sched_fair.c 103 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. /*
  25. * Targeted preemption latency for CPU-bound tasks:
  26. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  27. *
  28. * NOTE: this latency value is not the same as the concept of
  29. * 'timeslice length' - timeslices in CFS are of variable length
  30. * and have no persistent notion like in traditional, time-slice
  31. * based scheduling concepts.
  32. *
  33. * (to see the precise effective timeslice length of your workload,
  34. * run vmstat and monitor the context-switches (cs) field)
  35. */
  36. unsigned int sysctl_sched_latency = 6000000ULL;
  37. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  38. /*
  39. * The initial- and re-scaling of tunables is configurable
  40. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  41. *
  42. * Options are:
  43. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  44. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  45. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  46. */
  47. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  48. = SCHED_TUNABLESCALING_LOG;
  49. /*
  50. * Minimal preemption granularity for CPU-bound tasks:
  51. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  52. */
  53. unsigned int sysctl_sched_min_granularity = 750000ULL;
  54. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  55. /*
  56. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  57. */
  58. static unsigned int sched_nr_latency = 8;
  59. /*
  60. * After fork, child runs first. If set to 0 (default) then
  61. * parent will (try to) run first.
  62. */
  63. unsigned int sysctl_sched_child_runs_first __read_mostly;
  64. /*
  65. * sys_sched_yield() compat mode
  66. *
  67. * This option switches the agressive yield implementation of the
  68. * old scheduler back on.
  69. */
  70. unsigned int __read_mostly sysctl_sched_compat_yield;
  71. /*
  72. * SCHED_OTHER wake-up granularity.
  73. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  74. *
  75. * This option delays the preemption effects of decoupled workloads
  76. * and reduces their over-scheduling. Synchronous workloads will still
  77. * have immediate wakeup/sleep latencies.
  78. */
  79. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  80. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  81. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  82. static const struct sched_class fair_sched_class;
  83. /**************************************************************
  84. * CFS operations on generic schedulable entities:
  85. */
  86. #ifdef CONFIG_FAIR_GROUP_SCHED
  87. /* cpu runqueue to which this cfs_rq is attached */
  88. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  89. {
  90. return cfs_rq->rq;
  91. }
  92. /* An entity is a task if it doesn't "own" a runqueue */
  93. #define entity_is_task(se) (!se->my_q)
  94. static inline struct task_struct *task_of(struct sched_entity *se)
  95. {
  96. #ifdef CONFIG_SCHED_DEBUG
  97. WARN_ON_ONCE(!entity_is_task(se));
  98. #endif
  99. return container_of(se, struct task_struct, se);
  100. }
  101. /* Walk up scheduling entities hierarchy */
  102. #define for_each_sched_entity(se) \
  103. for (; se; se = se->parent)
  104. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  105. {
  106. return p->se.cfs_rq;
  107. }
  108. /* runqueue on which this entity is (to be) queued */
  109. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  110. {
  111. return se->cfs_rq;
  112. }
  113. /* runqueue "owned" by this group */
  114. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  115. {
  116. return grp->my_q;
  117. }
  118. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  119. * another cpu ('this_cpu')
  120. */
  121. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  122. {
  123. return cfs_rq->tg->cfs_rq[this_cpu];
  124. }
  125. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  126. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  127. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  128. /* Do the two (enqueued) entities belong to the same group ? */
  129. static inline int
  130. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  131. {
  132. if (se->cfs_rq == pse->cfs_rq)
  133. return 1;
  134. return 0;
  135. }
  136. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  137. {
  138. return se->parent;
  139. }
  140. /* return depth at which a sched entity is present in the hierarchy */
  141. static inline int depth_se(struct sched_entity *se)
  142. {
  143. int depth = 0;
  144. for_each_sched_entity(se)
  145. depth++;
  146. return depth;
  147. }
  148. static void
  149. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  150. {
  151. int se_depth, pse_depth;
  152. /*
  153. * preemption test can be made between sibling entities who are in the
  154. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  155. * both tasks until we find their ancestors who are siblings of common
  156. * parent.
  157. */
  158. /* First walk up until both entities are at same depth */
  159. se_depth = depth_se(*se);
  160. pse_depth = depth_se(*pse);
  161. while (se_depth > pse_depth) {
  162. se_depth--;
  163. *se = parent_entity(*se);
  164. }
  165. while (pse_depth > se_depth) {
  166. pse_depth--;
  167. *pse = parent_entity(*pse);
  168. }
  169. while (!is_same_group(*se, *pse)) {
  170. *se = parent_entity(*se);
  171. *pse = parent_entity(*pse);
  172. }
  173. }
  174. #else /* !CONFIG_FAIR_GROUP_SCHED */
  175. static inline struct task_struct *task_of(struct sched_entity *se)
  176. {
  177. return container_of(se, struct task_struct, se);
  178. }
  179. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  180. {
  181. return container_of(cfs_rq, struct rq, cfs);
  182. }
  183. #define entity_is_task(se) 1
  184. #define for_each_sched_entity(se) \
  185. for (; se; se = NULL)
  186. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  187. {
  188. return &task_rq(p)->cfs;
  189. }
  190. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  191. {
  192. struct task_struct *p = task_of(se);
  193. struct rq *rq = task_rq(p);
  194. return &rq->cfs;
  195. }
  196. /* runqueue "owned" by this group */
  197. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  198. {
  199. return NULL;
  200. }
  201. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  202. {
  203. return &cpu_rq(this_cpu)->cfs;
  204. }
  205. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  206. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  207. static inline int
  208. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  209. {
  210. return 1;
  211. }
  212. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  213. {
  214. return NULL;
  215. }
  216. static inline void
  217. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  218. {
  219. }
  220. #endif /* CONFIG_FAIR_GROUP_SCHED */
  221. /**************************************************************
  222. * Scheduling class tree data structure manipulation methods:
  223. */
  224. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  225. {
  226. s64 delta = (s64)(vruntime - min_vruntime);
  227. if (delta > 0)
  228. min_vruntime = vruntime;
  229. return min_vruntime;
  230. }
  231. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  232. {
  233. s64 delta = (s64)(vruntime - min_vruntime);
  234. if (delta < 0)
  235. min_vruntime = vruntime;
  236. return min_vruntime;
  237. }
  238. static inline int entity_before(struct sched_entity *a,
  239. struct sched_entity *b)
  240. {
  241. return (s64)(a->vruntime - b->vruntime) < 0;
  242. }
  243. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  244. {
  245. return se->vruntime - cfs_rq->min_vruntime;
  246. }
  247. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  248. {
  249. u64 vruntime = cfs_rq->min_vruntime;
  250. if (cfs_rq->curr)
  251. vruntime = cfs_rq->curr->vruntime;
  252. if (cfs_rq->rb_leftmost) {
  253. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  254. struct sched_entity,
  255. run_node);
  256. if (!cfs_rq->curr)
  257. vruntime = se->vruntime;
  258. else
  259. vruntime = min_vruntime(vruntime, se->vruntime);
  260. }
  261. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  262. }
  263. /*
  264. * Enqueue an entity into the rb-tree:
  265. */
  266. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  267. {
  268. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  269. struct rb_node *parent = NULL;
  270. struct sched_entity *entry;
  271. s64 key = entity_key(cfs_rq, se);
  272. int leftmost = 1;
  273. /*
  274. * Find the right place in the rbtree:
  275. */
  276. while (*link) {
  277. parent = *link;
  278. entry = rb_entry(parent, struct sched_entity, run_node);
  279. /*
  280. * We dont care about collisions. Nodes with
  281. * the same key stay together.
  282. */
  283. if (key < entity_key(cfs_rq, entry)) {
  284. link = &parent->rb_left;
  285. } else {
  286. link = &parent->rb_right;
  287. leftmost = 0;
  288. }
  289. }
  290. /*
  291. * Maintain a cache of leftmost tree entries (it is frequently
  292. * used):
  293. */
  294. if (leftmost)
  295. cfs_rq->rb_leftmost = &se->run_node;
  296. rb_link_node(&se->run_node, parent, link);
  297. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  298. }
  299. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  300. {
  301. if (cfs_rq->rb_leftmost == &se->run_node) {
  302. struct rb_node *next_node;
  303. next_node = rb_next(&se->run_node);
  304. cfs_rq->rb_leftmost = next_node;
  305. }
  306. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  307. }
  308. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  309. {
  310. struct rb_node *left = cfs_rq->rb_leftmost;
  311. if (!left)
  312. return NULL;
  313. return rb_entry(left, struct sched_entity, run_node);
  314. }
  315. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  316. {
  317. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  318. if (!last)
  319. return NULL;
  320. return rb_entry(last, struct sched_entity, run_node);
  321. }
  322. /**************************************************************
  323. * Scheduling class statistics methods:
  324. */
  325. #ifdef CONFIG_SCHED_DEBUG
  326. int sched_proc_update_handler(struct ctl_table *table, int write,
  327. void __user *buffer, size_t *lenp,
  328. loff_t *ppos)
  329. {
  330. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  331. int factor = get_update_sysctl_factor();
  332. if (ret || !write)
  333. return ret;
  334. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  335. sysctl_sched_min_granularity);
  336. #define WRT_SYSCTL(name) \
  337. (normalized_sysctl_##name = sysctl_##name / (factor))
  338. WRT_SYSCTL(sched_min_granularity);
  339. WRT_SYSCTL(sched_latency);
  340. WRT_SYSCTL(sched_wakeup_granularity);
  341. WRT_SYSCTL(sched_shares_ratelimit);
  342. #undef WRT_SYSCTL
  343. return 0;
  344. }
  345. #endif
  346. /*
  347. * delta /= w
  348. */
  349. static inline unsigned long
  350. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  351. {
  352. if (unlikely(se->load.weight != NICE_0_LOAD))
  353. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  354. return delta;
  355. }
  356. /*
  357. * The idea is to set a period in which each task runs once.
  358. *
  359. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  360. * this period because otherwise the slices get too small.
  361. *
  362. * p = (nr <= nl) ? l : l*nr/nl
  363. */
  364. static u64 __sched_period(unsigned long nr_running)
  365. {
  366. u64 period = sysctl_sched_latency;
  367. unsigned long nr_latency = sched_nr_latency;
  368. if (unlikely(nr_running > nr_latency)) {
  369. period = sysctl_sched_min_granularity;
  370. period *= nr_running;
  371. }
  372. return period;
  373. }
  374. /*
  375. * We calculate the wall-time slice from the period by taking a part
  376. * proportional to the weight.
  377. *
  378. * s = p*P[w/rw]
  379. */
  380. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  381. {
  382. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  383. for_each_sched_entity(se) {
  384. struct load_weight *load;
  385. struct load_weight lw;
  386. cfs_rq = cfs_rq_of(se);
  387. load = &cfs_rq->load;
  388. if (unlikely(!se->on_rq)) {
  389. lw = cfs_rq->load;
  390. update_load_add(&lw, se->load.weight);
  391. load = &lw;
  392. }
  393. slice = calc_delta_mine(slice, se->load.weight, load);
  394. }
  395. return slice;
  396. }
  397. /*
  398. * We calculate the vruntime slice of a to be inserted task
  399. *
  400. * vs = s/w
  401. */
  402. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  403. {
  404. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  405. }
  406. /*
  407. * Update the current task's runtime statistics. Skip current tasks that
  408. * are not in our scheduling class.
  409. */
  410. static inline void
  411. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  412. unsigned long delta_exec)
  413. {
  414. unsigned long delta_exec_weighted;
  415. schedstat_set(curr->statistics.exec_max,
  416. max((u64)delta_exec, curr->statistics.exec_max));
  417. curr->sum_exec_runtime += delta_exec;
  418. schedstat_add(cfs_rq, exec_clock, delta_exec);
  419. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  420. curr->vruntime += delta_exec_weighted;
  421. update_min_vruntime(cfs_rq);
  422. }
  423. static void update_curr(struct cfs_rq *cfs_rq)
  424. {
  425. struct sched_entity *curr = cfs_rq->curr;
  426. u64 now = rq_of(cfs_rq)->clock_task;
  427. unsigned long delta_exec;
  428. if (unlikely(!curr))
  429. return;
  430. /*
  431. * Get the amount of time the current task was running
  432. * since the last time we changed load (this cannot
  433. * overflow on 32 bits):
  434. */
  435. delta_exec = (unsigned long)(now - curr->exec_start);
  436. if (!delta_exec)
  437. return;
  438. __update_curr(cfs_rq, curr, delta_exec);
  439. curr->exec_start = now;
  440. if (entity_is_task(curr)) {
  441. struct task_struct *curtask = task_of(curr);
  442. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  443. cpuacct_charge(curtask, delta_exec);
  444. account_group_exec_runtime(curtask, delta_exec);
  445. }
  446. }
  447. static inline void
  448. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  449. {
  450. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  451. }
  452. /*
  453. * Task is being enqueued - update stats:
  454. */
  455. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  456. {
  457. /*
  458. * Are we enqueueing a waiting task? (for current tasks
  459. * a dequeue/enqueue event is a NOP)
  460. */
  461. if (se != cfs_rq->curr)
  462. update_stats_wait_start(cfs_rq, se);
  463. }
  464. static void
  465. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  466. {
  467. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  468. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  469. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  470. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  471. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  472. #ifdef CONFIG_SCHEDSTATS
  473. if (entity_is_task(se)) {
  474. trace_sched_stat_wait(task_of(se),
  475. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  476. }
  477. #endif
  478. schedstat_set(se->statistics.wait_start, 0);
  479. }
  480. static inline void
  481. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  482. {
  483. /*
  484. * Mark the end of the wait period if dequeueing a
  485. * waiting task:
  486. */
  487. if (se != cfs_rq->curr)
  488. update_stats_wait_end(cfs_rq, se);
  489. }
  490. /*
  491. * We are picking a new current task - update its stats:
  492. */
  493. static inline void
  494. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  495. {
  496. /*
  497. * We are starting a new run period:
  498. */
  499. se->exec_start = rq_of(cfs_rq)->clock_task;
  500. }
  501. /**************************************************
  502. * Scheduling class queueing methods:
  503. */
  504. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  505. static void
  506. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  507. {
  508. cfs_rq->task_weight += weight;
  509. }
  510. #else
  511. static inline void
  512. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  513. {
  514. }
  515. #endif
  516. static void
  517. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  518. {
  519. update_load_add(&cfs_rq->load, se->load.weight);
  520. if (!parent_entity(se))
  521. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  522. if (entity_is_task(se)) {
  523. add_cfs_task_weight(cfs_rq, se->load.weight);
  524. list_add(&se->group_node, &cfs_rq->tasks);
  525. }
  526. cfs_rq->nr_running++;
  527. se->on_rq = 1;
  528. }
  529. static void
  530. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  531. {
  532. update_load_sub(&cfs_rq->load, se->load.weight);
  533. if (!parent_entity(se))
  534. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  535. if (entity_is_task(se)) {
  536. add_cfs_task_weight(cfs_rq, -se->load.weight);
  537. list_del_init(&se->group_node);
  538. }
  539. cfs_rq->nr_running--;
  540. se->on_rq = 0;
  541. }
  542. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  543. {
  544. #ifdef CONFIG_SCHEDSTATS
  545. struct task_struct *tsk = NULL;
  546. if (entity_is_task(se))
  547. tsk = task_of(se);
  548. if (se->statistics.sleep_start) {
  549. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  550. if ((s64)delta < 0)
  551. delta = 0;
  552. if (unlikely(delta > se->statistics.sleep_max))
  553. se->statistics.sleep_max = delta;
  554. se->statistics.sleep_start = 0;
  555. se->statistics.sum_sleep_runtime += delta;
  556. if (tsk) {
  557. account_scheduler_latency(tsk, delta >> 10, 1);
  558. trace_sched_stat_sleep(tsk, delta);
  559. }
  560. }
  561. if (se->statistics.block_start) {
  562. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  563. if ((s64)delta < 0)
  564. delta = 0;
  565. if (unlikely(delta > se->statistics.block_max))
  566. se->statistics.block_max = delta;
  567. se->statistics.block_start = 0;
  568. se->statistics.sum_sleep_runtime += delta;
  569. if (tsk) {
  570. if (tsk->in_iowait) {
  571. se->statistics.iowait_sum += delta;
  572. se->statistics.iowait_count++;
  573. trace_sched_stat_iowait(tsk, delta);
  574. }
  575. /*
  576. * Blocking time is in units of nanosecs, so shift by
  577. * 20 to get a milliseconds-range estimation of the
  578. * amount of time that the task spent sleeping:
  579. */
  580. if (unlikely(prof_on == SLEEP_PROFILING)) {
  581. profile_hits(SLEEP_PROFILING,
  582. (void *)get_wchan(tsk),
  583. delta >> 20);
  584. }
  585. account_scheduler_latency(tsk, delta >> 10, 0);
  586. }
  587. }
  588. #endif
  589. }
  590. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  591. {
  592. #ifdef CONFIG_SCHED_DEBUG
  593. s64 d = se->vruntime - cfs_rq->min_vruntime;
  594. if (d < 0)
  595. d = -d;
  596. if (d > 3*sysctl_sched_latency)
  597. schedstat_inc(cfs_rq, nr_spread_over);
  598. #endif
  599. }
  600. static void
  601. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  602. {
  603. u64 vruntime = cfs_rq->min_vruntime;
  604. /*
  605. * The 'current' period is already promised to the current tasks,
  606. * however the extra weight of the new task will slow them down a
  607. * little, place the new task so that it fits in the slot that
  608. * stays open at the end.
