
  674. /* Service tree is empty */
  675. if (!root->count)
  676. return NULL;
  677. if (!root->left)
  678. root->left = rb_first(&root->rb);
  679. if (root->left)
  680. return rb_entry(root->left, struct cfq_queue, rb_node);
  681. return NULL;
  682. }
  683. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  684. {
  685. if (!root->left)
  686. root->left = rb_first(&root->rb);
  687. if (root->left)
  688. return rb_entry_cfqg(root->left);
  689. return NULL;
  690. }
  691. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  692. {
  693. rb_erase(n, root);
  694. RB_CLEAR_NODE(n);
  695. }
  696. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  697. {
  698. if (root->left == n)
  699. root->left = NULL;
  700. rb_erase_init(n, &root->rb);
  701. --root->count;
  702. }
  703. /*
  704. * would be nice to take fifo expire time into account as well
  705. */
  706. static struct request *
  707. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  708. struct request *last)
  709. {
  710. struct rb_node *rbnext = rb_next(&last->rb_node);
  711. struct rb_node *rbprev = rb_prev(&last->rb_node);
  712. struct request *next = NULL, *prev = NULL;
  713. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  714. if (rbprev)
  715. prev = rb_entry_rq(rbprev);
  716. if (rbnext)
  717. next = rb_entry_rq(rbnext);
  718. else {
  719. rbnext = rb_first(&cfqq->sort_list);
  720. if (rbnext && rbnext != &last->rb_node)
  721. next = rb_entry_rq(rbnext);
  722. }
  723. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  724. }
  725. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  726. struct cfq_queue *cfqq)
  727. {
  728. /*
  729. * just an approximation, should be ok.
  730. */
  731. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  732. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  733. }
  734. static inline s64
  735. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  736. {
  737. return cfqg->vdisktime - st->min_vdisktime;
  738. }
  739. static void
  740. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  741. {
  742. struct rb_node **node = &st->rb.rb_node;
  743. struct rb_node *parent = NULL;
  744. struct cfq_group *__cfqg;
  745. s64 key = cfqg_key(st, cfqg);
  746. int left = 1;
  747. while (*node != NULL) {
  748. parent = *node;
  749. __cfqg = rb_entry_cfqg(parent);
  750. if (key < cfqg_key(st, __cfqg))
  751. node = &parent->rb_left;
  752. else {
  753. node = &parent->rb_right;
  754. left = 0;
  755. }
  756. }
  757. if (left)
  758. st->left = &cfqg->rb_node;
  759. rb_link_node(&cfqg->rb_node, parent, node);
  760. rb_insert_color(&cfqg->rb_node, &st->rb);
  761. }
  762. static void
  763. cfq_update_group_weight(struct cfq_group *cfqg)
  764. {
  765. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  766. if (cfqg->needs_update) {
  767. cfqg->weight = cfqg->new_weight;
  768. cfqg->needs_update = false;
  769. }
  770. }
  771. static void
  772. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  773. {
  774. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  775. cfq_update_group_weight(cfqg);
  776. __cfq_group_service_tree_add(st, cfqg);
  777. st->total_weight += cfqg->weight;
  778. }
  779. static void
  780. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  781. {
  782. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  783. struct cfq_group *__cfqg;
  784. struct rb_node *n;
  785. cfqg->nr_cfqq++;
  786. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  787. return;
  788. /*
  789. * Currently put the group at the end. Later implement something
  790. * so that groups get lesser vtime based on their weights, so that
  791. * if group does not loose all if it was not continuously backlogged.
  792. */
  793. n = rb_last(&st->rb);
  794. if (n) {
  795. __cfqg = rb_entry_cfqg(n);
  796. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  797. } else
  798. cfqg->vdisktime = st->min_vdisktime;
  799. cfq_group_service_tree_add(st, cfqg);
  800. }
  801. static void
  802. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  803. {
  804. st->total_weight -= cfqg->weight;
  805. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  806. cfq_rb_erase(&cfqg->rb_node, st);
  807. }
  808. static void
  809. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  810. {
  811. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  812. BUG_ON(cfqg->nr_cfqq < 1);
  813. cfqg->nr_cfqq--;
  814. /* If there are other cfq queues under this group, don't delete it */
  815. if (cfqg->nr_cfqq)
  816. return;
  817. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  818. cfq_group_service_tree_del(st, cfqg);
  819. cfqg->saved_workload_slice = 0;
  820. cfq_blkiocg_update_dequeue_stats(cfqg_to_blkg(cfqg),
  821. &blkio_policy_cfq, 1);
  822. }
  823. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  824. unsigned int *unaccounted_time)
  825. {
  826. unsigned int slice_used;
  827. /*
  828. * Queue got expired before even a single request completed or
  829. * got expired immediately after first request completion.
  830. */
  831. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  832. /*
  833. * Also charge the seek time incurred to the group, otherwise
  834. * if there are mutiple queues in the group, each can dispatch
  835. * a single request on seeky media and cause lots of seek time
  836. * and group will never know it.
  837. */
  838. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  839. 1);
  840. } else {
  841. slice_used = jiffies - cfqq->slice_start;
  842. if (slice_used > cfqq->allocated_slice) {
  843. *unaccounted_time = slice_used - cfqq->allocated_slice;
  844. slice_used = cfqq->allocated_slice;
  845. }
  846. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  847. *unaccounted_time += cfqq->slice_start -
  848. cfqq->dispatch_start;
  849. }
  850. return slice_used;
  851. }
  852. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  853. struct cfq_queue *cfqq)
  854. {
  855. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  856. unsigned int used_sl, charge, unaccounted_sl = 0;
  857. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  858. - cfqg->service_tree_idle.count;
  859. BUG_ON(nr_sync < 0);
  860. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  861. if (iops_mode(cfqd))
  862. charge = cfqq->slice_dispatch;
  863. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  864. charge = cfqq->allocated_slice;
  865. /* Can't update vdisktime while group is on service tree */
  866. cfq_group_service_tree_del(st, cfqg);
  867. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  868. /* If a new weight was requested, update now, off tree */
  869. cfq_group_service_tree_add(st, cfqg);
  870. /* This group is being expired. Save the context */
  871. if (time_after(cfqd->workload_expires, jiffies)) {
  872. cfqg->saved_workload_slice = cfqd->workload_expires
  873. - jiffies;
  874. cfqg->saved_workload = cfqd->serving_type;
  875. cfqg->saved_serving_prio = cfqd->serving_prio;
  876. } else
  877. cfqg->saved_workload_slice = 0;
  878. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  879. st->min_vdisktime);
  880. cfq_log_cfqq(cfqq->cfqd, cfqq,
  881. "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
  882. used_sl, cfqq->slice_dispatch, charge,
  883. iops_mode(cfqd), cfqq->nr_sectors);
  884. cfq_blkiocg_update_timeslice_used(cfqg_to_blkg(cfqg), &blkio_policy_cfq,
  885. used_sl, unaccounted_sl);
  886. cfq_blkiocg_set_start_empty_time(cfqg_to_blkg(cfqg), &blkio_policy_cfq);
  887. }
  888. /**
  889. * cfq_init_cfqg_base - initialize base part of a cfq_group
  890. * @cfqg: cfq_group to initialize
  891. *
  892. * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
  893. * is enabled or not.
  894. */
  895. static void cfq_init_cfqg_base(struct cfq_group *cfqg)
  896. {
  897. struct cfq_rb_root *st;
  898. int i, j;
  899. for_each_cfqg_st(cfqg, i, j, st)
  900. *st = CFQ_RB_ROOT;
  901. RB_CLEAR_NODE(&cfqg->rb_node);
  902. cfqg->ttime.last_end_request = jiffies;
  903. }
  904. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  905. static void cfq_update_blkio_group_weight(struct request_queue *q,
  906. struct blkio_group *blkg,
  907. unsigned int weight)
  908. {
  909. struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  910. cfqg->new_weight = weight;
  911. cfqg->needs_update = true;
  912. }
  913. static void cfq_init_blkio_group(struct blkio_group *blkg)
  914. {
  915. struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  916. cfq_init_cfqg_base(cfqg);
  917. cfqg->weight = blkg->blkcg->weight;
  918. }
  919. /*
  920. * Search for the cfq group current task belongs to. request_queue lock must
  921. * be held.
  922. */
  923. static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
  924. struct blkio_cgroup *blkcg)
  925. {
  926. struct request_queue *q = cfqd->queue;
  927. struct cfq_group *cfqg = NULL;
  928. /* avoid lookup for the common case where there's no blkio cgroup */
  929. if (blkcg == &blkio_root_cgroup) {
  930. cfqg = cfqd->root_group;
  931. } else {
  932. struct blkio_group *blkg;
  933. blkg = blkg_lookup_create(blkcg, q, false);
  934. if (!IS_ERR(blkg))
  935. cfqg = blkg_to_cfqg(blkg);
  936. }
  937. return cfqg;
  938. }
  939. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  940. {
  941. /* Currently, all async queues are mapped to root group */
  942. if (!cfq_cfqq_sync(cfqq))
  943. cfqg = cfqq->cfqd->root_group;
  944. cfqq->cfqg = cfqg;
  945. /* cfqq reference on cfqg */
  946. cfqg_get(cfqg);
  947. }
  948. #else /* GROUP_IOSCHED */
  949. static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
  950. struct blkio_cgroup *blkcg)
  951. {
  952. return cfqd->root_group;
  953. }
  954. static inline void
  955. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  956. cfqq->cfqg = cfqg;
  957. }
  958. #endif /* GROUP_IOSCHED */
  959. /*
  960. * The cfqd->service_trees holds all pending cfq_queue's that have
  961. * requests waiting to be processed. It is sorted in the order that
  962. * we will service the queues.
  963. */
  964. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  965. bool add_front)
  966. {
  967. struct rb_node **p, *parent;
  968. struct cfq_queue *__cfqq;
  969. unsigned long rb_key;
  970. struct cfq_rb_root *service_tree;
  971. int left;
  972. int new_cfqq = 1;
  973. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  974. cfqq_type(cfqq));
  975. if (cfq_class_idle(cfqq)) {
  976. rb_key = CFQ_IDLE_DELAY;
  977. parent = rb_last(&service_tree->rb);
  978. if (parent && parent != &cfqq->rb_node) {
  979. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  980. rb_key += __cfqq->rb_key;
  981. } else
  982. rb_key += jiffies;
  983. } else if (!add_front) {
  984. /*
  985. * Get our rb key offset. Subtract any residual slice
  986. * value carried from last service. A negative resid
  987. * count indicates slice overrun, and this should position
  988. * the next service time further away in the tree.
