sched.c 234 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. DEFINE_TRACE(sched_wait_task);
  112. DEFINE_TRACE(sched_wakeup);
  113. DEFINE_TRACE(sched_wakeup_new);
  114. DEFINE_TRACE(sched_switch);
  115. DEFINE_TRACE(sched_migrate_task);
  116. #ifdef CONFIG_SMP
  117. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  118. /*
  119. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  120. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  121. */
  122. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  123. {
  124. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  125. }
  126. /*
  127. * Each time a sched group cpu_power is changed,
  128. * we must compute its reciprocal value
  129. */
  130. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  131. {
  132. sg->__cpu_power += val;
  133. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  134. }
  135. #endif
  136. static inline int rt_policy(int policy)
  137. {
  138. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  139. return 1;
  140. return 0;
  141. }
  142. static inline int task_has_rt_policy(struct task_struct *p)
  143. {
  144. return rt_policy(p->policy);
  145. }
  146. /*
  147. * This is the priority-queue data structure of the RT scheduling class:
  148. */
  149. struct rt_prio_array {
  150. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  151. struct list_head queue[MAX_RT_PRIO];
  152. };
  153. struct rt_bandwidth {
  154. /* nests inside the rq lock: */
  155. spinlock_t rt_runtime_lock;
  156. ktime_t rt_period;
  157. u64 rt_runtime;
  158. struct hrtimer rt_period_timer;
  159. };
  160. static struct rt_bandwidth def_rt_bandwidth;
  161. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  162. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  163. {
  164. struct rt_bandwidth *rt_b =
  165. container_of(timer, struct rt_bandwidth, rt_period_timer);
  166. ktime_t now;
  167. int overrun;
  168. int idle = 0;
  169. for (;;) {
  170. now = hrtimer_cb_get_time(timer);
  171. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  172. if (!overrun)
  173. break;
  174. idle = do_sched_rt_period_timer(rt_b, overrun);
  175. }
  176. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  177. }
  178. static
  179. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  180. {
  181. rt_b->rt_period = ns_to_ktime(period);
  182. rt_b->rt_runtime = runtime;
  183. spin_lock_init(&rt_b->rt_runtime_lock);
  184. hrtimer_init(&rt_b->rt_period_timer,
  185. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  186. rt_b->rt_period_timer.function = sched_rt_period_timer;
  187. }
  188. static inline int rt_bandwidth_enabled(void)
  189. {
  190. return sysctl_sched_rt_runtime >= 0;
  191. }
  192. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. ktime_t now;
  195. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  196. return;
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. return;
  199. spin_lock(&rt_b->rt_runtime_lock);
  200. for (;;) {
  201. if (hrtimer_active(&rt_b->rt_period_timer))
  202. break;
  203. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  204. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  205. hrtimer_start_expires(&rt_b->rt_period_timer,
  206. HRTIMER_MODE_ABS);
  207. }
  208. spin_unlock(&rt_b->rt_runtime_lock);
  209. }
  210. #ifdef CONFIG_RT_GROUP_SCHED
  211. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  212. {
  213. hrtimer_cancel(&rt_b->rt_period_timer);
  214. }
  215. #endif
  216. /*
  217. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  218. * detach_destroy_domains and partition_sched_domains.
  219. */
  220. static DEFINE_MUTEX(sched_domains_mutex);
  221. #ifdef CONFIG_GROUP_SCHED
  222. #include <linux/cgroup.h>
  223. struct cfs_rq;
  224. static LIST_HEAD(task_groups);
  225. /* task group related information */
  226. struct task_group {
  227. #ifdef CONFIG_CGROUP_SCHED
  228. struct cgroup_subsys_state css;
  229. #endif
  230. #ifdef CONFIG_USER_SCHED
  231. uid_t uid;
  232. #endif
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. /* schedulable entities of this group on each cpu */
  235. struct sched_entity **se;
  236. /* runqueue "owned" by this group on each cpu */
  237. struct cfs_rq **cfs_rq;
  238. unsigned long shares;
  239. #endif
  240. #ifdef CONFIG_RT_GROUP_SCHED
  241. struct sched_rt_entity **rt_se;
  242. struct rt_rq **rt_rq;
  243. struct rt_bandwidth rt_bandwidth;
  244. #endif
  245. struct rcu_head rcu;
  246. struct list_head list;
  247. struct task_group *parent;
  248. struct list_head siblings;
  249. struct list_head children;
  250. };
  251. #ifdef CONFIG_USER_SCHED
  252. /* Helper function to pass uid information to create_sched_user() */
  253. void set_tg_uid(struct user_struct *user)
  254. {
  255. user->tg->uid = user->uid;
  256. }
  257. /*
  258. * Root task group.
  259. * Every UID task group (including init_task_group aka UID-0) will
  260. * be a child to this group.
  261. */
  262. struct task_group root_task_group;
  263. #ifdef CONFIG_FAIR_GROUP_SCHED
  264. /* Default task group's sched entity on each cpu */
  265. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  266. /* Default task group's cfs_rq on each cpu */
  267. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  268. #endif /* CONFIG_FAIR_GROUP_SCHED */
  269. #ifdef CONFIG_RT_GROUP_SCHED
  270. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  271. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  272. #endif /* CONFIG_RT_GROUP_SCHED */
  273. #else /* !CONFIG_USER_SCHED */
  274. #define root_task_group init_task_group
  275. #endif /* CONFIG_USER_SCHED */
  276. /* task_group_lock serializes add/remove of task groups and also changes to
  277. * a task group's cpu shares.
  278. */
  279. static DEFINE_SPINLOCK(task_group_lock);
  280. #ifdef CONFIG_FAIR_GROUP_SCHED
  281. #ifdef CONFIG_USER_SCHED
  282. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  283. #else /* !CONFIG_USER_SCHED */
  284. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  285. #endif /* CONFIG_USER_SCHED */
  286. /*
  287. * A weight of 0 or 1 can cause arithmetics problems.
  288. * A weight of a cfs_rq is the sum of weights of which entities
  289. * are queued on this cfs_rq, so a weight of a entity should not be
  290. * too large, so as the shares value of a task group.
  291. * (The default weight is 1024 - so there's no practical
  292. * limitation from this.)
  293. */
  294. #define MIN_SHARES 2
  295. #define MAX_SHARES (1UL << 18)
  296. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  297. #endif
  298. /* Default task group.
  299. * Every task in system belong to this group at bootup.
  300. */
  301. struct task_group init_task_group;
  302. /* return group to which a task belongs */
  303. static inline struct task_group *task_group(struct task_struct *p)
  304. {
  305. struct task_group *tg;
  306. #ifdef CONFIG_USER_SCHED
  307. rcu_read_lock();
  308. tg = __task_cred(p)->user->tg;
  309. rcu_read_unlock();
  310. #elif defined(CONFIG_CGROUP_SCHED)
  311. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  312. struct task_group, css);
  313. #else
  314. tg = &init_task_group;
  315. #endif
  316. return tg;
  317. }
  318. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  319. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  320. {
  321. #ifdef CONFIG_FAIR_GROUP_SCHED
  322. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  323. p->se.parent = task_group(p)->se[cpu];
  324. #endif
  325. #ifdef CONFIG_RT_GROUP_SCHED
  326. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  327. p->rt.parent = task_group(p)->rt_se[cpu];
  328. #endif
  329. }
  330. #else
  331. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  332. static inline struct task_group *task_group(struct task_struct *p)
  333. {
  334. return NULL;
  335. }
  336. #endif /* CONFIG_GROUP_SCHED */
  337. /* CFS-related fields in a runqueue */
  338. struct cfs_rq {
  339. struct load_weight load;
  340. unsigned long nr_running;
  341. u64 exec_clock;
  342. u64 min_vruntime;
  343. struct rb_root tasks_timeline;
  344. struct rb_node *rb_leftmost;
  345. struct list_head tasks;
  346. struct list_head *balance_iterator;
  347. /*
  348. * 'curr' points to currently running entity on this cfs_rq.
  349. * It is set to NULL otherwise (i.e when none are currently running).
  350. */
  351. struct sched_entity *curr, *next, *last;
  352. unsigned int nr_spread_over;
  353. #ifdef CONFIG_FAIR_GROUP_SCHED
  354. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  355. /*
  356. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  357. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  358. * (like users, containers etc.)
  359. *
  360. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  361. * list is used during load balance.
  362. */
  363. struct list_head leaf_cfs_rq_list;
  364. struct task_group *tg; /* group that "owns" this runqueue */
  365. #ifdef CONFIG_SMP
  366. /*
  367. * the part of load.weight contributed by tasks
  368. */
  369. unsigned long task_weight;
  370. /*
  371. * h_load = weight * f(tg)
  372. *
  373. * Where f(tg) is the recursive weight fraction assigned to
  374. * this group.
  375. */
  376. unsigned long h_load;
  377. /*
  378. * this cpu's part of tg->shares
  379. */
  380. unsigned long shares;
  381. /*
  382. * load.weight at the time we set shares
  383. */
  384. unsigned long rq_weight;
  385. #endif
  386. #endif
  387. };
  388. /* Real-Time classes' related field in a runqueue: */
  389. struct rt_rq {
  390. struct rt_prio_array active;
  391. unsigned long rt_nr_running;
  392. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  393. int highest_prio; /* highest queued rt task prio */
  394. #endif
  395. #ifdef CONFIG_SMP
  396. unsigned long rt_nr_migratory;
  397. int overloaded;
  398. #endif
  399. int rt_throttled;
  400. u64 rt_time;
  401. u64 rt_runtime;
  402. /* Nests inside the rq lock: */
  403. spinlock_t rt_runtime_lock;
  404. #ifdef CONFIG_RT_GROUP_SCHED
  405. unsigned long rt_nr_boosted;
  406. struct rq *rq;
  407. struct list_head leaf_rt_rq_list;
  408. struct task_group *tg;
  409. struct sched_rt_entity *rt_se;
  410. #endif
  411. };
  412. #ifdef CONFIG_SMP
  413. /*
  414. * We add the notion of a root-domain which will be used to define per-domain
  415. * variables. Each exclusive cpuset essentially defines an island domain by
  416. * fully partitioning the member cpus from any other cpuset. Whenever a new
  417. * exclusive cpuset is created, we also create and attach a new root-domain
  418. * object.
  419. *
  420. */
  421. struct root_domain {
  422. atomic_t refcount;
  423. cpumask_var_t span;
  424. cpumask_var_t online;
  425. /*
  426. * The "RT overload" flag: it gets set if a CPU has more than
  427. * one runnable RT task.
  428. */
  429. cpumask_var_t rto_mask;
  430. atomic_t rto_count;
  431. #ifdef CONFIG_SMP
  432. struct cpupri cpupri;
  433. #endif
  434. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  435. /*
  436. * Preferred wake up cpu nominated by sched_mc balance that will be
  437. * used when most cpus are idle in the system indicating overall very
  438. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  439. */
  440. unsigned int sched_mc_preferred_wakeup_cpu;
  441. #endif
  442. };
  443. /*
  444. * By default the system creates a single root-domain with all cpus as
  445. * members (mimicking the global state we have today).
  446. */
  447. static struct root_domain def_root_domain;
  448. #endif
  449. /*
  450. * This is the main, per-CPU runqueue data structure.
  451. *
  452. * Locking rule: those places that want to lock multiple runqueues
  453. * (such as the load balancing or the thread migration code), lock
  454. * acquire operations must be ordered by ascending &runqueue.
  455. */
  456. struct rq {
  457. /* runqueue lock: */
  458. spinlock_t lock;
  459. /*
  460. * nr_running and cpu_load should be in the same cacheline because
  461. * remote CPUs use both these fields when doing load calculation.
  462. */
  463. unsigned long nr_running;
  464. #define CPU_LOAD_IDX_MAX 5
  465. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  466. unsigned char idle_at_tick;
  467. #ifdef CONFIG_NO_HZ
  468. unsigned long last_tick_seen;
  469. unsigned char in_nohz_recently;
  470. #endif
  471. /* capture load from *all* tasks on this cpu: */
  472. struct load_weight load;
  473. unsigned long nr_load_updates;
  474. u64 nr_switches;
  475. u64 nr_migrations_in;
  476. struct cfs_rq cfs;
  477. struct rt_rq rt;
  478. #ifdef CONFIG_FAIR_GROUP_SCHED
  479. /* list of leaf cfs_rq on this cpu: */
  480. struct list_head leaf_cfs_rq_list;
  481. #endif
  482. #ifdef CONFIG_RT_GROUP_SCHED
  483. struct list_head leaf_rt_rq_list;
  484. #endif
  485. /*
  486. * This is part of a global counter where only the total sum
  487. * over all CPUs matters. A task can increase this counter on
  488. * one CPU and if it got migrated afterwards it may decrease
  489. * it on another CPU. Always updated under the runqueue lock:
  490. */
  491. unsigned long nr_uninterruptible;
  492. struct task_struct *curr, *idle;
  493. unsigned long next_balance;
  494. struct mm_struct *prev_mm;
  495. u64 clock;
  496. atomic_t nr_iowait;
  497. #ifdef CONFIG_SMP
  498. struct root_domain *rd;
  499. struct sched_domain *sd;
  500. /* For active balancing */
  501. int active_balance;
  502. int push_cpu;
  503. /* cpu of this runqueue: */
  504. int cpu;
  505. int online;
  506. unsigned long avg_load_per_task;
  507. struct task_struct *migration_thread;
  508. struct list_head migration_queue;
  509. #endif
  510. #ifdef CONFIG_SCHED_HRTICK
  511. #ifdef CONFIG_SMP
  512. int hrtick_csd_pending;
  513. struct call_single_data hrtick_csd;
  514. #endif
  515. struct hrtimer hrtick_timer;
  516. #endif
  517. #ifdef CONFIG_SCHEDSTATS
  518. /* latency stats */
  519. struct sched_info rq_sched_info;
  520. unsigned long long rq_cpu_time;
  521. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  522. /* sys_sched_yield() stats */
  523. unsigned int yld_exp_empty;
  524. unsigned int yld_act_empty;
  525. unsigned int yld_both_empty;
  526. unsigned int yld_count;
  527. /* schedule() stats */
  528. unsigned int sched_switch;
  529. unsigned int sched_count;
  530. unsigned int sched_goidle;
  531. /* try_to_wake_up() stats */
  532. unsigned int ttwu_count;
  533. unsigned int ttwu_local;
  534. /* BKL stats */
  535. unsigned int bkl_count;
  536. #endif
  537. };
  538. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  539. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  540. {
  541. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  542. }
  543. static inline int cpu_of(struct rq *rq)
  544. {
  545. #ifdef CONFIG_SMP
  546. return rq->cpu;
  547. #else
  548. return 0;
  549. #endif
  550. }
  551. /*
  552. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  553. * See detach_destroy_domains: synchronize_sched for details.
  554. *
  555. * The domain tree of any CPU may only be accessed from within
  556. * preempt-disabled sections.
  557. */
  558. #define for_each_domain(cpu, __sd) \
  559. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  560. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  561. #define this_rq() (&__get_cpu_var(runqueues))
  562. #define task_rq(p) cpu_rq(task_cpu(p))
  563. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  564. inline void update_rq_clock(struct rq *rq)
  565. {
  566. rq->clock = sched_clock_cpu(cpu_of(rq));
  567. }
  568. /*
  569. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  570. */
  571. #ifdef CONFIG_SCHED_DEBUG
  572. # define const_debug __read_mostly
  573. #else
  574. # define const_debug static const
  575. #endif
  576. /**
  577. * runqueue_is_locked
  578. *
  579. * Returns true if the current cpu runqueue is locked.
  580. * This interface allows printk to be called with the runqueue lock
  581. * held and know whether or not it is OK to wake up the klogd.
  582. */
  583. int runqueue_is_locked(void)
  584. {
  585. int cpu = get_cpu();
  586. struct rq *rq = cpu_rq(cpu);
  587. int ret;
  588. ret = spin_is_locked(&rq->lock);
  589. put_cpu();
  590. return ret;
  591. }
  592. /*
  593. * Debugging: various feature bits
  594. */
  595. #define SCHED_FEAT(name, enabled) \
  596. __SCHED_FEAT_##name ,
  597. enum {
  598. #include "sched_features.h"
  599. };
  600. #undef SCHED_FEAT
  601. #define SCHED_FEAT(name, enabled) \
  602. (1UL << __SCHED_FEAT_##name) * enabled |
  603. const_debug unsigned int sysctl_sched_features =
  604. #include "sched_features.h"
  605. 0;
  606. #undef SCHED_FEAT
  607. #ifdef CONFIG_SCHED_DEBUG
  608. #define SCHED_FEAT(name, enabled) \
  609. #name ,
  610. static __read_mostly char *sched_feat_names[] = {
  611. #include "sched_features.h"
  612. NULL
  613. };
  614. #undef SCHED_FEAT
  615. static int sched_feat_show(struct seq_file *m, void *v)
  616. {
  617. int i;
  618. for (i = 0; sched_feat_names[i]; i++) {
  619. if (!(sysctl_sched_features & (1UL << i)))
  620. seq_puts(m, "NO_");
  621. seq_printf(m, "%s ", sched_feat_names[i]);
  622. }
  623. seq_puts(m, "\n");
  624. return 0;
  625. }
  626. static ssize_t
  627. sched_feat_write(struct file *filp, const char __user *ubuf,
  628. size_t cnt, loff_t *ppos)
  629. {
  630. char buf[64];
  631. char *cmp = buf;
  632. int neg = 0;
  633. int i;
  634. if (cnt > 63)
  635. cnt = 63;
  636. if (copy_from_user(&buf, ubuf, cnt))
  637. return -EFAULT;
  638. buf[cnt] = 0;
  639. if (strncmp(buf, "NO_", 3) == 0) {
  640. neg = 1;
  641. cmp += 3;
  642. }
  643. for (i = 0; sched_feat_names[i]; i++) {
  644. int len = strlen(sched_feat_names[i]);
  645. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  646. if (neg)
  647. sysctl_sched_features &= ~(1UL << i);
  648. else
  649. sysctl_sched_features |= (1UL << i);
  650. break;
  651. }
  652. }
  653. if (!sched_feat_names[i])
  654. return -EINVAL;
  655. filp->f_pos += cnt;
  656. return cnt;
  657. }
  658. static int sched_feat_open(struct inode *inode, struct file *filp)
  659. {
  660. return single_open(filp, sched_feat_show, NULL);
  661. }
  662. static struct file_operations sched_feat_fops = {
  663. .open = sched_feat_open,
  664. .write = sched_feat_write,
  665. .read = seq_read,
  666. .llseek = seq_lseek,
  667. .release = single_release,
  668. };
  669. static __init int sched_init_debug(void)
  670. {
  671. debugfs_create_file("sched_features", 0644, NULL, NULL,
  672. &sched_feat_fops);
  673. return 0;
  674. }
  675. late_initcall(sched_init_debug);
  676. #endif
  677. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  678. /*
  679. * Number of tasks to iterate in a single balance run.
  680. * Limited because this is done with IRQs disabled.
  681. */
  682. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  683. /*
  684. * ratelimit for updating the group shares.
  685. * default: 0.25ms
  686. */
  687. unsigned int sysctl_sched_shares_ratelimit = 250000;
  688. /*
  689. * Inject some fuzzyness into changing the per-cpu group shares
  690. * this avoids remote rq-locks at the expense of fairness.
  691. * default: 4
  692. */
  693. unsigned int sysctl_sched_shares_thresh = 4;
  694. /*
  695. * period over which we measure -rt task cpu usage in us.
  696. * default: 1s
  697. */
  698. unsigned int sysctl_sched_rt_period = 1000000;
  699. static __read_mostly int scheduler_running;
  700. /*
  701. * part of the period that we allow rt tasks to run in us.
  702. * default: 0.95s
  703. */
  704. int sysctl_sched_rt_runtime = 950000;
  705. static inline u64 global_rt_period(void)
  706. {
  707. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  708. }
  709. static inline u64 global_rt_runtime(void)
  710. {
  711. if (sysctl_sched_rt_runtime < 0)
  712. return RUNTIME_INF;
  713. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  714. }
  715. #ifndef prepare_arch_switch
  716. # define prepare_arch_switch(next) do { } while (0)
  717. #endif
  718. #ifndef finish_arch_switch
  719. # define finish_arch_switch(prev) do { } while (0)
  720. #endif
  721. static inline int task_current(struct rq *rq, struct task_struct *p)
  722. {
  723. return rq->curr == p;
  724. }
  725. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  726. static inline int task_running(struct rq *rq, struct task_struct *p)
  727. {
  728. return task_current(rq, p);
  729. }
  730. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  731. {
  732. }
  733. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  734. {
  735. #ifdef CONFIG_DEBUG_SPINLOCK
  736. /* this is a valid case when another task releases the spinlock */
  737. rq->lock.owner = current;
  738. #endif
  739. /*
  740. * If we are tracking spinlock dependencies then we have to
  741. * fix up the runqueue lock - which gets 'carried over' from
  742. * prev into current:
  743. */
  744. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  745. spin_unlock_irq(&rq->lock);
  746. }
  747. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  748. static inline int task_running(struct rq *rq, struct task_struct *p)
  749. {
  750. #ifdef CONFIG_SMP
  751. return p->oncpu;
  752. #else
  753. return task_current(rq, p);
  754. #endif
  755. }
  756. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  757. {
  758. #ifdef CONFIG_SMP
  759. /*
  760. * We can optimise this out completely for !SMP, because the
  761. * SMP rebalancing from interrupt is the only thing that cares
  762. * here.