  609. */
  610. if (initial && sched_feat(START_DEBIT))
  611. vruntime += sched_vslice(cfs_rq, se);
  612. /* sleeps up to a single latency don't count. */
  613. if (!initial) {
  614. unsigned long thresh = sysctl_sched_latency;
  615. /*
  616. * Halve their sleep time's effect, to allow
  617. * for a gentler effect of sleepers:
  618. */
  619. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  620. thresh >>= 1;
  621. vruntime -= thresh;
  622. }
  623. /* ensure we never gain time by being placed backwards. */
  624. vruntime = max_vruntime(se->vruntime, vruntime);
  625. se->vruntime = vruntime;
  626. }
  627. static void
  628. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  629. {
  630. /*
  631. * Update the normalized vruntime before updating min_vruntime
  632. * through callig update_curr().
  633. */
  634. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  635. se->vruntime += cfs_rq->min_vruntime;
  636. /*
  637. * Update run-time statistics of the 'current'.
  638. */
  639. update_curr(cfs_rq);
  640. account_entity_enqueue(cfs_rq, se);
  641. if (flags & ENQUEUE_WAKEUP) {
  642. place_entity(cfs_rq, se, 0);
  643. enqueue_sleeper(cfs_rq, se);
  644. }
  645. update_stats_enqueue(cfs_rq, se);
  646. check_spread(cfs_rq, se);
  647. if (se != cfs_rq->curr)
  648. __enqueue_entity(cfs_rq, se);
  649. }
  650. static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  651. {
  652. if (!se || cfs_rq->last == se)
  653. cfs_rq->last = NULL;
  654. if (!se || cfs_rq->next == se)
  655. cfs_rq->next = NULL;
  656. }
  657. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  658. {
  659. for_each_sched_entity(se)
  660. __clear_buddies(cfs_rq_of(se), se);
  661. }
  662. static void
  663. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  664. {
  665. /*
  666. * Update run-time statistics of the 'current'.
  667. */
  668. update_curr(cfs_rq);
  669. update_stats_dequeue(cfs_rq, se);
  670. if (flags & DEQUEUE_SLEEP) {
  671. #ifdef CONFIG_SCHEDSTATS
  672. if (entity_is_task(se)) {
  673. struct task_struct *tsk = task_of(se);
  674. if (tsk->state & TASK_INTERRUPTIBLE)
  675. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  676. if (tsk->state & TASK_UNINTERRUPTIBLE)
  677. se->statistics.block_start = rq_of(cfs_rq)->clock;
  678. }
  679. #endif
  680. }
  681. clear_buddies(cfs_rq, se);
  682. if (se != cfs_rq->curr)
  683. __dequeue_entity(cfs_rq, se);
  684. account_entity_dequeue(cfs_rq, se);
  685. update_min_vruntime(cfs_rq);
  686. /*
  687. * Normalize the entity after updating the min_vruntime because the
  688. * update can refer to the ->curr item and we need to reflect this
  689. * movement in our normalized position.
  690. */
  691. if (!(flags & DEQUEUE_SLEEP))
  692. se->vruntime -= cfs_rq->min_vruntime;
  693. }
  694. /*
  695. * Preempt the current task with a newly woken task if needed:
  696. */
  697. static void
  698. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  699. {
  700. unsigned long ideal_runtime, delta_exec;
  701. ideal_runtime = sched_slice(cfs_rq, curr);
  702. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  703. if (delta_exec > ideal_runtime) {
  704. resched_task(rq_of(cfs_rq)->curr);
  705. /*
  706. * The current task ran long enough, ensure it doesn't get
  707. * re-elected due to buddy favours.
  708. */
  709. clear_buddies(cfs_rq, curr);
  710. return;
  711. }
  712. /*
  713. * Ensure that a task that missed wakeup preemption by a
  714. * narrow margin doesn't have to wait for a full slice.
  715. * This also mitigates buddy induced latencies under load.
  716. */
  717. if (!sched_feat(WAKEUP_PREEMPT))
  718. return;
  719. if (delta_exec < sysctl_sched_min_granularity)
  720. return;
  721. if (cfs_rq->nr_running > 1) {
  722. struct sched_entity *se = __pick_next_entity(cfs_rq);
  723. s64 delta = curr->vruntime - se->vruntime;
  724. if (delta > ideal_runtime)
  725. resched_task(rq_of(cfs_rq)->curr);
  726. }
  727. }
  728. static void
  729. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  730. {
  731. /* 'current' is not kept within the tree. */
  732. if (se->on_rq) {
  733. /*
  734. * Any task has to be enqueued before it get to execute on
  735. * a CPU. So account for the time it spent waiting on the
  736. * runqueue.
  737. */
  738. update_stats_wait_end(cfs_rq, se);
  739. __dequeue_entity(cfs_rq, se);
  740. }
  741. update_stats_curr_start(cfs_rq, se);
  742. cfs_rq->curr = se;
  743. #ifdef CONFIG_SCHEDSTATS
  744. /*
  745. * Track our maximum slice length, if the CPU's load is at
  746. * least twice that of our own weight (i.e. dont track it
  747. * when there are only lesser-weight tasks around):
  748. */
  749. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  750. se->statistics.slice_max = max(se->statistics.slice_max,
  751. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  752. }
  753. #endif
  754. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  755. }
  756. static int
  757. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  758. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  759. {
  760. struct sched_entity *se = __pick_next_entity(cfs_rq);
  761. struct sched_entity *left = se;
  762. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  763. se = cfs_rq->next;
  764. /*
  765. * Prefer last buddy, try to return the CPU to a preempted task.
  766. */
  767. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  768. se = cfs_rq->last;
  769. clear_buddies(cfs_rq, se);
  770. return se;
  771. }
  772. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  773. {
  774. /*
  775. * If still on the runqueue then deactivate_task()
  776. * was not called and update_curr() has to be done:
  777. */
  778. if (prev->on_rq)
  779. update_curr(cfs_rq);
  780. check_spread(cfs_rq, prev);
  781. if (prev->on_rq) {
  782. update_stats_wait_start(cfs_rq, prev);
  783. /* Put 'current' back into the tree. */
  784. __enqueue_entity(cfs_rq, prev);
  785. }
  786. cfs_rq->curr = NULL;
  787. }
  788. static void
  789. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  790. {
  791. /*
  792. * Update run-time statistics of the 'current'.
  793. */
  794. update_curr(cfs_rq);
  795. #ifdef CONFIG_SCHED_HRTICK
  796. /*
  797. * queued ticks are scheduled to match the slice, so don't bother
  798. * validating it and just reschedule.
  799. */
  800. if (queued) {
  801. resched_task(rq_of(cfs_rq)->curr);
  802. return;
  803. }
  804. /*
  805. * don't let the period tick interfere with the hrtick preemption
  806. */
  807. if (!sched_feat(DOUBLE_TICK) &&
  808. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  809. return;
  810. #endif
  811. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  812. check_preempt_tick(cfs_rq, curr);
  813. }
  814. /**************************************************
  815. * CFS operations on tasks:
  816. */
  817. #ifdef CONFIG_SCHED_HRTICK
  818. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  819. {
  820. struct sched_entity *se = &p->se;
  821. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  822. WARN_ON(task_rq(p) != rq);
  823. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  824. u64 slice = sched_slice(cfs_rq, se);
  825. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  826. s64 delta = slice - ran;
  827. if (delta < 0) {
  828. if (rq->curr == p)
  829. resched_task(p);
  830. return;
  831. }
  832. /*
  833. * Don't schedule slices shorter than 10000ns, that just
  834. * doesn't make sense. Rely on vruntime for fairness.
  835. */
  836. if (rq->curr != p)
  837. delta = max_t(s64, 10000LL, delta);
  838. hrtick_start(rq, delta);
  839. }
  840. }
  841. /*
  842. * called from enqueue/dequeue and updates the hrtick when the
  843. * current task is from our class and nr_running is low enough
  844. * to matter.
  845. */
  846. static void hrtick_update(struct rq *rq)
  847. {
  848. struct task_struct *curr = rq->curr;
  849. if (curr->sched_class != &fair_sched_class)
  850. return;
  851. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  852. hrtick_start_fair(rq, curr);
  853. }
  854. #else /* !CONFIG_SCHED_HRTICK */
  855. static inline void
  856. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  857. {
  858. }
  859. static inline void hrtick_update(struct rq *rq)
  860. {
  861. }
  862. #endif
  863. /*
  864. * The enqueue_task method is called before nr_running is
  865. * increased. Here we update the fair scheduling stats and
  866. * then put the task into the rbtree:
  867. */
  868. static void
  869. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  870. {
  871. struct cfs_rq *cfs_rq;
  872. struct sched_entity *se = &p->se;
  873. for_each_sched_entity(se) {
  874. if (se->on_rq)
  875. break;
  876. cfs_rq = cfs_rq_of(se);
  877. enqueue_entity(cfs_rq, se, flags);
  878. flags = ENQUEUE_WAKEUP;
  879. }
  880. hrtick_update(rq);
  881. }
  882. /*
  883. * The dequeue_task method is called before nr_running is
  884. * decreased. We remove the task from the rbtree and
  885. * update the fair scheduling stats:
  886. */
  887. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  888. {
  889. struct cfs_rq *cfs_rq;
  890. struct sched_entity *se = &p->se;
  891. for_each_sched_entity(se) {
  892. cfs_rq = cfs_rq_of(se);
  893. dequeue_entity(cfs_rq, se, flags);
  894. /* Don't dequeue parent if it has other entities besides us */
  895. if (cfs_rq->load.weight)
  896. break;
  897. flags |= DEQUEUE_SLEEP;
  898. }
  899. hrtick_update(rq);
  900. }
  901. /*
  902. * sched_yield() support is very simple - we dequeue and enqueue.
  903. *
  904. * If compat_yield is turned on then we requeue to the end of the tree.
  905. */
  906. static void yield_task_fair(struct rq *rq)
  907. {
  908. struct task_struct *curr = rq->curr;
  909. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  910. struct sched_entity *rightmost, *se = &curr->se;
  911. /*
  912. * Are we the only task in the tree?
  913. */
  914. if (unlikely(cfs_rq->nr_running == 1))
  915. return;
  916. clear_buddies(cfs_rq, se);
  917. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  918. update_rq_clock(rq);
  919. /*
  920. * Update run-time statistics of the 'current'.
  921. */
  922. update_curr(cfs_rq);
  923. return;
  924. }
  925. /*
  926. * Find the rightmost entry in the rbtree:
  927. */
  928. rightmost = __pick_last_entity(cfs_rq);
  929. /*
  930. * Already in the rightmost position?
  931. */
  932. if (unlikely(!rightmost || entity_before(rightmost, se)))
  933. return;
  934. /*
  935. * Minimally necessary key value to be last in the tree:
  936. * Upon rescheduling, sched_class::put_prev_task() will place
  937. * 'current' within the tree based on its new key value.
  938. */
  939. se->vruntime = rightmost->vruntime + 1;
  940. }
  941. #ifdef CONFIG_SMP
  942. static void task_waking_fair(struct rq *rq, struct task_struct *p)
  943. {
  944. struct sched_entity *se = &p->se;
  945. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  946. se->vruntime -= cfs_rq->min_vruntime;
  947. }
  948. #ifdef CONFIG_FAIR_GROUP_SCHED
  949. /*
  950. * effective_load() calculates the load change as seen from the root_task_group
  951. *
  952. * Adding load to a group doesn't make a group heavier, but can cause movement
  953. * of group shares between cpus. Assuming the shares were perfectly aligned one
  954. * can calculate the shift in shares.