  989. */
  990. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  991. rb_key -= cfqq->slice_resid;
  992. cfqq->slice_resid = 0;
  993. } else {
  994. rb_key = -HZ;
  995. __cfqq = cfq_rb_first(service_tree);
  996. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  997. }
  998. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  999. new_cfqq = 0;
  1000. /*
  1001. * same position, nothing more to do
  1002. */
  1003. if (rb_key == cfqq->rb_key &&
  1004. cfqq->service_tree == service_tree)
  1005. return;
  1006. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1007. cfqq->service_tree = NULL;
  1008. }
  1009. left = 1;
  1010. parent = NULL;
  1011. cfqq->service_tree = service_tree;
  1012. p = &service_tree->rb.rb_node;
  1013. while (*p) {
  1014. struct rb_node **n;
  1015. parent = *p;
  1016. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1017. /*
  1018. * sort by key, that represents service time.
  1019. */
  1020. if (time_before(rb_key, __cfqq->rb_key))
  1021. n = &(*p)->rb_left;
  1022. else {
  1023. n = &(*p)->rb_right;
  1024. left = 0;
  1025. }
  1026. p = n;
  1027. }
  1028. if (left)
  1029. service_tree->left = &cfqq->rb_node;
  1030. cfqq->rb_key = rb_key;
  1031. rb_link_node(&cfqq->rb_node, parent, p);
  1032. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1033. service_tree->count++;
  1034. if (add_front || !new_cfqq)
  1035. return;
  1036. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1037. }
  1038. static struct cfq_queue *
  1039. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1040. sector_t sector, struct rb_node **ret_parent,
  1041. struct rb_node ***rb_link)
  1042. {
  1043. struct rb_node **p, *parent;
  1044. struct cfq_queue *cfqq = NULL;
  1045. parent = NULL;
  1046. p = &root->rb_node;
  1047. while (*p) {
  1048. struct rb_node **n;
  1049. parent = *p;
  1050. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1051. /*
  1052. * Sort strictly based on sector. Smallest to the left,
  1053. * largest to the right.
  1054. */
  1055. if (sector > blk_rq_pos(cfqq->next_rq))
  1056. n = &(*p)->rb_right;
  1057. else if (sector < blk_rq_pos(cfqq->next_rq))
  1058. n = &(*p)->rb_left;
  1059. else
  1060. break;
  1061. p = n;
  1062. cfqq = NULL;
  1063. }
  1064. *ret_parent = parent;
  1065. if (rb_link)
  1066. *rb_link = p;
  1067. return cfqq;
  1068. }
  1069. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1070. {
  1071. struct rb_node **p, *parent;
  1072. struct cfq_queue *__cfqq;
  1073. if (cfqq->p_root) {
  1074. rb_erase(&cfqq->p_node, cfqq->p_root);
  1075. cfqq->p_root = NULL;
  1076. }
  1077. if (cfq_class_idle(cfqq))
  1078. return;
  1079. if (!cfqq->next_rq)
  1080. return;
  1081. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1082. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1083. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1084. if (!__cfqq) {
  1085. rb_link_node(&cfqq->p_node, parent, p);
  1086. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1087. } else
  1088. cfqq->p_root = NULL;
  1089. }
  1090. /*
  1091. * Update cfqq's position in the service tree.
  1092. */
  1093. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1094. {
  1095. /*
  1096. * Resorting requires the cfqq to be on the RR list already.
  1097. */
  1098. if (cfq_cfqq_on_rr(cfqq)) {
  1099. cfq_service_tree_add(cfqd, cfqq, 0);
  1100. cfq_prio_tree_add(cfqd, cfqq);
  1101. }
  1102. }
  1103. /*
  1104. * add to busy list of queues for service, trying to be fair in ordering
  1105. * the pending list according to last request service
  1106. */
  1107. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1108. {
  1109. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1110. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1111. cfq_mark_cfqq_on_rr(cfqq);
  1112. cfqd->busy_queues++;
  1113. if (cfq_cfqq_sync(cfqq))
  1114. cfqd->busy_sync_queues++;
  1115. cfq_resort_rr_list(cfqd, cfqq);
  1116. }
  1117. /*
  1118. * Called when the cfqq no longer has requests pending, remove it from
  1119. * the service tree.
  1120. */
  1121. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1122. {
  1123. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1124. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1125. cfq_clear_cfqq_on_rr(cfqq);
  1126. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1127. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1128. cfqq->service_tree = NULL;
  1129. }
  1130. if (cfqq->p_root) {
  1131. rb_erase(&cfqq->p_node, cfqq->p_root);
  1132. cfqq->p_root = NULL;
  1133. }
  1134. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1135. BUG_ON(!cfqd->busy_queues);
  1136. cfqd->busy_queues--;
  1137. if (cfq_cfqq_sync(cfqq))
  1138. cfqd->busy_sync_queues--;
  1139. }
  1140. /*
  1141. * rb tree support functions
  1142. */
  1143. static void cfq_del_rq_rb(struct request *rq)
  1144. {
  1145. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1146. const int sync = rq_is_sync(rq);
  1147. BUG_ON(!cfqq->queued[sync]);
  1148. cfqq->queued[sync]--;
  1149. elv_rb_del(&cfqq->sort_list, rq);
  1150. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1151. /*
  1152. * Queue will be deleted from service tree when we actually
  1153. * expire it later. Right now just remove it from prio tree
  1154. * as it is empty.
  1155. */
  1156. if (cfqq->p_root) {
  1157. rb_erase(&cfqq->p_node, cfqq->p_root);
  1158. cfqq->p_root = NULL;
  1159. }
  1160. }
  1161. }
  1162. static void cfq_add_rq_rb(struct request *rq)
  1163. {
  1164. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1165. struct cfq_data *cfqd = cfqq->cfqd;
  1166. struct request *prev;
  1167. cfqq->queued[rq_is_sync(rq)]++;
  1168. elv_rb_add(&cfqq->sort_list, rq);
  1169. if (!cfq_cfqq_on_rr(cfqq))
  1170. cfq_add_cfqq_rr(cfqd, cfqq);
  1171. /*
  1172. * check if this request is a better next-serve candidate
  1173. */
  1174. prev = cfqq->next_rq;
  1175. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1176. /*
  1177. * adjust priority tree position, if ->next_rq changes
  1178. */
  1179. if (prev != cfqq->next_rq)
  1180. cfq_prio_tree_add(cfqd, cfqq);
  1181. BUG_ON(!cfqq->next_rq);
  1182. }
  1183. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1184. {
  1185. elv_rb_del(&cfqq->sort_list, rq);
  1186. cfqq->queued[rq_is_sync(rq)]--;
  1187. cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1188. &blkio_policy_cfq, rq_data_dir(rq),
  1189. rq_is_sync(rq));
  1190. cfq_add_rq_rb(rq);
  1191. cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1192. &blkio_policy_cfq,
  1193. cfqg_to_blkg(cfqq->cfqd->serving_group),
  1194. rq_data_dir(rq), rq_is_sync(rq));
  1195. }
  1196. static struct request *
  1197. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1198. {
  1199. struct task_struct *tsk = current;
  1200. struct cfq_io_cq *cic;
  1201. struct cfq_queue *cfqq;
  1202. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1203. if (!cic)
  1204. return NULL;
  1205. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1206. if (cfqq) {
  1207. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1208. return elv_rb_find(&cfqq->sort_list, sector);
  1209. }
  1210. return NULL;
  1211. }
  1212. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1213. {
  1214. struct cfq_data *cfqd = q->elevator->elevator_data;
  1215. cfqd->rq_in_driver++;
  1216. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1217. cfqd->rq_in_driver);
  1218. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1219. }
  1220. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1221. {
  1222. struct cfq_data *cfqd = q->elevator->elevator_data;
  1223. WARN_ON(!cfqd->rq_in_driver);
  1224. cfqd->rq_in_driver--;
  1225. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1226. cfqd->rq_in_driver);
  1227. }
  1228. static void cfq_remove_request(struct request *rq)
  1229. {
  1230. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1231. if (cfqq->next_rq == rq)
  1232. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1233. list_del_init(&rq->queuelist);
  1234. cfq_del_rq_rb(rq);
  1235. cfqq->cfqd->rq_queued--;
  1236. cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1237. &blkio_policy_cfq, rq_data_dir(rq),
  1238. rq_is_sync(rq));
  1239. if (rq->cmd_flags & REQ_PRIO) {
  1240. WARN_ON(!cfqq->prio_pending);
  1241. cfqq->prio_pending--;
  1242. }
  1243. }
  1244. static int cfq_merge(struct request_queue *q, struct request **req,
  1245. struct bio *bio)
  1246. {
  1247. struct cfq_data *cfqd = q->elevator->elevator_data;
  1248. struct request *__rq;
  1249. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1250. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1251. *req = __rq;
  1252. return ELEVATOR_FRONT_MERGE;
  1253. }
  1254. return ELEVATOR_NO_MERGE;
  1255. }
  1256. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1257. int type)
  1258. {
  1259. if (type == ELEVATOR_FRONT_MERGE) {
  1260. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1261. cfq_reposition_rq_rb(cfqq, req);
  1262. }
  1263. }
  1264. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1265. struct bio *bio)
  1266. {
  1267. cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(req)),
  1268. &blkio_policy_cfq, bio_data_dir(bio),
  1269. cfq_bio_sync(bio));
  1270. }
  1271. static void
  1272. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1273. struct request *next)
  1274. {
  1275. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1276. struct cfq_data *cfqd = q->elevator->elevator_data;
  1277. /*
  1278. * reposition in fifo if next is older than rq
  1279. */
  1280. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1281. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1282. list_move(&rq->queuelist, &next->queuelist);
  1283. rq_set_fifo_time(rq, rq_fifo_time(next));
  1284. }
  1285. if (cfqq->next_rq == next)
  1286. cfqq->next_rq = rq;
  1287. cfq_remove_request(next);
  1288. cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1289. &blkio_policy_cfq, rq_data_dir(next),
  1290. rq_is_sync(next));
  1291. cfqq = RQ_CFQQ(next);
  1292. /*
  1293. * all requests of this queue are merged to other queues, delete it
  1294. * from the service tree. If it's the active_queue,
  1295. * cfq_dispatch_requests() will choose to expire it or do idle
  1296. */
  1297. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
  1298. cfqq != cfqd->active_queue)
  1299. cfq_del_cfqq_rr(cfqd, cfqq);
  1300. }
  1301. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1302. struct bio *bio)
  1303. {
  1304. struct cfq_data *cfqd = q->elevator->elevator_data;
  1305. struct cfq_io_cq *cic;
  1306. struct cfq_queue *cfqq;
  1307. /*
  1308. * Disallow merge of a sync bio into an async request.
  1309. */
  1310. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1311. return false;
  1312. /*
  1313. * Lookup the cfqq that this bio will be queued with and allow
  1314. * merge only if rq is queued there.