  763. */
  764. next->oncpu = 1;
  765. #endif
  766. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  767. spin_unlock_irq(&rq->lock);
  768. #else
  769. spin_unlock(&rq->lock);
  770. #endif
  771. }
  772. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  773. {
  774. #ifdef CONFIG_SMP
  775. /*
  776. * After ->oncpu is cleared, the task can be moved to a different CPU.
  777. * We must ensure this doesn't happen until the switch is completely
  778. * finished.
  779. */
  780. smp_wmb();
  781. prev->oncpu = 0;
  782. #endif
  783. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  784. local_irq_enable();
  785. #endif
  786. }
  787. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  788. /*
  789. * __task_rq_lock - lock the runqueue a given task resides on.
  790. * Must be called interrupts disabled.
  791. */
  792. static inline struct rq *__task_rq_lock(struct task_struct *p)
  793. __acquires(rq->lock)
  794. {
  795. for (;;) {
  796. struct rq *rq = task_rq(p);
  797. spin_lock(&rq->lock);
  798. if (likely(rq == task_rq(p)))
  799. return rq;
  800. spin_unlock(&rq->lock);
  801. }
  802. }
  803. /*
  804. * task_rq_lock - lock the runqueue a given task resides on and disable
  805. * interrupts. Note the ordering: we can safely lookup the task_rq without
  806. * explicitly disabling preemption.
  807. */
  808. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  809. __acquires(rq->lock)
  810. {
  811. struct rq *rq;
  812. for (;;) {
  813. local_irq_save(*flags);
  814. rq = task_rq(p);
  815. spin_lock(&rq->lock);
  816. if (likely(rq == task_rq(p)))
  817. return rq;
  818. spin_unlock_irqrestore(&rq->lock, *flags);
  819. }
  820. }
  821. void curr_rq_lock_irq_save(unsigned long *flags)
  822. __acquires(rq->lock)
  823. {
  824. struct rq *rq;
  825. local_irq_save(*flags);
  826. rq = cpu_rq(smp_processor_id());
  827. spin_lock(&rq->lock);
  828. }
  829. void curr_rq_unlock_irq_restore(unsigned long *flags)
  830. __releases(rq->lock)
  831. {
  832. struct rq *rq;
  833. rq = cpu_rq(smp_processor_id());
  834. spin_unlock(&rq->lock);
  835. local_irq_restore(*flags);
  836. }
  837. void task_rq_unlock_wait(struct task_struct *p)
  838. {
  839. struct rq *rq = task_rq(p);
  840. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  841. spin_unlock_wait(&rq->lock);
  842. }
  843. static void __task_rq_unlock(struct rq *rq)
  844. __releases(rq->lock)
  845. {
  846. spin_unlock(&rq->lock);
  847. }
  848. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  849. __releases(rq->lock)
  850. {
  851. spin_unlock_irqrestore(&rq->lock, *flags);
  852. }
  853. /*
  854. * this_rq_lock - lock this runqueue and disable interrupts.
  855. */
  856. static struct rq *this_rq_lock(void)
  857. __acquires(rq->lock)
  858. {
  859. struct rq *rq;
  860. local_irq_disable();
  861. rq = this_rq();
  862. spin_lock(&rq->lock);
  863. return rq;
  864. }
  865. #ifdef CONFIG_SCHED_HRTICK
  866. /*
  867. * Use HR-timers to deliver accurate preemption points.
  868. *
  869. * Its all a bit involved since we cannot program an hrt while holding the
  870. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  871. * reschedule event.
  872. *
  873. * When we get rescheduled we reprogram the hrtick_timer outside of the
  874. * rq->lock.
  875. */
  876. /*
  877. * Use hrtick when:
  878. * - enabled by features
  879. * - hrtimer is actually high res
  880. */
  881. static inline int hrtick_enabled(struct rq *rq)
  882. {
  883. if (!sched_feat(HRTICK))
  884. return 0;
  885. if (!cpu_active(cpu_of(rq)))
  886. return 0;
  887. return hrtimer_is_hres_active(&rq->hrtick_timer);
  888. }
  889. static void hrtick_clear(struct rq *rq)
  890. {
  891. if (hrtimer_active(&rq->hrtick_timer))
  892. hrtimer_cancel(&rq->hrtick_timer);
  893. }
  894. /*
  895. * High-resolution timer tick.
  896. * Runs from hardirq context with interrupts disabled.
  897. */
  898. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  899. {
  900. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  901. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  902. spin_lock(&rq->lock);
  903. update_rq_clock(rq);
  904. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  905. spin_unlock(&rq->lock);
  906. return HRTIMER_NORESTART;
  907. }
  908. #ifdef CONFIG_SMP
  909. /*
  910. * called from hardirq (IPI) context
  911. */
  912. static void __hrtick_start(void *arg)
  913. {
  914. struct rq *rq = arg;
  915. spin_lock(&rq->lock);
  916. hrtimer_restart(&rq->hrtick_timer);
  917. rq->hrtick_csd_pending = 0;
  918. spin_unlock(&rq->lock);
  919. }
  920. /*
  921. * Called to set the hrtick timer state.
  922. *
  923. * called with rq->lock held and irqs disabled
  924. */
  925. static void hrtick_start(struct rq *rq, u64 delay)
  926. {
  927. struct hrtimer *timer = &rq->hrtick_timer;
  928. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  929. hrtimer_set_expires(timer, time);
  930. if (rq == this_rq()) {
  931. hrtimer_restart(timer);
  932. } else if (!rq->hrtick_csd_pending) {
  933. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  934. rq->hrtick_csd_pending = 1;
  935. }
  936. }
  937. static int
  938. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  939. {
  940. int cpu = (int)(long)hcpu;
  941. switch (action) {
  942. case CPU_UP_CANCELED:
  943. case CPU_UP_CANCELED_FROZEN:
  944. case CPU_DOWN_PREPARE:
  945. case CPU_DOWN_PREPARE_FROZEN:
  946. case CPU_DEAD:
  947. case CPU_DEAD_FROZEN:
  948. hrtick_clear(cpu_rq(cpu));
  949. return NOTIFY_OK;
  950. }
  951. return NOTIFY_DONE;
  952. }
  953. static __init void init_hrtick(void)
  954. {
  955. hotcpu_notifier(hotplug_hrtick, 0);
  956. }
  957. #else
  958. /*
  959. * Called to set the hrtick timer state.
  960. *
  961. * called with rq->lock held and irqs disabled
  962. */
  963. static void hrtick_start(struct rq *rq, u64 delay)
  964. {
  965. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  966. }
  967. static inline void init_hrtick(void)
  968. {
  969. }
  970. #endif /* CONFIG_SMP */
  971. static void init_rq_hrtick(struct rq *rq)
  972. {
  973. #ifdef CONFIG_SMP
  974. rq->hrtick_csd_pending = 0;
  975. rq->hrtick_csd.flags = 0;
  976. rq->hrtick_csd.func = __hrtick_start;
  977. rq->hrtick_csd.info = rq;
  978. #endif
  979. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  980. rq->hrtick_timer.function = hrtick;
  981. }
  982. #else /* CONFIG_SCHED_HRTICK */
  983. static inline void hrtick_clear(struct rq *rq)
  984. {
  985. }
  986. static inline void init_rq_hrtick(struct rq *rq)
  987. {
  988. }
  989. static inline void init_hrtick(void)
  990. {
  991. }
  992. #endif /* CONFIG_SCHED_HRTICK */
  993. /*
  994. * resched_task - mark a task 'to be rescheduled now'.
  995. *
  996. * On UP this means the setting of the need_resched flag, on SMP it
  997. * might also involve a cross-CPU call to trigger the scheduler on
  998. * the target CPU.
  999. */
  1000. #ifdef CONFIG_SMP
  1001. #ifndef tsk_is_polling
  1002. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1003. #endif
  1004. static void resched_task(struct task_struct *p)
  1005. {
  1006. int cpu;
  1007. assert_spin_locked(&task_rq(p)->lock);
  1008. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  1009. return;
  1010. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  1011. cpu = task_cpu(p);
  1012. if (cpu == smp_processor_id())
  1013. return;
  1014. /* NEED_RESCHED must be visible before we test polling */
  1015. smp_mb();
  1016. if (!tsk_is_polling(p))
  1017. smp_send_reschedule(cpu);
  1018. }
  1019. static void resched_cpu(int cpu)
  1020. {
  1021. struct rq *rq = cpu_rq(cpu);
  1022. unsigned long flags;
  1023. if (!spin_trylock_irqsave(&rq->lock, flags))
  1024. return;
  1025. resched_task(cpu_curr(cpu));
  1026. spin_unlock_irqrestore(&rq->lock, flags);
  1027. }
  1028. #ifdef CONFIG_NO_HZ
  1029. /*
  1030. * When add_timer_on() enqueues a timer into the timer wheel of an
  1031. * idle CPU then this timer might expire before the next timer event
  1032. * which is scheduled to wake up that CPU. In case of a completely
  1033. * idle system the next event might even be infinite time into the
  1034. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1035. * leaves the inner idle loop so the newly added timer is taken into
  1036. * account when the CPU goes back to idle and evaluates the timer
  1037. * wheel for the next timer event.
  1038. */
  1039. void wake_up_idle_cpu(int cpu)
  1040. {
  1041. struct rq *rq = cpu_rq(cpu);
  1042. if (cpu == smp_processor_id())
  1043. return;
  1044. /*
  1045. * This is safe, as this function is called with the timer
  1046. * wheel base lock of (cpu) held. When the CPU is on the way
  1047. * to idle and has not yet set rq->curr to idle then it will
  1048. * be serialized on the timer wheel base lock and take the new
  1049. * timer into account automatically.
  1050. */
  1051. if (rq->curr != rq->idle)
  1052. return;
  1053. /*
  1054. * We can set TIF_RESCHED on the idle task of the other CPU
  1055. * lockless. The worst case is that the other CPU runs the
  1056. * idle task through an additional NOOP schedule()
  1057. */
  1058. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1059. /* NEED_RESCHED must be visible before we test polling */
  1060. smp_mb();
  1061. if (!tsk_is_polling(rq->idle))
  1062. smp_send_reschedule(cpu);
  1063. }
  1064. #endif /* CONFIG_NO_HZ */
  1065. #else /* !CONFIG_SMP */
  1066. static void resched_task(struct task_struct *p)
  1067. {
  1068. assert_spin_locked(&task_rq(p)->lock);
  1069. set_tsk_need_resched(p);
  1070. }
  1071. #endif /* CONFIG_SMP */
  1072. #if BITS_PER_LONG == 32
  1073. # define WMULT_CONST (~0UL)
  1074. #else
  1075. # define WMULT_CONST (1UL << 32)
  1076. #endif
  1077. #define WMULT_SHIFT 32
  1078. /*
  1079. * Shift right and round:
  1080. */
  1081. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1082. /*
  1083. * delta *= weight / lw
  1084. */
  1085. static unsigned long
  1086. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1087. struct load_weight *lw)
  1088. {
  1089. u64 tmp;
  1090. if (!lw->inv_weight) {
  1091. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1092. lw->inv_weight = 1;
  1093. else
  1094. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1095. / (lw->weight+1);
  1096. }
  1097. tmp = (u64)delta_exec * weight;
  1098. /*
  1099. * Check whether we'd overflow the 64-bit multiplication:
  1100. */
  1101. if (unlikely(tmp > WMULT_CONST))
  1102. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1103. WMULT_SHIFT/2);
  1104. else
  1105. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1106. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1107. }
  1108. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1109. {
  1110. lw->weight += inc;
  1111. lw->inv_weight = 0;
  1112. }
  1113. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1114. {
  1115. lw->weight -= dec;
  1116. lw->inv_weight = 0;
  1117. }
  1118. /*
  1119. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1120. * of tasks with abnormal "nice" values across CPUs the contribution that
  1121. * each task makes to its run queue's load is weighted according to its
  1122. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1123. * scaled version of the new time slice allocation that they receive on time
  1124. * slice expiry etc.
  1125. */
  1126. #define WEIGHT_IDLEPRIO 3
  1127. #define WMULT_IDLEPRIO 1431655765
  1128. /*
  1129. * Nice levels are multiplicative, with a gentle 10% change for every
  1130. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1131. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1132. * that remained on nice 0.
  1133. *
  1134. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1135. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1136. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1137. * If a task goes up by ~10% and another task goes down by ~10% then
  1138. * the relative distance between them is ~25%.)
  1139. */
  1140. static const int prio_to_weight[40] = {
  1141. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1142. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1143. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1144. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1145. /* 0 */ 1024, 820, 655, 526, 423,
  1146. /* 5 */ 335, 272, 215, 172, 137,
  1147. /* 10 */ 110, 87, 70, 56, 45,
  1148. /* 15 */ 36, 29, 23, 18, 15,
  1149. };
  1150. /*
  1151. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1152. *
  1153. * In cases where the weight does not change often, we can use the
  1154. * precalculated inverse to speed up arithmetics by turning divisions
  1155. * into multiplications:
  1156. */
  1157. static const u32 prio_to_wmult[40] = {
  1158. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1159. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1160. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1161. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1162. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1163. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1164. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1165. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1166. };
  1167. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1168. /*
  1169. * runqueue iterator, to support SMP load-balancing between different
  1170. * scheduling classes, without having to expose their internal data
  1171. * structures to the load-balancing proper:
  1172. */
  1173. struct rq_iterator {
  1174. void *arg;
  1175. struct task_struct *(*start)(void *);
  1176. struct task_struct *(*next)(void *);
  1177. };
  1178. #ifdef CONFIG_SMP
  1179. static unsigned long
  1180. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1181. unsigned long max_load_move, struct sched_domain *sd,
  1182. enum cpu_idle_type idle, int *all_pinned,
  1183. int *this_best_prio, struct rq_iterator *iterator);
  1184. static int
  1185. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1186. struct sched_domain *sd, enum cpu_idle_type idle,
  1187. struct rq_iterator *iterator);
  1188. #endif
  1189. #ifdef CONFIG_CGROUP_CPUACCT
  1190. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1191. #else
  1192. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1193. #endif
  1194. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1195. {
  1196. update_load_add(&rq->load, load);
  1197. }
  1198. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1199. {
  1200. update_load_sub(&rq->load, load);
  1201. }
  1202. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1203. typedef int (*tg_visitor)(struct task_group *, void *);
  1204. /*
  1205. * Iterate the full tree, calling @down when first entering a node and @up when
  1206. * leaving it for the final time.
  1207. */
  1208. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1209. {
  1210. struct task_group *parent, *child;
  1211. int ret;
  1212. rcu_read_lock();
  1213. parent = &root_task_group;
  1214. down:
  1215. ret = (*down)(parent, data);
  1216. if (ret)
  1217. goto out_unlock;
  1218. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1219. parent = child;
  1220. goto down;
  1221. up:
  1222. continue;
  1223. }
  1224. ret = (*up)(parent, data);
  1225. if (ret)
  1226. goto out_unlock;
  1227. child = parent;
  1228. parent = parent->parent;
  1229. if (parent)
  1230. goto up;
  1231. out_unlock:
  1232. rcu_read_unlock();
  1233. return ret;
  1234. }
  1235. static int tg_nop(struct task_group *tg, void *data)
  1236. {
  1237. return 0;
  1238. }
  1239. #endif
  1240. #ifdef CONFIG_SMP
  1241. static unsigned long source_load(int cpu, int type);
  1242. static unsigned long target_load(int cpu, int type);
  1243. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1244. static unsigned long cpu_avg_load_per_task(int cpu)
  1245. {
  1246. struct rq *rq = cpu_rq(cpu);
  1247. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1248. if (nr_running)
  1249. rq->avg_load_per_task = rq->load.weight / nr_running;
  1250. else
  1251. rq->avg_load_per_task = 0;
  1252. return rq->avg_load_per_task;
  1253. }
  1254. #ifdef CONFIG_FAIR_GROUP_SCHED
  1255. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1256. /*
  1257. * Calculate and set the cpu's group shares.
  1258. */
  1259. static void
  1260. update_group_shares_cpu(struct task_group *tg, int cpu,
  1261. unsigned long sd_shares, unsigned long sd_rq_weight)
  1262. {
  1263. unsigned long shares;
  1264. unsigned long rq_weight;
  1265. if (!tg->se[cpu])
  1266. return;
  1267. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1268. /*
  1269. * \Sum shares * rq_weight
  1270. * shares = -----------------------
  1271. * \Sum rq_weight
  1272. *
  1273. */
  1274. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1275. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1276. if (abs(shares - tg->se[cpu]->load.weight) >
  1277. sysctl_sched_shares_thresh) {
  1278. struct rq *rq = cpu_rq(cpu);
  1279. unsigned long flags;
  1280. spin_lock_irqsave(&rq->lock, flags);
  1281. tg->cfs_rq[cpu]->shares = shares;
  1282. __set_se_shares(tg->se[cpu], shares);
  1283. spin_unlock_irqrestore(&rq->lock, flags);
  1284. }
  1285. }
  1286. /*
  1287. * Re-compute the task group their per cpu shares over the given domain.
  1288. * This needs to be done in a bottom-up fashion because the rq weight of a
  1289. * parent group depends on the shares of its child groups.
  1290. */
  1291. static int tg_shares_up(struct task_group *tg, void *data)
  1292. {
  1293. unsigned long weight, rq_weight = 0;
  1294. unsigned long shares = 0;
  1295. struct sched_domain *sd = data;
  1296. int i;
  1297. for_each_cpu(i, sched_domain_span(sd)) {
  1298. /*
  1299. * If there are currently no tasks on the cpu pretend there
  1300. * is one of average load so that when a new task gets to
  1301. * run here it will not get delayed by group starvation.
  1302. */
  1303. weight = tg->cfs_rq[i]->load.weight;
  1304. if (!weight)
  1305. weight = NICE_0_LOAD;
  1306. tg->cfs_rq[i]->rq_weight = weight;
  1307. rq_weight += weight;
  1308. shares += tg->cfs_rq[i]->shares;
  1309. }
  1310. if ((!shares && rq_weight) || shares > tg->shares)
  1311. shares = tg->shares;
  1312. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1313. shares = tg->shares;
  1314. for_each_cpu(i, sched_domain_span(sd))
  1315. update_group_shares_cpu(tg, i, shares, rq_weight);
  1316. return 0;
  1317. }
  1318. /*
  1319. * Compute the cpu's hierarchical load factor for each task group.
  1320. * This needs to be done in a top-down fashion because the load of a child
  1321. * group is a fraction of its parents load.