  955. *
  956. * The problem is that perfectly aligning the shares is rather expensive, hence
  957. * we try to avoid doing that too often - see update_shares(), which ratelimits
  958. * this change.
  959. *
  960. * We compensate this by not only taking the current delta into account, but
  961. * also considering the delta between when the shares were last adjusted and
  962. * now.
  963. *
  964. * We still saw a performance dip, some tracing learned us that between
  965. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  966. * significantly. Therefore try to bias the error in direction of failing
  967. * the affine wakeup.
  968. *
  969. */
  970. static long effective_load(struct task_group *tg, int cpu,
  971. long wl, long wg)
  972. {
  973. struct sched_entity *se = tg->se[cpu];
  974. if (!tg->parent)
  975. return wl;
  976. /*
  977. * By not taking the decrease of shares on the other cpu into
  978. * account our error leans towards reducing the affine wakeups.
  979. */
  980. if (!wl && sched_feat(ASYM_EFF_LOAD))
  981. return wl;
  982. for_each_sched_entity(se) {
  983. long S, rw, s, a, b;
  984. long more_w;
  985. /*
  986. * Instead of using this increment, also add the difference
  987. * between when the shares were last updated and now.
  988. */
  989. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  990. wl += more_w;
  991. wg += more_w;
  992. S = se->my_q->tg->shares;
  993. s = se->my_q->shares;
  994. rw = se->my_q->rq_weight;
  995. a = S*(rw + wl);
  996. b = S*rw + s*wg;
  997. wl = s*(a-b);
  998. if (likely(b))
  999. wl /= b;
  1000. /*
  1001. * Assume the group is already running and will
  1002. * thus already be accounted for in the weight.
  1003. *
  1004. * That is, moving shares between CPUs, does not
  1005. * alter the group weight.
  1006. */
  1007. wg = 0;
  1008. }
  1009. return wl;
  1010. }
  1011. #else
  1012. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1013. unsigned long wl, unsigned long wg)
  1014. {
  1015. return wl;
  1016. }
  1017. #endif
  1018. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1019. {
  1020. unsigned long this_load, load;
  1021. int idx, this_cpu, prev_cpu;
  1022. unsigned long tl_per_task;
  1023. struct task_group *tg;
  1024. unsigned long weight;
  1025. int balanced;
  1026. idx = sd->wake_idx;
  1027. this_cpu = smp_processor_id();
  1028. prev_cpu = task_cpu(p);
  1029. load = source_load(prev_cpu, idx);
  1030. this_load = target_load(this_cpu, idx);
  1031. /*
  1032. * If sync wakeup then subtract the (maximum possible)
  1033. * effect of the currently running task from the load
  1034. * of the current CPU:
  1035. */
  1036. rcu_read_lock();
  1037. if (sync) {
  1038. tg = task_group(current);
  1039. weight = current->se.load.weight;
  1040. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1041. load += effective_load(tg, prev_cpu, 0, -weight);
  1042. }
  1043. tg = task_group(p);
  1044. weight = p->se.load.weight;
  1045. /*
  1046. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1047. * due to the sync cause above having dropped this_load to 0, we'll
  1048. * always have an imbalance, but there's really nothing you can do
  1049. * about that, so that's good too.
  1050. *
  1051. * Otherwise check if either cpus are near enough in load to allow this
  1052. * task to be woken on this_cpu.
  1053. */
  1054. if (this_load) {
  1055. unsigned long this_eff_load, prev_eff_load;
  1056. this_eff_load = 100;
  1057. this_eff_load *= power_of(prev_cpu);
  1058. this_eff_load *= this_load +
  1059. effective_load(tg, this_cpu, weight, weight);
  1060. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1061. prev_eff_load *= power_of(this_cpu);
  1062. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1063. balanced = this_eff_load <= prev_eff_load;
  1064. } else
  1065. balanced = true;
  1066. rcu_read_unlock();
  1067. /*
  1068. * If the currently running task will sleep within
  1069. * a reasonable amount of time then attract this newly
  1070. * woken task:
  1071. */
  1072. if (sync && balanced)
  1073. return 1;
  1074. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1075. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1076. if (balanced ||
  1077. (this_load <= load &&
  1078. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1079. /*
  1080. * This domain has SD_WAKE_AFFINE and
  1081. * p is cache cold in this domain, and
  1082. * there is no bad imbalance.
  1083. */
  1084. schedstat_inc(sd, ttwu_move_affine);
  1085. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1086. return 1;
  1087. }
  1088. return 0;
  1089. }
  1090. /*
  1091. * find_idlest_group finds and returns the least busy CPU group within the
  1092. * domain.
  1093. */
  1094. static struct sched_group *
  1095. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1096. int this_cpu, int load_idx)
  1097. {
  1098. struct sched_group *idlest = NULL, *group = sd->groups;
  1099. unsigned long min_load = ULONG_MAX, this_load = 0;
  1100. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1101. do {
  1102. unsigned long load, avg_load;
  1103. int local_group;
  1104. int i;
  1105. /* Skip over this group if it has no CPUs allowed */
  1106. if (!cpumask_intersects(sched_group_cpus(group),
  1107. &p->cpus_allowed))
  1108. continue;
  1109. local_group = cpumask_test_cpu(this_cpu,
  1110. sched_group_cpus(group));
  1111. /* Tally up the load of all CPUs in the group */
  1112. avg_load = 0;
  1113. for_each_cpu(i, sched_group_cpus(group)) {
  1114. /* Bias balancing toward cpus of our domain */
  1115. if (local_group)
  1116. load = source_load(i, load_idx);
  1117. else
  1118. load = target_load(i, load_idx);
  1119. avg_load += load;
  1120. }
  1121. /* Adjust by relative CPU power of the group */
  1122. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1123. if (local_group) {
  1124. this_load = avg_load;
  1125. } else if (avg_load < min_load) {
  1126. min_load = avg_load;
  1127. idlest = group;
  1128. }
  1129. } while (group = group->next, group != sd->groups);
  1130. if (!idlest || 100*this_load < imbalance*min_load)
  1131. return NULL;
  1132. return idlest;
  1133. }
  1134. /*
  1135. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1136. */
  1137. static int
  1138. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1139. {
  1140. unsigned long load, min_load = ULONG_MAX;
  1141. int idlest = -1;
  1142. int i;
  1143. /* Traverse only the allowed CPUs */
  1144. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1145. load = weighted_cpuload(i);
  1146. if (load < min_load || (load == min_load && i == this_cpu)) {
  1147. min_load = load;
  1148. idlest = i;
  1149. }
  1150. }
  1151. return idlest;
  1152. }
  1153. /*
  1154. * Try and locate an idle CPU in the sched_domain.
  1155. */
  1156. static int select_idle_sibling(struct task_struct *p, int target)
  1157. {
  1158. int cpu = smp_processor_id();
  1159. int prev_cpu = task_cpu(p);
  1160. struct sched_domain *sd;
  1161. int i;
  1162. /*
  1163. * If the task is going to be woken-up on this cpu and if it is
  1164. * already idle, then it is the right target.
  1165. */
  1166. if (target == cpu && idle_cpu(cpu))
  1167. return cpu;
  1168. /*
  1169. * If the task is going to be woken-up on the cpu where it previously
  1170. * ran and if it is currently idle, then it the right target.
  1171. */
  1172. if (target == prev_cpu && idle_cpu(prev_cpu))
  1173. return prev_cpu;
  1174. /*
  1175. * Otherwise, iterate the domains and find an elegible idle cpu.
  1176. */
  1177. for_each_domain(target, sd) {
  1178. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1179. break;
  1180. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1181. if (idle_cpu(i)) {
  1182. target = i;
  1183. break;
  1184. }
  1185. }
  1186. /*
  1187. * Lets stop looking for an idle sibling when we reached
  1188. * the domain that spans the current cpu and prev_cpu.
  1189. */
  1190. if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
  1191. cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  1192. break;
  1193. }
  1194. return target;
  1195. }
  1196. /*
  1197. * sched_balance_self: balance the current task (running on cpu) in domains
  1198. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1199. * SD_BALANCE_EXEC.
  1200. *
  1201. * Balance, ie. select the least loaded group.
  1202. *
  1203. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1204. *
  1205. * preempt must be disabled.
  1206. */
  1207. static int
  1208. select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
  1209. {
  1210. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1211. int cpu = smp_processor_id();
  1212. int prev_cpu = task_cpu(p);
  1213. int new_cpu = cpu;
  1214. int want_affine = 0;
  1215. int want_sd = 1;
  1216. int sync = wake_flags & WF_SYNC;
  1217. if (sd_flag & SD_BALANCE_WAKE) {
  1218. if (cpumask_test_cpu(cpu, &p->cpus_allowed))
  1219. want_affine = 1;
  1220. new_cpu = prev_cpu;
  1221. }
  1222. for_each_domain(cpu, tmp) {
  1223. if (!(tmp->flags & SD_LOAD_BALANCE))
  1224. continue;
  1225. /*
  1226. * If power savings logic is enabled for a domain, see if we
  1227. * are not overloaded, if so, don't balance wider.
  1228. */
  1229. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1230. unsigned long power = 0;
  1231. unsigned long nr_running = 0;
  1232. unsigned long capacity;
  1233. int i;
  1234. for_each_cpu(i, sched_domain_span(tmp)) {
  1235. power += power_of(i);
  1236. nr_running += cpu_rq(i)->cfs.nr_running;
  1237. }
  1238. capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  1239. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1240. nr_running /= 2;
  1241. if (nr_running < capacity)
  1242. want_sd = 0;
  1243. }
  1244. /*
  1245. * If both cpu and prev_cpu are part of this domain,
  1246. * cpu is a valid SD_WAKE_AFFINE target.
  1247. */
  1248. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1249. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1250. affine_sd = tmp;
  1251. want_affine = 0;
  1252. }
  1253. if (!want_sd && !want_affine)
  1254. break;
  1255. if (!(tmp->flags & sd_flag))
  1256. continue;
  1257. if (want_sd)
  1258. sd = tmp;
  1259. }
  1260. #ifdef CONFIG_FAIR_GROUP_SCHED
  1261. if (sched_feat(LB_SHARES_UPDATE)) {
  1262. /*
  1263. * Pick the largest domain to update shares over
  1264. */
  1265. tmp = sd;
  1266. if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
  1267. tmp = affine_sd;
  1268. if (tmp) {
  1269. raw_spin_unlock(&rq->lock);
  1270. update_shares(tmp);
  1271. raw_spin_lock(&rq->lock);
  1272. }
  1273. }
  1274. #endif
  1275. if (affine_sd) {
  1276. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  1277. return select_idle_sibling(p, cpu);
  1278. else
  1279. return select_idle_sibling(p, prev_cpu);
  1280. }
  1281. while (sd) {
  1282. int load_idx = sd->forkexec_idx;
  1283. struct sched_group *group;
  1284. int weight;
  1285. if (!(sd->flags & sd_flag)) {
  1286. sd = sd->child;
  1287. continue;
  1288. }
  1289. if (sd_flag & SD_BALANCE_WAKE)
  1290. load_idx = sd->wake_idx;
  1291. group = find_idlest_group(sd, p, cpu, load_idx);
  1292. if (!group) {
  1293. sd = sd->child;
  1294. continue;
  1295. }
  1296. new_cpu = find_idlest_cpu(group, p, cpu);
  1297. if (new_cpu == -1 || new_cpu == cpu) {
  1298. /* Now try balancing at a lower domain level of cpu */
  1299. sd = sd->child;
  1300. continue;
  1301. }
  1302. /* Now try balancing at a lower domain level of new_cpu */
  1303. cpu = new_cpu;
  1304. weight = sd->span_weight;
  1305. sd = NULL;
  1306. for_each_domain(cpu, tmp) {
  1307. if (weight <= tmp->span_weight)
  1308. break;
  1309. if (tmp->flags & sd_flag)
  1310. sd = tmp;
  1311. }
  1312. /* while loop will break here if sd == NULL */
  1313. }
  1314. return new_cpu;
  1315. }
  1316. #endif /* CONFIG_SMP */
  1317. static unsigned long
  1318. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1319. {
  1320. unsigned long gran = sysctl_sched_wakeup_granularity;
  1321. /*
  1322. * Since its curr running now, convert the gran from real-time
  1323. * to virtual-time in his units.
  1324. *
  1325. * By using 'se' instead of 'curr' we penalize light tasks, so
  1326. * they get preempted easier. That is, if 'se' < 'curr' then
  1327. * the resulting gran will be larger, therefore penalizing the
  1328. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1329. * be smaller, again penalizing the lighter task.
  1330. *
  1331. * This is especially important for buddies when the leftmost
  1332. * task is higher priority than the buddy.
  1333. */
  1334. if (unlikely(se->load.weight != NICE_0_LOAD))
  1335. gran = calc_delta_fair(gran, se);
  1336. return gran;
  1337. }
  1338. /*
  1339. * Should 'se' preempt 'curr'.
  1340. *
  1341. * |s1
  1342. * |s2
  1343. * |s3
  1344. * g
  1345. * |<--->|c
  1346. *
  1347. * w(c, s1) = -1
  1348. * w(c, s2) = 0
  1349. * w(c, s3) = 1
  1350. *
  1351. */
  1352. static int
  1353. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1354. {
  1355. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1356. if (vdiff <= 0)
  1357. return -1;
  1358. gran = wakeup_gran(curr, se);
  1359. if (vdiff > gran)
  1360. return 1;
  1361. return 0;
  1362. }
  1363. static void set_last_buddy(struct sched_entity *se)
  1364. {
  1365. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1366. for_each_sched_entity(se)
  1367. cfs_rq_of(se)->last = se;
  1368. }
  1369. }
  1370. static void set_next_buddy(struct sched_entity *se)
  1371. {
  1372. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1373. for_each_sched_entity(se)
  1374. cfs_rq_of(se)->next = se;
  1375. }
  1376. }
  1377. /*
  1378. * Preempt the current task with a newly woken task if needed:
  1379. */
  1380. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1381. {
  1382. struct task_struct *curr = rq->curr;
  1383. struct sched_entity *se = &curr->se, *pse = &p->se;
  1384. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1385. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1386. if (unlikely(rt_prio(p->prio)))
  1387. goto preempt;
  1388. if (unlikely(p->sched_class != &fair_sched_class))
  1389. return;
  1390. if (unlikely(se == pse))
  1391. return;
  1392. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
  1393. set_next_buddy(pse);
  1394. /*
  1395. * We can come here with TIF_NEED_RESCHED already set from new task
  1396. * wake up path.