  1315. */
  1316. cic = cfq_cic_lookup(cfqd, current->io_context);
  1317. if (!cic)
  1318. return false;
  1319. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1320. return cfqq == RQ_CFQQ(rq);
  1321. }
  1322. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1323. {
  1324. del_timer(&cfqd->idle_slice_timer);
  1325. cfq_blkiocg_update_idle_time_stats(cfqg_to_blkg(cfqq->cfqg),
  1326. &blkio_policy_cfq);
  1327. }
  1328. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1329. struct cfq_queue *cfqq)
  1330. {
  1331. if (cfqq) {
  1332. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1333. cfqd->serving_prio, cfqd->serving_type);
  1334. cfq_blkiocg_update_avg_queue_size_stats(cfqg_to_blkg(cfqq->cfqg),
  1335. &blkio_policy_cfq);
  1336. cfqq->slice_start = 0;
  1337. cfqq->dispatch_start = jiffies;
  1338. cfqq->allocated_slice = 0;
  1339. cfqq->slice_end = 0;
  1340. cfqq->slice_dispatch = 0;
  1341. cfqq->nr_sectors = 0;
  1342. cfq_clear_cfqq_wait_request(cfqq);
  1343. cfq_clear_cfqq_must_dispatch(cfqq);
  1344. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1345. cfq_clear_cfqq_fifo_expire(cfqq);
  1346. cfq_mark_cfqq_slice_new(cfqq);
  1347. cfq_del_timer(cfqd, cfqq);
  1348. }
  1349. cfqd->active_queue = cfqq;
  1350. }
  1351. /*
  1352. * current cfqq expired its slice (or was too idle), select new one
  1353. */
  1354. static void
  1355. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1356. bool timed_out)
  1357. {
  1358. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1359. if (cfq_cfqq_wait_request(cfqq))
  1360. cfq_del_timer(cfqd, cfqq);
  1361. cfq_clear_cfqq_wait_request(cfqq);
  1362. cfq_clear_cfqq_wait_busy(cfqq);
  1363. /*
  1364. * If this cfqq is shared between multiple processes, check to
  1365. * make sure that those processes are still issuing I/Os within
  1366. * the mean seek distance. If not, it may be time to break the
  1367. * queues apart again.
  1368. */
  1369. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1370. cfq_mark_cfqq_split_coop(cfqq);
  1371. /*
  1372. * store what was left of this slice, if the queue idled/timed out
  1373. */
  1374. if (timed_out) {
  1375. if (cfq_cfqq_slice_new(cfqq))
  1376. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1377. else
  1378. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1379. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1380. }
  1381. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1382. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1383. cfq_del_cfqq_rr(cfqd, cfqq);
  1384. cfq_resort_rr_list(cfqd, cfqq);
  1385. if (cfqq == cfqd->active_queue)
  1386. cfqd->active_queue = NULL;
  1387. if (cfqd->active_cic) {
  1388. put_io_context(cfqd->active_cic->icq.ioc);
  1389. cfqd->active_cic = NULL;
  1390. }
  1391. }
  1392. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1393. {
  1394. struct cfq_queue *cfqq = cfqd->active_queue;
  1395. if (cfqq)
  1396. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1397. }
  1398. /*
  1399. * Get next queue for service. Unless we have a queue preemption,
  1400. * we'll simply select the first cfqq in the service tree.
  1401. */
  1402. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1403. {
  1404. struct cfq_rb_root *service_tree =
  1405. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1406. cfqd->serving_type);
  1407. if (!cfqd->rq_queued)
  1408. return NULL;
  1409. /* There is nothing to dispatch */
  1410. if (!service_tree)
  1411. return NULL;
  1412. if (RB_EMPTY_ROOT(&service_tree->rb))
  1413. return NULL;
  1414. return cfq_rb_first(service_tree);
  1415. }
  1416. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1417. {
  1418. struct cfq_group *cfqg;
  1419. struct cfq_queue *cfqq;
  1420. int i, j;
  1421. struct cfq_rb_root *st;
  1422. if (!cfqd->rq_queued)
  1423. return NULL;
  1424. cfqg = cfq_get_next_cfqg(cfqd);
  1425. if (!cfqg)
  1426. return NULL;
  1427. for_each_cfqg_st(cfqg, i, j, st)
  1428. if ((cfqq = cfq_rb_first(st)) != NULL)
  1429. return cfqq;
  1430. return NULL;
  1431. }
  1432. /*
  1433. * Get and set a new active queue for service.
  1434. */
  1435. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1436. struct cfq_queue *cfqq)
  1437. {
  1438. if (!cfqq)
  1439. cfqq = cfq_get_next_queue(cfqd);
  1440. __cfq_set_active_queue(cfqd, cfqq);
  1441. return cfqq;
  1442. }
  1443. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1444. struct request *rq)
  1445. {
  1446. if (blk_rq_pos(rq) >= cfqd->last_position)
  1447. return blk_rq_pos(rq) - cfqd->last_position;
  1448. else
  1449. return cfqd->last_position - blk_rq_pos(rq);
  1450. }
  1451. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1452. struct request *rq)
  1453. {
  1454. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1455. }
  1456. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1457. struct cfq_queue *cur_cfqq)
  1458. {
  1459. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1460. struct rb_node *parent, *node;
  1461. struct cfq_queue *__cfqq;
  1462. sector_t sector = cfqd->last_position;
  1463. if (RB_EMPTY_ROOT(root))
  1464. return NULL;
  1465. /*
  1466. * First, if we find a request starting at the end of the last
  1467. * request, choose it.
  1468. */
  1469. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1470. if (__cfqq)
  1471. return __cfqq;
  1472. /*
  1473. * If the exact sector wasn't found, the parent of the NULL leaf
  1474. * will contain the closest sector.
  1475. */
  1476. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1477. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1478. return __cfqq;
  1479. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1480. node = rb_next(&__cfqq->p_node);
  1481. else
  1482. node = rb_prev(&__cfqq->p_node);
  1483. if (!node)
  1484. return NULL;
  1485. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1486. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1487. return __cfqq;
  1488. return NULL;
  1489. }
  1490. /*
  1491. * cfqd - obvious
  1492. * cur_cfqq - passed in so that we don't decide that the current queue is
  1493. * closely cooperating with itself.
  1494. *
  1495. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1496. * one request, and that cfqd->last_position reflects a position on the disk
  1497. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1498. * assumption.
  1499. */
  1500. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1501. struct cfq_queue *cur_cfqq)
  1502. {
  1503. struct cfq_queue *cfqq;
  1504. if (cfq_class_idle(cur_cfqq))
  1505. return NULL;
  1506. if (!cfq_cfqq_sync(cur_cfqq))
  1507. return NULL;
  1508. if (CFQQ_SEEKY(cur_cfqq))
  1509. return NULL;
  1510. /*
  1511. * Don't search priority tree if it's the only queue in the group.
  1512. */
  1513. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1514. return NULL;
  1515. /*
  1516. * We should notice if some of the queues are cooperating, eg
  1517. * working closely on the same area of the disk. In that case,
  1518. * we can group them together and don't waste time idling.
  1519. */
  1520. cfqq = cfqq_close(cfqd, cur_cfqq);
  1521. if (!cfqq)
  1522. return NULL;
  1523. /* If new queue belongs to different cfq_group, don't choose it */
  1524. if (cur_cfqq->cfqg != cfqq->cfqg)
  1525. return NULL;
  1526. /*
  1527. * It only makes sense to merge sync queues.
  1528. */
  1529. if (!cfq_cfqq_sync(cfqq))
  1530. return NULL;
  1531. if (CFQQ_SEEKY(cfqq))
  1532. return NULL;
  1533. /*
  1534. * Do not merge queues of different priority classes
  1535. */
  1536. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1537. return NULL;
  1538. return cfqq;
  1539. }
  1540. /*
  1541. * Determine whether we should enforce idle window for this queue.
  1542. */
  1543. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1544. {
  1545. enum wl_prio_t prio = cfqq_prio(cfqq);
  1546. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1547. BUG_ON(!service_tree);
  1548. BUG_ON(!service_tree->count);
  1549. if (!cfqd->cfq_slice_idle)
  1550. return false;
  1551. /* We never do for idle class queues. */
  1552. if (prio == IDLE_WORKLOAD)
  1553. return false;
  1554. /* We do for queues that were marked with idle window flag. */
  1555. if (cfq_cfqq_idle_window(cfqq) &&
  1556. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1557. return true;
  1558. /*
  1559. * Otherwise, we do only if they are the last ones
  1560. * in their service tree.
  1561. */
  1562. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
  1563. !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
  1564. return true;
  1565. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1566. service_tree->count);
  1567. return false;
  1568. }
  1569. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1570. {
  1571. struct cfq_queue *cfqq = cfqd->active_queue;
  1572. struct cfq_io_cq *cic;
  1573. unsigned long sl, group_idle = 0;
  1574. /*
  1575. * SSD device without seek penalty, disable idling. But only do so
  1576. * for devices that support queuing, otherwise we still have a problem
  1577. * with sync vs async workloads.
  1578. */
  1579. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1580. return;
  1581. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1582. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1583. /*
  1584. * idle is disabled, either manually or by past process history
  1585. */
  1586. if (!cfq_should_idle(cfqd, cfqq)) {
  1587. /* no queue idling. Check for group idling */
  1588. if (cfqd->cfq_group_idle)
  1589. group_idle = cfqd->cfq_group_idle;
  1590. else
  1591. return;
  1592. }
  1593. /*
  1594. * still active requests from this queue, don't idle
  1595. */
  1596. if (cfqq->dispatched)
  1597. return;
  1598. /*
  1599. * task has exited, don't wait
  1600. */
  1601. cic = cfqd->active_cic;
  1602. if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
  1603. return;
  1604. /*
  1605. * If our average think time is larger than the remaining time
  1606. * slice, then don't idle. This avoids overrunning the allotted
  1607. * time slice.
  1608. */
  1609. if (sample_valid(cic->ttime.ttime_samples) &&
  1610. (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
  1611. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
  1612. cic->ttime.ttime_mean);
  1613. return;
  1614. }
  1615. /* There are other queues in the group, don't do group idle */
  1616. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1617. return;
  1618. cfq_mark_cfqq_wait_request(cfqq);
  1619. if (group_idle)
  1620. sl = cfqd->cfq_group_idle;
  1621. else
  1622. sl = cfqd->cfq_slice_idle;
  1623. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1624. cfq_blkiocg_update_set_idle_time_stats(cfqg_to_blkg(cfqq->cfqg),
  1625. &blkio_policy_cfq);
  1626. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1627. group_idle ? 1 : 0);
  1628. }
  1629. /*
  1630. * Move request from internal lists to the request queue dispatch list.