  1322. */
  1323. static int tg_load_down(struct task_group *tg, void *data)
  1324. {
  1325. unsigned long load;
  1326. long cpu = (long)data;
  1327. if (!tg->parent) {
  1328. load = cpu_rq(cpu)->load.weight;
  1329. } else {
  1330. load = tg->parent->cfs_rq[cpu]->h_load;
  1331. load *= tg->cfs_rq[cpu]->shares;
  1332. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1333. }
  1334. tg->cfs_rq[cpu]->h_load = load;
  1335. return 0;
  1336. }
  1337. static void update_shares(struct sched_domain *sd)
  1338. {
  1339. u64 now = cpu_clock(raw_smp_processor_id());
  1340. s64 elapsed = now - sd->last_update;
  1341. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1342. sd->last_update = now;
  1343. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1344. }
  1345. }
  1346. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1347. {
  1348. spin_unlock(&rq->lock);
  1349. update_shares(sd);
  1350. spin_lock(&rq->lock);
  1351. }
  1352. static void update_h_load(long cpu)
  1353. {
  1354. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1355. }
  1356. #else
  1357. static inline void update_shares(struct sched_domain *sd)
  1358. {
  1359. }
  1360. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1361. {
  1362. }
  1363. #endif
  1364. /*
  1365. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1366. */
  1367. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1368. __releases(this_rq->lock)
  1369. __acquires(busiest->lock)
  1370. __acquires(this_rq->lock)
  1371. {
  1372. int ret = 0;
  1373. if (unlikely(!irqs_disabled())) {
  1374. /* printk() doesn't work good under rq->lock */
  1375. spin_unlock(&this_rq->lock);
  1376. BUG_ON(1);
  1377. }
  1378. if (unlikely(!spin_trylock(&busiest->lock))) {
  1379. if (busiest < this_rq) {
  1380. spin_unlock(&this_rq->lock);
  1381. spin_lock(&busiest->lock);
  1382. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1383. ret = 1;
  1384. } else
  1385. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1386. }
  1387. return ret;
  1388. }
  1389. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1390. __releases(busiest->lock)
  1391. {
  1392. spin_unlock(&busiest->lock);
  1393. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1394. }
  1395. #endif
  1396. #ifdef CONFIG_FAIR_GROUP_SCHED
  1397. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1398. {
  1399. #ifdef CONFIG_SMP
  1400. cfs_rq->shares = shares;
  1401. #endif
  1402. }
  1403. #endif
  1404. #include "sched_stats.h"
  1405. #include "sched_idletask.c"
  1406. #include "sched_fair.c"
  1407. #include "sched_rt.c"
  1408. #ifdef CONFIG_SCHED_DEBUG
  1409. # include "sched_debug.c"
  1410. #endif
  1411. #define sched_class_highest (&rt_sched_class)
  1412. #define for_each_class(class) \
  1413. for (class = sched_class_highest; class; class = class->next)
  1414. static void inc_nr_running(struct rq *rq)
  1415. {
  1416. rq->nr_running++;
  1417. }
  1418. static void dec_nr_running(struct rq *rq)
  1419. {
  1420. rq->nr_running--;
  1421. }
  1422. static void set_load_weight(struct task_struct *p)
  1423. {
  1424. if (task_has_rt_policy(p)) {
  1425. p->se.load.weight = prio_to_weight[0] * 2;
  1426. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1427. return;
  1428. }
  1429. /*
  1430. * SCHED_IDLE tasks get minimal weight:
  1431. */
  1432. if (p->policy == SCHED_IDLE) {
  1433. p->se.load.weight = WEIGHT_IDLEPRIO;
  1434. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1435. return;
  1436. }
  1437. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1438. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1439. }
  1440. static void update_avg(u64 *avg, u64 sample)
  1441. {
  1442. s64 diff = sample - *avg;
  1443. *avg += diff >> 3;
  1444. }
  1445. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1446. {
  1447. sched_info_queued(p);
  1448. p->sched_class->enqueue_task(rq, p, wakeup);
  1449. p->se.on_rq = 1;
  1450. }
  1451. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1452. {
  1453. if (sleep && p->se.last_wakeup) {
  1454. update_avg(&p->se.avg_overlap,
  1455. p->se.sum_exec_runtime - p->se.last_wakeup);
  1456. p->se.last_wakeup = 0;
  1457. }
  1458. sched_info_dequeued(p);
  1459. p->sched_class->dequeue_task(rq, p, sleep);
  1460. p->se.on_rq = 0;
  1461. }
  1462. /*
  1463. * __normal_prio - return the priority that is based on the static prio
  1464. */
  1465. static inline int __normal_prio(struct task_struct *p)
  1466. {
  1467. return p->static_prio;
  1468. }
  1469. /*
  1470. * Calculate the expected normal priority: i.e. priority
  1471. * without taking RT-inheritance into account. Might be
  1472. * boosted by interactivity modifiers. Changes upon fork,
  1473. * setprio syscalls, and whenever the interactivity
  1474. * estimator recalculates.
  1475. */
  1476. static inline int normal_prio(struct task_struct *p)
  1477. {
  1478. int prio;
  1479. if (task_has_rt_policy(p))
  1480. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1481. else
  1482. prio = __normal_prio(p);
  1483. return prio;
  1484. }
  1485. /*
  1486. * Calculate the current priority, i.e. the priority
  1487. * taken into account by the scheduler. This value might
  1488. * be boosted by RT tasks, or might be boosted by
  1489. * interactivity modifiers. Will be RT if the task got
  1490. * RT-boosted. If not then it returns p->normal_prio.
  1491. */
  1492. static int effective_prio(struct task_struct *p)
  1493. {
  1494. p->normal_prio = normal_prio(p);
  1495. /*
  1496. * If we are RT tasks or we were boosted to RT priority,
  1497. * keep the priority unchanged. Otherwise, update priority
  1498. * to the normal priority:
  1499. */
  1500. if (!rt_prio(p->prio))
  1501. return p->normal_prio;
  1502. return p->prio;
  1503. }
  1504. /*
  1505. * activate_task - move a task to the runqueue.
  1506. */
  1507. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1508. {
  1509. if (task_contributes_to_load(p))
  1510. rq->nr_uninterruptible--;
  1511. enqueue_task(rq, p, wakeup);
  1512. inc_nr_running(rq);
  1513. }
  1514. /*
  1515. * deactivate_task - remove a task from the runqueue.
  1516. */
  1517. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1518. {
  1519. if (task_contributes_to_load(p))
  1520. rq->nr_uninterruptible++;
  1521. dequeue_task(rq, p, sleep);
  1522. dec_nr_running(rq);
  1523. }
  1524. /**
  1525. * task_curr - is this task currently executing on a CPU?
  1526. * @p: the task in question.
  1527. */
  1528. inline int task_curr(const struct task_struct *p)
  1529. {
  1530. return cpu_curr(task_cpu(p)) == p;
  1531. }
  1532. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1533. {
  1534. set_task_rq(p, cpu);
  1535. #ifdef CONFIG_SMP
  1536. /*
  1537. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1538. * successfuly executed on another CPU. We must ensure that updates of
  1539. * per-task data have been completed by this moment.
  1540. */
  1541. smp_wmb();
  1542. task_thread_info(p)->cpu = cpu;
  1543. #endif
  1544. }
  1545. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1546. const struct sched_class *prev_class,
  1547. int oldprio, int running)
  1548. {
  1549. if (prev_class != p->sched_class) {
  1550. if (prev_class->switched_from)
  1551. prev_class->switched_from(rq, p, running);
  1552. p->sched_class->switched_to(rq, p, running);
  1553. } else
  1554. p->sched_class->prio_changed(rq, p, oldprio, running);
  1555. }
  1556. #ifdef CONFIG_SMP
  1557. /* Used instead of source_load when we know the type == 0 */
  1558. static unsigned long weighted_cpuload(const int cpu)
  1559. {
  1560. return cpu_rq(cpu)->load.weight;
  1561. }
  1562. /*
  1563. * Is this task likely cache-hot:
  1564. */
  1565. static int
  1566. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1567. {
  1568. s64 delta;
  1569. /*
  1570. * Buddy candidates are cache hot:
  1571. */
  1572. if (sched_feat(CACHE_HOT_BUDDY) &&
  1573. (&p->se == cfs_rq_of(&p->se)->next ||
  1574. &p->se == cfs_rq_of(&p->se)->last))
  1575. return 1;
  1576. if (p->sched_class != &fair_sched_class)
  1577. return 0;
  1578. if (sysctl_sched_migration_cost == -1)
  1579. return 1;
  1580. if (sysctl_sched_migration_cost == 0)
  1581. return 0;
  1582. delta = now - p->se.exec_start;
  1583. return delta < (s64)sysctl_sched_migration_cost;
  1584. }
  1585. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1586. {
  1587. int old_cpu = task_cpu(p);
  1588. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1589. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1590. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1591. u64 clock_offset;
  1592. clock_offset = old_rq->clock - new_rq->clock;
  1593. trace_sched_migrate_task(p, task_cpu(p), new_cpu);
  1594. #ifdef CONFIG_SCHEDSTATS
  1595. if (p->se.wait_start)
  1596. p->se.wait_start -= clock_offset;
  1597. if (p->se.sleep_start)
  1598. p->se.sleep_start -= clock_offset;
  1599. if (p->se.block_start)
  1600. p->se.block_start -= clock_offset;
  1601. #endif
  1602. if (old_cpu != new_cpu) {
  1603. p->se.nr_migrations++;
  1604. new_rq->nr_migrations_in++;
  1605. #ifdef CONFIG_SCHEDSTATS
  1606. if (task_hot(p, old_rq->clock, NULL))
  1607. schedstat_inc(p, se.nr_forced2_migrations);
  1608. #endif
  1609. }
  1610. p->se.vruntime -= old_cfsrq->min_vruntime -
  1611. new_cfsrq->min_vruntime;
  1612. __set_task_cpu(p, new_cpu);
  1613. }
  1614. struct migration_req {
  1615. struct list_head list;
  1616. struct task_struct *task;
  1617. int dest_cpu;
  1618. struct completion done;
  1619. };
  1620. /*
  1621. * The task's runqueue lock must be held.
  1622. * Returns true if you have to wait for migration thread.
  1623. */
  1624. static int
  1625. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1626. {
  1627. struct rq *rq = task_rq(p);
  1628. /*
  1629. * If the task is not on a runqueue (and not running), then
  1630. * it is sufficient to simply update the task's cpu field.
  1631. */
  1632. if (!p->se.on_rq && !task_running(rq, p)) {
  1633. set_task_cpu(p, dest_cpu);
  1634. return 0;
  1635. }
  1636. init_completion(&req->done);
  1637. req->task = p;
  1638. req->dest_cpu = dest_cpu;
  1639. list_add(&req->list, &rq->migration_queue);
  1640. return 1;
  1641. }
  1642. /*
  1643. * wait_task_inactive - wait for a thread to unschedule.
  1644. *
  1645. * If @match_state is nonzero, it's the @p->state value just checked and
  1646. * not expected to change. If it changes, i.e. @p might have woken up,
  1647. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1648. * we return a positive number (its total switch count). If a second call
  1649. * a short while later returns the same number, the caller can be sure that
  1650. * @p has remained unscheduled the whole time.
  1651. *
  1652. * The caller must ensure that the task *will* unschedule sometime soon,
  1653. * else this function might spin for a *long* time. This function can't
  1654. * be called with interrupts off, or it may introduce deadlock with
  1655. * smp_call_function() if an IPI is sent by the same process we are
  1656. * waiting to become inactive.
  1657. */
  1658. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1659. {
  1660. unsigned long flags;
  1661. int running, on_rq;
  1662. unsigned long ncsw;
  1663. struct rq *rq;
  1664. for (;;) {
  1665. /*
  1666. * We do the initial early heuristics without holding
  1667. * any task-queue locks at all. We'll only try to get
  1668. * the runqueue lock when things look like they will
  1669. * work out!
  1670. */
  1671. rq = task_rq(p);
  1672. /*
  1673. * If the task is actively running on another CPU
  1674. * still, just relax and busy-wait without holding
  1675. * any locks.
  1676. *
  1677. * NOTE! Since we don't hold any locks, it's not
  1678. * even sure that "rq" stays as the right runqueue!
  1679. * But we don't care, since "task_running()" will
  1680. * return false if the runqueue has changed and p
  1681. * is actually now running somewhere else!
  1682. */
  1683. while (task_running(rq, p)) {
  1684. if (match_state && unlikely(p->state != match_state))
  1685. return 0;
  1686. cpu_relax();
  1687. }
  1688. /*
  1689. * Ok, time to look more closely! We need the rq
  1690. * lock now, to be *sure*. If we're wrong, we'll
  1691. * just go back and repeat.
  1692. */
  1693. rq = task_rq_lock(p, &flags);
  1694. trace_sched_wait_task(rq, p);
  1695. running = task_running(rq, p);
  1696. on_rq = p->se.on_rq;
  1697. ncsw = 0;
  1698. if (!match_state || p->state == match_state)
  1699. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1700. task_rq_unlock(rq, &flags);
  1701. /*
  1702. * If it changed from the expected state, bail out now.
  1703. */
  1704. if (unlikely(!ncsw))
  1705. break;
  1706. /*
  1707. * Was it really running after all now that we
  1708. * checked with the proper locks actually held?
  1709. *
  1710. * Oops. Go back and try again..
  1711. */
  1712. if (unlikely(running)) {
  1713. cpu_relax();
  1714. continue;
  1715. }
  1716. /*
  1717. * It's not enough that it's not actively running,
  1718. * it must be off the runqueue _entirely_, and not
  1719. * preempted!
  1720. *
  1721. * So if it wa still runnable (but just not actively
  1722. * running right now), it's preempted, and we should
  1723. * yield - it could be a while.
  1724. */
  1725. if (unlikely(on_rq)) {
  1726. schedule_timeout_uninterruptible(1);
  1727. continue;
  1728. }
  1729. /*
  1730. * Ahh, all good. It wasn't running, and it wasn't
  1731. * runnable, which means that it will never become
  1732. * running in the future either. We're all done!
  1733. */
  1734. break;
  1735. }
  1736. return ncsw;
  1737. }
  1738. /***
  1739. * kick_process - kick a running thread to enter/exit the kernel
  1740. * @p: the to-be-kicked thread
  1741. *
  1742. * Cause a process which is running on another CPU to enter
  1743. * kernel-mode, without any delay. (to get signals handled.)
  1744. *
  1745. * NOTE: this function doesnt have to take the runqueue lock,
  1746. * because all it wants to ensure is that the remote task enters
  1747. * the kernel. If the IPI races and the task has been migrated
  1748. * to another CPU then no harm is done and the purpose has been
  1749. * achieved as well.
  1750. */
  1751. void kick_process(struct task_struct *p)
  1752. {
  1753. int cpu;
  1754. preempt_disable();
  1755. cpu = task_cpu(p);
  1756. if ((cpu != smp_processor_id()) && task_curr(p))
  1757. smp_send_reschedule(cpu);
  1758. preempt_enable();
  1759. }
  1760. /*
  1761. * Return a low guess at the load of a migration-source cpu weighted
  1762. * according to the scheduling class and "nice" value.
  1763. *
  1764. * We want to under-estimate the load of migration sources, to
  1765. * balance conservatively.
  1766. */
  1767. static unsigned long source_load(int cpu, int type)
  1768. {
  1769. struct rq *rq = cpu_rq(cpu);
  1770. unsigned long total = weighted_cpuload(cpu);
  1771. if (type == 0 || !sched_feat(LB_BIAS))
  1772. return total;
  1773. return min(rq->cpu_load[type-1], total);
  1774. }
  1775. /*
  1776. * Return a high guess at the load of a migration-target cpu weighted
  1777. * according to the scheduling class and "nice" value.
  1778. */
  1779. static unsigned long target_load(int cpu, int type)
  1780. {
  1781. struct rq *rq = cpu_rq(cpu);
  1782. unsigned long total = weighted_cpuload(cpu);
  1783. if (type == 0 || !sched_feat(LB_BIAS))
  1784. return total;
  1785. return max(rq->cpu_load[type-1], total);
  1786. }
  1787. /*
  1788. * find_idlest_group finds and returns the least busy CPU group within the
  1789. * domain.
  1790. */
  1791. static struct sched_group *
  1792. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1793. {
  1794. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1795. unsigned long min_load = ULONG_MAX, this_load = 0;
  1796. int load_idx = sd->forkexec_idx;
  1797. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1798. do {
  1799. unsigned long load, avg_load;
  1800. int local_group;
  1801. int i;
  1802. /* Skip over this group if it has no CPUs allowed */
  1803. if (!cpumask_intersects(sched_group_cpus(group),
  1804. &p->cpus_allowed))
  1805. continue;
  1806. local_group = cpumask_test_cpu(this_cpu,
  1807. sched_group_cpus(group));
  1808. /* Tally up the load of all CPUs in the group */
  1809. avg_load = 0;
  1810. for_each_cpu(i, sched_group_cpus(group)) {
  1811. /* Bias balancing toward cpus of our domain */
  1812. if (local_group)
  1813. load = source_load(i, load_idx);
  1814. else
  1815. load = target_load(i, load_idx);
  1816. avg_load += load;
  1817. }
  1818. /* Adjust by relative CPU power of the group */
  1819. avg_load = sg_div_cpu_power(group,
  1820. avg_load * SCHED_LOAD_SCALE);
  1821. if (local_group) {
  1822. this_load = avg_load;
  1823. this = group;
  1824. } else if (avg_load < min_load) {
  1825. min_load = avg_load;
  1826. idlest = group;
  1827. }
  1828. } while (group = group->next, group != sd->groups);
  1829. if (!idlest || 100*this_load < imbalance*min_load)
  1830. return NULL;
  1831. return idlest;
  1832. }
  1833. /*
  1834. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1835. */
  1836. static int
  1837. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1838. {
  1839. unsigned long load, min_load = ULONG_MAX;
  1840. int idlest = -1;
  1841. int i;
  1842. /* Traverse only the allowed CPUs */
  1843. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1844. load = weighted_cpuload(i);
  1845. if (load < min_load || (load == min_load && i == this_cpu)) {
  1846. min_load = load;
  1847. idlest = i;
  1848. }
  1849. }
  1850. return idlest;
  1851. }
  1852. /*
  1853. * sched_balance_self: balance the current task (running on cpu) in domains
  1854. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1855. * SD_BALANCE_EXEC.
  1856. *
  1857. * Balance, ie. select the least loaded group.
  1858. *
  1859. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1860. *
  1861. * preempt must be disabled.
  1862. */
  1863. static int sched_balance_self(int cpu, int flag)
  1864. {
  1865. struct task_struct *t = current;
  1866. struct sched_domain *tmp, *sd = NULL;
  1867. for_each_domain(cpu, tmp) {
  1868. /*
  1869. * If power savings logic is enabled for a domain, stop there.
  1870. */
  1871. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1872. break;
  1873. if (tmp->flags & flag)
  1874. sd = tmp;
  1875. }
  1876. if (sd)
  1877. update_shares(sd);
  1878. while (sd) {
  1879. struct sched_group *group;
  1880. int new_cpu, weight;
  1881. if (!(sd->flags & flag)) {
  1882. sd = sd->child;
  1883. continue;
  1884. }
  1885. group = find_idlest_group(sd, t, cpu);
  1886. if (!group) {
  1887. sd = sd->child;
  1888. continue;
  1889. }
  1890. new_cpu = find_idlest_cpu(group, t, cpu);
  1891. if (new_cpu == -1 || new_cpu == cpu) {
  1892. /* Now try balancing at a lower domain level of cpu */
  1893. sd = sd->child;
  1894. continue;
  1895. }
  1896. /* Now try balancing at a lower domain level of new_cpu */
  1897. cpu = new_cpu;
  1898. weight = cpumask_weight(sched_domain_span(sd));
  1899. sd = NULL;
  1900. for_each_domain(cpu, tmp) {
  1901. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1902. break;
  1903. if (tmp->flags & flag)
  1904. sd = tmp;
  1905. }
  1906. /* while loop will break here if sd == NULL */
  1907. }
  1908. return cpu;
  1909. }
  1910. #endif /* CONFIG_SMP */
  1911. /**
  1912. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1913. * @p: the task to evaluate
  1914. * @func: the function to be called
  1915. * @info: the function call argument
  1916. *
  1917. * Calls the function @func when the task is currently running. This might
  1918. * be on the current CPU, which just calls the function directly
  1919. */
  1920. void task_oncpu_function_call(struct task_struct *p,
  1921. void (*func) (void *info), void *info)
  1922. {
  1923. int cpu;
  1924. preempt_disable();
  1925. cpu = task_cpu(p);
  1926. if (task_curr(p))
  1927. smp_call_function_single(cpu, func, info, 1);
  1928. preempt_enable();
  1929. }
  1930. /***
  1931. * try_to_wake_up - wake up a thread
  1932. * @p: the to-be-woken-up thread
  1933. * @state: the mask of task states that can be woken
  1934. * @sync: do a synchronous wakeup?
  1935. *
  1936. * Put it on the run-queue if it's not already there. The "current"
  1937. * thread is always on the run-queue (except when the actual
  1938. * re-schedule is in progress), and as such you're allowed to do
  1939. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1940. * runnable without the overhead of this.
  1941. *
  1942. * returns failure only if the task is already active.