  1397. */
  1398. if (test_tsk_need_resched(curr))
  1399. return;
  1400. /*
  1401. * Batch and idle tasks do not preempt (their preemption is driven by
  1402. * the tick):
  1403. */
  1404. if (unlikely(p->policy != SCHED_NORMAL))
  1405. return;
  1406. /* Idle tasks are by definition preempted by everybody. */
  1407. if (unlikely(curr->policy == SCHED_IDLE))
  1408. goto preempt;
  1409. if (!sched_feat(WAKEUP_PREEMPT))
  1410. return;
  1411. update_curr(cfs_rq);
  1412. find_matching_se(&se, &pse);
  1413. BUG_ON(!pse);
  1414. if (wakeup_preempt_entity(se, pse) == 1)
  1415. goto preempt;
  1416. return;
  1417. preempt:
  1418. resched_task(curr);
  1419. /*
  1420. * Only set the backward buddy when the current task is still
  1421. * on the rq. This can happen when a wakeup gets interleaved
  1422. * with schedule on the ->pre_schedule() or idle_balance()
  1423. * point, either of which can * drop the rq lock.
  1424. *
  1425. * Also, during early boot the idle thread is in the fair class,
  1426. * for obvious reasons its a bad idea to schedule back to it.
  1427. */
  1428. if (unlikely(!se->on_rq || curr == rq->idle))
  1429. return;
  1430. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1431. set_last_buddy(se);
  1432. }
  1433. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1434. {
  1435. struct task_struct *p;
  1436. struct cfs_rq *cfs_rq = &rq->cfs;
  1437. struct sched_entity *se;
  1438. if (!cfs_rq->nr_running)
  1439. return NULL;
  1440. do {
  1441. se = pick_next_entity(cfs_rq);
  1442. set_next_entity(cfs_rq, se);
  1443. cfs_rq = group_cfs_rq(se);
  1444. } while (cfs_rq);
  1445. p = task_of(se);
  1446. hrtick_start_fair(rq, p);
  1447. return p;
  1448. }
  1449. /*
  1450. * Account for a descheduled task:
  1451. */
  1452. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1453. {
  1454. struct sched_entity *se = &prev->se;
  1455. struct cfs_rq *cfs_rq;
  1456. for_each_sched_entity(se) {
  1457. cfs_rq = cfs_rq_of(se);
  1458. put_prev_entity(cfs_rq, se);
  1459. }
  1460. }
  1461. #ifdef CONFIG_SMP
  1462. /**************************************************
  1463. * Fair scheduling class load-balancing methods:
  1464. */
  1465. /*
  1466. * pull_task - move a task from a remote runqueue to the local runqueue.
  1467. * Both runqueues must be locked.
  1468. */
  1469. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1470. struct rq *this_rq, int this_cpu)
  1471. {
  1472. deactivate_task(src_rq, p, 0);
  1473. set_task_cpu(p, this_cpu);
  1474. activate_task(this_rq, p, 0);
  1475. check_preempt_curr(this_rq, p, 0);
  1476. /* re-arm NEWIDLE balancing when moving tasks */
  1477. src_rq->avg_idle = this_rq->avg_idle = 2*sysctl_sched_migration_cost;
  1478. this_rq->idle_stamp = 0;
  1479. }
  1480. /*
  1481. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1482. */
  1483. static
  1484. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1485. struct sched_domain *sd, enum cpu_idle_type idle,
  1486. int *all_pinned)
  1487. {
  1488. int tsk_cache_hot = 0;
  1489. /*
  1490. * We do not migrate tasks that are:
  1491. * 1) running (obviously), or
  1492. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1493. * 3) are cache-hot on their current CPU.
  1494. */
  1495. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1496. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  1497. return 0;
  1498. }
  1499. *all_pinned = 0;
  1500. if (task_running(rq, p)) {
  1501. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  1502. return 0;
  1503. }
  1504. /*
  1505. * Aggressive migration if:
  1506. * 1) task is cache cold, or
  1507. * 2) too many balance attempts have failed.
  1508. */
  1509. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  1510. if (!tsk_cache_hot ||
  1511. sd->nr_balance_failed > sd->cache_nice_tries) {
  1512. #ifdef CONFIG_SCHEDSTATS
  1513. if (tsk_cache_hot) {
  1514. schedstat_inc(sd, lb_hot_gained[idle]);
  1515. schedstat_inc(p, se.statistics.nr_forced_migrations);
  1516. }
  1517. #endif
  1518. return 1;
  1519. }
  1520. if (tsk_cache_hot) {
  1521. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  1522. return 0;
  1523. }
  1524. return 1;
  1525. }
  1526. /*
  1527. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1528. * part of active balancing operations within "domain".
  1529. * Returns 1 if successful and 0 otherwise.
  1530. *
  1531. * Called with both runqueues locked.
  1532. */
  1533. static int
  1534. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1535. struct sched_domain *sd, enum cpu_idle_type idle)
  1536. {
  1537. struct task_struct *p, *n;
  1538. struct cfs_rq *cfs_rq;
  1539. int pinned = 0;
  1540. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1541. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1542. if (!can_migrate_task(p, busiest, this_cpu,
  1543. sd, idle, &pinned))
  1544. continue;
  1545. pull_task(busiest, p, this_rq, this_cpu);
  1546. /*
  1547. * Right now, this is only the second place pull_task()
  1548. * is called, so we can safely collect pull_task()
  1549. * stats here rather than inside pull_task().
  1550. */
  1551. schedstat_inc(sd, lb_gained[idle]);
  1552. return 1;
  1553. }
  1554. }
  1555. return 0;
  1556. }
  1557. static unsigned long
  1558. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1559. unsigned long max_load_move, struct sched_domain *sd,
  1560. enum cpu_idle_type idle, int *all_pinned,
  1561. int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
  1562. {
  1563. int loops = 0, pulled = 0, pinned = 0;
  1564. long rem_load_move = max_load_move;
  1565. struct task_struct *p, *n;
  1566. if (max_load_move == 0)
  1567. goto out;
  1568. pinned = 1;
  1569. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1570. if (loops++ > sysctl_sched_nr_migrate)
  1571. break;
  1572. if ((p->se.load.weight >> 1) > rem_load_move ||
  1573. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
  1574. continue;
  1575. pull_task(busiest, p, this_rq, this_cpu);
  1576. pulled++;
  1577. rem_load_move -= p->se.load.weight;
  1578. #ifdef CONFIG_PREEMPT
  1579. /*
  1580. * NEWIDLE balancing is a source of latency, so preemptible
  1581. * kernels will stop after the first task is pulled to minimize
  1582. * the critical section.
  1583. */
  1584. if (idle == CPU_NEWLY_IDLE)
  1585. break;
  1586. #endif
  1587. /*
  1588. * We only want to steal up to the prescribed amount of
  1589. * weighted load.
  1590. */
  1591. if (rem_load_move <= 0)
  1592. break;
  1593. if (p->prio < *this_best_prio)
  1594. *this_best_prio = p->prio;
  1595. }
  1596. out:
  1597. /*
  1598. * Right now, this is one of only two places pull_task() is called,
  1599. * so we can safely collect pull_task() stats here rather than
  1600. * inside pull_task().
  1601. */
  1602. schedstat_add(sd, lb_gained[idle], pulled);
  1603. if (all_pinned)
  1604. *all_pinned = pinned;
  1605. return max_load_move - rem_load_move;
  1606. }
  1607. #ifdef CONFIG_FAIR_GROUP_SCHED
  1608. static unsigned long
  1609. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1610. unsigned long max_load_move,
  1611. struct sched_domain *sd, enum cpu_idle_type idle,
  1612. int *all_pinned, int *this_best_prio)
  1613. {
  1614. long rem_load_move = max_load_move;
  1615. int busiest_cpu = cpu_of(busiest);
  1616. struct task_group *tg;
  1617. rcu_read_lock();
  1618. update_h_load(busiest_cpu);
  1619. list_for_each_entry_rcu(tg, &task_groups, list) {
  1620. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1621. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1622. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1623. u64 rem_load, moved_load;
  1624. /*
  1625. * empty group
  1626. */
  1627. if (!busiest_cfs_rq->task_weight)
  1628. continue;
  1629. rem_load = (u64)rem_load_move * busiest_weight;
  1630. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1631. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1632. rem_load, sd, idle, all_pinned, this_best_prio,
  1633. busiest_cfs_rq);
  1634. if (!moved_load)
  1635. continue;
  1636. moved_load *= busiest_h_load;
  1637. moved_load = div_u64(moved_load, busiest_weight + 1);
  1638. rem_load_move -= moved_load;
  1639. if (rem_load_move < 0)
  1640. break;
  1641. }
  1642. rcu_read_unlock();
  1643. return max_load_move - rem_load_move;
  1644. }
  1645. #else
  1646. static unsigned long
  1647. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1648. unsigned long max_load_move,
  1649. struct sched_domain *sd, enum cpu_idle_type idle,
  1650. int *all_pinned, int *this_best_prio)
  1651. {
  1652. return balance_tasks(this_rq, this_cpu, busiest,
  1653. max_load_move, sd, idle, all_pinned,
  1654. this_best_prio, &busiest->cfs);
  1655. }
  1656. #endif
  1657. /*
  1658. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1659. * this_rq, as part of a balancing operation within domain "sd".
  1660. * Returns 1 if successful and 0 otherwise.
  1661. *
  1662. * Called with both runqueues locked.
  1663. */
  1664. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1665. unsigned long max_load_move,
  1666. struct sched_domain *sd, enum cpu_idle_type idle,
  1667. int *all_pinned)
  1668. {
  1669. unsigned long total_load_moved = 0, load_moved;
  1670. int this_best_prio = this_rq->curr->prio;
  1671. do {
  1672. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  1673. max_load_move - total_load_moved,
  1674. sd, idle, all_pinned, &this_best_prio);
  1675. total_load_moved += load_moved;
  1676. #ifdef CONFIG_PREEMPT
  1677. /*
  1678. * NEWIDLE balancing is a source of latency, so preemptible
  1679. * kernels will stop after the first task is pulled to minimize
  1680. * the critical section.
  1681. */
  1682. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  1683. break;
  1684. if (raw_spin_is_contended(&this_rq->lock) ||
  1685. raw_spin_is_contended(&busiest->lock))
  1686. break;
  1687. #endif
  1688. } while (load_moved && max_load_move > total_load_moved);
  1689. return total_load_moved > 0;
  1690. }
  1691. /********** Helpers for find_busiest_group ************************/
  1692. /*
  1693. * sd_lb_stats - Structure to store the statistics of a sched_domain
  1694. * during load balancing.
  1695. */
  1696. struct sd_lb_stats {
  1697. struct sched_group *busiest; /* Busiest group in this sd */
  1698. struct sched_group *this; /* Local group in this sd */
  1699. unsigned long total_load; /* Total load of all groups in sd */
  1700. unsigned long total_pwr; /* Total power of all groups in sd */
  1701. unsigned long avg_load; /* Average load across all groups in sd */
  1702. /** Statistics of this group */
  1703. unsigned long this_load;
  1704. unsigned long this_load_per_task;
  1705. unsigned long this_nr_running;
  1706. unsigned long this_has_capacity;
  1707. unsigned int this_idle_cpus;
  1708. /* Statistics of the busiest group */
  1709. unsigned int busiest_idle_cpus;
  1710. unsigned long max_load;
  1711. unsigned long busiest_load_per_task;
  1712. unsigned long busiest_nr_running;
  1713. unsigned long busiest_group_capacity;
  1714. unsigned long busiest_has_capacity;
  1715. unsigned int busiest_group_weight;
  1716. int group_imb; /* Is there imbalance in this sd */
  1717. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1718. int power_savings_balance; /* Is powersave balance needed for this sd */
  1719. struct sched_group *group_min; /* Least loaded group in sd */
  1720. struct sched_group *group_leader; /* Group which relieves group_min */
  1721. unsigned long min_load_per_task; /* load_per_task in group_min */
  1722. unsigned long leader_nr_running; /* Nr running of group_leader */
  1723. unsigned long min_nr_running; /* Nr running of group_min */
  1724. #endif
  1725. };
  1726. /*
  1727. * sg_lb_stats - stats of a sched_group required for load_balancing
  1728. */
  1729. struct sg_lb_stats {
  1730. unsigned long avg_load; /*Avg load across the CPUs of the group */
  1731. unsigned long group_load; /* Total load over the CPUs of the group */
  1732. unsigned long sum_nr_running; /* Nr tasks running in the group */
  1733. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  1734. unsigned long group_capacity;
  1735. unsigned long idle_cpus;
  1736. unsigned long group_weight;
  1737. int group_imb; /* Is there an imbalance in the group ? */
  1738. int group_has_capacity; /* Is there extra capacity in the group? */
  1739. };
  1740. /**
  1741. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  1742. * @group: The group whose first cpu is to be returned.
  1743. */
  1744. static inline unsigned int group_first_cpu(struct sched_group *group)
  1745. {
  1746. return cpumask_first(sched_group_cpus(group));
  1747. }
  1748. /**
  1749. * get_sd_load_idx - Obtain the load index for a given sched domain.
  1750. * @sd: The sched_domain whose load_idx is to be obtained.
  1751. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  1752. */
  1753. static inline int get_sd_load_idx(struct sched_domain *sd,
  1754. enum cpu_idle_type idle)
  1755. {
  1756. int load_idx;
  1757. switch (idle) {
  1758. case CPU_NOT_IDLE:
  1759. load_idx = sd->busy_idx;
  1760. break;
  1761. case CPU_NEWLY_IDLE:
  1762. load_idx = sd->newidle_idx;
  1763. break;
  1764. default:
  1765. load_idx = sd->idle_idx;
  1766. break;
  1767. }
  1768. return load_idx;
  1769. }
  1770. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1771. /**
  1772. * init_sd_power_savings_stats - Initialize power savings statistics for
  1773. * the given sched_domain, during load balancing.
  1774. *
  1775. * @sd: Sched domain whose power-savings statistics are to be initialized.
  1776. * @sds: Variable containing the statistics for sd.
  1777. * @idle: Idle status of the CPU at which we're performing load-balancing.
  1778. */
  1779. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1780. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1781. {
  1782. /*
  1783. * Busy processors will not participate in power savings
  1784. * balance.