  1631. */
  1632. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1633. {
  1634. struct cfq_data *cfqd = q->elevator->elevator_data;
  1635. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1636. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1637. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1638. cfq_remove_request(rq);
  1639. cfqq->dispatched++;
  1640. (RQ_CFQG(rq))->dispatched++;
  1641. elv_dispatch_sort(q, rq);
  1642. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1643. cfqq->nr_sectors += blk_rq_sectors(rq);
  1644. cfq_blkiocg_update_dispatch_stats(cfqg_to_blkg(cfqq->cfqg),
  1645. &blkio_policy_cfq, blk_rq_bytes(rq),
  1646. rq_data_dir(rq), rq_is_sync(rq));
  1647. }
  1648. /*
  1649. * return expired entry, or NULL to just start from scratch in rbtree
  1650. */
  1651. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1652. {
  1653. struct request *rq = NULL;
  1654. if (cfq_cfqq_fifo_expire(cfqq))
  1655. return NULL;
  1656. cfq_mark_cfqq_fifo_expire(cfqq);
  1657. if (list_empty(&cfqq->fifo))
  1658. return NULL;
  1659. rq = rq_entry_fifo(cfqq->fifo.next);
  1660. if (time_before(jiffies, rq_fifo_time(rq)))
  1661. rq = NULL;
  1662. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1663. return rq;
  1664. }
  1665. static inline int
  1666. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1667. {
  1668. const int base_rq = cfqd->cfq_slice_async_rq;
  1669. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1670. return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
  1671. }
  1672. /*
  1673. * Must be called with the queue_lock held.
  1674. */
  1675. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1676. {
  1677. int process_refs, io_refs;
  1678. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1679. process_refs = cfqq->ref - io_refs;
  1680. BUG_ON(process_refs < 0);
  1681. return process_refs;
  1682. }
  1683. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1684. {
  1685. int process_refs, new_process_refs;
  1686. struct cfq_queue *__cfqq;
  1687. /*
  1688. * If there are no process references on the new_cfqq, then it is
  1689. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1690. * chain may have dropped their last reference (not just their
  1691. * last process reference).
  1692. */
  1693. if (!cfqq_process_refs(new_cfqq))
  1694. return;
  1695. /* Avoid a circular list and skip interim queue merges */
  1696. while ((__cfqq = new_cfqq->new_cfqq)) {
  1697. if (__cfqq == cfqq)
  1698. return;
  1699. new_cfqq = __cfqq;
  1700. }
  1701. process_refs = cfqq_process_refs(cfqq);
  1702. new_process_refs = cfqq_process_refs(new_cfqq);
  1703. /*
  1704. * If the process for the cfqq has gone away, there is no
  1705. * sense in merging the queues.
  1706. */
  1707. if (process_refs == 0 || new_process_refs == 0)
  1708. return;
  1709. /*
  1710. * Merge in the direction of the lesser amount of work.
  1711. */
  1712. if (new_process_refs >= process_refs) {
  1713. cfqq->new_cfqq = new_cfqq;
  1714. new_cfqq->ref += process_refs;
  1715. } else {
  1716. new_cfqq->new_cfqq = cfqq;
  1717. cfqq->ref += new_process_refs;
  1718. }
  1719. }
  1720. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1721. struct cfq_group *cfqg, enum wl_prio_t prio)
  1722. {
  1723. struct cfq_queue *queue;
  1724. int i;
  1725. bool key_valid = false;
  1726. unsigned long lowest_key = 0;
  1727. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1728. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1729. /* select the one with lowest rb_key */
  1730. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1731. if (queue &&
  1732. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1733. lowest_key = queue->rb_key;
  1734. cur_best = i;
  1735. key_valid = true;
  1736. }
  1737. }
  1738. return cur_best;
  1739. }
  1740. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1741. {
  1742. unsigned slice;
  1743. unsigned count;
  1744. struct cfq_rb_root *st;
  1745. unsigned group_slice;
  1746. enum wl_prio_t original_prio = cfqd->serving_prio;
  1747. /* Choose next priority. RT > BE > IDLE */
  1748. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1749. cfqd->serving_prio = RT_WORKLOAD;
  1750. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1751. cfqd->serving_prio = BE_WORKLOAD;
  1752. else {
  1753. cfqd->serving_prio = IDLE_WORKLOAD;
  1754. cfqd->workload_expires = jiffies + 1;
  1755. return;
  1756. }
  1757. if (original_prio != cfqd->serving_prio)
  1758. goto new_workload;
  1759. /*
  1760. * For RT and BE, we have to choose also the type
  1761. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1762. * expiration time
  1763. */
  1764. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1765. count = st->count;
  1766. /*
  1767. * check workload expiration, and that we still have other queues ready
  1768. */
  1769. if (count && !time_after(jiffies, cfqd->workload_expires))
  1770. return;
  1771. new_workload:
  1772. /* otherwise select new workload type */
  1773. cfqd->serving_type =
  1774. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1775. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1776. count = st->count;
  1777. /*
  1778. * the workload slice is computed as a fraction of target latency
  1779. * proportional to the number of queues in that workload, over
  1780. * all the queues in the same priority class
  1781. */
  1782. group_slice = cfq_group_slice(cfqd, cfqg);
  1783. slice = group_slice * count /
  1784. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1785. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1786. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1787. unsigned int tmp;
  1788. /*
  1789. * Async queues are currently system wide. Just taking
  1790. * proportion of queues with-in same group will lead to higher
  1791. * async ratio system wide as generally root group is going
  1792. * to have higher weight. A more accurate thing would be to
  1793. * calculate system wide asnc/sync ratio.
  1794. */
  1795. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1796. tmp = tmp/cfqd->busy_queues;
  1797. slice = min_t(unsigned, slice, tmp);
  1798. /* async workload slice is scaled down according to
  1799. * the sync/async slice ratio. */
  1800. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1801. } else
  1802. /* sync workload slice is at least 2 * cfq_slice_idle */
  1803. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1804. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1805. cfq_log(cfqd, "workload slice:%d", slice);
  1806. cfqd->workload_expires = jiffies + slice;
  1807. }
  1808. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1809. {
  1810. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1811. struct cfq_group *cfqg;
  1812. if (RB_EMPTY_ROOT(&st->rb))
  1813. return NULL;
  1814. cfqg = cfq_rb_first_group(st);
  1815. update_min_vdisktime(st);
  1816. return cfqg;
  1817. }
  1818. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1819. {
  1820. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1821. cfqd->serving_group = cfqg;
  1822. /* Restore the workload type data */
  1823. if (cfqg->saved_workload_slice) {
  1824. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1825. cfqd->serving_type = cfqg->saved_workload;
  1826. cfqd->serving_prio = cfqg->saved_serving_prio;
  1827. } else
  1828. cfqd->workload_expires = jiffies - 1;
  1829. choose_service_tree(cfqd, cfqg);
  1830. }
  1831. /*
  1832. * Select a queue for service. If we have a current active queue,
  1833. * check whether to continue servicing it, or retrieve and set a new one.
  1834. */
  1835. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1836. {
  1837. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1838. cfqq = cfqd->active_queue;
  1839. if (!cfqq)
  1840. goto new_queue;
  1841. if (!cfqd->rq_queued)
  1842. return NULL;
  1843. /*
  1844. * We were waiting for group to get backlogged. Expire the queue
  1845. */
  1846. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1847. goto expire;
  1848. /*
  1849. * The active queue has run out of time, expire it and select new.
  1850. */
  1851. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1852. /*
  1853. * If slice had not expired at the completion of last request
  1854. * we might not have turned on wait_busy flag. Don't expire
  1855. * the queue yet. Allow the group to get backlogged.
  1856. *
  1857. * The very fact that we have used the slice, that means we
  1858. * have been idling all along on this queue and it should be
  1859. * ok to wait for this request to complete.
  1860. */
  1861. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1862. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1863. cfqq = NULL;
  1864. goto keep_queue;
  1865. } else
  1866. goto check_group_idle;
  1867. }
  1868. /*
  1869. * The active queue has requests and isn't expired, allow it to
  1870. * dispatch.
  1871. */
  1872. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1873. goto keep_queue;
  1874. /*
  1875. * If another queue has a request waiting within our mean seek
  1876. * distance, let it run. The expire code will check for close
  1877. * cooperators and put the close queue at the front of the service
  1878. * tree. If possible, merge the expiring queue with the new cfqq.
  1879. */
  1880. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1881. if (new_cfqq) {
  1882. if (!cfqq->new_cfqq)
  1883. cfq_setup_merge(cfqq, new_cfqq);
  1884. goto expire;
  1885. }
  1886. /*
  1887. * No requests pending. If the active queue still has requests in
  1888. * flight or is idling for a new request, allow either of these
  1889. * conditions to happen (or time out) before selecting a new queue.
  1890. */
  1891. if (timer_pending(&cfqd->idle_slice_timer)) {
  1892. cfqq = NULL;
  1893. goto keep_queue;
  1894. }
  1895. /*
  1896. * This is a deep seek queue, but the device is much faster than
  1897. * the queue can deliver, don't idle
  1898. **/
  1899. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  1900. (cfq_cfqq_slice_new(cfqq) ||
  1901. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  1902. cfq_clear_cfqq_deep(cfqq);
  1903. cfq_clear_cfqq_idle_window(cfqq);
  1904. }
  1905. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1906. cfqq = NULL;
  1907. goto keep_queue;
  1908. }
  1909. /*
  1910. * If group idle is enabled and there are requests dispatched from
  1911. * this group, wait for requests to complete.
  1912. */
  1913. check_group_idle:
  1914. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
  1915. cfqq->cfqg->dispatched &&
  1916. !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
  1917. cfqq = NULL;
  1918. goto keep_queue;
  1919. }
  1920. expire:
  1921. cfq_slice_expired(cfqd, 0);
  1922. new_queue:
  1923. /*
  1924. * Current queue expired. Check if we have to switch to a new
  1925. * service tree
  1926. */
  1927. if (!new_cfqq)
  1928. cfq_choose_cfqg(cfqd);
  1929. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1930. keep_queue:
  1931. return cfqq;
  1932. }
  1933. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1934. {
  1935. int dispatched = 0;
  1936. while (cfqq->next_rq) {
  1937. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1938. dispatched++;
  1939. }
  1940. BUG_ON(!list_empty(&cfqq->fifo));
  1941. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1942. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1943. return dispatched;
  1944. }
  1945. /*
  1946. * Drain our current requests. Used for barriers and when switching
  1947. * io schedulers on-the-fly.
  1948. */
  1949. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1950. {
  1951. struct cfq_queue *cfqq;
  1952. int dispatched = 0;
  1953. /* Expire the timeslice of the current active queue first */
  1954. cfq_slice_expired(cfqd, 0);
  1955. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  1956. __cfq_set_active_queue(cfqd, cfqq);
  1957. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1958. }
  1959. BUG_ON(cfqd->busy_queues);
  1960. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1961. return dispatched;
  1962. }
  1963. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  1964. struct cfq_queue *cfqq)
  1965. {
  1966. /* the queue hasn't finished any request, can't estimate */
  1967. if (cfq_cfqq_slice_new(cfqq))
  1968. return true;
  1969. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  1970. cfqq->slice_end))
  1971. return true;
  1972. return false;
  1973. }
  1974. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1975. {
  1976. unsigned int max_dispatch;
  1977. /*
  1978. * Drain async requests before we start sync IO
  1979. */
  1980. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  1981. return false;
  1982. /*
  1983. * If this is an async queue and we have sync IO in flight, let it wait
  1984. */
  1985. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  1986. return false;
  1987. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  1988. if (cfq_class_idle(cfqq))
  1989. max_dispatch = 1;
  1990. /*
  1991. * Does this cfqq already have too much IO in flight?