  1943. */
  1944. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1945. {
  1946. int cpu, orig_cpu, this_cpu, success = 0;
  1947. unsigned long flags;
  1948. long old_state;
  1949. struct rq *rq;
  1950. if (!sched_feat(SYNC_WAKEUPS))
  1951. sync = 0;
  1952. #ifdef CONFIG_SMP
  1953. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1954. struct sched_domain *sd;
  1955. this_cpu = raw_smp_processor_id();
  1956. cpu = task_cpu(p);
  1957. for_each_domain(this_cpu, sd) {
  1958. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1959. update_shares(sd);
  1960. break;
  1961. }
  1962. }
  1963. }
  1964. #endif
  1965. smp_wmb();
  1966. rq = task_rq_lock(p, &flags);
  1967. update_rq_clock(rq);
  1968. old_state = p->state;
  1969. if (!(old_state & state))
  1970. goto out;
  1971. if (p->se.on_rq)
  1972. goto out_running;
  1973. cpu = task_cpu(p);
  1974. orig_cpu = cpu;
  1975. this_cpu = smp_processor_id();
  1976. #ifdef CONFIG_SMP
  1977. if (unlikely(task_running(rq, p)))
  1978. goto out_activate;
  1979. cpu = p->sched_class->select_task_rq(p, sync);
  1980. if (cpu != orig_cpu) {
  1981. set_task_cpu(p, cpu);
  1982. task_rq_unlock(rq, &flags);
  1983. /* might preempt at this point */
  1984. rq = task_rq_lock(p, &flags);
  1985. old_state = p->state;
  1986. if (!(old_state & state))
  1987. goto out;
  1988. if (p->se.on_rq)
  1989. goto out_running;
  1990. this_cpu = smp_processor_id();
  1991. cpu = task_cpu(p);
  1992. }
  1993. #ifdef CONFIG_SCHEDSTATS
  1994. schedstat_inc(rq, ttwu_count);
  1995. if (cpu == this_cpu)
  1996. schedstat_inc(rq, ttwu_local);
  1997. else {
  1998. struct sched_domain *sd;
  1999. for_each_domain(this_cpu, sd) {
  2000. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2001. schedstat_inc(sd, ttwu_wake_remote);
  2002. break;
  2003. }
  2004. }
  2005. }
  2006. #endif /* CONFIG_SCHEDSTATS */
  2007. out_activate:
  2008. #endif /* CONFIG_SMP */
  2009. schedstat_inc(p, se.nr_wakeups);
  2010. if (sync)
  2011. schedstat_inc(p, se.nr_wakeups_sync);
  2012. if (orig_cpu != cpu)
  2013. schedstat_inc(p, se.nr_wakeups_migrate);
  2014. if (cpu == this_cpu)
  2015. schedstat_inc(p, se.nr_wakeups_local);
  2016. else
  2017. schedstat_inc(p, se.nr_wakeups_remote);
  2018. activate_task(rq, p, 1);
  2019. success = 1;
  2020. out_running:
  2021. trace_sched_wakeup(rq, p, success);
  2022. check_preempt_curr(rq, p, sync);
  2023. p->state = TASK_RUNNING;
  2024. #ifdef CONFIG_SMP
  2025. if (p->sched_class->task_wake_up)
  2026. p->sched_class->task_wake_up(rq, p);
  2027. #endif
  2028. out:
  2029. current->se.last_wakeup = current->se.sum_exec_runtime;
  2030. task_rq_unlock(rq, &flags);
  2031. return success;
  2032. }
  2033. int wake_up_process(struct task_struct *p)
  2034. {
  2035. return try_to_wake_up(p, TASK_ALL, 0);
  2036. }
  2037. EXPORT_SYMBOL(wake_up_process);
  2038. int wake_up_state(struct task_struct *p, unsigned int state)
  2039. {
  2040. return try_to_wake_up(p, state, 0);
  2041. }
  2042. /*
  2043. * Perform scheduler related setup for a newly forked process p.
  2044. * p is forked by current.
  2045. *
  2046. * __sched_fork() is basic setup used by init_idle() too:
  2047. */
  2048. static void __sched_fork(struct task_struct *p)
  2049. {
  2050. p->se.exec_start = 0;
  2051. p->se.sum_exec_runtime = 0;
  2052. p->se.prev_sum_exec_runtime = 0;
  2053. p->se.nr_migrations = 0;
  2054. p->se.last_wakeup = 0;
  2055. p->se.avg_overlap = 0;
  2056. #ifdef CONFIG_SCHEDSTATS
  2057. p->se.wait_start = 0;
  2058. p->se.sum_sleep_runtime = 0;
  2059. p->se.sleep_start = 0;
  2060. p->se.block_start = 0;
  2061. p->se.sleep_max = 0;
  2062. p->se.block_max = 0;
  2063. p->se.exec_max = 0;
  2064. p->se.slice_max = 0;
  2065. p->se.wait_max = 0;
  2066. #endif
  2067. INIT_LIST_HEAD(&p->rt.run_list);
  2068. p->se.on_rq = 0;
  2069. INIT_LIST_HEAD(&p->se.group_node);
  2070. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2071. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2072. #endif
  2073. /*
  2074. * We mark the process as running here, but have not actually
  2075. * inserted it onto the runqueue yet. This guarantees that
  2076. * nobody will actually run it, and a signal or other external
  2077. * event cannot wake it up and insert it on the runqueue either.
  2078. */
  2079. p->state = TASK_RUNNING;
  2080. }
  2081. /*
  2082. * fork()/clone()-time setup:
  2083. */
  2084. void sched_fork(struct task_struct *p, int clone_flags)
  2085. {
  2086. int cpu = get_cpu();
  2087. __sched_fork(p);
  2088. #ifdef CONFIG_SMP
  2089. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2090. #endif
  2091. set_task_cpu(p, cpu);
  2092. /*
  2093. * Make sure we do not leak PI boosting priority to the child:
  2094. */
  2095. p->prio = current->normal_prio;
  2096. if (!rt_prio(p->prio))
  2097. p->sched_class = &fair_sched_class;
  2098. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2099. if (likely(sched_info_on()))
  2100. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2101. #endif
  2102. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2103. p->oncpu = 0;
  2104. #endif
  2105. #ifdef CONFIG_PREEMPT
  2106. /* Want to start with kernel preemption disabled. */
  2107. task_thread_info(p)->preempt_count = 1;
  2108. #endif
  2109. put_cpu();
  2110. }
  2111. /*
  2112. * wake_up_new_task - wake up a newly created task for the first time.
  2113. *
  2114. * This function will do some initial scheduler statistics housekeeping
  2115. * that must be done for every newly created context, then puts the task
  2116. * on the runqueue and wakes it.
  2117. */
  2118. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2119. {
  2120. unsigned long flags;
  2121. struct rq *rq;
  2122. rq = task_rq_lock(p, &flags);
  2123. BUG_ON(p->state != TASK_RUNNING);
  2124. update_rq_clock(rq);
  2125. p->prio = effective_prio(p);
  2126. if (!p->sched_class->task_new || !current->se.on_rq) {
  2127. activate_task(rq, p, 0);
  2128. } else {
  2129. /*
  2130. * Let the scheduling class do new task startup
  2131. * management (if any):
  2132. */
  2133. p->sched_class->task_new(rq, p);
  2134. inc_nr_running(rq);
  2135. }
  2136. trace_sched_wakeup_new(rq, p, 1);
  2137. check_preempt_curr(rq, p, 0);
  2138. #ifdef CONFIG_SMP
  2139. if (p->sched_class->task_wake_up)
  2140. p->sched_class->task_wake_up(rq, p);
  2141. #endif
  2142. task_rq_unlock(rq, &flags);
  2143. }
  2144. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2145. /**
  2146. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2147. * @notifier: notifier struct to register
  2148. */
  2149. void preempt_notifier_register(struct preempt_notifier *notifier)
  2150. {
  2151. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2152. }
  2153. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2154. /**
  2155. * preempt_notifier_unregister - no longer interested in preemption notifications
  2156. * @notifier: notifier struct to unregister
  2157. *
  2158. * This is safe to call from within a preemption notifier.
  2159. */
  2160. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2161. {
  2162. hlist_del(&notifier->link);
  2163. }
  2164. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2165. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2166. {
  2167. struct preempt_notifier *notifier;
  2168. struct hlist_node *node;
  2169. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2170. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2171. }
  2172. static void
  2173. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2174. struct task_struct *next)
  2175. {
  2176. struct preempt_notifier *notifier;
  2177. struct hlist_node *node;
  2178. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2179. notifier->ops->sched_out(notifier, next);
  2180. }
  2181. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2182. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2183. {
  2184. }
  2185. static void
  2186. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2187. struct task_struct *next)
  2188. {
  2189. }
  2190. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2191. /**
  2192. * prepare_task_switch - prepare to switch tasks
  2193. * @rq: the runqueue preparing to switch
  2194. * @prev: the current task that is being switched out
  2195. * @next: the task we are going to switch to.
  2196. *
  2197. * This is called with the rq lock held and interrupts off. It must
  2198. * be paired with a subsequent finish_task_switch after the context
  2199. * switch.
  2200. *
  2201. * prepare_task_switch sets up locking and calls architecture specific
  2202. * hooks.
  2203. */
  2204. static inline void
  2205. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2206. struct task_struct *next)
  2207. {
  2208. fire_sched_out_preempt_notifiers(prev, next);
  2209. prepare_lock_switch(rq, next);
  2210. prepare_arch_switch(next);
  2211. }
  2212. /**
  2213. * finish_task_switch - clean up after a task-switch
  2214. * @rq: runqueue associated with task-switch
  2215. * @prev: the thread we just switched away from.
  2216. *
  2217. * finish_task_switch must be called after the context switch, paired
  2218. * with a prepare_task_switch call before the context switch.
  2219. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2220. * and do any other architecture-specific cleanup actions.
  2221. *
  2222. * Note that we may have delayed dropping an mm in context_switch(). If
  2223. * so, we finish that here outside of the runqueue lock. (Doing it
  2224. * with the lock held can cause deadlocks; see schedule() for
  2225. * details.)
  2226. */
  2227. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2228. __releases(rq->lock)
  2229. {
  2230. struct mm_struct *mm = rq->prev_mm;
  2231. long prev_state;
  2232. rq->prev_mm = NULL;
  2233. /*
  2234. * A task struct has one reference for the use as "current".
  2235. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2236. * schedule one last time. The schedule call will never return, and
  2237. * the scheduled task must drop that reference.
  2238. * The test for TASK_DEAD must occur while the runqueue locks are
  2239. * still held, otherwise prev could be scheduled on another cpu, die
  2240. * there before we look at prev->state, and then the reference would
  2241. * be dropped twice.
  2242. * Manfred Spraul <manfred@colorfullife.com>
  2243. */
  2244. prev_state = prev->state;
  2245. finish_arch_switch(prev);
  2246. perf_counter_task_sched_in(current, cpu_of(rq));
  2247. finish_lock_switch(rq, prev);
  2248. #ifdef CONFIG_SMP
  2249. if (current->sched_class->post_schedule)
  2250. current->sched_class->post_schedule(rq);
  2251. #endif
  2252. fire_sched_in_preempt_notifiers(current);
  2253. if (mm)
  2254. mmdrop(mm);
  2255. if (unlikely(prev_state == TASK_DEAD)) {
  2256. /*
  2257. * Remove function-return probe instances associated with this
  2258. * task and put them back on the free list.
  2259. */
  2260. kprobe_flush_task(prev);
  2261. put_task_struct(prev);
  2262. }
  2263. }
  2264. /**
  2265. * schedule_tail - first thing a freshly forked thread must call.
  2266. * @prev: the thread we just switched away from.
  2267. */
  2268. asmlinkage void schedule_tail(struct task_struct *prev)
  2269. __releases(rq->lock)
  2270. {
  2271. struct rq *rq = this_rq();
  2272. finish_task_switch(rq, prev);
  2273. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2274. /* In this case, finish_task_switch does not reenable preemption */
  2275. preempt_enable();
  2276. #endif
  2277. if (current->set_child_tid)
  2278. put_user(task_pid_vnr(current), current->set_child_tid);
  2279. }
  2280. /*
  2281. * context_switch - switch to the new MM and the new
  2282. * thread's register state.
  2283. */
  2284. static inline void
  2285. context_switch(struct rq *rq, struct task_struct *prev,
  2286. struct task_struct *next)
  2287. {
  2288. struct mm_struct *mm, *oldmm;
  2289. prepare_task_switch(rq, prev, next);
  2290. trace_sched_switch(rq, prev, next);
  2291. mm = next->mm;
  2292. oldmm = prev->active_mm;
  2293. /*
  2294. * For paravirt, this is coupled with an exit in switch_to to
  2295. * combine the page table reload and the switch backend into
  2296. * one hypercall.
  2297. */
  2298. arch_enter_lazy_cpu_mode();
  2299. if (unlikely(!mm)) {
  2300. next->active_mm = oldmm;
  2301. atomic_inc(&oldmm->mm_count);
  2302. enter_lazy_tlb(oldmm, next);
  2303. } else
  2304. switch_mm(oldmm, mm, next);
  2305. if (unlikely(!prev->mm)) {
  2306. prev->active_mm = NULL;
  2307. rq->prev_mm = oldmm;
  2308. }
  2309. /*
  2310. * Since the runqueue lock will be released by the next
  2311. * task (which is an invalid locking op but in the case
  2312. * of the scheduler it's an obvious special-case), so we
  2313. * do an early lockdep release here:
  2314. */
  2315. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2316. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2317. #endif
  2318. /* Here we just switch the register state and the stack. */
  2319. switch_to(prev, next, prev);
  2320. barrier();
  2321. /*
  2322. * this_rq must be evaluated again because prev may have moved
  2323. * CPUs since it called schedule(), thus the 'rq' on its stack
  2324. * frame will be invalid.
  2325. */
  2326. finish_task_switch(this_rq(), prev);
  2327. }
  2328. /*
  2329. * nr_running, nr_uninterruptible and nr_context_switches:
  2330. *
  2331. * externally visible scheduler statistics: current number of runnable
  2332. * threads, current number of uninterruptible-sleeping threads, total
  2333. * number of context switches performed since bootup.
  2334. */
  2335. unsigned long nr_running(void)
  2336. {
  2337. unsigned long i, sum = 0;
  2338. for_each_online_cpu(i)
  2339. sum += cpu_rq(i)->nr_running;
  2340. return sum;
  2341. }
  2342. unsigned long nr_uninterruptible(void)
  2343. {
  2344. unsigned long i, sum = 0;
  2345. for_each_possible_cpu(i)
  2346. sum += cpu_rq(i)->nr_uninterruptible;
  2347. /*
  2348. * Since we read the counters lockless, it might be slightly
  2349. * inaccurate. Do not allow it to go below zero though:
  2350. */
  2351. if (unlikely((long)sum < 0))
  2352. sum = 0;
  2353. return sum;
  2354. }
  2355. unsigned long long nr_context_switches(void)
  2356. {
  2357. int i;
  2358. unsigned long long sum = 0;
  2359. for_each_possible_cpu(i)
  2360. sum += cpu_rq(i)->nr_switches;
  2361. return sum;
  2362. }
  2363. unsigned long nr_iowait(void)
  2364. {
  2365. unsigned long i, sum = 0;
  2366. for_each_possible_cpu(i)
  2367. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2368. return sum;
  2369. }
  2370. unsigned long nr_active(void)
  2371. {
  2372. unsigned long i, running = 0, uninterruptible = 0;
  2373. for_each_online_cpu(i) {
  2374. running += cpu_rq(i)->nr_running;
  2375. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2376. }
  2377. if (unlikely((long)uninterruptible < 0))
  2378. uninterruptible = 0;
  2379. return running + uninterruptible;
  2380. }
  2381. /*
  2382. * Externally visible per-cpu scheduler statistics:
  2383. * cpu_nr_switches(cpu) - number of context switches on that cpu
  2384. * cpu_nr_migrations(cpu) - number of migrations into that cpu
  2385. */
  2386. u64 cpu_nr_switches(int cpu)
  2387. {
  2388. return cpu_rq(cpu)->nr_switches;
  2389. }
  2390. u64 cpu_nr_migrations(int cpu)
  2391. {
  2392. return cpu_rq(cpu)->nr_migrations_in;
  2393. }
  2394. /*
  2395. * Update rq->cpu_load[] statistics. This function is usually called every
  2396. * scheduler tick (TICK_NSEC).
  2397. */
  2398. static void update_cpu_load(struct rq *this_rq)
  2399. {
  2400. unsigned long this_load = this_rq->load.weight;
  2401. int i, scale;
  2402. this_rq->nr_load_updates++;
  2403. /* Update our load: */
  2404. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2405. unsigned long old_load, new_load;
  2406. /* scale is effectively 1 << i now, and >> i divides by scale */
  2407. old_load = this_rq->cpu_load[i];
  2408. new_load = this_load;
  2409. /*
  2410. * Round up the averaging division if load is increasing. This
  2411. * prevents us from getting stuck on 9 if the load is 10, for
  2412. * example.
  2413. */
  2414. if (new_load > old_load)
  2415. new_load += scale-1;
  2416. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2417. }
  2418. }
  2419. #ifdef CONFIG_SMP
  2420. /*
  2421. * double_rq_lock - safely lock two runqueues
  2422. *
  2423. * Note this does not disable interrupts like task_rq_lock,
  2424. * you need to do so manually before calling.
  2425. */
  2426. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2427. __acquires(rq1->lock)
  2428. __acquires(rq2->lock)
  2429. {
  2430. BUG_ON(!irqs_disabled());
  2431. if (rq1 == rq2) {
  2432. spin_lock(&rq1->lock);
  2433. __acquire(rq2->lock); /* Fake it out ;) */
  2434. } else {
  2435. if (rq1 < rq2) {
  2436. spin_lock(&rq1->lock);
  2437. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2438. } else {
  2439. spin_lock(&rq2->lock);
  2440. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2441. }
  2442. }
  2443. update_rq_clock(rq1);
  2444. update_rq_clock(rq2);
  2445. }
  2446. /*
  2447. * double_rq_unlock - safely unlock two runqueues
  2448. *
  2449. * Note this does not restore interrupts like task_rq_unlock,
  2450. * you need to do so manually after calling.
  2451. */
  2452. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2453. __releases(rq1->lock)
  2454. __releases(rq2->lock)
  2455. {
  2456. spin_unlock(&rq1->lock);
  2457. if (rq1 != rq2)
  2458. spin_unlock(&rq2->lock);
  2459. else
  2460. __release(rq2->lock);
  2461. }
  2462. /*
  2463. * If dest_cpu is allowed for this process, migrate the task to it.
  2464. * This is accomplished by forcing the cpu_allowed mask to only
  2465. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2466. * the cpu_allowed mask is restored.
  2467. */
  2468. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2469. {
  2470. struct migration_req req;
  2471. unsigned long flags;
  2472. struct rq *rq;
  2473. rq = task_rq_lock(p, &flags);
  2474. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2475. || unlikely(!cpu_active(dest_cpu)))
  2476. goto out;
  2477. /* force the process onto the specified CPU */
  2478. if (migrate_task(p, dest_cpu, &req)) {
  2479. /* Need to wait for migration thread (might exit: take ref). */
  2480. struct task_struct *mt = rq->migration_thread;
  2481. get_task_struct(mt);
  2482. task_rq_unlock(rq, &flags);
  2483. wake_up_process(mt);
  2484. put_task_struct(mt);
  2485. wait_for_completion(&req.done);
  2486. return;
  2487. }
  2488. out:
  2489. task_rq_unlock(rq, &flags);
  2490. }
  2491. /*
  2492. * sched_exec - execve() is a valuable balancing opportunity, because at
  2493. * this point the task has the smallest effective memory and cache footprint.
  2494. */
  2495. void sched_exec(void)
  2496. {
  2497. int new_cpu, this_cpu = get_cpu();
  2498. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2499. put_cpu();
  2500. if (new_cpu != this_cpu)
  2501. sched_migrate_task(current, new_cpu);
  2502. }
  2503. /*
  2504. * pull_task - move a task from a remote runqueue to the local runqueue.
  2505. * Both runqueues must be locked.
  2506. */
  2507. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2508. struct rq *this_rq, int this_cpu)
  2509. {
  2510. deactivate_task(src_rq, p, 0);
  2511. set_task_cpu(p, this_cpu);
  2512. activate_task(this_rq, p, 0);
  2513. /*
  2514. * Note that idle threads have a prio of MAX_PRIO, for this test
  2515. * to be always true for them.
  2516. */
  2517. check_preempt_curr(this_rq, p, 0);
  2518. }
  2519. /*
  2520. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2521. */
  2522. static
  2523. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2524. struct sched_domain *sd, enum cpu_idle_type idle,
  2525. int *all_pinned)
  2526. {
  2527. /*
  2528. * We do not migrate tasks that are:
  2529. * 1) running (obviously), or
  2530. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2531. * 3) are cache-hot on their current CPU.
  2532. */
  2533. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2534. schedstat_inc(p, se.nr_failed_migrations_affine);
  2535. return 0;
  2536. }
  2537. *all_pinned = 0;
  2538. if (task_running(rq, p)) {
  2539. schedstat_inc(p, se.nr_failed_migrations_running);
  2540. return 0;
  2541. }
  2542. /*
  2543. * Aggressive migration if:
  2544. * 1) task is cache cold, or
  2545. * 2) too many balance attempts have failed.