  1785. */
  1786. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  1787. sds->power_savings_balance = 0;
  1788. else {
  1789. sds->power_savings_balance = 1;
  1790. sds->min_nr_running = ULONG_MAX;
  1791. sds->leader_nr_running = 0;
  1792. }
  1793. }
  1794. /**
  1795. * update_sd_power_savings_stats - Update the power saving stats for a
  1796. * sched_domain while performing load balancing.
  1797. *
  1798. * @group: sched_group belonging to the sched_domain under consideration.
  1799. * @sds: Variable containing the statistics of the sched_domain
  1800. * @local_group: Does group contain the CPU for which we're performing
  1801. * load balancing ?
  1802. * @sgs: Variable containing the statistics of the group.
  1803. */
  1804. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1805. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1806. {
  1807. if (!sds->power_savings_balance)
  1808. return;
  1809. /*
  1810. * If the local group is idle or completely loaded
  1811. * no need to do power savings balance at this domain
  1812. */
  1813. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  1814. !sds->this_nr_running))
  1815. sds->power_savings_balance = 0;
  1816. /*
  1817. * If a group is already running at full capacity or idle,
  1818. * don't include that group in power savings calculations
  1819. */
  1820. if (!sds->power_savings_balance ||
  1821. sgs->sum_nr_running >= sgs->group_capacity ||
  1822. !sgs->sum_nr_running)
  1823. return;
  1824. /*
  1825. * Calculate the group which has the least non-idle load.
  1826. * This is the group from where we need to pick up the load
  1827. * for saving power
  1828. */
  1829. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  1830. (sgs->sum_nr_running == sds->min_nr_running &&
  1831. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  1832. sds->group_min = group;
  1833. sds->min_nr_running = sgs->sum_nr_running;
  1834. sds->min_load_per_task = sgs->sum_weighted_load /
  1835. sgs->sum_nr_running;
  1836. }
  1837. /*
  1838. * Calculate the group which is almost near its
  1839. * capacity but still has some space to pick up some load
  1840. * from other group and save more power
  1841. */
  1842. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  1843. return;
  1844. if (sgs->sum_nr_running > sds->leader_nr_running ||
  1845. (sgs->sum_nr_running == sds->leader_nr_running &&
  1846. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  1847. sds->group_leader = group;
  1848. sds->leader_nr_running = sgs->sum_nr_running;
  1849. }
  1850. }
  1851. /**
  1852. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  1853. * @sds: Variable containing the statistics of the sched_domain
  1854. * under consideration.
  1855. * @this_cpu: Cpu at which we're currently performing load-balancing.
  1856. * @imbalance: Variable to store the imbalance.
  1857. *
  1858. * Description:
  1859. * Check if we have potential to perform some power-savings balance.
  1860. * If yes, set the busiest group to be the least loaded group in the
  1861. * sched_domain, so that it's CPUs can be put to idle.
  1862. *
  1863. * Returns 1 if there is potential to perform power-savings balance.
  1864. * Else returns 0.
  1865. */
  1866. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  1867. int this_cpu, unsigned long *imbalance)
  1868. {
  1869. if (!sds->power_savings_balance)
  1870. return 0;
  1871. if (sds->this != sds->group_leader ||
  1872. sds->group_leader == sds->group_min)
  1873. return 0;
  1874. *imbalance = sds->min_load_per_task;
  1875. sds->busiest = sds->group_min;
  1876. return 1;
  1877. }
  1878. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  1879. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1880. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1881. {
  1882. return;
  1883. }
  1884. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1885. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1886. {
  1887. return;
  1888. }
  1889. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  1890. int this_cpu, unsigned long *imbalance)
  1891. {
  1892. return 0;
  1893. }
  1894. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  1895. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  1896. {
  1897. return SCHED_LOAD_SCALE;
  1898. }
  1899. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  1900. {
  1901. return default_scale_freq_power(sd, cpu);
  1902. }
  1903. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  1904. {
  1905. unsigned long weight = sd->span_weight;
  1906. unsigned long smt_gain = sd->smt_gain;
  1907. smt_gain /= weight;
  1908. return smt_gain;
  1909. }
  1910. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  1911. {
  1912. return default_scale_smt_power(sd, cpu);
  1913. }
  1914. unsigned long scale_rt_power(int cpu)
  1915. {
  1916. struct rq *rq = cpu_rq(cpu);
  1917. u64 total, available;
  1918. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  1919. if (unlikely(total < rq->rt_avg)) {
  1920. /* Ensures that power won't end up being negative */
  1921. available = 0;
  1922. } else {
  1923. available = total - rq->rt_avg;
  1924. }
  1925. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  1926. total = SCHED_LOAD_SCALE;
  1927. total >>= SCHED_LOAD_SHIFT;
  1928. return div_u64(available, total);
  1929. }
  1930. static void update_cpu_power(struct sched_domain *sd, int cpu)
  1931. {
  1932. unsigned long weight = sd->span_weight;
  1933. unsigned long power = SCHED_LOAD_SCALE;
  1934. struct sched_group *sdg = sd->groups;
  1935. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  1936. if (sched_feat(ARCH_POWER))
  1937. power *= arch_scale_smt_power(sd, cpu);
  1938. else
  1939. power *= default_scale_smt_power(sd, cpu);
  1940. power >>= SCHED_LOAD_SHIFT;
  1941. }
  1942. sdg->cpu_power_orig = power;
  1943. if (sched_feat(ARCH_POWER))
  1944. power *= arch_scale_freq_power(sd, cpu);
  1945. else
  1946. power *= default_scale_freq_power(sd, cpu);
  1947. power >>= SCHED_LOAD_SHIFT;
  1948. power *= scale_rt_power(cpu);
  1949. power >>= SCHED_LOAD_SHIFT;
  1950. if (!power)
  1951. power = 1;
  1952. cpu_rq(cpu)->cpu_power = power;
  1953. sdg->cpu_power = power;
  1954. }
  1955. static void update_group_power(struct sched_domain *sd, int cpu)
  1956. {
  1957. struct sched_domain *child = sd->child;
  1958. struct sched_group *group, *sdg = sd->groups;
  1959. unsigned long power;
  1960. if (!child) {
  1961. update_cpu_power(sd, cpu);
  1962. return;
  1963. }
  1964. power = 0;
  1965. group = child->groups;
  1966. do {
  1967. power += group->cpu_power;
  1968. group = group->next;
  1969. } while (group != child->groups);
  1970. sdg->cpu_power = power;
  1971. }
  1972. /*
  1973. * Try and fix up capacity for tiny siblings, this is needed when
  1974. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  1975. * which on its own isn't powerful enough.
  1976. *
  1977. * See update_sd_pick_busiest() and check_asym_packing().
  1978. */
  1979. static inline int
  1980. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  1981. {
  1982. /*
  1983. * Only siblings can have significantly less than SCHED_LOAD_SCALE
  1984. */
  1985. if (sd->level != SD_LV_SIBLING)
  1986. return 0;
  1987. /*
  1988. * If ~90% of the cpu_power is still there, we're good.
  1989. */
  1990. if (group->cpu_power * 32 > group->cpu_power_orig * 29)
  1991. return 1;
  1992. return 0;
  1993. }
  1994. /**
  1995. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  1996. * @sd: The sched_domain whose statistics are to be updated.
  1997. * @group: sched_group whose statistics are to be updated.
  1998. * @this_cpu: Cpu for which load balance is currently performed.
  1999. * @idle: Idle status of this_cpu
  2000. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2001. * @sd_idle: Idle status of the sched_domain containing group.
  2002. * @local_group: Does group contain this_cpu.
  2003. * @cpus: Set of cpus considered for load balancing.
  2004. * @balance: Should we balance.
  2005. * @sgs: variable to hold the statistics for this group.
  2006. */
  2007. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2008. struct sched_group *group, int this_cpu,
  2009. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2010. int local_group, const struct cpumask *cpus,
  2011. int *balance, struct sg_lb_stats *sgs)
  2012. {
  2013. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2014. int i;
  2015. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2016. unsigned long avg_load_per_task = 0;
  2017. if (local_group)
  2018. balance_cpu = group_first_cpu(group);
  2019. /* Tally up the load of all CPUs in the group */
  2020. max_cpu_load = 0;
  2021. min_cpu_load = ~0UL;
  2022. max_nr_running = 0;
  2023. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2024. struct rq *rq = cpu_rq(i);
  2025. if (*sd_idle && rq->nr_running)
  2026. *sd_idle = 0;
  2027. /* Bias balancing toward cpus of our domain */
  2028. if (local_group) {
  2029. if (idle_cpu(i) && !first_idle_cpu) {
  2030. first_idle_cpu = 1;
  2031. balance_cpu = i;
  2032. }
  2033. load = target_load(i, load_idx);
  2034. } else {
  2035. load = source_load(i, load_idx);
  2036. if (load > max_cpu_load) {
  2037. max_cpu_load = load;
  2038. max_nr_running = rq->nr_running;
  2039. }
  2040. if (min_cpu_load > load)
  2041. min_cpu_load = load;
  2042. }
  2043. sgs->group_load += load;
  2044. sgs->sum_nr_running += rq->nr_running;
  2045. sgs->sum_weighted_load += weighted_cpuload(i);
  2046. if (idle_cpu(i))
  2047. sgs->idle_cpus++;
  2048. }
  2049. /*
  2050. * First idle cpu or the first cpu(busiest) in this sched group
  2051. * is eligible for doing load balancing at this and above
  2052. * domains. In the newly idle case, we will allow all the cpu's
  2053. * to do the newly idle load balance.
  2054. */
  2055. if (idle != CPU_NEWLY_IDLE && local_group) {
  2056. if (balance_cpu != this_cpu) {
  2057. *balance = 0;
  2058. return;
  2059. }
  2060. update_group_power(sd, this_cpu);
  2061. }
  2062. /* Adjust by relative CPU power of the group */
  2063. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2064. /*
  2065. * Consider the group unbalanced when the imbalance is larger
  2066. * than the average weight of two tasks.
  2067. *
  2068. * APZ: with cgroup the avg task weight can vary wildly and
  2069. * might not be a suitable number - should we keep a
  2070. * normalized nr_running number somewhere that negates
  2071. * the hierarchy?
  2072. */
  2073. if (sgs->sum_nr_running)
  2074. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2075. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
  2076. sgs->group_imb = 1;
  2077. sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  2078. if (!sgs->group_capacity)
  2079. sgs->group_capacity = fix_small_capacity(sd, group);
  2080. sgs->group_weight = group->group_weight;
  2081. if (sgs->group_capacity > sgs->sum_nr_running)
  2082. sgs->group_has_capacity = 1;
  2083. }
  2084. /**
  2085. * update_sd_pick_busiest - return 1 on busiest group
  2086. * @sd: sched_domain whose statistics are to be checked
  2087. * @sds: sched_domain statistics
  2088. * @sg: sched_group candidate to be checked for being the busiest
  2089. * @sgs: sched_group statistics
  2090. * @this_cpu: the current cpu
  2091. *
  2092. * Determine if @sg is a busier group than the previously selected
  2093. * busiest group.
  2094. */
  2095. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2096. struct sd_lb_stats *sds,
  2097. struct sched_group *sg,
  2098. struct sg_lb_stats *sgs,
  2099. int this_cpu)
  2100. {
  2101. if (sgs->avg_load <= sds->max_load)
  2102. return false;
  2103. if (sgs->sum_nr_running > sgs->group_capacity)
  2104. return true;
  2105. if (sgs->group_imb)
  2106. return true;
  2107. /*
  2108. * ASYM_PACKING needs to move all the work to the lowest
  2109. * numbered CPUs in the group, therefore mark all groups
  2110. * higher than ourself as busy.
  2111. */
  2112. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  2113. this_cpu < group_first_cpu(sg)) {
  2114. if (!sds->busiest)
  2115. return true;
  2116. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  2117. return true;
  2118. }
  2119. return false;
  2120. }
  2121. /**
  2122. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2123. * @sd: sched_domain whose statistics are to be updated.
  2124. * @this_cpu: Cpu for which load balance is currently performed.
  2125. * @idle: Idle status of this_cpu
  2126. * @sd_idle: Idle status of the sched_domain containing sg.
  2127. * @cpus: Set of cpus considered for load balancing.
  2128. * @balance: Should we balance.
  2129. * @sds: variable to hold the statistics for this sched_domain.
  2130. */
  2131. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2132. enum cpu_idle_type idle, int *sd_idle,
  2133. const struct cpumask *cpus, int *balance,
  2134. struct sd_lb_stats *sds)
  2135. {
  2136. struct sched_domain *child = sd->child;
  2137. struct sched_group *sg = sd->groups;
  2138. struct sg_lb_stats sgs;
  2139. int load_idx, prefer_sibling = 0;
  2140. if (child && child->flags & SD_PREFER_SIBLING)
  2141. prefer_sibling = 1;
  2142. init_sd_power_savings_stats(sd, sds, idle);
  2143. load_idx = get_sd_load_idx(sd, idle);
  2144. do {
  2145. int local_group;
  2146. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  2147. memset(&sgs, 0, sizeof(sgs));
  2148. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
  2149. local_group, cpus, balance, &sgs);
  2150. if (local_group && !(*balance))
  2151. return;
  2152. sds->total_load += sgs.group_load;
  2153. sds->total_pwr += sg->cpu_power;
  2154. /*
  2155. * In case the child domain prefers tasks go to siblings
  2156. * first, lower the sg capacity to one so that we'll try
  2157. * and move all the excess tasks away. We lower the capacity
  2158. * of a group only if the local group has the capacity to fit
  2159. * these excess tasks, i.e. nr_running < group_capacity. The
  2160. * extra check prevents the case where you always pull from the
  2161. * heaviest group when it is already under-utilized (possible
  2162. * with a large weight task outweighs the tasks on the system).
  2163. */
  2164. if (prefer_sibling && !local_group && sds->this_has_capacity)
  2165. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2166. if (local_group) {
  2167. sds->this_load = sgs.avg_load;
  2168. sds->this = sg;
  2169. sds->this_nr_running = sgs.sum_nr_running;
  2170. sds->this_load_per_task = sgs.sum_weighted_load;
  2171. sds->this_has_capacity = sgs.group_has_capacity;
  2172. sds->this_idle_cpus = sgs.idle_cpus;
  2173. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  2174. sds->max_load = sgs.avg_load;
  2175. sds->busiest = sg;
  2176. sds->busiest_nr_running = sgs.sum_nr_running;
  2177. sds->busiest_idle_cpus = sgs.idle_cpus;
  2178. sds->busiest_group_capacity = sgs.group_capacity;
  2179. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2180. sds->busiest_has_capacity = sgs.group_has_capacity;
  2181. sds->busiest_group_weight = sgs.group_weight;
  2182. sds->group_imb = sgs.group_imb;
  2183. }
  2184. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  2185. sg = sg->next;
  2186. } while (sg != sd->groups);
  2187. }
  2188. int __weak arch_sd_sibling_asym_packing(void)
  2189. {
  2190. return 0*SD_ASYM_PACKING;
  2191. }
  2192. /**
  2193. * check_asym_packing - Check to see if the group is packed into the
  2194. * sched doman.