  1992. */
  1993. if (cfqq->dispatched >= max_dispatch) {
  1994. bool promote_sync = false;
  1995. /*
  1996. * idle queue must always only have a single IO in flight
  1997. */
  1998. if (cfq_class_idle(cfqq))
  1999. return false;
  2000. /*
  2001. * If there is only one sync queue
  2002. * we can ignore async queue here and give the sync
  2003. * queue no dispatch limit. The reason is a sync queue can
  2004. * preempt async queue, limiting the sync queue doesn't make
  2005. * sense. This is useful for aiostress test.
  2006. */
  2007. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
  2008. promote_sync = true;
  2009. /*
  2010. * We have other queues, don't allow more IO from this one
  2011. */
  2012. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2013. !promote_sync)
  2014. return false;
  2015. /*
  2016. * Sole queue user, no limit
  2017. */
  2018. if (cfqd->busy_queues == 1 || promote_sync)
  2019. max_dispatch = -1;
  2020. else
  2021. /*
  2022. * Normally we start throttling cfqq when cfq_quantum/2
  2023. * requests have been dispatched. But we can drive
  2024. * deeper queue depths at the beginning of slice
  2025. * subjected to upper limit of cfq_quantum.
  2026. * */
  2027. max_dispatch = cfqd->cfq_quantum;
  2028. }
  2029. /*
  2030. * Async queues must wait a bit before being allowed dispatch.
  2031. * We also ramp up the dispatch depth gradually for async IO,
  2032. * based on the last sync IO we serviced
  2033. */
  2034. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2035. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2036. unsigned int depth;
  2037. depth = last_sync / cfqd->cfq_slice[1];
  2038. if (!depth && !cfqq->dispatched)
  2039. depth = 1;
  2040. if (depth < max_dispatch)
  2041. max_dispatch = depth;
  2042. }
  2043. /*
  2044. * If we're below the current max, allow a dispatch
  2045. */
  2046. return cfqq->dispatched < max_dispatch;
  2047. }
  2048. /*
  2049. * Dispatch a request from cfqq, moving them to the request queue
  2050. * dispatch list.
  2051. */
  2052. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2053. {
  2054. struct request *rq;
  2055. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2056. if (!cfq_may_dispatch(cfqd, cfqq))
  2057. return false;
  2058. /*
  2059. * follow expired path, else get first next available
  2060. */
  2061. rq = cfq_check_fifo(cfqq);
  2062. if (!rq)
  2063. rq = cfqq->next_rq;
  2064. /*
  2065. * insert request into driver dispatch list
  2066. */
  2067. cfq_dispatch_insert(cfqd->queue, rq);
  2068. if (!cfqd->active_cic) {
  2069. struct cfq_io_cq *cic = RQ_CIC(rq);
  2070. atomic_long_inc(&cic->icq.ioc->refcount);
  2071. cfqd->active_cic = cic;
  2072. }
  2073. return true;
  2074. }
  2075. /*
  2076. * Find the cfqq that we need to service and move a request from that to the
  2077. * dispatch list
  2078. */
  2079. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2080. {
  2081. struct cfq_data *cfqd = q->elevator->elevator_data;
  2082. struct cfq_queue *cfqq;
  2083. if (!cfqd->busy_queues)
  2084. return 0;
  2085. if (unlikely(force))
  2086. return cfq_forced_dispatch(cfqd);
  2087. cfqq = cfq_select_queue(cfqd);
  2088. if (!cfqq)
  2089. return 0;
  2090. /*
  2091. * Dispatch a request from this cfqq, if it is allowed
  2092. */
  2093. if (!cfq_dispatch_request(cfqd, cfqq))
  2094. return 0;
  2095. cfqq->slice_dispatch++;
  2096. cfq_clear_cfqq_must_dispatch(cfqq);
  2097. /*
  2098. * expire an async queue immediately if it has used up its slice. idle
  2099. * queue always expire after 1 dispatch round.
  2100. */
  2101. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2102. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2103. cfq_class_idle(cfqq))) {
  2104. cfqq->slice_end = jiffies + 1;
  2105. cfq_slice_expired(cfqd, 0);
  2106. }
  2107. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2108. return 1;
  2109. }
  2110. /*
  2111. * task holds one reference to the queue, dropped when task exits. each rq
  2112. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2113. *
  2114. * Each cfq queue took a reference on the parent group. Drop it now.
  2115. * queue lock must be held here.
  2116. */
  2117. static void cfq_put_queue(struct cfq_queue *cfqq)
  2118. {
  2119. struct cfq_data *cfqd = cfqq->cfqd;
  2120. struct cfq_group *cfqg;
  2121. BUG_ON(cfqq->ref <= 0);
  2122. cfqq->ref--;
  2123. if (cfqq->ref)
  2124. return;
  2125. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2126. BUG_ON(rb_first(&cfqq->sort_list));
  2127. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2128. cfqg = cfqq->cfqg;
  2129. if (unlikely(cfqd->active_queue == cfqq)) {
  2130. __cfq_slice_expired(cfqd, cfqq, 0);
  2131. cfq_schedule_dispatch(cfqd);
  2132. }
  2133. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2134. kmem_cache_free(cfq_pool, cfqq);
  2135. cfqg_put(cfqg);
  2136. }
  2137. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2138. {
  2139. struct cfq_queue *__cfqq, *next;
  2140. /*
  2141. * If this queue was scheduled to merge with another queue, be
  2142. * sure to drop the reference taken on that queue (and others in
  2143. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2144. */
  2145. __cfqq = cfqq->new_cfqq;
  2146. while (__cfqq) {
  2147. if (__cfqq == cfqq) {
  2148. WARN(1, "cfqq->new_cfqq loop detected\n");
  2149. break;
  2150. }
  2151. next = __cfqq->new_cfqq;
  2152. cfq_put_queue(__cfqq);
  2153. __cfqq = next;
  2154. }
  2155. }
  2156. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2157. {
  2158. if (unlikely(cfqq == cfqd->active_queue)) {
  2159. __cfq_slice_expired(cfqd, cfqq, 0);
  2160. cfq_schedule_dispatch(cfqd);
  2161. }
  2162. cfq_put_cooperator(cfqq);
  2163. cfq_put_queue(cfqq);
  2164. }
  2165. static void cfq_init_icq(struct io_cq *icq)
  2166. {
  2167. struct cfq_io_cq *cic = icq_to_cic(icq);
  2168. cic->ttime.last_end_request = jiffies;
  2169. }
  2170. static void cfq_exit_icq(struct io_cq *icq)
  2171. {
  2172. struct cfq_io_cq *cic = icq_to_cic(icq);
  2173. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2174. if (cic->cfqq[BLK_RW_ASYNC]) {
  2175. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2176. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2177. }
  2178. if (cic->cfqq[BLK_RW_SYNC]) {
  2179. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2180. cic->cfqq[BLK_RW_SYNC] = NULL;
  2181. }
  2182. }
  2183. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
  2184. {
  2185. struct task_struct *tsk = current;
  2186. int ioprio_class;
  2187. if (!cfq_cfqq_prio_changed(cfqq))
  2188. return;
  2189. ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
  2190. switch (ioprio_class) {
  2191. default:
  2192. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2193. case IOPRIO_CLASS_NONE:
  2194. /*
  2195. * no prio set, inherit CPU scheduling settings
  2196. */
  2197. cfqq->ioprio = task_nice_ioprio(tsk);
  2198. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2199. break;
  2200. case IOPRIO_CLASS_RT:
  2201. cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
  2202. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2203. break;
  2204. case IOPRIO_CLASS_BE:
  2205. cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
  2206. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2207. break;
  2208. case IOPRIO_CLASS_IDLE:
  2209. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2210. cfqq->ioprio = 7;
  2211. cfq_clear_cfqq_idle_window(cfqq);
  2212. break;
  2213. }
  2214. /*
  2215. * keep track of original prio settings in case we have to temporarily
  2216. * elevate the priority of this queue
  2217. */
  2218. cfqq->org_ioprio = cfqq->ioprio;
  2219. cfq_clear_cfqq_prio_changed(cfqq);
  2220. }
  2221. static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
  2222. {
  2223. int ioprio = cic->icq.ioc->ioprio;
  2224. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2225. struct cfq_queue *cfqq;
  2226. /*
  2227. * Check whether ioprio has changed. The condition may trigger
  2228. * spuriously on a newly created cic but there's no harm.
  2229. */
  2230. if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
  2231. return;
  2232. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2233. if (cfqq) {
  2234. struct cfq_queue *new_cfqq;
  2235. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
  2236. GFP_ATOMIC);
  2237. if (new_cfqq) {
  2238. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2239. cfq_put_queue(cfqq);
  2240. }
  2241. }
  2242. cfqq = cic->cfqq[BLK_RW_SYNC];
  2243. if (cfqq)
  2244. cfq_mark_cfqq_prio_changed(cfqq);
  2245. cic->ioprio = ioprio;
  2246. }
  2247. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2248. pid_t pid, bool is_sync)
  2249. {
  2250. RB_CLEAR_NODE(&cfqq->rb_node);
  2251. RB_CLEAR_NODE(&cfqq->p_node);
  2252. INIT_LIST_HEAD(&cfqq->fifo);
  2253. cfqq->ref = 0;
  2254. cfqq->cfqd = cfqd;
  2255. cfq_mark_cfqq_prio_changed(cfqq);
  2256. if (is_sync) {
  2257. if (!cfq_class_idle(cfqq))
  2258. cfq_mark_cfqq_idle_window(cfqq);
  2259. cfq_mark_cfqq_sync(cfqq);
  2260. }
  2261. cfqq->pid = pid;
  2262. }
  2263. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2264. static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
  2265. {
  2266. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2267. struct cfq_queue *sync_cfqq;
  2268. uint64_t id;
  2269. rcu_read_lock();
  2270. id = bio_blkio_cgroup(bio)->id;
  2271. rcu_read_unlock();
  2272. /*
  2273. * Check whether blkcg has changed. The condition may trigger
  2274. * spuriously on a newly created cic but there's no harm.
  2275. */
  2276. if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
  2277. return;
  2278. sync_cfqq = cic_to_cfqq(cic, 1);
  2279. if (sync_cfqq) {
  2280. /*
  2281. * Drop reference to sync queue. A new sync queue will be
  2282. * assigned in new group upon arrival of a fresh request.