  2546. */
  2547. if (!task_hot(p, rq->clock, sd) ||
  2548. sd->nr_balance_failed > sd->cache_nice_tries) {
  2549. #ifdef CONFIG_SCHEDSTATS
  2550. if (task_hot(p, rq->clock, sd)) {
  2551. schedstat_inc(sd, lb_hot_gained[idle]);
  2552. schedstat_inc(p, se.nr_forced_migrations);
  2553. }
  2554. #endif
  2555. return 1;
  2556. }
  2557. if (task_hot(p, rq->clock, sd)) {
  2558. schedstat_inc(p, se.nr_failed_migrations_hot);
  2559. return 0;
  2560. }
  2561. return 1;
  2562. }
  2563. static unsigned long
  2564. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2565. unsigned long max_load_move, struct sched_domain *sd,
  2566. enum cpu_idle_type idle, int *all_pinned,
  2567. int *this_best_prio, struct rq_iterator *iterator)
  2568. {
  2569. int loops = 0, pulled = 0, pinned = 0;
  2570. struct task_struct *p;
  2571. long rem_load_move = max_load_move;
  2572. if (max_load_move == 0)
  2573. goto out;
  2574. pinned = 1;
  2575. /*
  2576. * Start the load-balancing iterator:
  2577. */
  2578. p = iterator->start(iterator->arg);
  2579. next:
  2580. if (!p || loops++ > sysctl_sched_nr_migrate)
  2581. goto out;
  2582. if ((p->se.load.weight >> 1) > rem_load_move ||
  2583. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2584. p = iterator->next(iterator->arg);
  2585. goto next;
  2586. }
  2587. pull_task(busiest, p, this_rq, this_cpu);
  2588. pulled++;
  2589. rem_load_move -= p->se.load.weight;
  2590. /*
  2591. * We only want to steal up to the prescribed amount of weighted load.
  2592. */
  2593. if (rem_load_move > 0) {
  2594. if (p->prio < *this_best_prio)
  2595. *this_best_prio = p->prio;
  2596. p = iterator->next(iterator->arg);
  2597. goto next;
  2598. }
  2599. out:
  2600. /*
  2601. * Right now, this is one of only two places pull_task() is called,
  2602. * so we can safely collect pull_task() stats here rather than
  2603. * inside pull_task().
  2604. */
  2605. schedstat_add(sd, lb_gained[idle], pulled);
  2606. if (all_pinned)
  2607. *all_pinned = pinned;
  2608. return max_load_move - rem_load_move;
  2609. }
  2610. /*
  2611. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2612. * this_rq, as part of a balancing operation within domain "sd".
  2613. * Returns 1 if successful and 0 otherwise.
  2614. *
  2615. * Called with both runqueues locked.
  2616. */
  2617. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2618. unsigned long max_load_move,
  2619. struct sched_domain *sd, enum cpu_idle_type idle,
  2620. int *all_pinned)
  2621. {
  2622. const struct sched_class *class = sched_class_highest;
  2623. unsigned long total_load_moved = 0;
  2624. int this_best_prio = this_rq->curr->prio;
  2625. do {
  2626. total_load_moved +=
  2627. class->load_balance(this_rq, this_cpu, busiest,
  2628. max_load_move - total_load_moved,
  2629. sd, idle, all_pinned, &this_best_prio);
  2630. class = class->next;
  2631. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2632. break;
  2633. } while (class && max_load_move > total_load_moved);
  2634. return total_load_moved > 0;
  2635. }
  2636. static int
  2637. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2638. struct sched_domain *sd, enum cpu_idle_type idle,
  2639. struct rq_iterator *iterator)
  2640. {
  2641. struct task_struct *p = iterator->start(iterator->arg);
  2642. int pinned = 0;
  2643. while (p) {
  2644. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2645. pull_task(busiest, p, this_rq, this_cpu);
  2646. /*
  2647. * Right now, this is only the second place pull_task()
  2648. * is called, so we can safely collect pull_task()
  2649. * stats here rather than inside pull_task().
  2650. */
  2651. schedstat_inc(sd, lb_gained[idle]);
  2652. return 1;
  2653. }
  2654. p = iterator->next(iterator->arg);
  2655. }
  2656. return 0;
  2657. }
  2658. /*
  2659. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2660. * part of active balancing operations within "domain".
  2661. * Returns 1 if successful and 0 otherwise.
  2662. *
  2663. * Called with both runqueues locked.
  2664. */
  2665. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2666. struct sched_domain *sd, enum cpu_idle_type idle)
  2667. {
  2668. const struct sched_class *class;
  2669. for (class = sched_class_highest; class; class = class->next)
  2670. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2671. return 1;
  2672. return 0;
  2673. }
  2674. /*
  2675. * find_busiest_group finds and returns the busiest CPU group within the
  2676. * domain. It calculates and returns the amount of weighted load which
  2677. * should be moved to restore balance via the imbalance parameter.
  2678. */
  2679. static struct sched_group *
  2680. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2681. unsigned long *imbalance, enum cpu_idle_type idle,
  2682. int *sd_idle, const struct cpumask *cpus, int *balance)
  2683. {
  2684. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2685. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2686. unsigned long max_pull;
  2687. unsigned long busiest_load_per_task, busiest_nr_running;
  2688. unsigned long this_load_per_task, this_nr_running;
  2689. int load_idx, group_imb = 0;
  2690. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2691. int power_savings_balance = 1;
  2692. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2693. unsigned long min_nr_running = ULONG_MAX;
  2694. struct sched_group *group_min = NULL, *group_leader = NULL;
  2695. #endif
  2696. max_load = this_load = total_load = total_pwr = 0;
  2697. busiest_load_per_task = busiest_nr_running = 0;
  2698. this_load_per_task = this_nr_running = 0;
  2699. if (idle == CPU_NOT_IDLE)
  2700. load_idx = sd->busy_idx;
  2701. else if (idle == CPU_NEWLY_IDLE)
  2702. load_idx = sd->newidle_idx;
  2703. else
  2704. load_idx = sd->idle_idx;
  2705. do {
  2706. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2707. int local_group;
  2708. int i;
  2709. int __group_imb = 0;
  2710. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2711. unsigned long sum_nr_running, sum_weighted_load;
  2712. unsigned long sum_avg_load_per_task;
  2713. unsigned long avg_load_per_task;
  2714. local_group = cpumask_test_cpu(this_cpu,
  2715. sched_group_cpus(group));
  2716. if (local_group)
  2717. balance_cpu = cpumask_first(sched_group_cpus(group));
  2718. /* Tally up the load of all CPUs in the group */
  2719. sum_weighted_load = sum_nr_running = avg_load = 0;
  2720. sum_avg_load_per_task = avg_load_per_task = 0;
  2721. max_cpu_load = 0;
  2722. min_cpu_load = ~0UL;
  2723. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2724. struct rq *rq = cpu_rq(i);
  2725. if (*sd_idle && rq->nr_running)
  2726. *sd_idle = 0;
  2727. /* Bias balancing toward cpus of our domain */
  2728. if (local_group) {
  2729. if (idle_cpu(i) && !first_idle_cpu) {
  2730. first_idle_cpu = 1;
  2731. balance_cpu = i;
  2732. }
  2733. load = target_load(i, load_idx);
  2734. } else {
  2735. load = source_load(i, load_idx);
  2736. if (load > max_cpu_load)
  2737. max_cpu_load = load;
  2738. if (min_cpu_load > load)
  2739. min_cpu_load = load;
  2740. }
  2741. avg_load += load;
  2742. sum_nr_running += rq->nr_running;
  2743. sum_weighted_load += weighted_cpuload(i);
  2744. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2745. }
  2746. /*
  2747. * First idle cpu or the first cpu(busiest) in this sched group
  2748. * is eligible for doing load balancing at this and above
  2749. * domains. In the newly idle case, we will allow all the cpu's
  2750. * to do the newly idle load balance.
  2751. */
  2752. if (idle != CPU_NEWLY_IDLE && local_group &&
  2753. balance_cpu != this_cpu && balance) {
  2754. *balance = 0;
  2755. goto ret;
  2756. }
  2757. total_load += avg_load;
  2758. total_pwr += group->__cpu_power;
  2759. /* Adjust by relative CPU power of the group */
  2760. avg_load = sg_div_cpu_power(group,
  2761. avg_load * SCHED_LOAD_SCALE);
  2762. /*
  2763. * Consider the group unbalanced when the imbalance is larger
  2764. * than the average weight of two tasks.
  2765. *
  2766. * APZ: with cgroup the avg task weight can vary wildly and
  2767. * might not be a suitable number - should we keep a
  2768. * normalized nr_running number somewhere that negates
  2769. * the hierarchy?
  2770. */
  2771. avg_load_per_task = sg_div_cpu_power(group,
  2772. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2773. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2774. __group_imb = 1;
  2775. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2776. if (local_group) {
  2777. this_load = avg_load;
  2778. this = group;
  2779. this_nr_running = sum_nr_running;
  2780. this_load_per_task = sum_weighted_load;
  2781. } else if (avg_load > max_load &&
  2782. (sum_nr_running > group_capacity || __group_imb)) {
  2783. max_load = avg_load;
  2784. busiest = group;
  2785. busiest_nr_running = sum_nr_running;
  2786. busiest_load_per_task = sum_weighted_load;
  2787. group_imb = __group_imb;
  2788. }
  2789. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2790. /*
  2791. * Busy processors will not participate in power savings
  2792. * balance.
  2793. */
  2794. if (idle == CPU_NOT_IDLE ||
  2795. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2796. goto group_next;
  2797. /*
  2798. * If the local group is idle or completely loaded
  2799. * no need to do power savings balance at this domain
  2800. */
  2801. if (local_group && (this_nr_running >= group_capacity ||
  2802. !this_nr_running))
  2803. power_savings_balance = 0;
  2804. /*
  2805. * If a group is already running at full capacity or idle,
  2806. * don't include that group in power savings calculations
  2807. */
  2808. if (!power_savings_balance || sum_nr_running >= group_capacity
  2809. || !sum_nr_running)
  2810. goto group_next;
  2811. /*
  2812. * Calculate the group which has the least non-idle load.
  2813. * This is the group from where we need to pick up the load
  2814. * for saving power
  2815. */
  2816. if ((sum_nr_running < min_nr_running) ||
  2817. (sum_nr_running == min_nr_running &&
  2818. cpumask_first(sched_group_cpus(group)) >
  2819. cpumask_first(sched_group_cpus(group_min)))) {
  2820. group_min = group;
  2821. min_nr_running = sum_nr_running;
  2822. min_load_per_task = sum_weighted_load /
  2823. sum_nr_running;
  2824. }
  2825. /*
  2826. * Calculate the group which is almost near its
  2827. * capacity but still has some space to pick up some load
  2828. * from other group and save more power
  2829. */
  2830. if (sum_nr_running <= group_capacity - 1) {
  2831. if (sum_nr_running > leader_nr_running ||
  2832. (sum_nr_running == leader_nr_running &&
  2833. cpumask_first(sched_group_cpus(group)) <
  2834. cpumask_first(sched_group_cpus(group_leader)))) {
  2835. group_leader = group;
  2836. leader_nr_running = sum_nr_running;
  2837. }
  2838. }
  2839. group_next:
  2840. #endif
  2841. group = group->next;
  2842. } while (group != sd->groups);
  2843. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2844. goto out_balanced;
  2845. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2846. if (this_load >= avg_load ||
  2847. 100*max_load <= sd->imbalance_pct*this_load)
  2848. goto out_balanced;
  2849. busiest_load_per_task /= busiest_nr_running;
  2850. if (group_imb)
  2851. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2852. /*
  2853. * We're trying to get all the cpus to the average_load, so we don't
  2854. * want to push ourselves above the average load, nor do we wish to
  2855. * reduce the max loaded cpu below the average load, as either of these
  2856. * actions would just result in more rebalancing later, and ping-pong
  2857. * tasks around. Thus we look for the minimum possible imbalance.
  2858. * Negative imbalances (*we* are more loaded than anyone else) will
  2859. * be counted as no imbalance for these purposes -- we can't fix that
  2860. * by pulling tasks to us. Be careful of negative numbers as they'll
  2861. * appear as very large values with unsigned longs.
  2862. */
  2863. if (max_load <= busiest_load_per_task)
  2864. goto out_balanced;
  2865. /*
  2866. * In the presence of smp nice balancing, certain scenarios can have
  2867. * max load less than avg load(as we skip the groups at or below
  2868. * its cpu_power, while calculating max_load..)
  2869. */
  2870. if (max_load < avg_load) {
  2871. *imbalance = 0;
  2872. goto small_imbalance;
  2873. }
  2874. /* Don't want to pull so many tasks that a group would go idle */
  2875. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2876. /* How much load to actually move to equalise the imbalance */
  2877. *imbalance = min(max_pull * busiest->__cpu_power,
  2878. (avg_load - this_load) * this->__cpu_power)
  2879. / SCHED_LOAD_SCALE;
  2880. /*
  2881. * if *imbalance is less than the average load per runnable task
  2882. * there is no gaurantee that any tasks will be moved so we'll have
  2883. * a think about bumping its value to force at least one task to be
  2884. * moved
  2885. */
  2886. if (*imbalance < busiest_load_per_task) {
  2887. unsigned long tmp, pwr_now, pwr_move;
  2888. unsigned int imbn;
  2889. small_imbalance:
  2890. pwr_move = pwr_now = 0;
  2891. imbn = 2;
  2892. if (this_nr_running) {
  2893. this_load_per_task /= this_nr_running;
  2894. if (busiest_load_per_task > this_load_per_task)
  2895. imbn = 1;
  2896. } else
  2897. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2898. if (max_load - this_load + busiest_load_per_task >=
  2899. busiest_load_per_task * imbn) {
  2900. *imbalance = busiest_load_per_task;
  2901. return busiest;
  2902. }
  2903. /*
  2904. * OK, we don't have enough imbalance to justify moving tasks,
  2905. * however we may be able to increase total CPU power used by
  2906. * moving them.
  2907. */
  2908. pwr_now += busiest->__cpu_power *
  2909. min(busiest_load_per_task, max_load);
  2910. pwr_now += this->__cpu_power *
  2911. min(this_load_per_task, this_load);
  2912. pwr_now /= SCHED_LOAD_SCALE;
  2913. /* Amount of load we'd subtract */
  2914. tmp = sg_div_cpu_power(busiest,
  2915. busiest_load_per_task * SCHED_LOAD_SCALE);
  2916. if (max_load > tmp)
  2917. pwr_move += busiest->__cpu_power *
  2918. min(busiest_load_per_task, max_load - tmp);
  2919. /* Amount of load we'd add */
  2920. if (max_load * busiest->__cpu_power <
  2921. busiest_load_per_task * SCHED_LOAD_SCALE)
  2922. tmp = sg_div_cpu_power(this,
  2923. max_load * busiest->__cpu_power);
  2924. else
  2925. tmp = sg_div_cpu_power(this,
  2926. busiest_load_per_task * SCHED_LOAD_SCALE);
  2927. pwr_move += this->__cpu_power *
  2928. min(this_load_per_task, this_load + tmp);
  2929. pwr_move /= SCHED_LOAD_SCALE;
  2930. /* Move if we gain throughput */
  2931. if (pwr_move > pwr_now)
  2932. *imbalance = busiest_load_per_task;
  2933. }
  2934. return busiest;
  2935. out_balanced:
  2936. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2937. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2938. goto ret;
  2939. if (this == group_leader && group_leader != group_min) {
  2940. *imbalance = min_load_per_task;
  2941. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  2942. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  2943. cpumask_first(sched_group_cpus(group_leader));
  2944. }
  2945. return group_min;
  2946. }
  2947. #endif
  2948. ret:
  2949. *imbalance = 0;
  2950. return NULL;
  2951. }
  2952. /*
  2953. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2954. */
  2955. static struct rq *
  2956. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2957. unsigned long imbalance, const struct cpumask *cpus)
  2958. {
  2959. struct rq *busiest = NULL, *rq;
  2960. unsigned long max_load = 0;
  2961. int i;
  2962. for_each_cpu(i, sched_group_cpus(group)) {
  2963. unsigned long wl;
  2964. if (!cpumask_test_cpu(i, cpus))
  2965. continue;
  2966. rq = cpu_rq(i);
  2967. wl = weighted_cpuload(i);
  2968. if (rq->nr_running == 1 && wl > imbalance)
  2969. continue;
  2970. if (wl > max_load) {
  2971. max_load = wl;
  2972. busiest = rq;
  2973. }
  2974. }
  2975. return busiest;
  2976. }
  2977. /*
  2978. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2979. * so long as it is large enough.
  2980. */
  2981. #define MAX_PINNED_INTERVAL 512
  2982. /*
  2983. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2984. * tasks if there is an imbalance.
  2985. */
  2986. static int load_balance(int this_cpu, struct rq *this_rq,
  2987. struct sched_domain *sd, enum cpu_idle_type idle,
  2988. int *balance, struct cpumask *cpus)
  2989. {
  2990. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2991. struct sched_group *group;
  2992. unsigned long imbalance;
  2993. struct rq *busiest;
  2994. unsigned long flags;
  2995. cpumask_setall(cpus);
  2996. /*
  2997. * When power savings policy is enabled for the parent domain, idle
  2998. * sibling can pick up load irrespective of busy siblings. In this case,
  2999. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3000. * portraying it as CPU_NOT_IDLE.
  3001. */
  3002. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3003. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3004. sd_idle = 1;
  3005. schedstat_inc(sd, lb_count[idle]);
  3006. redo:
  3007. update_shares(sd);
  3008. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3009. cpus, balance);
  3010. if (*balance == 0)
  3011. goto out_balanced;
  3012. if (!group) {
  3013. schedstat_inc(sd, lb_nobusyg[idle]);
  3014. goto out_balanced;
  3015. }
  3016. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3017. if (!busiest) {
  3018. schedstat_inc(sd, lb_nobusyq[idle]);
  3019. goto out_balanced;
  3020. }
  3021. BUG_ON(busiest == this_rq);
  3022. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3023. ld_moved = 0;
  3024. if (busiest->nr_running > 1) {
  3025. /*
  3026. * Attempt to move tasks. If find_busiest_group has found
  3027. * an imbalance but busiest->nr_running <= 1, the group is
  3028. * still unbalanced. ld_moved simply stays zero, so it is
  3029. * correctly treated as an imbalance.
  3030. */
  3031. local_irq_save(flags);
  3032. double_rq_lock(this_rq, busiest);
  3033. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3034. imbalance, sd, idle, &all_pinned);
  3035. double_rq_unlock(this_rq, busiest);
  3036. local_irq_restore(flags);
  3037. /*
  3038. * some other cpu did the load balance for us.
  3039. */
  3040. if (ld_moved && this_cpu != smp_processor_id())
  3041. resched_cpu(this_cpu);
  3042. /* All tasks on this runqueue were pinned by CPU affinity */
  3043. if (unlikely(all_pinned)) {
  3044. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3045. if (!cpumask_empty(cpus))
  3046. goto redo;
  3047. goto out_balanced;
  3048. }
  3049. }
  3050. if (!ld_moved) {
  3051. schedstat_inc(sd, lb_failed[idle]);
  3052. sd->nr_balance_failed++;
  3053. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3054. spin_lock_irqsave(&busiest->lock, flags);
  3055. /* don't kick the migration_thread, if the curr
  3056. * task on busiest cpu can't be moved to this_cpu
  3057. */
  3058. if (!cpumask_test_cpu(this_cpu,
  3059. &busiest->curr->cpus_allowed)) {
  3060. spin_unlock_irqrestore(&busiest->lock, flags);
  3061. all_pinned = 1;
  3062. goto out_one_pinned;
  3063. }
  3064. if (!busiest->active_balance) {
  3065. busiest->active_balance = 1;
  3066. busiest->push_cpu = this_cpu;
  3067. active_balance = 1;
  3068. }
  3069. spin_unlock_irqrestore(&busiest->lock, flags);
  3070. if (active_balance)
  3071. wake_up_process(busiest->migration_thread);
  3072. /*
  3073. * We've kicked active balancing, reset the failure
  3074. * counter.
  3075. */
  3076. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3077. }
  3078. } else
  3079. sd->nr_balance_failed = 0;
  3080. if (likely(!active_balance)) {
  3081. /* We were unbalanced, so reset the balancing interval */
  3082. sd->balance_interval = sd->min_interval;
  3083. } else {
  3084. /*
  3085. * If we've begun active balancing, start to back off. This
  3086. * case may not be covered by the all_pinned logic if there
  3087. * is only 1 task on the busy runqueue (because we don't call
  3088. * move_tasks).