  2195. *
  2196. * This is primarily intended to used at the sibling level. Some
  2197. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  2198. * case of POWER7, it can move to lower SMT modes only when higher
  2199. * threads are idle. When in lower SMT modes, the threads will
  2200. * perform better since they share less core resources. Hence when we
  2201. * have idle threads, we want them to be the higher ones.
  2202. *
  2203. * This packing function is run on idle threads. It checks to see if
  2204. * the busiest CPU in this domain (core in the P7 case) has a higher
  2205. * CPU number than the packing function is being run on. Here we are
  2206. * assuming lower CPU number will be equivalent to lower a SMT thread
  2207. * number.
  2208. *
  2209. * Returns 1 when packing is required and a task should be moved to
  2210. * this CPU. The amount of the imbalance is returned in *imbalance.
  2211. *
  2212. * @sd: The sched_domain whose packing is to be checked.
  2213. * @sds: Statistics of the sched_domain which is to be packed
  2214. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2215. * @imbalance: returns amount of imbalanced due to packing.
  2216. */
  2217. static int check_asym_packing(struct sched_domain *sd,
  2218. struct sd_lb_stats *sds,
  2219. int this_cpu, unsigned long *imbalance)
  2220. {
  2221. int busiest_cpu;
  2222. if (!(sd->flags & SD_ASYM_PACKING))
  2223. return 0;
  2224. if (!sds->busiest)
  2225. return 0;
  2226. busiest_cpu = group_first_cpu(sds->busiest);
  2227. if (this_cpu > busiest_cpu)
  2228. return 0;
  2229. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
  2230. SCHED_LOAD_SCALE);
  2231. return 1;
  2232. }
  2233. /**
  2234. * fix_small_imbalance - Calculate the minor imbalance that exists
  2235. * amongst the groups of a sched_domain, during
  2236. * load balancing.
  2237. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2238. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2239. * @imbalance: Variable to store the imbalance.
  2240. */
  2241. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2242. int this_cpu, unsigned long *imbalance)
  2243. {
  2244. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2245. unsigned int imbn = 2;
  2246. unsigned long scaled_busy_load_per_task;
  2247. if (sds->this_nr_running) {
  2248. sds->this_load_per_task /= sds->this_nr_running;
  2249. if (sds->busiest_load_per_task >
  2250. sds->this_load_per_task)
  2251. imbn = 1;
  2252. } else
  2253. sds->this_load_per_task =
  2254. cpu_avg_load_per_task(this_cpu);
  2255. scaled_busy_load_per_task = sds->busiest_load_per_task
  2256. * SCHED_LOAD_SCALE;
  2257. scaled_busy_load_per_task /= sds->busiest->cpu_power;
  2258. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2259. (scaled_busy_load_per_task * imbn)) {
  2260. *imbalance = sds->busiest_load_per_task;
  2261. return;
  2262. }
  2263. /*
  2264. * OK, we don't have enough imbalance to justify moving tasks,
  2265. * however we may be able to increase total CPU power used by
  2266. * moving them.
  2267. */
  2268. pwr_now += sds->busiest->cpu_power *
  2269. min(sds->busiest_load_per_task, sds->max_load);
  2270. pwr_now += sds->this->cpu_power *
  2271. min(sds->this_load_per_task, sds->this_load);
  2272. pwr_now /= SCHED_LOAD_SCALE;
  2273. /* Amount of load we'd subtract */
  2274. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2275. sds->busiest->cpu_power;
  2276. if (sds->max_load > tmp)
  2277. pwr_move += sds->busiest->cpu_power *
  2278. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2279. /* Amount of load we'd add */
  2280. if (sds->max_load * sds->busiest->cpu_power <
  2281. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  2282. tmp = (sds->max_load * sds->busiest->cpu_power) /
  2283. sds->this->cpu_power;
  2284. else
  2285. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2286. sds->this->cpu_power;
  2287. pwr_move += sds->this->cpu_power *
  2288. min(sds->this_load_per_task, sds->this_load + tmp);
  2289. pwr_move /= SCHED_LOAD_SCALE;
  2290. /* Move if we gain throughput */
  2291. if (pwr_move > pwr_now)
  2292. *imbalance = sds->busiest_load_per_task;
  2293. }
  2294. /**
  2295. * calculate_imbalance - Calculate the amount of imbalance present within the
  2296. * groups of a given sched_domain during load balance.
  2297. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2298. * @this_cpu: Cpu for which currently load balance is being performed.
  2299. * @imbalance: The variable to store the imbalance.
  2300. */
  2301. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2302. unsigned long *imbalance)
  2303. {
  2304. unsigned long max_pull, load_above_capacity = ~0UL;
  2305. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2306. if (sds->group_imb) {
  2307. sds->busiest_load_per_task =
  2308. min(sds->busiest_load_per_task, sds->avg_load);
  2309. }
  2310. /*
  2311. * In the presence of smp nice balancing, certain scenarios can have
  2312. * max load less than avg load(as we skip the groups at or below
  2313. * its cpu_power, while calculating max_load..)
  2314. */
  2315. if (sds->max_load < sds->avg_load) {
  2316. *imbalance = 0;
  2317. return fix_small_imbalance(sds, this_cpu, imbalance);
  2318. }
  2319. if (!sds->group_imb) {
  2320. /*
  2321. * Don't want to pull so many tasks that a group would go idle.
  2322. */
  2323. load_above_capacity = (sds->busiest_nr_running -
  2324. sds->busiest_group_capacity);
  2325. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
  2326. load_above_capacity /= sds->busiest->cpu_power;
  2327. }
  2328. /*
  2329. * We're trying to get all the cpus to the average_load, so we don't
  2330. * want to push ourselves above the average load, nor do we wish to
  2331. * reduce the max loaded cpu below the average load. At the same time,
  2332. * we also don't want to reduce the group load below the group capacity
  2333. * (so that we can implement power-savings policies etc). Thus we look
  2334. * for the minimum possible imbalance.
  2335. * Be careful of negative numbers as they'll appear as very large values
  2336. * with unsigned longs.
  2337. */
  2338. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2339. /* How much load to actually move to equalise the imbalance */
  2340. *imbalance = min(max_pull * sds->busiest->cpu_power,
  2341. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  2342. / SCHED_LOAD_SCALE;
  2343. /*
  2344. * if *imbalance is less than the average load per runnable task
  2345. * there is no gaurantee that any tasks will be moved so we'll have
  2346. * a think about bumping its value to force at least one task to be
  2347. * moved
  2348. */
  2349. if (*imbalance < sds->busiest_load_per_task)
  2350. return fix_small_imbalance(sds, this_cpu, imbalance);
  2351. }
  2352. /******* find_busiest_group() helpers end here *********************/
  2353. /**
  2354. * find_busiest_group - Returns the busiest group within the sched_domain
  2355. * if there is an imbalance. If there isn't an imbalance, and
  2356. * the user has opted for power-savings, it returns a group whose
  2357. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2358. * such a group exists.
  2359. *
  2360. * Also calculates the amount of weighted load which should be moved
  2361. * to restore balance.
  2362. *
  2363. * @sd: The sched_domain whose busiest group is to be returned.
  2364. * @this_cpu: The cpu for which load balancing is currently being performed.
  2365. * @imbalance: Variable which stores amount of weighted load which should
  2366. * be moved to restore balance/put a group to idle.
  2367. * @idle: The idle status of this_cpu.
  2368. * @sd_idle: The idleness of sd
  2369. * @cpus: The set of CPUs under consideration for load-balancing.
  2370. * @balance: Pointer to a variable indicating if this_cpu
  2371. * is the appropriate cpu to perform load balancing at this_level.
  2372. *
  2373. * Returns: - the busiest group if imbalance exists.
  2374. * - If no imbalance and user has opted for power-savings balance,
  2375. * return the least loaded group whose CPUs can be
  2376. * put to idle by rebalancing its tasks onto our group.
  2377. */
  2378. static struct sched_group *
  2379. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2380. unsigned long *imbalance, enum cpu_idle_type idle,
  2381. int *sd_idle, const struct cpumask *cpus, int *balance)
  2382. {
  2383. struct sd_lb_stats sds;
  2384. memset(&sds, 0, sizeof(sds));
  2385. /*
  2386. * Compute the various statistics relavent for load balancing at
  2387. * this level.
  2388. */
  2389. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  2390. balance, &sds);
  2391. /* Cases where imbalance does not exist from POV of this_cpu */
  2392. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  2393. * at this level.
  2394. * 2) There is no busy sibling group to pull from.
  2395. * 3) This group is the busiest group.
  2396. * 4) This group is more busy than the avg busieness at this
  2397. * sched_domain.
  2398. * 5) The imbalance is within the specified limit.
  2399. *
  2400. * Note: when doing newidle balance, if the local group has excess
  2401. * capacity (i.e. nr_running < group_capacity) and the busiest group
  2402. * does not have any capacity, we force a load balance to pull tasks
  2403. * to the local group. In this case, we skip past checks 3, 4 and 5.
  2404. */
  2405. if (!(*balance))
  2406. goto ret;
  2407. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  2408. check_asym_packing(sd, &sds, this_cpu, imbalance))
  2409. return sds.busiest;
  2410. if (!sds.busiest || sds.busiest_nr_running == 0)
  2411. goto out_balanced;
  2412. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  2413. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  2414. !sds.busiest_has_capacity)
  2415. goto force_balance;
  2416. if (sds.this_load >= sds.max_load)
  2417. goto out_balanced;
  2418. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  2419. if (sds.this_load >= sds.avg_load)
  2420. goto out_balanced;
  2421. /*
  2422. * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
  2423. * And to check for busy balance use !idle_cpu instead of
  2424. * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
  2425. * even when they are idle.
  2426. */
  2427. if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
  2428. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2429. goto out_balanced;
  2430. } else {
  2431. /*
  2432. * This cpu is idle. If the busiest group load doesn't
  2433. * have more tasks than the number of available cpu's and
  2434. * there is no imbalance between this and busiest group
  2435. * wrt to idle cpu's, it is balanced.
  2436. */
  2437. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  2438. sds.busiest_nr_running <= sds.busiest_group_weight)
  2439. goto out_balanced;
  2440. }
  2441. force_balance:
  2442. /* Looks like there is an imbalance. Compute it */
  2443. calculate_imbalance(&sds, this_cpu, imbalance);
  2444. return sds.busiest;
  2445. out_balanced:
  2446. /*
  2447. * There is no obvious imbalance. But check if we can do some balancing
  2448. * to save power.
  2449. */
  2450. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2451. return sds.busiest;
  2452. ret:
  2453. *imbalance = 0;
  2454. return NULL;
  2455. }
  2456. /*
  2457. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2458. */
  2459. static struct rq *
  2460. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  2461. enum cpu_idle_type idle, unsigned long imbalance,
  2462. const struct cpumask *cpus)
  2463. {
  2464. struct rq *busiest = NULL, *rq;
  2465. unsigned long max_load = 0;
  2466. int i;
  2467. for_each_cpu(i, sched_group_cpus(group)) {
  2468. unsigned long power = power_of(i);
  2469. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  2470. unsigned long wl;
  2471. if (!capacity)
  2472. capacity = fix_small_capacity(sd, group);
  2473. if (!cpumask_test_cpu(i, cpus))
  2474. continue;
  2475. rq = cpu_rq(i);
  2476. wl = weighted_cpuload(i);
  2477. /*
  2478. * When comparing with imbalance, use weighted_cpuload()
  2479. * which is not scaled with the cpu power.
  2480. */
  2481. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2482. continue;
  2483. /*
  2484. * For the load comparisons with the other cpu's, consider
  2485. * the weighted_cpuload() scaled with the cpu power, so that
  2486. * the load can be moved away from the cpu that is potentially
  2487. * running at a lower capacity.
  2488. */
  2489. wl = (wl * SCHED_LOAD_SCALE) / power;
  2490. if (wl > max_load) {
  2491. max_load = wl;
  2492. busiest = rq;
  2493. }
  2494. }
  2495. return busiest;
  2496. }
  2497. /*
  2498. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2499. * so long as it is large enough.
  2500. */
  2501. #define MAX_PINNED_INTERVAL 512
  2502. /* Working cpumask for load_balance and load_balance_newidle. */
  2503. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2504. static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
  2505. int busiest_cpu, int this_cpu)
  2506. {
  2507. if (idle == CPU_NEWLY_IDLE) {
  2508. /*
  2509. * ASYM_PACKING needs to force migrate tasks from busy but
  2510. * higher numbered CPUs in order to pack all tasks in the
  2511. * lowest numbered CPUs.
  2512. */
  2513. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  2514. return 1;
  2515. /*
  2516. * The only task running in a non-idle cpu can be moved to this
  2517. * cpu in an attempt to completely freeup the other CPU
  2518. * package.
  2519. *
  2520. * The package power saving logic comes from
  2521. * find_busiest_group(). If there are no imbalance, then
  2522. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2523. * f_b_g() will select a group from which a running task may be
  2524. * pulled to this cpu in order to make the other package idle.
  2525. * If there is no opportunity to make a package idle and if
  2526. * there are no imbalance, then f_b_g() will return NULL and no
  2527. * action will be taken in load_balance_newidle().
  2528. *
  2529. * Under normal task pull operation due to imbalance, there
  2530. * will be more than one task in the source run queue and
  2531. * move_tasks() will succeed. ld_moved will be true and this
  2532. * active balance code will not be triggered.
  2533. */
  2534. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2535. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2536. return 0;
  2537. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2538. return 0;
  2539. }
  2540. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2541. }
  2542. static int active_load_balance_cpu_stop(void *data);
  2543. /*
  2544. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2545. * tasks if there is an imbalance.