  2283. */
  2284. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2285. cic_set_cfqq(cic, NULL, 1);
  2286. cfq_put_queue(sync_cfqq);
  2287. }
  2288. cic->blkcg_id = id;
  2289. }
  2290. #else
  2291. static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
  2292. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2293. static struct cfq_queue *
  2294. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
  2295. struct bio *bio, gfp_t gfp_mask)
  2296. {
  2297. struct blkio_cgroup *blkcg;
  2298. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2299. struct cfq_group *cfqg;
  2300. retry:
  2301. rcu_read_lock();
  2302. blkcg = bio_blkio_cgroup(bio);
  2303. cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
  2304. cfqq = cic_to_cfqq(cic, is_sync);
  2305. /*
  2306. * Always try a new alloc if we fell back to the OOM cfqq
  2307. * originally, since it should just be a temporary situation.
  2308. */
  2309. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2310. cfqq = NULL;
  2311. if (new_cfqq) {
  2312. cfqq = new_cfqq;
  2313. new_cfqq = NULL;
  2314. } else if (gfp_mask & __GFP_WAIT) {
  2315. rcu_read_unlock();
  2316. spin_unlock_irq(cfqd->queue->queue_lock);
  2317. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2318. gfp_mask | __GFP_ZERO,
  2319. cfqd->queue->node);
  2320. spin_lock_irq(cfqd->queue->queue_lock);
  2321. if (new_cfqq)
  2322. goto retry;
  2323. } else {
  2324. cfqq = kmem_cache_alloc_node(cfq_pool,
  2325. gfp_mask | __GFP_ZERO,
  2326. cfqd->queue->node);
  2327. }
  2328. if (cfqq) {
  2329. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2330. cfq_init_prio_data(cfqq, cic);
  2331. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2332. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2333. } else
  2334. cfqq = &cfqd->oom_cfqq;
  2335. }
  2336. if (new_cfqq)
  2337. kmem_cache_free(cfq_pool, new_cfqq);
  2338. rcu_read_unlock();
  2339. return cfqq;
  2340. }
  2341. static struct cfq_queue **
  2342. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2343. {
  2344. switch (ioprio_class) {
  2345. case IOPRIO_CLASS_RT:
  2346. return &cfqd->async_cfqq[0][ioprio];
  2347. case IOPRIO_CLASS_NONE:
  2348. ioprio = IOPRIO_NORM;
  2349. /* fall through */
  2350. case IOPRIO_CLASS_BE:
  2351. return &cfqd->async_cfqq[1][ioprio];
  2352. case IOPRIO_CLASS_IDLE:
  2353. return &cfqd->async_idle_cfqq;
  2354. default:
  2355. BUG();
  2356. }
  2357. }
  2358. static struct cfq_queue *
  2359. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
  2360. struct bio *bio, gfp_t gfp_mask)
  2361. {
  2362. const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
  2363. const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
  2364. struct cfq_queue **async_cfqq = NULL;
  2365. struct cfq_queue *cfqq = NULL;
  2366. if (!is_sync) {
  2367. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2368. cfqq = *async_cfqq;
  2369. }
  2370. if (!cfqq)
  2371. cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
  2372. /*
  2373. * pin the queue now that it's allocated, scheduler exit will prune it
  2374. */
  2375. if (!is_sync && !(*async_cfqq)) {
  2376. cfqq->ref++;
  2377. *async_cfqq = cfqq;
  2378. }
  2379. cfqq->ref++;
  2380. return cfqq;
  2381. }
  2382. static void
  2383. __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
  2384. {
  2385. unsigned long elapsed = jiffies - ttime->last_end_request;
  2386. elapsed = min(elapsed, 2UL * slice_idle);
  2387. ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
  2388. ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
  2389. ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
  2390. }
  2391. static void
  2392. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2393. struct cfq_io_cq *cic)
  2394. {
  2395. if (cfq_cfqq_sync(cfqq)) {
  2396. __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
  2397. __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
  2398. cfqd->cfq_slice_idle);
  2399. }
  2400. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2401. __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
  2402. #endif
  2403. }
  2404. static void
  2405. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2406. struct request *rq)
  2407. {
  2408. sector_t sdist = 0;
  2409. sector_t n_sec = blk_rq_sectors(rq);
  2410. if (cfqq->last_request_pos) {
  2411. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2412. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2413. else
  2414. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2415. }
  2416. cfqq->seek_history <<= 1;
  2417. if (blk_queue_nonrot(cfqd->queue))
  2418. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2419. else
  2420. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2421. }
  2422. /*
  2423. * Disable idle window if the process thinks too long or seeks so much that
  2424. * it doesn't matter
  2425. */
  2426. static void
  2427. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2428. struct cfq_io_cq *cic)
  2429. {
  2430. int old_idle, enable_idle;
  2431. /*
  2432. * Don't idle for async or idle io prio class
  2433. */
  2434. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2435. return;
  2436. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2437. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2438. cfq_mark_cfqq_deep(cfqq);
  2439. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2440. enable_idle = 0;
  2441. else if (!atomic_read(&cic->icq.ioc->active_ref) ||
  2442. !cfqd->cfq_slice_idle ||
  2443. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2444. enable_idle = 0;
  2445. else if (sample_valid(cic->ttime.ttime_samples)) {
  2446. if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
  2447. enable_idle = 0;
  2448. else
  2449. enable_idle = 1;
  2450. }
  2451. if (old_idle != enable_idle) {
  2452. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2453. if (enable_idle)
  2454. cfq_mark_cfqq_idle_window(cfqq);
  2455. else
  2456. cfq_clear_cfqq_idle_window(cfqq);
  2457. }
  2458. }
  2459. /*
  2460. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2461. * no or if we aren't sure, a 1 will cause a preempt.
  2462. */
  2463. static bool
  2464. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2465. struct request *rq)
  2466. {
  2467. struct cfq_queue *cfqq;
  2468. cfqq = cfqd->active_queue;
  2469. if (!cfqq)
  2470. return false;
  2471. if (cfq_class_idle(new_cfqq))
  2472. return false;
  2473. if (cfq_class_idle(cfqq))
  2474. return true;
  2475. /*
  2476. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2477. */
  2478. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2479. return false;
  2480. /*
  2481. * if the new request is sync, but the currently running queue is
  2482. * not, let the sync request have priority.
  2483. */
  2484. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2485. return true;
  2486. if (new_cfqq->cfqg != cfqq->cfqg)
  2487. return false;
  2488. if (cfq_slice_used(cfqq))
  2489. return true;
  2490. /* Allow preemption only if we are idling on sync-noidle tree */
  2491. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2492. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2493. new_cfqq->service_tree->count == 2 &&
  2494. RB_EMPTY_ROOT(&cfqq->sort_list))
  2495. return true;
  2496. /*
  2497. * So both queues are sync. Let the new request get disk time if
  2498. * it's a metadata request and the current queue is doing regular IO.
  2499. */
  2500. if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
  2501. return true;
  2502. /*
  2503. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2504. */
  2505. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2506. return true;
  2507. /* An idle queue should not be idle now for some reason */
  2508. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2509. return true;
  2510. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2511. return false;
  2512. /*
  2513. * if this request is as-good as one we would expect from the
  2514. * current cfqq, let it preempt
  2515. */
  2516. if (cfq_rq_close(cfqd, cfqq, rq))
  2517. return true;
  2518. return false;
  2519. }
  2520. /*
  2521. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2522. * let it have half of its nominal slice.
  2523. */
  2524. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2525. {
  2526. enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
  2527. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2528. cfq_slice_expired(cfqd, 1);
  2529. /*
  2530. * workload type is changed, don't save slice, otherwise preempt
  2531. * doesn't happen
  2532. */
  2533. if (old_type != cfqq_type(cfqq))
  2534. cfqq->cfqg->saved_workload_slice = 0;
  2535. /*
  2536. * Put the new queue at the front of the of the current list,
  2537. * so we know that it will be selected next.
  2538. */
  2539. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2540. cfq_service_tree_add(cfqd, cfqq, 1);
  2541. cfqq->slice_end = 0;
  2542. cfq_mark_cfqq_slice_new(cfqq);
  2543. }
  2544. /*
  2545. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2546. * something we should do about it
  2547. */
  2548. static void
  2549. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2550. struct request *rq)
  2551. {
  2552. struct cfq_io_cq *cic = RQ_CIC(rq);
  2553. cfqd->rq_queued++;
  2554. if (rq->cmd_flags & REQ_PRIO)
  2555. cfqq->prio_pending++;
  2556. cfq_update_io_thinktime(cfqd, cfqq, cic);
  2557. cfq_update_io_seektime(cfqd, cfqq, rq);
  2558. cfq_update_idle_window(cfqd, cfqq, cic);
  2559. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2560. if (cfqq == cfqd->active_queue) {
  2561. /*
  2562. * Remember that we saw a request from this process, but
  2563. * don't start queuing just yet. Otherwise we risk seeing lots
  2564. * of tiny requests, because we disrupt the normal plugging
  2565. * and merging. If the request is already larger than a single
  2566. * page, let it rip immediately. For that case we assume that
  2567. * merging is already done. Ditto for a busy system that
  2568. * has other work pending, don't risk delaying until the
  2569. * idle timer unplug to continue working.
  2570. */
  2571. if (cfq_cfqq_wait_request(cfqq)) {
  2572. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2573. cfqd->busy_queues > 1) {
  2574. cfq_del_timer(cfqd, cfqq);
  2575. cfq_clear_cfqq_wait_request(cfqq);
  2576. __blk_run_queue(cfqd->queue);
  2577. } else {
  2578. cfq_blkiocg_update_idle_time_stats(
  2579. cfqg_to_blkg(cfqq->cfqg),
  2580. &blkio_policy_cfq);
  2581. cfq_mark_cfqq_must_dispatch(cfqq);
  2582. }
  2583. }
  2584. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2585. /*
  2586. * not the active queue - expire current slice if it is
  2587. * idle and has expired it's mean thinktime or this new queue
  2588. * has some old slice time left and is of higher priority or
  2589. * this new queue is RT and the current one is BE
  2590. */
  2591. cfq_preempt_queue(cfqd, cfqq);
  2592. __blk_run_queue(cfqd->queue);
  2593. }
  2594. }
  2595. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2596. {
  2597. struct cfq_data *cfqd = q->elevator->elevator_data;
  2598. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2599. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2600. cfq_init_prio_data(cfqq, RQ_CIC(rq));
  2601. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2602. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2603. cfq_add_rq_rb(rq);
  2604. cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  2605. &blkio_policy_cfq,
  2606. cfqg_to_blkg(cfqd->serving_group),
  2607. rq_data_dir(rq), rq_is_sync(rq));
  2608. cfq_rq_enqueued(cfqd, cfqq, rq);
  2609. }
  2610. /*
  2611. * Update hw_tag based on peak queue depth over 50 samples under
  2612. * sufficient load.