  3089. */
  3090. if (sd->balance_interval < sd->max_interval)
  3091. sd->balance_interval *= 2;
  3092. }
  3093. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3094. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3095. ld_moved = -1;
  3096. goto out;
  3097. out_balanced:
  3098. schedstat_inc(sd, lb_balanced[idle]);
  3099. sd->nr_balance_failed = 0;
  3100. out_one_pinned:
  3101. /* tune up the balancing interval */
  3102. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3103. (sd->balance_interval < sd->max_interval))
  3104. sd->balance_interval *= 2;
  3105. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3106. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3107. ld_moved = -1;
  3108. else
  3109. ld_moved = 0;
  3110. out:
  3111. if (ld_moved)
  3112. update_shares(sd);
  3113. return ld_moved;
  3114. }
  3115. /*
  3116. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3117. * tasks if there is an imbalance.
  3118. *
  3119. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3120. * this_rq is locked.
  3121. */
  3122. static int
  3123. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3124. struct cpumask *cpus)
  3125. {
  3126. struct sched_group *group;
  3127. struct rq *busiest = NULL;
  3128. unsigned long imbalance;
  3129. int ld_moved = 0;
  3130. int sd_idle = 0;
  3131. int all_pinned = 0;
  3132. cpumask_setall(cpus);
  3133. /*
  3134. * When power savings policy is enabled for the parent domain, idle
  3135. * sibling can pick up load irrespective of busy siblings. In this case,
  3136. * let the state of idle sibling percolate up as IDLE, instead of
  3137. * portraying it as CPU_NOT_IDLE.
  3138. */
  3139. if (sd->flags & SD_SHARE_CPUPOWER &&
  3140. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3141. sd_idle = 1;
  3142. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3143. redo:
  3144. update_shares_locked(this_rq, sd);
  3145. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3146. &sd_idle, cpus, NULL);
  3147. if (!group) {
  3148. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3149. goto out_balanced;
  3150. }
  3151. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3152. if (!busiest) {
  3153. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3154. goto out_balanced;
  3155. }
  3156. BUG_ON(busiest == this_rq);
  3157. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3158. ld_moved = 0;
  3159. if (busiest->nr_running > 1) {
  3160. /* Attempt to move tasks */
  3161. double_lock_balance(this_rq, busiest);
  3162. /* this_rq->clock is already updated */
  3163. update_rq_clock(busiest);
  3164. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3165. imbalance, sd, CPU_NEWLY_IDLE,
  3166. &all_pinned);
  3167. double_unlock_balance(this_rq, busiest);
  3168. if (unlikely(all_pinned)) {
  3169. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3170. if (!cpumask_empty(cpus))
  3171. goto redo;
  3172. }
  3173. }
  3174. if (!ld_moved) {
  3175. int active_balance = 0;
  3176. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3177. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3178. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3179. return -1;
  3180. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3181. return -1;
  3182. if (sd->nr_balance_failed++ < 2)
  3183. return -1;
  3184. /*
  3185. * The only task running in a non-idle cpu can be moved to this
  3186. * cpu in an attempt to completely freeup the other CPU
  3187. * package. The same method used to move task in load_balance()
  3188. * have been extended for load_balance_newidle() to speedup
  3189. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3190. *
  3191. * The package power saving logic comes from
  3192. * find_busiest_group(). If there are no imbalance, then
  3193. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3194. * f_b_g() will select a group from which a running task may be
  3195. * pulled to this cpu in order to make the other package idle.
  3196. * If there is no opportunity to make a package idle and if
  3197. * there are no imbalance, then f_b_g() will return NULL and no
  3198. * action will be taken in load_balance_newidle().
  3199. *
  3200. * Under normal task pull operation due to imbalance, there
  3201. * will be more than one task in the source run queue and
  3202. * move_tasks() will succeed. ld_moved will be true and this
  3203. * active balance code will not be triggered.
  3204. */
  3205. /* Lock busiest in correct order while this_rq is held */
  3206. double_lock_balance(this_rq, busiest);
  3207. /*
  3208. * don't kick the migration_thread, if the curr
  3209. * task on busiest cpu can't be moved to this_cpu
  3210. */
  3211. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3212. double_unlock_balance(this_rq, busiest);
  3213. all_pinned = 1;
  3214. return ld_moved;
  3215. }
  3216. if (!busiest->active_balance) {
  3217. busiest->active_balance = 1;
  3218. busiest->push_cpu = this_cpu;
  3219. active_balance = 1;
  3220. }
  3221. double_unlock_balance(this_rq, busiest);
  3222. /*
  3223. * Should not call ttwu while holding a rq->lock
  3224. */
  3225. spin_unlock(&this_rq->lock);
  3226. if (active_balance)
  3227. wake_up_process(busiest->migration_thread);
  3228. spin_lock(&this_rq->lock);
  3229. } else
  3230. sd->nr_balance_failed = 0;
  3231. update_shares_locked(this_rq, sd);
  3232. return ld_moved;
  3233. out_balanced:
  3234. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3235. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3236. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3237. return -1;
  3238. sd->nr_balance_failed = 0;
  3239. return 0;
  3240. }
  3241. /*
  3242. * idle_balance is called by schedule() if this_cpu is about to become
  3243. * idle. Attempts to pull tasks from other CPUs.
  3244. */
  3245. static void idle_balance(int this_cpu, struct rq *this_rq)
  3246. {
  3247. struct sched_domain *sd;
  3248. int pulled_task = 0;
  3249. unsigned long next_balance = jiffies + HZ;
  3250. cpumask_var_t tmpmask;
  3251. if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
  3252. return;
  3253. for_each_domain(this_cpu, sd) {
  3254. unsigned long interval;
  3255. if (!(sd->flags & SD_LOAD_BALANCE))
  3256. continue;
  3257. if (sd->flags & SD_BALANCE_NEWIDLE)
  3258. /* If we've pulled tasks over stop searching: */
  3259. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3260. sd, tmpmask);
  3261. interval = msecs_to_jiffies(sd->balance_interval);
  3262. if (time_after(next_balance, sd->last_balance + interval))
  3263. next_balance = sd->last_balance + interval;
  3264. if (pulled_task)
  3265. break;
  3266. }
  3267. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3268. /*
  3269. * We are going idle. next_balance may be set based on
  3270. * a busy processor. So reset next_balance.
  3271. */
  3272. this_rq->next_balance = next_balance;
  3273. }
  3274. free_cpumask_var(tmpmask);
  3275. }
  3276. /*
  3277. * active_load_balance is run by migration threads. It pushes running tasks
  3278. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3279. * running on each physical CPU where possible, and avoids physical /
  3280. * logical imbalances.
  3281. *
  3282. * Called with busiest_rq locked.
  3283. */
  3284. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3285. {
  3286. int target_cpu = busiest_rq->push_cpu;
  3287. struct sched_domain *sd;
  3288. struct rq *target_rq;
  3289. /* Is there any task to move? */
  3290. if (busiest_rq->nr_running <= 1)
  3291. return;
  3292. target_rq = cpu_rq(target_cpu);
  3293. /*
  3294. * This condition is "impossible", if it occurs
  3295. * we need to fix it. Originally reported by
  3296. * Bjorn Helgaas on a 128-cpu setup.
  3297. */
  3298. BUG_ON(busiest_rq == target_rq);
  3299. /* move a task from busiest_rq to target_rq */
  3300. double_lock_balance(busiest_rq, target_rq);
  3301. update_rq_clock(busiest_rq);
  3302. update_rq_clock(target_rq);
  3303. /* Search for an sd spanning us and the target CPU. */
  3304. for_each_domain(target_cpu, sd) {
  3305. if ((sd->flags & SD_LOAD_BALANCE) &&
  3306. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3307. break;
  3308. }
  3309. if (likely(sd)) {
  3310. schedstat_inc(sd, alb_count);
  3311. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3312. sd, CPU_IDLE))
  3313. schedstat_inc(sd, alb_pushed);
  3314. else
  3315. schedstat_inc(sd, alb_failed);
  3316. }
  3317. double_unlock_balance(busiest_rq, target_rq);
  3318. }
  3319. #ifdef CONFIG_NO_HZ
  3320. static struct {
  3321. atomic_t load_balancer;
  3322. cpumask_var_t cpu_mask;
  3323. } nohz ____cacheline_aligned = {
  3324. .load_balancer = ATOMIC_INIT(-1),
  3325. };
  3326. /*
  3327. * This routine will try to nominate the ilb (idle load balancing)
  3328. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3329. * load balancing on behalf of all those cpus. If all the cpus in the system
  3330. * go into this tickless mode, then there will be no ilb owner (as there is
  3331. * no need for one) and all the cpus will sleep till the next wakeup event
  3332. * arrives...
  3333. *
  3334. * For the ilb owner, tick is not stopped. And this tick will be used
  3335. * for idle load balancing. ilb owner will still be part of
  3336. * nohz.cpu_mask..
  3337. *
  3338. * While stopping the tick, this cpu will become the ilb owner if there
  3339. * is no other owner. And will be the owner till that cpu becomes busy
  3340. * or if all cpus in the system stop their ticks at which point
  3341. * there is no need for ilb owner.
  3342. *
  3343. * When the ilb owner becomes busy, it nominates another owner, during the
  3344. * next busy scheduler_tick()
  3345. */
  3346. int select_nohz_load_balancer(int stop_tick)
  3347. {
  3348. int cpu = smp_processor_id();
  3349. if (stop_tick) {
  3350. cpu_rq(cpu)->in_nohz_recently = 1;
  3351. if (!cpu_active(cpu)) {
  3352. if (atomic_read(&nohz.load_balancer) != cpu)
  3353. return 0;
  3354. /*
  3355. * If we are going offline and still the leader,
  3356. * give up!
  3357. */
  3358. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3359. BUG();
  3360. return 0;
  3361. }
  3362. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3363. /* time for ilb owner also to sleep */
  3364. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3365. if (atomic_read(&nohz.load_balancer) == cpu)
  3366. atomic_set(&nohz.load_balancer, -1);
  3367. return 0;
  3368. }
  3369. if (atomic_read(&nohz.load_balancer) == -1) {
  3370. /* make me the ilb owner */
  3371. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3372. return 1;
  3373. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3374. return 1;
  3375. } else {
  3376. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3377. return 0;
  3378. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3379. if (atomic_read(&nohz.load_balancer) == cpu)
  3380. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3381. BUG();
  3382. }
  3383. return 0;
  3384. }
  3385. #endif
  3386. static DEFINE_SPINLOCK(balancing);
  3387. /*
  3388. * It checks each scheduling domain to see if it is due to be balanced,
  3389. * and initiates a balancing operation if so.
  3390. *
  3391. * Balancing parameters are set up in arch_init_sched_domains.
  3392. */
  3393. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3394. {
  3395. int balance = 1;
  3396. struct rq *rq = cpu_rq(cpu);
  3397. unsigned long interval;
  3398. struct sched_domain *sd;
  3399. /* Earliest time when we have to do rebalance again */
  3400. unsigned long next_balance = jiffies + 60*HZ;
  3401. int update_next_balance = 0;
  3402. int need_serialize;
  3403. cpumask_var_t tmp;
  3404. /* Fails alloc? Rebalancing probably not a priority right now. */
  3405. if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
  3406. return;
  3407. for_each_domain(cpu, sd) {
  3408. if (!(sd->flags & SD_LOAD_BALANCE))
  3409. continue;
  3410. interval = sd->balance_interval;
  3411. if (idle != CPU_IDLE)
  3412. interval *= sd->busy_factor;
  3413. /* scale ms to jiffies */
  3414. interval = msecs_to_jiffies(interval);
  3415. if (unlikely(!interval))
  3416. interval = 1;
  3417. if (interval > HZ*NR_CPUS/10)
  3418. interval = HZ*NR_CPUS/10;
  3419. need_serialize = sd->flags & SD_SERIALIZE;
  3420. if (need_serialize) {
  3421. if (!spin_trylock(&balancing))
  3422. goto out;
  3423. }
  3424. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3425. if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
  3426. /*
  3427. * We've pulled tasks over so either we're no
  3428. * longer idle, or one of our SMT siblings is
  3429. * not idle.
  3430. */
  3431. idle = CPU_NOT_IDLE;
  3432. }
  3433. sd->last_balance = jiffies;
  3434. }
  3435. if (need_serialize)
  3436. spin_unlock(&balancing);
  3437. out:
  3438. if (time_after(next_balance, sd->last_balance + interval)) {
  3439. next_balance = sd->last_balance + interval;
  3440. update_next_balance = 1;
  3441. }
  3442. /*
  3443. * Stop the load balance at this level. There is another
  3444. * CPU in our sched group which is doing load balancing more
  3445. * actively.
  3446. */
  3447. if (!balance)
  3448. break;
  3449. }
  3450. /*
  3451. * next_balance will be updated only when there is a need.
  3452. * When the cpu is attached to null domain for ex, it will not be
  3453. * updated.
  3454. */
  3455. if (likely(update_next_balance))
  3456. rq->next_balance = next_balance;
  3457. free_cpumask_var(tmp);
  3458. }
  3459. /*
  3460. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3461. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3462. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3463. */
  3464. static void run_rebalance_domains(struct softirq_action *h)
  3465. {
  3466. int this_cpu = smp_processor_id();
  3467. struct rq *this_rq = cpu_rq(this_cpu);
  3468. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3469. CPU_IDLE : CPU_NOT_IDLE;
  3470. rebalance_domains(this_cpu, idle);
  3471. #ifdef CONFIG_NO_HZ
  3472. /*
  3473. * If this cpu is the owner for idle load balancing, then do the
  3474. * balancing on behalf of the other idle cpus whose ticks are
  3475. * stopped.
  3476. */
  3477. if (this_rq->idle_at_tick &&
  3478. atomic_read(&nohz.load_balancer) == this_cpu) {
  3479. struct rq *rq;
  3480. int balance_cpu;
  3481. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3482. if (balance_cpu == this_cpu)
  3483. continue;
  3484. /*
  3485. * If this cpu gets work to do, stop the load balancing
  3486. * work being done for other cpus. Next load
  3487. * balancing owner will pick it up.
  3488. */
  3489. if (need_resched())
  3490. break;
  3491. rebalance_domains(balance_cpu, CPU_IDLE);
  3492. rq = cpu_rq(balance_cpu);
  3493. if (time_after(this_rq->next_balance, rq->next_balance))
  3494. this_rq->next_balance = rq->next_balance;
  3495. }
  3496. }
  3497. #endif
  3498. }
  3499. /*
  3500. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3501. *
  3502. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3503. * idle load balancing owner or decide to stop the periodic load balancing,
  3504. * if the whole system is idle.
  3505. */
  3506. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3507. {
  3508. #ifdef CONFIG_NO_HZ
  3509. /*
  3510. * If we were in the nohz mode recently and busy at the current
  3511. * scheduler tick, then check if we need to nominate new idle
  3512. * load balancer.
  3513. */
  3514. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3515. rq->in_nohz_recently = 0;
  3516. if (atomic_read(&nohz.load_balancer) == cpu) {
  3517. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3518. atomic_set(&nohz.load_balancer, -1);
  3519. }
  3520. if (atomic_read(&nohz.load_balancer) == -1) {
  3521. /*
  3522. * simple selection for now: Nominate the
  3523. * first cpu in the nohz list to be the next
  3524. * ilb owner.
  3525. *
  3526. * TBD: Traverse the sched domains and nominate
  3527. * the nearest cpu in the nohz.cpu_mask.
  3528. */
  3529. int ilb = cpumask_first(nohz.cpu_mask);
  3530. if (ilb < nr_cpu_ids)
  3531. resched_cpu(ilb);
  3532. }
  3533. }
  3534. /*
  3535. * If this cpu is idle and doing idle load balancing for all the
  3536. * cpus with ticks stopped, is it time for that to stop?
  3537. */
  3538. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3539. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3540. resched_cpu(cpu);
  3541. return;
  3542. }
  3543. /*
  3544. * If this cpu is idle and the idle load balancing is done by
  3545. * someone else, then no need raise the SCHED_SOFTIRQ
  3546. */
  3547. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3548. cpumask_test_cpu(cpu, nohz.cpu_mask))
  3549. return;
  3550. #endif
  3551. if (time_after_eq(jiffies, rq->next_balance))
  3552. raise_softirq(SCHED_SOFTIRQ);
  3553. }
  3554. #else /* CONFIG_SMP */
  3555. /*
  3556. * on UP we do not need to balance between CPUs:
  3557. */
  3558. static inline void idle_balance(int cpu, struct rq *rq)
  3559. {
  3560. }
  3561. #endif
  3562. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3563. EXPORT_PER_CPU_SYMBOL(kstat);
  3564. /*
  3565. * Return any ns on the sched_clock that have not yet been banked in
  3566. * @p in case that task is currently running.
  3567. */
  3568. unsigned long long __task_delta_exec(struct task_struct *p, int update)
  3569. {
  3570. s64 delta_exec;
  3571. struct rq *rq;
  3572. rq = task_rq(p);
  3573. WARN_ON_ONCE(!runqueue_is_locked());
  3574. WARN_ON_ONCE(!task_current(rq, p));
  3575. if (update)
  3576. update_rq_clock(rq);
  3577. delta_exec = rq->clock - p->se.exec_start;
  3578. WARN_ON_ONCE(delta_exec < 0);
  3579. return delta_exec;
  3580. }
  3581. /*
  3582. * Return any ns on the sched_clock that have not yet been banked in
  3583. * @p in case that task is currently running.
  3584. */
  3585. unsigned long long task_delta_exec(struct task_struct *p)
  3586. {
  3587. unsigned long flags;
  3588. struct rq *rq;
  3589. u64 ns = 0;
  3590. rq = task_rq_lock(p, &flags);
  3591. if (task_current(rq, p)) {
  3592. u64 delta_exec;
  3593. update_rq_clock(rq);
  3594. delta_exec = rq->clock - p->se.exec_start;
  3595. if ((s64)delta_exec > 0)
  3596. ns = delta_exec;
  3597. }
  3598. task_rq_unlock(rq, &flags);
  3599. return ns;
  3600. }
  3601. /*
  3602. * Account user cpu time to a process.
  3603. * @p: the process that the cpu time gets accounted to
  3604. * @cputime: the cpu time spent in user space since the last update
  3605. * @cputime_scaled: cputime scaled by cpu frequency
  3606. */
  3607. void account_user_time(struct task_struct *p, cputime_t cputime,
  3608. cputime_t cputime_scaled)
  3609. {
  3610. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3611. cputime64_t tmp;
  3612. /* Add user time to process. */
  3613. p->utime = cputime_add(p->utime, cputime);
  3614. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3615. account_group_user_time(p, cputime);
  3616. /* Add user time to cpustat. */
  3617. tmp = cputime_to_cputime64(cputime);
  3618. if (TASK_NICE(p) > 0)
  3619. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3620. else
  3621. cpustat->user = cputime64_add(cpustat->user, tmp);
  3622. /* Account for user time used */
  3623. acct_update_integrals(p);
  3624. }
  3625. /*
  3626. * Account guest cpu time to a process.
  3627. * @p: the process that the cpu time gets accounted to
  3628. * @cputime: the cpu time spent in virtual machine since the last update
  3629. * @cputime_scaled: cputime scaled by cpu frequency
  3630. */
  3631. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3632. cputime_t cputime_scaled)
  3633. {
  3634. cputime64_t tmp;
  3635. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3636. tmp = cputime_to_cputime64(cputime);
  3637. /* Add guest time to process. */
  3638. p->utime = cputime_add(p->utime, cputime);
  3639. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3640. account_group_user_time(p, cputime);
  3641. p->gtime = cputime_add(p->gtime, cputime);
  3642. /* Add guest time to cpustat. */
  3643. cpustat->user = cputime64_add(cpustat->user, tmp);
  3644. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3645. }
  3646. /*
  3647. * Account system cpu time to a process.
  3648. * @p: the process that the cpu time gets accounted to
  3649. * @hardirq_offset: the offset to subtract from hardirq_count()
  3650. * @cputime: the cpu time spent in kernel space since the last update
  3651. * @cputime_scaled: cputime scaled by cpu frequency
  3652. */
  3653. void account_system_time(struct task_struct *p, int hardirq_offset,
  3654. cputime_t cputime, cputime_t cputime_scaled)
  3655. {
  3656. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3657. cputime64_t tmp;
  3658. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3659. account_guest_time(p, cputime, cputime_scaled);
  3660. return;
  3661. }
  3662. /* Add system time to process. */
  3663. p->stime = cputime_add(p->stime, cputime);
  3664. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3665. account_group_system_time(p, cputime);
  3666. /* Add system time to cpustat. */
  3667. tmp = cputime_to_cputime64(cputime);
  3668. if (hardirq_count() - hardirq_offset)
  3669. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3670. else if (softirq_count())
  3671. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3672. else
  3673. cpustat->system = cputime64_add(cpustat->system, tmp);
  3674. /* Account for system time used */
  3675. acct_update_integrals(p);
  3676. }
  3677. /*
  3678. * Account for involuntary wait time.