  2546. */
  2547. static int load_balance(int this_cpu, struct rq *this_rq,
  2548. struct sched_domain *sd, enum cpu_idle_type idle,
  2549. int *balance)
  2550. {
  2551. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2552. struct sched_group *group;
  2553. unsigned long imbalance;
  2554. struct rq *busiest;
  2555. unsigned long flags;
  2556. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2557. cpumask_copy(cpus, cpu_active_mask);
  2558. /*
  2559. * When power savings policy is enabled for the parent domain, idle
  2560. * sibling can pick up load irrespective of busy siblings. In this case,
  2561. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2562. * portraying it as CPU_NOT_IDLE.
  2563. */
  2564. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2565. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2566. sd_idle = 1;
  2567. schedstat_inc(sd, lb_count[idle]);
  2568. redo:
  2569. update_shares(sd);
  2570. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2571. cpus, balance);
  2572. if (*balance == 0)
  2573. goto out_balanced;
  2574. if (!group) {
  2575. schedstat_inc(sd, lb_nobusyg[idle]);
  2576. goto out_balanced;
  2577. }
  2578. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  2579. if (!busiest) {
  2580. schedstat_inc(sd, lb_nobusyq[idle]);
  2581. goto out_balanced;
  2582. }
  2583. BUG_ON(busiest == this_rq);
  2584. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2585. ld_moved = 0;
  2586. if (busiest->nr_running > 1) {
  2587. /*
  2588. * Attempt to move tasks. If find_busiest_group has found
  2589. * an imbalance but busiest->nr_running <= 1, the group is
  2590. * still unbalanced. ld_moved simply stays zero, so it is
  2591. * correctly treated as an imbalance.
  2592. */
  2593. local_irq_save(flags);
  2594. double_rq_lock(this_rq, busiest);
  2595. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2596. imbalance, sd, idle, &all_pinned);
  2597. double_rq_unlock(this_rq, busiest);
  2598. local_irq_restore(flags);
  2599. /*
  2600. * some other cpu did the load balance for us.
  2601. */
  2602. if (ld_moved && this_cpu != smp_processor_id())
  2603. resched_cpu(this_cpu);
  2604. /* All tasks on this runqueue were pinned by CPU affinity */
  2605. if (unlikely(all_pinned)) {
  2606. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2607. if (!cpumask_empty(cpus))
  2608. goto redo;
  2609. goto out_balanced;
  2610. }
  2611. }
  2612. if (!ld_moved) {
  2613. schedstat_inc(sd, lb_failed[idle]);
  2614. /*
  2615. * Increment the failure counter only on periodic balance.
  2616. * We do not want newidle balance, which can be very
  2617. * frequent, pollute the failure counter causing
  2618. * excessive cache_hot migrations and active balances.
  2619. */
  2620. if (idle != CPU_NEWLY_IDLE)
  2621. sd->nr_balance_failed++;
  2622. if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
  2623. this_cpu)) {
  2624. raw_spin_lock_irqsave(&busiest->lock, flags);
  2625. /* don't kick the active_load_balance_cpu_stop,
  2626. * if the curr task on busiest cpu can't be
  2627. * moved to this_cpu
  2628. */
  2629. if (!cpumask_test_cpu(this_cpu,
  2630. &busiest->curr->cpus_allowed)) {
  2631. raw_spin_unlock_irqrestore(&busiest->lock,
  2632. flags);
  2633. all_pinned = 1;
  2634. goto out_one_pinned;
  2635. }
  2636. /*
  2637. * ->active_balance synchronizes accesses to
  2638. * ->active_balance_work. Once set, it's cleared
  2639. * only after active load balance is finished.
  2640. */
  2641. if (!busiest->active_balance) {
  2642. busiest->active_balance = 1;
  2643. busiest->push_cpu = this_cpu;
  2644. active_balance = 1;
  2645. }
  2646. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2647. if (active_balance)
  2648. stop_one_cpu_nowait(cpu_of(busiest),
  2649. active_load_balance_cpu_stop, busiest,
  2650. &busiest->active_balance_work);
  2651. /*
  2652. * We've kicked active balancing, reset the failure
  2653. * counter.
  2654. */
  2655. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2656. }
  2657. } else
  2658. sd->nr_balance_failed = 0;
  2659. if (likely(!active_balance)) {
  2660. /* We were unbalanced, so reset the balancing interval */
  2661. sd->balance_interval = sd->min_interval;
  2662. } else {
  2663. /*
  2664. * If we've begun active balancing, start to back off. This
  2665. * case may not be covered by the all_pinned logic if there
  2666. * is only 1 task on the busy runqueue (because we don't call
  2667. * move_tasks).
  2668. */
  2669. if (sd->balance_interval < sd->max_interval)
  2670. sd->balance_interval *= 2;
  2671. }
  2672. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2673. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2674. ld_moved = -1;
  2675. goto out;
  2676. out_balanced:
  2677. schedstat_inc(sd, lb_balanced[idle]);
  2678. sd->nr_balance_failed = 0;
  2679. out_one_pinned:
  2680. /* tune up the balancing interval */
  2681. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2682. (sd->balance_interval < sd->max_interval))
  2683. sd->balance_interval *= 2;
  2684. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2685. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2686. ld_moved = -1;
  2687. else
  2688. ld_moved = 0;
  2689. out:
  2690. if (ld_moved)
  2691. update_shares(sd);
  2692. return ld_moved;
  2693. }
  2694. /*
  2695. * idle_balance is called by schedule() if this_cpu is about to become
  2696. * idle. Attempts to pull tasks from other CPUs.
  2697. */
  2698. static void idle_balance(int this_cpu, struct rq *this_rq)
  2699. {
  2700. struct sched_domain *sd;
  2701. int pulled_task = 0;
  2702. unsigned long next_balance = jiffies + HZ;
  2703. this_rq->idle_stamp = this_rq->clock;
  2704. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  2705. return;
  2706. /*
  2707. * Drop the rq->lock, but keep IRQ/preempt disabled.
  2708. */
  2709. raw_spin_unlock(&this_rq->lock);
  2710. for_each_domain(this_cpu, sd) {
  2711. unsigned long interval;
  2712. int balance = 1;
  2713. if (!(sd->flags & SD_LOAD_BALANCE))
  2714. continue;
  2715. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2716. /* If we've pulled tasks over stop searching: */
  2717. pulled_task = load_balance(this_cpu, this_rq,
  2718. sd, CPU_NEWLY_IDLE, &balance);
  2719. }
  2720. interval = msecs_to_jiffies(sd->balance_interval);
  2721. if (time_after(next_balance, sd->last_balance + interval))
  2722. next_balance = sd->last_balance + interval;
  2723. if (pulled_task)
  2724. break;
  2725. }
  2726. raw_spin_lock(&this_rq->lock);
  2727. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2728. /*
  2729. * We are going idle. next_balance may be set based on
  2730. * a busy processor. So reset next_balance.
  2731. */
  2732. this_rq->next_balance = next_balance;
  2733. }
  2734. }
  2735. /*
  2736. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  2737. * running tasks off the busiest CPU onto idle CPUs. It requires at
  2738. * least 1 task to be running on each physical CPU where possible, and
  2739. * avoids physical / logical imbalances.
  2740. */
  2741. static int active_load_balance_cpu_stop(void *data)
  2742. {
  2743. struct rq *busiest_rq = data;
  2744. int busiest_cpu = cpu_of(busiest_rq);
  2745. int target_cpu = busiest_rq->push_cpu;
  2746. struct rq *target_rq = cpu_rq(target_cpu);
  2747. struct sched_domain *sd;
  2748. raw_spin_lock_irq(&busiest_rq->lock);
  2749. /* make sure the requested cpu hasn't gone down in the meantime */
  2750. if (unlikely(busiest_cpu != smp_processor_id() ||
  2751. !busiest_rq->active_balance))
  2752. goto out_unlock;
  2753. /* Is there any task to move? */
  2754. if (busiest_rq->nr_running <= 1)
  2755. goto out_unlock;
  2756. /*
  2757. * This condition is "impossible", if it occurs
  2758. * we need to fix it. Originally reported by
  2759. * Bjorn Helgaas on a 128-cpu setup.
  2760. */
  2761. BUG_ON(busiest_rq == target_rq);
  2762. /* move a task from busiest_rq to target_rq */
  2763. double_lock_balance(busiest_rq, target_rq);
  2764. /* Search for an sd spanning us and the target CPU. */
  2765. for_each_domain(target_cpu, sd) {
  2766. if ((sd->flags & SD_LOAD_BALANCE) &&
  2767. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  2768. break;
  2769. }
  2770. if (likely(sd)) {
  2771. schedstat_inc(sd, alb_count);
  2772. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2773. sd, CPU_IDLE))
  2774. schedstat_inc(sd, alb_pushed);
  2775. else
  2776. schedstat_inc(sd, alb_failed);
  2777. }
  2778. double_unlock_balance(busiest_rq, target_rq);
  2779. out_unlock:
  2780. busiest_rq->active_balance = 0;
  2781. raw_spin_unlock_irq(&busiest_rq->lock);
  2782. return 0;
  2783. }
  2784. #ifdef CONFIG_NO_HZ
  2785. static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
  2786. static void trigger_sched_softirq(void *data)
  2787. {
  2788. raise_softirq_irqoff(SCHED_SOFTIRQ);
  2789. }
  2790. static inline void init_sched_softirq_csd(struct call_single_data *csd)
  2791. {
  2792. csd->func = trigger_sched_softirq;
  2793. csd->info = NULL;
  2794. csd->flags = 0;
  2795. csd->priv = 0;
  2796. }
  2797. /*
  2798. * idle load balancing details
  2799. * - One of the idle CPUs nominates itself as idle load_balancer, while
  2800. * entering idle.
  2801. * - This idle load balancer CPU will also go into tickless mode when
  2802. * it is idle, just like all other idle CPUs
  2803. * - When one of the busy CPUs notice that there may be an idle rebalancing
  2804. * needed, they will kick the idle load balancer, which then does idle
  2805. * load balancing for all the idle CPUs.
  2806. */
  2807. static struct {
  2808. atomic_t load_balancer;
  2809. atomic_t first_pick_cpu;
  2810. atomic_t second_pick_cpu;
  2811. cpumask_var_t idle_cpus_mask;
  2812. cpumask_var_t grp_idle_mask;
  2813. unsigned long next_balance; /* in jiffy units */
  2814. } nohz ____cacheline_aligned;
  2815. int get_nohz_load_balancer(void)
  2816. {
  2817. return atomic_read(&nohz.load_balancer);
  2818. }
  2819. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2820. /**
  2821. * lowest_flag_domain - Return lowest sched_domain containing flag.
  2822. * @cpu: The cpu whose lowest level of sched domain is to
  2823. * be returned.
  2824. * @flag: The flag to check for the lowest sched_domain
  2825. * for the given cpu.
  2826. *
  2827. * Returns the lowest sched_domain of a cpu which contains the given flag.
  2828. */
  2829. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  2830. {
  2831. struct sched_domain *sd;
  2832. for_each_domain(cpu, sd)
  2833. if (sd && (sd->flags & flag))
  2834. break;
  2835. return sd;
  2836. }
  2837. /**
  2838. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  2839. * @cpu: The cpu whose domains we're iterating over.
  2840. * @sd: variable holding the value of the power_savings_sd
  2841. * for cpu.
  2842. * @flag: The flag to filter the sched_domains to be iterated.
  2843. *
  2844. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  2845. * set, starting from the lowest sched_domain to the highest.
  2846. */
  2847. #define for_each_flag_domain(cpu, sd, flag) \
  2848. for (sd = lowest_flag_domain(cpu, flag); \
  2849. (sd && (sd->flags & flag)); sd = sd->parent)
  2850. /**
  2851. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  2852. * @ilb_group: group to be checked for semi-idleness
  2853. *
  2854. * Returns: 1 if the group is semi-idle. 0 otherwise.
  2855. *
  2856. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  2857. * and atleast one non-idle CPU. This helper function checks if the given
  2858. * sched_group is semi-idle or not.
  2859. */
  2860. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  2861. {
  2862. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  2863. sched_group_cpus(ilb_group));
  2864. /*
  2865. * A sched_group is semi-idle when it has atleast one busy cpu
  2866. * and atleast one idle cpu.
  2867. */
  2868. if (cpumask_empty(nohz.grp_idle_mask))
  2869. return 0;
  2870. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  2871. return 0;
  2872. return 1;
  2873. }
  2874. /**
  2875. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  2876. * @cpu: The cpu which is nominating a new idle_load_balancer.
  2877. *
  2878. * Returns: Returns the id of the idle load balancer if it exists,
  2879. * Else, returns >= nr_cpu_ids.
  2880. *
  2881. * This algorithm picks the idle load balancer such that it belongs to a
  2882. * semi-idle powersavings sched_domain. The idea is to try and avoid
  2883. * completely idle packages/cores just for the purpose of idle load balancing
  2884. * when there are other idle cpu's which are better suited for that job.
  2885. */
  2886. static int find_new_ilb(int cpu)
  2887. {
  2888. struct sched_domain *sd;
  2889. struct sched_group *ilb_group;
  2890. /*
  2891. * Have idle load balancer selection from semi-idle packages only
  2892. * when power-aware load balancing is enabled
  2893. */
  2894. if (!(sched_smt_power_savings || sched_mc_power_savings))
  2895. goto out_done;
  2896. /*
  2897. * Optimize for the case when we have no idle CPUs or only one
  2898. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  2899. */
  2900. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  2901. goto out_done;
  2902. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  2903. ilb_group = sd->groups;
  2904. do {
  2905. if (is_semi_idle_group(ilb_group))
  2906. return cpumask_first(nohz.grp_idle_mask);
  2907. ilb_group = ilb_group->next;
  2908. } while (ilb_group != sd->groups);
  2909. }
  2910. out_done:
  2911. return nr_cpu_ids;
  2912. }
  2913. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  2914. static inline int find_new_ilb(int call_cpu)
  2915. {
  2916. return nr_cpu_ids;
  2917. }
  2918. #endif
  2919. /*
  2920. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  2921. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  2922. * CPU (if there is one).
  2923. */
  2924. static void nohz_balancer_kick(int cpu)
  2925. {
  2926. int ilb_cpu;
  2927. nohz.next_balance++;
  2928. ilb_cpu = get_nohz_load_balancer();
  2929. if (ilb_cpu >= nr_cpu_ids) {
  2930. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  2931. if (ilb_cpu >= nr_cpu_ids)
  2932. return;
  2933. }
  2934. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  2935. struct call_single_data *cp;
  2936. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  2937. cp = &per_cpu(remote_sched_softirq_cb, cpu);
  2938. __smp_call_function_single(ilb_cpu, cp, 0);
  2939. }
  2940. return;
  2941. }
  2942. /*
  2943. * This routine will try to nominate the ilb (idle load balancing)
  2944. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2945. * load balancing on behalf of all those cpus.