  2613. */
  2614. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2615. {
  2616. struct cfq_queue *cfqq = cfqd->active_queue;
  2617. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2618. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2619. if (cfqd->hw_tag == 1)
  2620. return;
  2621. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2622. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2623. return;
  2624. /*
  2625. * If active queue hasn't enough requests and can idle, cfq might not
  2626. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2627. * case
  2628. */
  2629. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2630. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2631. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2632. return;
  2633. if (cfqd->hw_tag_samples++ < 50)
  2634. return;
  2635. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2636. cfqd->hw_tag = 1;
  2637. else
  2638. cfqd->hw_tag = 0;
  2639. }
  2640. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2641. {
  2642. struct cfq_io_cq *cic = cfqd->active_cic;
  2643. /* If the queue already has requests, don't wait */
  2644. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2645. return false;
  2646. /* If there are other queues in the group, don't wait */
  2647. if (cfqq->cfqg->nr_cfqq > 1)
  2648. return false;
  2649. /* the only queue in the group, but think time is big */
  2650. if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
  2651. return false;
  2652. if (cfq_slice_used(cfqq))
  2653. return true;
  2654. /* if slice left is less than think time, wait busy */
  2655. if (cic && sample_valid(cic->ttime.ttime_samples)
  2656. && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
  2657. return true;
  2658. /*
  2659. * If think times is less than a jiffy than ttime_mean=0 and above
  2660. * will not be true. It might happen that slice has not expired yet
  2661. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2662. * case where think time is less than a jiffy, mark the queue wait
  2663. * busy if only 1 jiffy is left in the slice.
  2664. */
  2665. if (cfqq->slice_end - jiffies == 1)
  2666. return true;
  2667. return false;
  2668. }
  2669. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2670. {
  2671. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2672. struct cfq_data *cfqd = cfqq->cfqd;
  2673. const int sync = rq_is_sync(rq);
  2674. unsigned long now;
  2675. now = jiffies;
  2676. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2677. !!(rq->cmd_flags & REQ_NOIDLE));
  2678. cfq_update_hw_tag(cfqd);
  2679. WARN_ON(!cfqd->rq_in_driver);
  2680. WARN_ON(!cfqq->dispatched);
  2681. cfqd->rq_in_driver--;
  2682. cfqq->dispatched--;
  2683. (RQ_CFQG(rq))->dispatched--;
  2684. cfq_blkiocg_update_completion_stats(cfqg_to_blkg(cfqq->cfqg),
  2685. &blkio_policy_cfq, rq_start_time_ns(rq),
  2686. rq_io_start_time_ns(rq), rq_data_dir(rq),
  2687. rq_is_sync(rq));
  2688. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2689. if (sync) {
  2690. struct cfq_rb_root *service_tree;
  2691. RQ_CIC(rq)->ttime.last_end_request = now;
  2692. if (cfq_cfqq_on_rr(cfqq))
  2693. service_tree = cfqq->service_tree;
  2694. else
  2695. service_tree = service_tree_for(cfqq->cfqg,
  2696. cfqq_prio(cfqq), cfqq_type(cfqq));
  2697. service_tree->ttime.last_end_request = now;
  2698. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2699. cfqd->last_delayed_sync = now;
  2700. }
  2701. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2702. cfqq->cfqg->ttime.last_end_request = now;
  2703. #endif
  2704. /*
  2705. * If this is the active queue, check if it needs to be expired,
  2706. * or if we want to idle in case it has no pending requests.
  2707. */
  2708. if (cfqd->active_queue == cfqq) {
  2709. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2710. if (cfq_cfqq_slice_new(cfqq)) {
  2711. cfq_set_prio_slice(cfqd, cfqq);
  2712. cfq_clear_cfqq_slice_new(cfqq);
  2713. }
  2714. /*
  2715. * Should we wait for next request to come in before we expire
  2716. * the queue.
  2717. */
  2718. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2719. unsigned long extend_sl = cfqd->cfq_slice_idle;
  2720. if (!cfqd->cfq_slice_idle)
  2721. extend_sl = cfqd->cfq_group_idle;
  2722. cfqq->slice_end = jiffies + extend_sl;
  2723. cfq_mark_cfqq_wait_busy(cfqq);
  2724. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2725. }
  2726. /*
  2727. * Idling is not enabled on:
  2728. * - expired queues
  2729. * - idle-priority queues
  2730. * - async queues
  2731. * - queues with still some requests queued
  2732. * - when there is a close cooperator
  2733. */
  2734. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2735. cfq_slice_expired(cfqd, 1);
  2736. else if (sync && cfqq_empty &&
  2737. !cfq_close_cooperator(cfqd, cfqq)) {
  2738. cfq_arm_slice_timer(cfqd);
  2739. }
  2740. }
  2741. if (!cfqd->rq_in_driver)
  2742. cfq_schedule_dispatch(cfqd);
  2743. }
  2744. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2745. {
  2746. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2747. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2748. return ELV_MQUEUE_MUST;
  2749. }
  2750. return ELV_MQUEUE_MAY;
  2751. }
  2752. static int cfq_may_queue(struct request_queue *q, int rw)
  2753. {
  2754. struct cfq_data *cfqd = q->elevator->elevator_data;
  2755. struct task_struct *tsk = current;
  2756. struct cfq_io_cq *cic;
  2757. struct cfq_queue *cfqq;
  2758. /*
  2759. * don't force setup of a queue from here, as a call to may_queue
  2760. * does not necessarily imply that a request actually will be queued.
  2761. * so just lookup a possibly existing queue, or return 'may queue'
  2762. * if that fails
  2763. */
  2764. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  2765. if (!cic)
  2766. return ELV_MQUEUE_MAY;
  2767. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  2768. if (cfqq) {
  2769. cfq_init_prio_data(cfqq, cic);
  2770. return __cfq_may_queue(cfqq);
  2771. }
  2772. return ELV_MQUEUE_MAY;
  2773. }
  2774. /*
  2775. * queue lock held here
  2776. */
  2777. static void cfq_put_request(struct request *rq)
  2778. {
  2779. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2780. if (cfqq) {
  2781. const int rw = rq_data_dir(rq);
  2782. BUG_ON(!cfqq->allocated[rw]);
  2783. cfqq->allocated[rw]--;
  2784. /* Put down rq reference on cfqg */
  2785. cfqg_put(RQ_CFQG(rq));
  2786. rq->elv.priv[0] = NULL;
  2787. rq->elv.priv[1] = NULL;
  2788. cfq_put_queue(cfqq);
  2789. }
  2790. }
  2791. static struct cfq_queue *
  2792. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
  2793. struct cfq_queue *cfqq)
  2794. {
  2795. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  2796. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  2797. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  2798. cfq_put_queue(cfqq);
  2799. return cic_to_cfqq(cic, 1);
  2800. }
  2801. /*
  2802. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  2803. * was the last process referring to said cfqq.
  2804. */
  2805. static struct cfq_queue *
  2806. split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
  2807. {
  2808. if (cfqq_process_refs(cfqq) == 1) {
  2809. cfqq->pid = current->pid;
  2810. cfq_clear_cfqq_coop(cfqq);
  2811. cfq_clear_cfqq_split_coop(cfqq);
  2812. return cfqq;
  2813. }
  2814. cic_set_cfqq(cic, NULL, 1);
  2815. cfq_put_cooperator(cfqq);
  2816. cfq_put_queue(cfqq);
  2817. return NULL;
  2818. }
  2819. /*
  2820. * Allocate cfq data structures associated with this request.
  2821. */
  2822. static int
  2823. cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
  2824. gfp_t gfp_mask)
  2825. {
  2826. struct cfq_data *cfqd = q->elevator->elevator_data;
  2827. struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
  2828. const int rw = rq_data_dir(rq);
  2829. const bool is_sync = rq_is_sync(rq);
  2830. struct cfq_queue *cfqq;
  2831. might_sleep_if(gfp_mask & __GFP_WAIT);
  2832. spin_lock_irq(q->queue_lock);
  2833. check_ioprio_changed(cic, bio);
  2834. check_blkcg_changed(cic, bio);
  2835. new_queue:
  2836. cfqq = cic_to_cfqq(cic, is_sync);
  2837. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2838. cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
  2839. cic_set_cfqq(cic, cfqq, is_sync);
  2840. } else {
  2841. /*
  2842. * If the queue was seeky for too long, break it apart.
  2843. */
  2844. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  2845. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  2846. cfqq = split_cfqq(cic, cfqq);
  2847. if (!cfqq)
  2848. goto new_queue;
  2849. }
  2850. /*
  2851. * Check to see if this queue is scheduled to merge with
  2852. * another, closely cooperating queue. The merging of
  2853. * queues happens here as it must be done in process context.
  2854. * The reference on new_cfqq was taken in merge_cfqqs.