  3679. * @steal: the cpu time spent in involuntary wait
  3680. */
  3681. void account_steal_time(cputime_t cputime)
  3682. {
  3683. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3684. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3685. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3686. }
  3687. /*
  3688. * Account for idle time.
  3689. * @cputime: the cpu time spent in idle wait
  3690. */
  3691. void account_idle_time(cputime_t cputime)
  3692. {
  3693. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3694. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3695. struct rq *rq = this_rq();
  3696. if (atomic_read(&rq->nr_iowait) > 0)
  3697. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3698. else
  3699. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3700. }
  3701. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3702. /*
  3703. * Account a single tick of cpu time.
  3704. * @p: the process that the cpu time gets accounted to
  3705. * @user_tick: indicates if the tick is a user or a system tick
  3706. */
  3707. void account_process_tick(struct task_struct *p, int user_tick)
  3708. {
  3709. cputime_t one_jiffy = jiffies_to_cputime(1);
  3710. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  3711. struct rq *rq = this_rq();
  3712. if (user_tick)
  3713. account_user_time(p, one_jiffy, one_jiffy_scaled);
  3714. else if (p != rq->idle)
  3715. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  3716. one_jiffy_scaled);
  3717. else
  3718. account_idle_time(one_jiffy);
  3719. }
  3720. /*
  3721. * Account multiple ticks of steal time.
  3722. * @p: the process from which the cpu time has been stolen
  3723. * @ticks: number of stolen ticks
  3724. */
  3725. void account_steal_ticks(unsigned long ticks)
  3726. {
  3727. account_steal_time(jiffies_to_cputime(ticks));
  3728. }
  3729. /*
  3730. * Account multiple ticks of idle time.
  3731. * @ticks: number of stolen ticks
  3732. */
  3733. void account_idle_ticks(unsigned long ticks)
  3734. {
  3735. account_idle_time(jiffies_to_cputime(ticks));
  3736. }
  3737. #endif
  3738. /*
  3739. * Use precise platform statistics if available:
  3740. */
  3741. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3742. cputime_t task_utime(struct task_struct *p)
  3743. {
  3744. return p->utime;
  3745. }
  3746. cputime_t task_stime(struct task_struct *p)
  3747. {
  3748. return p->stime;
  3749. }
  3750. #else
  3751. cputime_t task_utime(struct task_struct *p)
  3752. {
  3753. clock_t utime = cputime_to_clock_t(p->utime),
  3754. total = utime + cputime_to_clock_t(p->stime);
  3755. u64 temp;
  3756. /*
  3757. * Use CFS's precise accounting:
  3758. */
  3759. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3760. if (total) {
  3761. temp *= utime;
  3762. do_div(temp, total);
  3763. }
  3764. utime = (clock_t)temp;
  3765. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3766. return p->prev_utime;
  3767. }
  3768. cputime_t task_stime(struct task_struct *p)
  3769. {
  3770. clock_t stime;
  3771. /*
  3772. * Use CFS's precise accounting. (we subtract utime from
  3773. * the total, to make sure the total observed by userspace
  3774. * grows monotonically - apps rely on that):
  3775. */
  3776. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3777. cputime_to_clock_t(task_utime(p));
  3778. if (stime >= 0)
  3779. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3780. return p->prev_stime;
  3781. }
  3782. #endif
  3783. inline cputime_t task_gtime(struct task_struct *p)
  3784. {
  3785. return p->gtime;
  3786. }
  3787. /*
  3788. * This function gets called by the timer code, with HZ frequency.
  3789. * We call it with interrupts disabled.
  3790. *
  3791. * It also gets called by the fork code, when changing the parent's
  3792. * timeslices.
  3793. */
  3794. void scheduler_tick(void)
  3795. {
  3796. int cpu = smp_processor_id();
  3797. struct rq *rq = cpu_rq(cpu);
  3798. struct task_struct *curr = rq->curr;
  3799. sched_clock_tick();
  3800. spin_lock(&rq->lock);
  3801. update_rq_clock(rq);
  3802. update_cpu_load(rq);
  3803. curr->sched_class->task_tick(rq, curr, 0);
  3804. perf_counter_task_tick(curr, cpu);
  3805. spin_unlock(&rq->lock);
  3806. #ifdef CONFIG_SMP
  3807. rq->idle_at_tick = idle_cpu(cpu);
  3808. trigger_load_balance(rq, cpu);
  3809. #endif
  3810. }
  3811. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3812. defined(CONFIG_PREEMPT_TRACER))
  3813. static inline unsigned long get_parent_ip(unsigned long addr)
  3814. {
  3815. if (in_lock_functions(addr)) {
  3816. addr = CALLER_ADDR2;
  3817. if (in_lock_functions(addr))
  3818. addr = CALLER_ADDR3;
  3819. }
  3820. return addr;
  3821. }
  3822. void __kprobes add_preempt_count(int val)
  3823. {
  3824. #ifdef CONFIG_DEBUG_PREEMPT
  3825. /*
  3826. * Underflow?
  3827. */
  3828. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3829. return;
  3830. #endif
  3831. preempt_count() += val;
  3832. #ifdef CONFIG_DEBUG_PREEMPT
  3833. /*
  3834. * Spinlock count overflowing soon?
  3835. */
  3836. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3837. PREEMPT_MASK - 10);
  3838. #endif
  3839. if (preempt_count() == val)
  3840. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3841. }
  3842. EXPORT_SYMBOL(add_preempt_count);
  3843. void __kprobes sub_preempt_count(int val)
  3844. {
  3845. #ifdef CONFIG_DEBUG_PREEMPT
  3846. /*
  3847. * Underflow?
  3848. */
  3849. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3850. return;
  3851. /*
  3852. * Is the spinlock portion underflowing?
  3853. */
  3854. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3855. !(preempt_count() & PREEMPT_MASK)))
  3856. return;
  3857. #endif
  3858. if (preempt_count() == val)
  3859. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3860. preempt_count() -= val;
  3861. }
  3862. EXPORT_SYMBOL(sub_preempt_count);
  3863. #endif
  3864. /*
  3865. * Print scheduling while atomic bug:
  3866. */
  3867. static noinline void __schedule_bug(struct task_struct *prev)
  3868. {
  3869. struct pt_regs *regs = get_irq_regs();
  3870. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3871. prev->comm, prev->pid, preempt_count());
  3872. debug_show_held_locks(prev);
  3873. print_modules();
  3874. if (irqs_disabled())
  3875. print_irqtrace_events(prev);
  3876. if (regs)
  3877. show_regs(regs);
  3878. else
  3879. dump_stack();
  3880. }
  3881. /*
  3882. * Various schedule()-time debugging checks and statistics:
  3883. */
  3884. static inline void schedule_debug(struct task_struct *prev)
  3885. {
  3886. /*
  3887. * Test if we are atomic. Since do_exit() needs to call into
  3888. * schedule() atomically, we ignore that path for now.
  3889. * Otherwise, whine if we are scheduling when we should not be.
  3890. */
  3891. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3892. __schedule_bug(prev);
  3893. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3894. schedstat_inc(this_rq(), sched_count);
  3895. #ifdef CONFIG_SCHEDSTATS
  3896. if (unlikely(prev->lock_depth >= 0)) {
  3897. schedstat_inc(this_rq(), bkl_count);
  3898. schedstat_inc(prev, sched_info.bkl_count);
  3899. }
  3900. #endif
  3901. }
  3902. /*
  3903. * Pick up the highest-prio task:
  3904. */
  3905. static inline struct task_struct *
  3906. pick_next_task(struct rq *rq, struct task_struct *prev)
  3907. {
  3908. const struct sched_class *class;
  3909. struct task_struct *p;
  3910. /*
  3911. * Optimization: we know that if all tasks are in
  3912. * the fair class we can call that function directly:
  3913. */
  3914. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3915. p = fair_sched_class.pick_next_task(rq);
  3916. if (likely(p))
  3917. return p;
  3918. }
  3919. class = sched_class_highest;
  3920. for ( ; ; ) {
  3921. p = class->pick_next_task(rq);
  3922. if (p)
  3923. return p;
  3924. /*
  3925. * Will never be NULL as the idle class always
  3926. * returns a non-NULL p:
  3927. */
  3928. class = class->next;
  3929. }
  3930. }
  3931. /*
  3932. * schedule() is the main scheduler function.
  3933. */
  3934. asmlinkage void __sched schedule(void)
  3935. {
  3936. struct task_struct *prev, *next;
  3937. unsigned long *switch_count;
  3938. struct rq *rq;
  3939. int cpu;
  3940. need_resched:
  3941. preempt_disable();
  3942. cpu = smp_processor_id();
  3943. rq = cpu_rq(cpu);
  3944. rcu_qsctr_inc(cpu);
  3945. prev = rq->curr;
  3946. switch_count = &prev->nivcsw;
  3947. release_kernel_lock(prev);
  3948. need_resched_nonpreemptible:
  3949. schedule_debug(prev);
  3950. if (sched_feat(HRTICK))
  3951. hrtick_clear(rq);
  3952. spin_lock_irq(&rq->lock);
  3953. update_rq_clock(rq);
  3954. clear_tsk_need_resched(prev);
  3955. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3956. if (unlikely(signal_pending_state(prev->state, prev)))
  3957. prev->state = TASK_RUNNING;
  3958. else
  3959. deactivate_task(rq, prev, 1);
  3960. switch_count = &prev->nvcsw;
  3961. }
  3962. #ifdef CONFIG_SMP
  3963. if (prev->sched_class->pre_schedule)
  3964. prev->sched_class->pre_schedule(rq, prev);
  3965. #endif
  3966. if (unlikely(!rq->nr_running))
  3967. idle_balance(cpu, rq);
  3968. prev->sched_class->put_prev_task(rq, prev);
  3969. next = pick_next_task(rq, prev);
  3970. if (likely(prev != next)) {
  3971. sched_info_switch(prev, next);
  3972. perf_counter_task_sched_out(prev, cpu);
  3973. rq->nr_switches++;
  3974. rq->curr = next;
  3975. ++*switch_count;
  3976. context_switch(rq, prev, next); /* unlocks the rq */
  3977. /*
  3978. * the context switch might have flipped the stack from under
  3979. * us, hence refresh the local variables.
  3980. */
  3981. cpu = smp_processor_id();
  3982. rq = cpu_rq(cpu);
  3983. } else
  3984. spin_unlock_irq(&rq->lock);
  3985. if (unlikely(reacquire_kernel_lock(current) < 0))
  3986. goto need_resched_nonpreemptible;
  3987. preempt_enable_no_resched();
  3988. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3989. goto need_resched;
  3990. }
  3991. EXPORT_SYMBOL(schedule);
  3992. #ifdef CONFIG_PREEMPT
  3993. /*
  3994. * this is the entry point to schedule() from in-kernel preemption
  3995. * off of preempt_enable. Kernel preemptions off return from interrupt
  3996. * occur there and call schedule directly.
  3997. */
  3998. asmlinkage void __sched preempt_schedule(void)
  3999. {
  4000. struct thread_info *ti = current_thread_info();
  4001. /*
  4002. * If there is a non-zero preempt_count or interrupts are disabled,
  4003. * we do not want to preempt the current task. Just return..
  4004. */
  4005. if (likely(ti->preempt_count || irqs_disabled()))
  4006. return;
  4007. do {
  4008. add_preempt_count(PREEMPT_ACTIVE);
  4009. schedule();
  4010. sub_preempt_count(PREEMPT_ACTIVE);
  4011. /*
  4012. * Check again in case we missed a preemption opportunity
  4013. * between schedule and now.
  4014. */
  4015. barrier();
  4016. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  4017. }
  4018. EXPORT_SYMBOL(preempt_schedule);
  4019. /*
  4020. * this is the entry point to schedule() from kernel preemption
  4021. * off of irq context.
  4022. * Note, that this is called and return with irqs disabled. This will
  4023. * protect us against recursive calling from irq.
  4024. */
  4025. asmlinkage void __sched preempt_schedule_irq(void)
  4026. {
  4027. struct thread_info *ti = current_thread_info();
  4028. /* Catch callers which need to be fixed */
  4029. BUG_ON(ti->preempt_count || !irqs_disabled());
  4030. do {
  4031. add_preempt_count(PREEMPT_ACTIVE);
  4032. local_irq_enable();
  4033. schedule();
  4034. local_irq_disable();
  4035. sub_preempt_count(PREEMPT_ACTIVE);
  4036. /*
  4037. * Check again in case we missed a preemption opportunity
  4038. * between schedule and now.
  4039. */
  4040. barrier();
  4041. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  4042. }
  4043. #endif /* CONFIG_PREEMPT */
  4044. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4045. void *key)
  4046. {
  4047. return try_to_wake_up(curr->private, mode, sync);
  4048. }
  4049. EXPORT_SYMBOL(default_wake_function);
  4050. /*
  4051. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4052. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4053. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4054. *
  4055. * There are circumstances in which we can try to wake a task which has already
  4056. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4057. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4058. */
  4059. void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4060. int nr_exclusive, int sync, void *key)
  4061. {
  4062. wait_queue_t *curr, *next;
  4063. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4064. unsigned flags = curr->flags;
  4065. if (curr->func(curr, mode, sync, key) &&
  4066. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4067. break;
  4068. }
  4069. }
  4070. /**
  4071. * __wake_up - wake up threads blocked on a waitqueue.
  4072. * @q: the waitqueue
  4073. * @mode: which threads
  4074. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4075. * @key: is directly passed to the wakeup function
  4076. */
  4077. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4078. int nr_exclusive, void *key)
  4079. {
  4080. unsigned long flags;
  4081. spin_lock_irqsave(&q->lock, flags);
  4082. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4083. spin_unlock_irqrestore(&q->lock, flags);
  4084. }
  4085. EXPORT_SYMBOL(__wake_up);
  4086. /*
  4087. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4088. */
  4089. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4090. {
  4091. __wake_up_common(q, mode, 1, 0, NULL);
  4092. }
  4093. /**
  4094. * __wake_up_sync - wake up threads blocked on a waitqueue.
  4095. * @q: the waitqueue
  4096. * @mode: which threads
  4097. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4098. *
  4099. * The sync wakeup differs that the waker knows that it will schedule
  4100. * away soon, so while the target thread will be woken up, it will not
  4101. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4102. * with each other. This can prevent needless bouncing between CPUs.
  4103. *
  4104. * On UP it can prevent extra preemption.
  4105. */
  4106. void
  4107. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4108. {
  4109. unsigned long flags;
  4110. int sync = 1;
  4111. if (unlikely(!q))
  4112. return;
  4113. if (unlikely(!nr_exclusive))
  4114. sync = 0;
  4115. spin_lock_irqsave(&q->lock, flags);
  4116. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  4117. spin_unlock_irqrestore(&q->lock, flags);
  4118. }
  4119. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4120. /**
  4121. * complete: - signals a single thread waiting on this completion
  4122. * @x: holds the state of this particular completion
  4123. *
  4124. * This will wake up a single thread waiting on this completion. Threads will be
  4125. * awakened in the same order in which they were queued.
  4126. *
  4127. * See also complete_all(), wait_for_completion() and related routines.
  4128. */
  4129. void complete(struct completion *x)
  4130. {
  4131. unsigned long flags;
  4132. spin_lock_irqsave(&x->wait.lock, flags);
  4133. x->done++;
  4134. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4135. spin_unlock_irqrestore(&x->wait.lock, flags);
  4136. }
  4137. EXPORT_SYMBOL(complete);
  4138. /**
  4139. * complete_all: - signals all threads waiting on this completion
  4140. * @x: holds the state of this particular completion
  4141. *
  4142. * This will wake up all threads waiting on this particular completion event.
  4143. */
  4144. void complete_all(struct completion *x)
  4145. {
  4146. unsigned long flags;
  4147. spin_lock_irqsave(&x->wait.lock, flags);
  4148. x->done += UINT_MAX/2;
  4149. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4150. spin_unlock_irqrestore(&x->wait.lock, flags);
  4151. }
  4152. EXPORT_SYMBOL(complete_all);
  4153. static inline long __sched
  4154. do_wait_for_common(struct completion *x, long timeout, int state)
  4155. {
  4156. if (!x->done) {
  4157. DECLARE_WAITQUEUE(wait, current);
  4158. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4159. __add_wait_queue_tail(&x->wait, &wait);
  4160. do {
  4161. if (signal_pending_state(state, current)) {
  4162. timeout = -ERESTARTSYS;
  4163. break;
  4164. }
  4165. __set_current_state(state);
  4166. spin_unlock_irq(&x->wait.lock);
  4167. timeout = schedule_timeout(timeout);
  4168. spin_lock_irq(&x->wait.lock);
  4169. } while (!x->done && timeout);
  4170. __remove_wait_queue(&x->wait, &wait);
  4171. if (!x->done)
  4172. return timeout;
  4173. }
  4174. x->done--;
  4175. return timeout ?: 1;
  4176. }
  4177. static long __sched
  4178. wait_for_common(struct completion *x, long timeout, int state)
  4179. {
  4180. might_sleep();
  4181. spin_lock_irq(&x->wait.lock);
  4182. timeout = do_wait_for_common(x, timeout, state);
  4183. spin_unlock_irq(&x->wait.lock);
  4184. return timeout;
  4185. }
  4186. /**
  4187. * wait_for_completion: - waits for completion of a task
  4188. * @x: holds the state of this particular completion
  4189. *
  4190. * This waits to be signaled for completion of a specific task. It is NOT
  4191. * interruptible and there is no timeout.
  4192. *
  4193. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4194. * and interrupt capability. Also see complete().
  4195. */
  4196. void __sched wait_for_completion(struct completion *x)
  4197. {
  4198. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4199. }
  4200. EXPORT_SYMBOL(wait_for_completion);
  4201. /**
  4202. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4203. * @x: holds the state of this particular completion
  4204. * @timeout: timeout value in jiffies
  4205. *
  4206. * This waits for either a completion of a specific task to be signaled or for a
  4207. * specified timeout to expire. The timeout is in jiffies. It is not
  4208. * interruptible.
  4209. */
  4210. unsigned long __sched
  4211. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4212. {
  4213. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4214. }
  4215. EXPORT_SYMBOL(wait_for_completion_timeout);
  4216. /**
  4217. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4218. * @x: holds the state of this particular completion
  4219. *
  4220. * This waits for completion of a specific task to be signaled. It is
  4221. * interruptible.
  4222. */
  4223. int __sched wait_for_completion_interruptible(struct completion *x)
  4224. {
  4225. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4226. if (t == -ERESTARTSYS)
  4227. return t;
  4228. return 0;
  4229. }
  4230. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4231. /**
  4232. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4233. * @x: holds the state of this particular completion
  4234. * @timeout: timeout value in jiffies
  4235. *
  4236. * This waits for either a completion of a specific task to be signaled or for a
  4237. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4238. */
  4239. unsigned long __sched
  4240. wait_for_completion_interruptible_timeout(struct completion *x,
  4241. unsigned long timeout)
  4242. {
  4243. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4244. }
  4245. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4246. /**
  4247. * wait_for_completion_killable: - waits for completion of a task (killable)
  4248. * @x: holds the state of this particular completion
  4249. *
  4250. * This waits to be signaled for completion of a specific task. It can be
  4251. * interrupted by a kill signal.
  4252. */
  4253. int __sched wait_for_completion_killable(struct completion *x)
  4254. {
  4255. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4256. if (t == -ERESTARTSYS)
  4257. return t;
  4258. return 0;
  4259. }
  4260. EXPORT_SYMBOL(wait_for_completion_killable);
  4261. /**
  4262. * try_wait_for_completion - try to decrement a completion without blocking
  4263. * @x: completion structure
  4264. *
  4265. * Returns: 0 if a decrement cannot be done without blocking
  4266. * 1 if a decrement succeeded.
  4267. *
  4268. * If a completion is being used as a counting completion,
  4269. * attempt to decrement the counter without blocking. This
  4270. * enables us to avoid waiting if the resource the completion
  4271. * is protecting is not available.