  2946. *
  2947. * When the ilb owner becomes busy, we will not have new ilb owner until some
  2948. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  2949. * idle load balancing by kicking one of the idle CPUs.
  2950. *
  2951. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  2952. * ilb owner CPU in future (when there is a need for idle load balancing on
  2953. * behalf of all idle CPUs).
  2954. */
  2955. void select_nohz_load_balancer(int stop_tick)
  2956. {
  2957. int cpu = smp_processor_id();
  2958. if (stop_tick) {
  2959. if (!cpu_active(cpu)) {
  2960. if (atomic_read(&nohz.load_balancer) != cpu)
  2961. return;
  2962. /*
  2963. * If we are going offline and still the leader,
  2964. * give up!
  2965. */
  2966. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  2967. nr_cpu_ids) != cpu)
  2968. BUG();
  2969. return;
  2970. }
  2971. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  2972. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  2973. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  2974. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  2975. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  2976. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  2977. int new_ilb;
  2978. /* make me the ilb owner */
  2979. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  2980. cpu) != nr_cpu_ids)
  2981. return;
  2982. /*
  2983. * Check to see if there is a more power-efficient
  2984. * ilb.
  2985. */
  2986. new_ilb = find_new_ilb(cpu);
  2987. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  2988. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  2989. resched_cpu(new_ilb);
  2990. return;
  2991. }
  2992. return;
  2993. }
  2994. } else {
  2995. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  2996. return;
  2997. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  2998. if (atomic_read(&nohz.load_balancer) == cpu)
  2999. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3000. nr_cpu_ids) != cpu)
  3001. BUG();
  3002. }
  3003. return;
  3004. }
  3005. #endif
  3006. static DEFINE_SPINLOCK(balancing);
  3007. /*
  3008. * It checks each scheduling domain to see if it is due to be balanced,
  3009. * and initiates a balancing operation if so.
  3010. *
  3011. * Balancing parameters are set up in arch_init_sched_domains.
  3012. */
  3013. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3014. {
  3015. int balance = 1;
  3016. struct rq *rq = cpu_rq(cpu);
  3017. unsigned long interval;
  3018. struct sched_domain *sd;
  3019. /* Earliest time when we have to do rebalance again */
  3020. unsigned long next_balance = jiffies + 60*HZ;
  3021. int update_next_balance = 0;
  3022. int need_serialize;
  3023. for_each_domain(cpu, sd) {
  3024. if (!(sd->flags & SD_LOAD_BALANCE))
  3025. continue;
  3026. interval = sd->balance_interval;
  3027. if (idle != CPU_IDLE)
  3028. interval *= sd->busy_factor;
  3029. /* scale ms to jiffies */
  3030. interval = msecs_to_jiffies(interval);
  3031. if (unlikely(!interval))
  3032. interval = 1;
  3033. if (interval > HZ*NR_CPUS/10)
  3034. interval = HZ*NR_CPUS/10;
  3035. need_serialize = sd->flags & SD_SERIALIZE;
  3036. if (need_serialize) {
  3037. if (!spin_trylock(&balancing))
  3038. goto out;
  3039. }
  3040. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3041. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3042. /*
  3043. * We've pulled tasks over so either we're no
  3044. * longer idle, or one of our SMT siblings is
  3045. * not idle.
  3046. */
  3047. idle = CPU_NOT_IDLE;
  3048. }
  3049. sd->last_balance = jiffies;
  3050. }
  3051. if (need_serialize)
  3052. spin_unlock(&balancing);
  3053. out:
  3054. if (time_after(next_balance, sd->last_balance + interval)) {
  3055. next_balance = sd->last_balance + interval;
  3056. update_next_balance = 1;
  3057. }
  3058. /*
  3059. * Stop the load balance at this level. There is another
  3060. * CPU in our sched group which is doing load balancing more
  3061. * actively.
  3062. */
  3063. if (!balance)
  3064. break;
  3065. }
  3066. /*
  3067. * next_balance will be updated only when there is a need.
  3068. * When the cpu is attached to null domain for ex, it will not be
  3069. * updated.
  3070. */
  3071. if (likely(update_next_balance))
  3072. rq->next_balance = next_balance;
  3073. }
  3074. #ifdef CONFIG_NO_HZ
  3075. /*
  3076. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3077. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3078. */
  3079. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3080. {
  3081. struct rq *this_rq = cpu_rq(this_cpu);
  3082. struct rq *rq;
  3083. int balance_cpu;
  3084. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3085. return;
  3086. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3087. if (balance_cpu == this_cpu)
  3088. continue;
  3089. /*
  3090. * If this cpu gets work to do, stop the load balancing
  3091. * work being done for other cpus. Next load
  3092. * balancing owner will pick it up.
  3093. */
  3094. if (need_resched()) {
  3095. this_rq->nohz_balance_kick = 0;
  3096. break;
  3097. }
  3098. raw_spin_lock_irq(&this_rq->lock);
  3099. update_rq_clock(this_rq);
  3100. update_cpu_load(this_rq);
  3101. raw_spin_unlock_irq(&this_rq->lock);
  3102. rebalance_domains(balance_cpu, CPU_IDLE);
  3103. rq = cpu_rq(balance_cpu);
  3104. if (time_after(this_rq->next_balance, rq->next_balance))
  3105. this_rq->next_balance = rq->next_balance;
  3106. }
  3107. nohz.next_balance = this_rq->next_balance;
  3108. this_rq->nohz_balance_kick = 0;
  3109. }
  3110. /*
  3111. * Current heuristic for kicking the idle load balancer
  3112. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3113. * idle load balancer when it has more than one process active. This
  3114. * eliminates the need for idle load balancing altogether when we have
  3115. * only one running process in the system (common case).
  3116. * - If there are more than one busy CPU, idle load balancer may have
  3117. * to run for active_load_balance to happen (i.e., two busy CPUs are
  3118. * SMT or core siblings and can run better if they move to different
  3119. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  3120. * which will kick idle load balancer as soon as it has any load.
  3121. */
  3122. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  3123. {
  3124. unsigned long now = jiffies;
  3125. int ret;
  3126. int first_pick_cpu, second_pick_cpu;
  3127. if (time_before(now, nohz.next_balance))
  3128. return 0;
  3129. if (rq->idle_at_tick)
  3130. return 0;
  3131. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  3132. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  3133. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  3134. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  3135. return 0;
  3136. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  3137. if (ret == nr_cpu_ids || ret == cpu) {
  3138. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3139. if (rq->nr_running > 1)
  3140. return 1;
  3141. } else {
  3142. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  3143. if (ret == nr_cpu_ids || ret == cpu) {
  3144. if (rq->nr_running)
  3145. return 1;
  3146. }
  3147. }
  3148. return 0;
  3149. }
  3150. #else
  3151. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  3152. #endif
  3153. /*
  3154. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3155. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  3156. */
  3157. static void run_rebalance_domains(struct softirq_action *h)
  3158. {
  3159. int this_cpu = smp_processor_id();
  3160. struct rq *this_rq = cpu_rq(this_cpu);
  3161. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3162. CPU_IDLE : CPU_NOT_IDLE;
  3163. rebalance_domains(this_cpu, idle);
  3164. /*
  3165. * If this cpu has a pending nohz_balance_kick, then do the
  3166. * balancing on behalf of the other idle cpus whose ticks are
  3167. * stopped.
  3168. */
  3169. nohz_idle_balance(this_cpu, idle);
  3170. }
  3171. static inline int on_null_domain(int cpu)
  3172. {
  3173. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  3174. }
  3175. /*
  3176. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3177. */
  3178. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3179. {
  3180. /* Don't need to rebalance while attached to NULL domain */
  3181. if (time_after_eq(jiffies, rq->next_balance) &&
  3182. likely(!on_null_domain(cpu)))
  3183. raise_softirq(SCHED_SOFTIRQ);
  3184. #ifdef CONFIG_NO_HZ
  3185. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  3186. nohz_balancer_kick(cpu);
  3187. #endif
  3188. }
  3189. static void rq_online_fair(struct rq *rq)
  3190. {
  3191. update_sysctl();
  3192. }
  3193. static void rq_offline_fair(struct rq *rq)
  3194. {
  3195. update_sysctl();
  3196. }
  3197. #else /* CONFIG_SMP */
  3198. /*
  3199. * on UP we do not need to balance between CPUs:
  3200. */
  3201. static inline void idle_balance(int cpu, struct rq *rq)
  3202. {
  3203. }
  3204. #endif /* CONFIG_SMP */
  3205. /*
  3206. * scheduler tick hitting a task of our scheduling class:
  3207. */
  3208. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  3209. {
  3210. struct cfs_rq *cfs_rq;
  3211. struct sched_entity *se = &curr->se;
  3212. for_each_sched_entity(se) {
  3213. cfs_rq = cfs_rq_of(se);
  3214. entity_tick(cfs_rq, se, queued);
  3215. }
  3216. }
  3217. /*
  3218. * called on fork with the child task as argument from the parent's context
  3219. * - child not yet on the tasklist
  3220. * - preemption disabled
  3221. */
  3222. static void task_fork_fair(struct task_struct *p)
  3223. {
  3224. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3225. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3226. int this_cpu = smp_processor_id();
  3227. struct rq *rq = this_rq();
  3228. unsigned long flags;
  3229. raw_spin_lock_irqsave(&rq->lock, flags);
  3230. update_rq_clock(rq);
  3231. if (unlikely(task_cpu(p) != this_cpu)) {
  3232. rcu_read_lock();
  3233. __set_task_cpu(p, this_cpu);
  3234. rcu_read_unlock();
  3235. }
  3236. update_curr(cfs_rq);
  3237. if (curr)
  3238. se->vruntime = curr->vruntime;
  3239. place_entity(cfs_rq, se, 1);
  3240. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3241. /*
  3242. * Upon rescheduling, sched_class::put_prev_task() will place
  3243. * 'current' within the tree based on its new key value.
  3244. */
  3245. swap(curr->vruntime, se->vruntime);
  3246. resched_task(rq->curr);
  3247. }
  3248. se->vruntime -= cfs_rq->min_vruntime;
  3249. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3250. }
  3251. /*
  3252. * Priority of the task has changed. Check to see if we preempt
  3253. * the current task.
  3254. */
  3255. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  3256. int oldprio, int running)
  3257. {
  3258. /*
  3259. * Reschedule if we are currently running on this runqueue and
  3260. * our priority decreased, or if we are not currently running on
  3261. * this runqueue and our priority is higher than the current's
  3262. */
  3263. if (running) {
  3264. if (p->prio > oldprio)
  3265. resched_task(rq->curr);
  3266. } else
  3267. check_preempt_curr(rq, p, 0);
  3268. }
  3269. /*
  3270. * We switched to the sched_fair class.
  3271. */
  3272. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  3273. int running)
  3274. {
  3275. /*
  3276. * We were most likely switched from sched_rt, so
  3277. * kick off the schedule if running, otherwise just see
  3278. * if we can still preempt the current task.
  3279. */
  3280. if (running)
  3281. resched_task(rq->curr);
  3282. else
  3283. check_preempt_curr(rq, p, 0);
  3284. }
  3285. /* Account for a task changing its policy or group.
  3286. *
  3287. * This routine is mostly called to set cfs_rq->curr field when a task
  3288. * migrates between groups/classes.
  3289. */
  3290. static void set_curr_task_fair(struct rq *rq)
  3291. {
  3292. struct sched_entity *se = &rq->curr->se;
  3293. for_each_sched_entity(se)
  3294. set_next_entity(cfs_rq_of(se), se);
  3295. }
  3296. #ifdef CONFIG_FAIR_GROUP_SCHED
  3297. static void task_move_group_fair(struct task_struct *p, int on_rq)
  3298. {
  3299. /*
  3300. * If the task was not on the rq at the time of this cgroup movement
  3301. * it must have been asleep, sleeping tasks keep their ->vruntime
  3302. * absolute on their old rq until wakeup (needed for the fair sleeper
  3303. * bonus in place_entity()).
  3304. *
  3305. * If it was on the rq, we've just 'preempted' it, which does convert
  3306. * ->vruntime to a relative base.
  3307. *
  3308. * Make sure both cases convert their relative position when migrating
  3309. * to another cgroup's rq. This does somewhat interfere with the
  3310. * fair sleeper stuff for the first placement, but who cares.
  3311. */
  3312. if (!on_rq)
  3313. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  3314. set_task_rq(p, task_cpu(p));
  3315. if (!on_rq)
  3316. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  3317. }
  3318. #endif
  3319. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3320. {
  3321. struct sched_entity *se = &task->se;
  3322. unsigned int rr_interval = 0;
  3323. /*
  3324. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3325. * idle runqueue:
  3326. */
  3327. if (rq->cfs.load.weight)
  3328. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3329. return rr_interval;
  3330. }
  3331. /*
  3332. * All the scheduling class methods:
  3333. */
  3334. static const struct sched_class fair_sched_class = {
  3335. .next = &idle_sched_class,
  3336. .enqueue_task = enqueue_task_fair,
  3337. .dequeue_task = dequeue_task_fair,
  3338. .yield_task = yield_task_fair,
  3339. .check_preempt_curr = check_preempt_wakeup,
  3340. .pick_next_task = pick_next_task_fair,
  3341. .put_prev_task = put_prev_task_fair,
  3342. #ifdef CONFIG_SMP
  3343. .select_task_rq = select_task_rq_fair,
  3344. .rq_online = rq_online_fair,
  3345. .rq_offline = rq_offline_fair,
  3346. .task_waking = task_waking_fair,
  3347. #endif
  3348. .set_curr_task = set_curr_task_fair,
  3349. .task_tick = task_tick_fair,
  3350. .task_fork = task_fork_fair,
  3351. .prio_changed = prio_changed_fair,
  3352. .switched_to = switched_to_fair,
  3353. .get_rr_interval = get_rr_interval_fair,
  3354. #ifdef CONFIG_FAIR_GROUP_SCHED
  3355. .task_move_group = task_move_group_fair,
  3356. #endif
  3357. };
  3358. #ifdef CONFIG_SCHED_DEBUG
  3359. static void print_cfs_stats(struct seq_file *m, int cpu)
  3360. {
  3361. struct cfs_rq *cfs_rq;
  3362. rcu_read_lock();
  3363. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3364. print_cfs_rq(m, cpu, cfs_rq);
  3365. rcu_read_unlock();
  3366. }
  3367. #endif