  2855. */
  2856. if (cfqq->new_cfqq)
  2857. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  2858. }
  2859. cfqq->allocated[rw]++;
  2860. cfqq->ref++;
  2861. cfqg_get(cfqq->cfqg);
  2862. rq->elv.priv[0] = cfqq;
  2863. rq->elv.priv[1] = cfqq->cfqg;
  2864. spin_unlock_irq(q->queue_lock);
  2865. return 0;
  2866. }
  2867. static void cfq_kick_queue(struct work_struct *work)
  2868. {
  2869. struct cfq_data *cfqd =
  2870. container_of(work, struct cfq_data, unplug_work);
  2871. struct request_queue *q = cfqd->queue;
  2872. spin_lock_irq(q->queue_lock);
  2873. __blk_run_queue(cfqd->queue);
  2874. spin_unlock_irq(q->queue_lock);
  2875. }
  2876. /*
  2877. * Timer running if the active_queue is currently idling inside its time slice
  2878. */
  2879. static void cfq_idle_slice_timer(unsigned long data)
  2880. {
  2881. struct cfq_data *cfqd = (struct cfq_data *) data;
  2882. struct cfq_queue *cfqq;
  2883. unsigned long flags;
  2884. int timed_out = 1;
  2885. cfq_log(cfqd, "idle timer fired");
  2886. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2887. cfqq = cfqd->active_queue;
  2888. if (cfqq) {
  2889. timed_out = 0;
  2890. /*
  2891. * We saw a request before the queue expired, let it through
  2892. */
  2893. if (cfq_cfqq_must_dispatch(cfqq))
  2894. goto out_kick;
  2895. /*
  2896. * expired
  2897. */
  2898. if (cfq_slice_used(cfqq))
  2899. goto expire;
  2900. /*
  2901. * only expire and reinvoke request handler, if there are
  2902. * other queues with pending requests
  2903. */
  2904. if (!cfqd->busy_queues)
  2905. goto out_cont;
  2906. /*
  2907. * not expired and it has a request pending, let it dispatch
  2908. */
  2909. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2910. goto out_kick;
  2911. /*
  2912. * Queue depth flag is reset only when the idle didn't succeed
  2913. */
  2914. cfq_clear_cfqq_deep(cfqq);
  2915. }
  2916. expire:
  2917. cfq_slice_expired(cfqd, timed_out);
  2918. out_kick:
  2919. cfq_schedule_dispatch(cfqd);
  2920. out_cont:
  2921. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2922. }
  2923. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  2924. {
  2925. del_timer_sync(&cfqd->idle_slice_timer);
  2926. cancel_work_sync(&cfqd->unplug_work);
  2927. }
  2928. static void cfq_put_async_queues(struct cfq_data *cfqd)
  2929. {
  2930. int i;
  2931. for (i = 0; i < IOPRIO_BE_NR; i++) {
  2932. if (cfqd->async_cfqq[0][i])
  2933. cfq_put_queue(cfqd->async_cfqq[0][i]);
  2934. if (cfqd->async_cfqq[1][i])
  2935. cfq_put_queue(cfqd->async_cfqq[1][i]);
  2936. }
  2937. if (cfqd->async_idle_cfqq)
  2938. cfq_put_queue(cfqd->async_idle_cfqq);
  2939. }
  2940. static void cfq_exit_queue(struct elevator_queue *e)
  2941. {
  2942. struct cfq_data *cfqd = e->elevator_data;
  2943. struct request_queue *q = cfqd->queue;
  2944. cfq_shutdown_timer_wq(cfqd);
  2945. spin_lock_irq(q->queue_lock);
  2946. if (cfqd->active_queue)
  2947. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  2948. cfq_put_async_queues(cfqd);
  2949. spin_unlock_irq(q->queue_lock);
  2950. cfq_shutdown_timer_wq(cfqd);
  2951. #ifndef CONFIG_CFQ_GROUP_IOSCHED
  2952. kfree(cfqd->root_group);
  2953. #endif
  2954. update_root_blkg_pd(q, BLKIO_POLICY_PROP);
  2955. kfree(cfqd);
  2956. }
  2957. static int cfq_init_queue(struct request_queue *q)
  2958. {
  2959. struct cfq_data *cfqd;
  2960. struct blkio_group *blkg __maybe_unused;
  2961. int i;
  2962. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  2963. if (!cfqd)
  2964. return -ENOMEM;
  2965. cfqd->queue = q;
  2966. q->elevator->elevator_data = cfqd;
  2967. /* Init root service tree */
  2968. cfqd->grp_service_tree = CFQ_RB_ROOT;
  2969. /* Init root group and prefer root group over other groups by default */
  2970. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2971. rcu_read_lock();
  2972. spin_lock_irq(q->queue_lock);
  2973. blkg = blkg_lookup_create(&blkio_root_cgroup, q, true);
  2974. if (!IS_ERR(blkg))
  2975. cfqd->root_group = blkg_to_cfqg(blkg);
  2976. spin_unlock_irq(q->queue_lock);
  2977. rcu_read_unlock();
  2978. #else
  2979. cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
  2980. GFP_KERNEL, cfqd->queue->node);
  2981. if (cfqd->root_group)
  2982. cfq_init_cfqg_base(cfqd->root_group);
  2983. #endif
  2984. if (!cfqd->root_group) {
  2985. kfree(cfqd);
  2986. return -ENOMEM;
  2987. }
  2988. cfqd->root_group->weight = 2*BLKIO_WEIGHT_DEFAULT;
  2989. /*
  2990. * Not strictly needed (since RB_ROOT just clears the node and we
  2991. * zeroed cfqd on alloc), but better be safe in case someone decides
  2992. * to add magic to the rb code
  2993. */
  2994. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  2995. cfqd->prio_trees[i] = RB_ROOT;
  2996. /*
  2997. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  2998. * Grab a permanent reference to it, so that the normal code flow
  2999. * will not attempt to free it. oom_cfqq is linked to root_group
  3000. * but shouldn't hold a reference as it'll never be unlinked. Lose
  3001. * the reference from linking right away.
  3002. */
  3003. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3004. cfqd->oom_cfqq.ref++;
  3005. spin_lock_irq(q->queue_lock);
  3006. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
  3007. cfqg_put(cfqd->root_group);
  3008. spin_unlock_irq(q->queue_lock);
  3009. init_timer(&cfqd->idle_slice_timer);
  3010. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3011. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3012. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3013. cfqd->cfq_quantum = cfq_quantum;
  3014. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3015. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3016. cfqd->cfq_back_max = cfq_back_max;
  3017. cfqd->cfq_back_penalty = cfq_back_penalty;
  3018. cfqd->cfq_slice[0] = cfq_slice_async;
  3019. cfqd->cfq_slice[1] = cfq_slice_sync;
  3020. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3021. cfqd->cfq_slice_idle = cfq_slice_idle;
  3022. cfqd->cfq_group_idle = cfq_group_idle;
  3023. cfqd->cfq_latency = 1;
  3024. cfqd->hw_tag = -1;
  3025. /*
  3026. * we optimistically start assuming sync ops weren't delayed in last
  3027. * second, in order to have larger depth for async operations.
  3028. */
  3029. cfqd->last_delayed_sync = jiffies - HZ;
  3030. return 0;
  3031. }
  3032. /*
  3033. * sysfs parts below -->
  3034. */
  3035. static ssize_t
  3036. cfq_var_show(unsigned int var, char *page)
  3037. {
  3038. return sprintf(page, "%d\n", var);
  3039. }
  3040. static ssize_t
  3041. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3042. {
  3043. char *p = (char *) page;
  3044. *var = simple_strtoul(p, &p, 10);
  3045. return count;
  3046. }
  3047. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3048. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3049. { \
  3050. struct cfq_data *cfqd = e->elevator_data; \
  3051. unsigned int __data = __VAR; \
  3052. if (__CONV) \
  3053. __data = jiffies_to_msecs(__data); \
  3054. return cfq_var_show(__data, (page)); \
  3055. }
  3056. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3057. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3058. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3059. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3060. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3061. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3062. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3063. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3064. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3065. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3066. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3067. #undef SHOW_FUNCTION
  3068. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3069. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3070. { \
  3071. struct cfq_data *cfqd = e->elevator_data; \
  3072. unsigned int __data; \
  3073. int ret = cfq_var_store(&__data, (page), count); \
  3074. if (__data < (MIN)) \
  3075. __data = (MIN); \
  3076. else if (__data > (MAX)) \
  3077. __data = (MAX); \
  3078. if (__CONV) \
  3079. *(__PTR) = msecs_to_jiffies(__data); \
  3080. else \
  3081. *(__PTR) = __data; \
  3082. return ret; \
  3083. }
  3084. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3085. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3086. UINT_MAX, 1);
  3087. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3088. UINT_MAX, 1);
  3089. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3090. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3091. UINT_MAX, 0);
  3092. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3093. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3094. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3095. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3096. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3097. UINT_MAX, 0);
  3098. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3099. #undef STORE_FUNCTION
  3100. #define CFQ_ATTR(name) \
  3101. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3102. static struct elv_fs_entry cfq_attrs[] = {
  3103. CFQ_ATTR(quantum),
  3104. CFQ_ATTR(fifo_expire_sync),
  3105. CFQ_ATTR(fifo_expire_async),
  3106. CFQ_ATTR(back_seek_max),
  3107. CFQ_ATTR(back_seek_penalty),
  3108. CFQ_ATTR(slice_sync),
  3109. CFQ_ATTR(slice_async),
  3110. CFQ_ATTR(slice_async_rq),
  3111. CFQ_ATTR(slice_idle),
  3112. CFQ_ATTR(group_idle),
  3113. CFQ_ATTR(low_latency),
  3114. __ATTR_NULL
  3115. };
  3116. static struct elevator_type iosched_cfq = {
  3117. .ops = {
  3118. .elevator_merge_fn = cfq_merge,
  3119. .elevator_merged_fn = cfq_merged_request,
  3120. .elevator_merge_req_fn = cfq_merged_requests,
  3121. .elevator_allow_merge_fn = cfq_allow_merge,
  3122. .elevator_bio_merged_fn = cfq_bio_merged,
  3123. .elevator_dispatch_fn = cfq_dispatch_requests,
  3124. .elevator_add_req_fn = cfq_insert_request,
  3125. .elevator_activate_req_fn = cfq_activate_request,
  3126. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3127. .elevator_completed_req_fn = cfq_completed_request,
  3128. .elevator_former_req_fn = elv_rb_former_request,
  3129. .elevator_latter_req_fn = elv_rb_latter_request,
  3130. .elevator_init_icq_fn = cfq_init_icq,
  3131. .elevator_exit_icq_fn = cfq_exit_icq,
  3132. .elevator_set_req_fn = cfq_set_request,
  3133. .elevator_put_req_fn = cfq_put_request,
  3134. .elevator_may_queue_fn = cfq_may_queue,
  3135. .elevator_init_fn = cfq_init_queue,
  3136. .elevator_exit_fn = cfq_exit_queue,
  3137. },
  3138. .icq_size = sizeof(struct cfq_io_cq),
  3139. .icq_align = __alignof__(struct cfq_io_cq),
  3140. .elevator_attrs = cfq_attrs,
  3141. .elevator_name = "cfq",
  3142. .elevator_owner = THIS_MODULE,
  3143. };
  3144. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3145. static struct blkio_policy_type blkio_policy_cfq = {
  3146. .ops = {
  3147. .blkio_init_group_fn = cfq_init_blkio_group,
  3148. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3149. },
  3150. .plid = BLKIO_POLICY_PROP,
  3151. .pdata_size = sizeof(struct cfq_group),
  3152. };
  3153. #endif
  3154. static int __init cfq_init(void)
  3155. {
  3156. int ret;
  3157. /*
  3158. * could be 0 on HZ < 1000 setups
  3159. */
  3160. if (!cfq_slice_async)
  3161. cfq_slice_async = 1;
  3162. if (!cfq_slice_idle)
  3163. cfq_slice_idle = 1;
  3164. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3165. if (!cfq_group_idle)
  3166. cfq_group_idle = 1;
  3167. #else
  3168. cfq_group_idle = 0;
  3169. #endif
  3170. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3171. if (!cfq_pool)
  3172. return -ENOMEM;
  3173. ret = elv_register(&iosched_cfq);
  3174. if (ret) {
  3175. kmem_cache_destroy(cfq_pool);
  3176. return ret;
  3177. }
  3178. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3179. blkio_policy_register(&blkio_policy_cfq);
  3180. #endif
  3181. return 0;
  3182. }
  3183. static void __exit cfq_exit(void)
  3184. {
  3185. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3186. blkio_policy_unregister(&blkio_policy_cfq);
  3187. #endif
  3188. elv_unregister(&iosched_cfq);
  3189. kmem_cache_destroy(cfq_pool);
  3190. }
  3191. module_init(cfq_init);
  3192. module_exit(cfq_exit);
  3193. MODULE_AUTHOR("Jens Axboe");
  3194. MODULE_LICENSE("GPL");
  3195. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");