  4272. */
  4273. bool try_wait_for_completion(struct completion *x)
  4274. {
  4275. int ret = 1;
  4276. spin_lock_irq(&x->wait.lock);
  4277. if (!x->done)
  4278. ret = 0;
  4279. else
  4280. x->done--;
  4281. spin_unlock_irq(&x->wait.lock);
  4282. return ret;
  4283. }
  4284. EXPORT_SYMBOL(try_wait_for_completion);
  4285. /**
  4286. * completion_done - Test to see if a completion has any waiters
  4287. * @x: completion structure
  4288. *
  4289. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4290. * 1 if there are no waiters.
  4291. *
  4292. */
  4293. bool completion_done(struct completion *x)
  4294. {
  4295. int ret = 1;
  4296. spin_lock_irq(&x->wait.lock);
  4297. if (!x->done)
  4298. ret = 0;
  4299. spin_unlock_irq(&x->wait.lock);
  4300. return ret;
  4301. }
  4302. EXPORT_SYMBOL(completion_done);
  4303. static long __sched
  4304. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4305. {
  4306. unsigned long flags;
  4307. wait_queue_t wait;
  4308. init_waitqueue_entry(&wait, current);
  4309. __set_current_state(state);
  4310. spin_lock_irqsave(&q->lock, flags);
  4311. __add_wait_queue(q, &wait);
  4312. spin_unlock(&q->lock);
  4313. timeout = schedule_timeout(timeout);
  4314. spin_lock_irq(&q->lock);
  4315. __remove_wait_queue(q, &wait);
  4316. spin_unlock_irqrestore(&q->lock, flags);
  4317. return timeout;
  4318. }
  4319. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4320. {
  4321. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4322. }
  4323. EXPORT_SYMBOL(interruptible_sleep_on);
  4324. long __sched
  4325. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4326. {
  4327. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4328. }
  4329. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4330. void __sched sleep_on(wait_queue_head_t *q)
  4331. {
  4332. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4333. }
  4334. EXPORT_SYMBOL(sleep_on);
  4335. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4336. {
  4337. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4338. }
  4339. EXPORT_SYMBOL(sleep_on_timeout);
  4340. #ifdef CONFIG_RT_MUTEXES
  4341. /*
  4342. * rt_mutex_setprio - set the current priority of a task
  4343. * @p: task
  4344. * @prio: prio value (kernel-internal form)
  4345. *
  4346. * This function changes the 'effective' priority of a task. It does
  4347. * not touch ->normal_prio like __setscheduler().
  4348. *
  4349. * Used by the rt_mutex code to implement priority inheritance logic.
  4350. */
  4351. void rt_mutex_setprio(struct task_struct *p, int prio)
  4352. {
  4353. unsigned long flags;
  4354. int oldprio, on_rq, running;
  4355. struct rq *rq;
  4356. const struct sched_class *prev_class = p->sched_class;
  4357. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4358. rq = task_rq_lock(p, &flags);
  4359. update_rq_clock(rq);
  4360. oldprio = p->prio;
  4361. on_rq = p->se.on_rq;
  4362. running = task_current(rq, p);
  4363. if (on_rq)
  4364. dequeue_task(rq, p, 0);
  4365. if (running)
  4366. p->sched_class->put_prev_task(rq, p);
  4367. if (rt_prio(prio))
  4368. p->sched_class = &rt_sched_class;
  4369. else
  4370. p->sched_class = &fair_sched_class;
  4371. p->prio = prio;
  4372. if (running)
  4373. p->sched_class->set_curr_task(rq);
  4374. if (on_rq) {
  4375. enqueue_task(rq, p, 0);
  4376. check_class_changed(rq, p, prev_class, oldprio, running);
  4377. }
  4378. task_rq_unlock(rq, &flags);
  4379. }
  4380. #endif
  4381. void set_user_nice(struct task_struct *p, long nice)
  4382. {
  4383. int old_prio, delta, on_rq;
  4384. unsigned long flags;
  4385. struct rq *rq;
  4386. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4387. return;
  4388. /*
  4389. * We have to be careful, if called from sys_setpriority(),
  4390. * the task might be in the middle of scheduling on another CPU.
  4391. */
  4392. rq = task_rq_lock(p, &flags);
  4393. update_rq_clock(rq);
  4394. /*
  4395. * The RT priorities are set via sched_setscheduler(), but we still
  4396. * allow the 'normal' nice value to be set - but as expected
  4397. * it wont have any effect on scheduling until the task is
  4398. * SCHED_FIFO/SCHED_RR:
  4399. */
  4400. if (task_has_rt_policy(p)) {
  4401. p->static_prio = NICE_TO_PRIO(nice);
  4402. goto out_unlock;
  4403. }
  4404. on_rq = p->se.on_rq;
  4405. if (on_rq)
  4406. dequeue_task(rq, p, 0);
  4407. p->static_prio = NICE_TO_PRIO(nice);
  4408. set_load_weight(p);
  4409. old_prio = p->prio;
  4410. p->prio = effective_prio(p);
  4411. delta = p->prio - old_prio;
  4412. if (on_rq) {
  4413. enqueue_task(rq, p, 0);
  4414. /*
  4415. * If the task increased its priority or is running and
  4416. * lowered its priority, then reschedule its CPU:
  4417. */
  4418. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4419. resched_task(rq->curr);
  4420. }
  4421. out_unlock:
  4422. task_rq_unlock(rq, &flags);
  4423. }
  4424. EXPORT_SYMBOL(set_user_nice);
  4425. /*
  4426. * can_nice - check if a task can reduce its nice value
  4427. * @p: task
  4428. * @nice: nice value
  4429. */
  4430. int can_nice(const struct task_struct *p, const int nice)
  4431. {
  4432. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4433. int nice_rlim = 20 - nice;
  4434. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4435. capable(CAP_SYS_NICE));
  4436. }
  4437. #ifdef __ARCH_WANT_SYS_NICE
  4438. /*
  4439. * sys_nice - change the priority of the current process.
  4440. * @increment: priority increment
  4441. *
  4442. * sys_setpriority is a more generic, but much slower function that
  4443. * does similar things.
  4444. */
  4445. SYSCALL_DEFINE1(nice, int, increment)
  4446. {
  4447. long nice, retval;
  4448. /*
  4449. * Setpriority might change our priority at the same moment.
  4450. * We don't have to worry. Conceptually one call occurs first
  4451. * and we have a single winner.
  4452. */
  4453. if (increment < -40)
  4454. increment = -40;
  4455. if (increment > 40)
  4456. increment = 40;
  4457. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4458. if (nice < -20)
  4459. nice = -20;
  4460. if (nice > 19)
  4461. nice = 19;
  4462. if (increment < 0 && !can_nice(current, nice))
  4463. return -EPERM;
  4464. retval = security_task_setnice(current, nice);
  4465. if (retval)
  4466. return retval;
  4467. set_user_nice(current, nice);
  4468. return 0;
  4469. }
  4470. #endif
  4471. /**
  4472. * task_prio - return the priority value of a given task.
  4473. * @p: the task in question.
  4474. *
  4475. * This is the priority value as seen by users in /proc.
  4476. * RT tasks are offset by -200. Normal tasks are centered
  4477. * around 0, value goes from -16 to +15.
  4478. */
  4479. int task_prio(const struct task_struct *p)
  4480. {
  4481. return p->prio - MAX_RT_PRIO;
  4482. }
  4483. /**
  4484. * task_nice - return the nice value of a given task.
  4485. * @p: the task in question.
  4486. */
  4487. int task_nice(const struct task_struct *p)
  4488. {
  4489. return TASK_NICE(p);
  4490. }
  4491. EXPORT_SYMBOL(task_nice);
  4492. /**
  4493. * idle_cpu - is a given cpu idle currently?
  4494. * @cpu: the processor in question.
  4495. */
  4496. int idle_cpu(int cpu)
  4497. {
  4498. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4499. }
  4500. /**
  4501. * idle_task - return the idle task for a given cpu.
  4502. * @cpu: the processor in question.
  4503. */
  4504. struct task_struct *idle_task(int cpu)
  4505. {
  4506. return cpu_rq(cpu)->idle;
  4507. }
  4508. /**
  4509. * find_process_by_pid - find a process with a matching PID value.
  4510. * @pid: the pid in question.
  4511. */
  4512. static struct task_struct *find_process_by_pid(pid_t pid)
  4513. {
  4514. return pid ? find_task_by_vpid(pid) : current;
  4515. }
  4516. /* Actually do priority change: must hold rq lock. */
  4517. static void
  4518. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4519. {
  4520. BUG_ON(p->se.on_rq);
  4521. p->policy = policy;
  4522. switch (p->policy) {
  4523. case SCHED_NORMAL:
  4524. case SCHED_BATCH:
  4525. case SCHED_IDLE:
  4526. p->sched_class = &fair_sched_class;
  4527. break;
  4528. case SCHED_FIFO:
  4529. case SCHED_RR:
  4530. p->sched_class = &rt_sched_class;
  4531. break;
  4532. }
  4533. p->rt_priority = prio;
  4534. p->normal_prio = normal_prio(p);
  4535. /* we are holding p->pi_lock already */
  4536. p->prio = rt_mutex_getprio(p);
  4537. set_load_weight(p);
  4538. }
  4539. /*
  4540. * check the target process has a UID that matches the current process's
  4541. */
  4542. static bool check_same_owner(struct task_struct *p)
  4543. {
  4544. const struct cred *cred = current_cred(), *pcred;
  4545. bool match;
  4546. rcu_read_lock();
  4547. pcred = __task_cred(p);
  4548. match = (cred->euid == pcred->euid ||
  4549. cred->euid == pcred->uid);
  4550. rcu_read_unlock();
  4551. return match;
  4552. }
  4553. static int __sched_setscheduler(struct task_struct *p, int policy,
  4554. struct sched_param *param, bool user)
  4555. {
  4556. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4557. unsigned long flags;
  4558. const struct sched_class *prev_class = p->sched_class;
  4559. struct rq *rq;
  4560. /* may grab non-irq protected spin_locks */
  4561. BUG_ON(in_interrupt());
  4562. recheck:
  4563. /* double check policy once rq lock held */
  4564. if (policy < 0)
  4565. policy = oldpolicy = p->policy;
  4566. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4567. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4568. policy != SCHED_IDLE)
  4569. return -EINVAL;
  4570. /*
  4571. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4572. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4573. * SCHED_BATCH and SCHED_IDLE is 0.
  4574. */
  4575. if (param->sched_priority < 0 ||
  4576. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4577. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4578. return -EINVAL;
  4579. if (rt_policy(policy) != (param->sched_priority != 0))
  4580. return -EINVAL;
  4581. /*
  4582. * Allow unprivileged RT tasks to decrease priority:
  4583. */
  4584. if (user && !capable(CAP_SYS_NICE)) {
  4585. if (rt_policy(policy)) {
  4586. unsigned long rlim_rtprio;
  4587. if (!lock_task_sighand(p, &flags))
  4588. return -ESRCH;
  4589. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4590. unlock_task_sighand(p, &flags);
  4591. /* can't set/change the rt policy */
  4592. if (policy != p->policy && !rlim_rtprio)
  4593. return -EPERM;
  4594. /* can't increase priority */
  4595. if (param->sched_priority > p->rt_priority &&
  4596. param->sched_priority > rlim_rtprio)
  4597. return -EPERM;
  4598. }
  4599. /*
  4600. * Like positive nice levels, dont allow tasks to
  4601. * move out of SCHED_IDLE either:
  4602. */
  4603. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4604. return -EPERM;
  4605. /* can't change other user's priorities */
  4606. if (!check_same_owner(p))
  4607. return -EPERM;
  4608. }
  4609. if (user) {
  4610. #ifdef CONFIG_RT_GROUP_SCHED
  4611. /*
  4612. * Do not allow realtime tasks into groups that have no runtime
  4613. * assigned.
  4614. */
  4615. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4616. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4617. return -EPERM;
  4618. #endif
  4619. retval = security_task_setscheduler(p, policy, param);
  4620. if (retval)
  4621. return retval;
  4622. }
  4623. /*
  4624. * make sure no PI-waiters arrive (or leave) while we are
  4625. * changing the priority of the task:
  4626. */
  4627. spin_lock_irqsave(&p->pi_lock, flags);
  4628. /*
  4629. * To be able to change p->policy safely, the apropriate
  4630. * runqueue lock must be held.
  4631. */
  4632. rq = __task_rq_lock(p);
  4633. /* recheck policy now with rq lock held */
  4634. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4635. policy = oldpolicy = -1;
  4636. __task_rq_unlock(rq);
  4637. spin_unlock_irqrestore(&p->pi_lock, flags);
  4638. goto recheck;
  4639. }
  4640. update_rq_clock(rq);
  4641. on_rq = p->se.on_rq;
  4642. running = task_current(rq, p);
  4643. if (on_rq)
  4644. deactivate_task(rq, p, 0);
  4645. if (running)
  4646. p->sched_class->put_prev_task(rq, p);
  4647. oldprio = p->prio;
  4648. __setscheduler(rq, p, policy, param->sched_priority);
  4649. if (running)
  4650. p->sched_class->set_curr_task(rq);
  4651. if (on_rq) {
  4652. activate_task(rq, p, 0);
  4653. check_class_changed(rq, p, prev_class, oldprio, running);
  4654. }
  4655. __task_rq_unlock(rq);
  4656. spin_unlock_irqrestore(&p->pi_lock, flags);
  4657. rt_mutex_adjust_pi(p);
  4658. return 0;
  4659. }
  4660. /**
  4661. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4662. * @p: the task in question.
  4663. * @policy: new policy.
  4664. * @param: structure containing the new RT priority.
  4665. *
  4666. * NOTE that the task may be already dead.
  4667. */
  4668. int sched_setscheduler(struct task_struct *p, int policy,
  4669. struct sched_param *param)
  4670. {
  4671. return __sched_setscheduler(p, policy, param, true);
  4672. }
  4673. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4674. /**
  4675. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4676. * @p: the task in question.
  4677. * @policy: new policy.
  4678. * @param: structure containing the new RT priority.
  4679. *
  4680. * Just like sched_setscheduler, only don't bother checking if the
  4681. * current context has permission. For example, this is needed in
  4682. * stop_machine(): we create temporary high priority worker threads,
  4683. * but our caller might not have that capability.
  4684. */
  4685. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4686. struct sched_param *param)
  4687. {
  4688. return __sched_setscheduler(p, policy, param, false);
  4689. }
  4690. static int
  4691. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4692. {
  4693. struct sched_param lparam;
  4694. struct task_struct *p;
  4695. int retval;
  4696. if (!param || pid < 0)
  4697. return -EINVAL;
  4698. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4699. return -EFAULT;
  4700. rcu_read_lock();
  4701. retval = -ESRCH;
  4702. p = find_process_by_pid(pid);
  4703. if (p != NULL)
  4704. retval = sched_setscheduler(p, policy, &lparam);
  4705. rcu_read_unlock();
  4706. return retval;
  4707. }
  4708. /**
  4709. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4710. * @pid: the pid in question.
  4711. * @policy: new policy.
  4712. * @param: structure containing the new RT priority.
  4713. */
  4714. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4715. struct sched_param __user *, param)
  4716. {
  4717. /* negative values for policy are not valid */
  4718. if (policy < 0)
  4719. return -EINVAL;
  4720. return do_sched_setscheduler(pid, policy, param);
  4721. }
  4722. /**
  4723. * sys_sched_setparam - set/change the RT priority of a thread
  4724. * @pid: the pid in question.
  4725. * @param: structure containing the new RT priority.
  4726. */
  4727. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4728. {
  4729. return do_sched_setscheduler(pid, -1, param);
  4730. }
  4731. /**
  4732. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4733. * @pid: the pid in question.
  4734. */
  4735. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4736. {
  4737. struct task_struct *p;
  4738. int retval;
  4739. if (pid < 0)
  4740. return -EINVAL;
  4741. retval = -ESRCH;
  4742. read_lock(&tasklist_lock);
  4743. p = find_process_by_pid(pid);
  4744. if (p) {
  4745. retval = security_task_getscheduler(p);
  4746. if (!retval)
  4747. retval = p->policy;
  4748. }
  4749. read_unlock(&tasklist_lock);
  4750. return retval;
  4751. }
  4752. /**
  4753. * sys_sched_getscheduler - get the RT priority of a thread
  4754. * @pid: the pid in question.
  4755. * @param: structure containing the RT priority.
  4756. */
  4757. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4758. {
  4759. struct sched_param lp;
  4760. struct task_struct *p;
  4761. int retval;
  4762. if (!param || pid < 0)
  4763. return -EINVAL;
  4764. read_lock(&tasklist_lock);
  4765. p = find_process_by_pid(pid);
  4766. retval = -ESRCH;
  4767. if (!p)
  4768. goto out_unlock;
  4769. retval = security_task_getscheduler(p);
  4770. if (retval)
  4771. goto out_unlock;
  4772. lp.sched_priority = p->rt_priority;
  4773. read_unlock(&tasklist_lock);
  4774. /*
  4775. * This one might sleep, we cannot do it with a spinlock held ...
  4776. */
  4777. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4778. return retval;
  4779. out_unlock:
  4780. read_unlock(&tasklist_lock);
  4781. return retval;
  4782. }
  4783. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4784. {
  4785. cpumask_var_t cpus_allowed, new_mask;
  4786. struct task_struct *p;
  4787. int retval;
  4788. get_online_cpus();
  4789. read_lock(&tasklist_lock);
  4790. p = find_process_by_pid(pid);
  4791. if (!p) {
  4792. read_unlock(&tasklist_lock);
  4793. put_online_cpus();
  4794. return -ESRCH;
  4795. }
  4796. /*
  4797. * It is not safe to call set_cpus_allowed with the
  4798. * tasklist_lock held. We will bump the task_struct's
  4799. * usage count and then drop tasklist_lock.
  4800. */
  4801. get_task_struct(p);
  4802. read_unlock(&tasklist_lock);
  4803. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4804. retval = -ENOMEM;
  4805. goto out_put_task;
  4806. }
  4807. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4808. retval = -ENOMEM;
  4809. goto out_free_cpus_allowed;
  4810. }
  4811. retval = -EPERM;
  4812. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4813. goto out_unlock;
  4814. retval = security_task_setscheduler(p, 0, NULL);
  4815. if (retval)
  4816. goto out_unlock;
  4817. cpuset_cpus_allowed(p, cpus_allowed);
  4818. cpumask_and(new_mask, in_mask, cpus_allowed);
  4819. again:
  4820. retval = set_cpus_allowed_ptr(p, new_mask);
  4821. if (!retval) {
  4822. cpuset_cpus_allowed(p, cpus_allowed);
  4823. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4824. /*
  4825. * We must have raced with a concurrent cpuset
  4826. * update. Just reset the cpus_allowed to the
  4827. * cpuset's cpus_allowed
  4828. */
  4829. cpumask_copy(new_mask, cpus_allowed);
  4830. goto again;
  4831. }
  4832. }
  4833. out_unlock:
  4834. free_cpumask_var(new_mask);
  4835. out_free_cpus_allowed:
  4836. free_cpumask_var(cpus_allowed);
  4837. out_put_task:
  4838. put_task_struct(p);
  4839. put_online_cpus();
  4840. return retval;
  4841. }
  4842. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4843. struct cpumask *new_mask)
  4844. {
  4845. if (len < cpumask_size())
  4846. cpumask_clear(new_mask);
  4847. else if (len > cpumask_size())
  4848. len = cpumask_size();
  4849. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4850. }
  4851. /**
  4852. * sys_sched_setaffinity - set the cpu affinity of a process
  4853. * @pid: pid of the process
  4854. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4855. * @user_mask_ptr: user-space pointer to the new cpu mask
  4856. */
  4857. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4858. unsigned long __user *, user_mask_ptr)
  4859. {
  4860. cpumask_var_t new_mask;
  4861. int retval;
  4862. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4863. return -ENOMEM;
  4864. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4865. if (retval == 0)
  4866. retval = sched_setaffinity(pid, new_mask);
  4867. free_cpumask_var(new_mask);
  4868. return retval;
  4869. }
  4870. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4871. {
  4872. struct task_struct *p;
  4873. int retval;
  4874. get_online_cpus();
  4875. read_lock(&tasklist_lock);
  4876. retval = -ESRCH;
  4877. p = find_process_by_pid(pid);
  4878. if (!p)
  4879. goto out_unlock;
  4880. retval = security_task_getscheduler(p);
  4881. if (retval)
  4882. goto out_unlock;
  4883. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4884. out_unlock:
  4885. read_unlock(&tasklist_lock);
  4886. put_online_cpus();
  4887. return retval;
  4888. }
  4889. /**
  4890. * sys_sched_getaffinity - get the cpu affinity of a process
  4891. * @pid: pid of the process
  4892. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4893. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4894. */
  4895. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4896. unsigned long __user *, user_mask_ptr)
  4897. {
  4898. int ret;
  4899. cpumask_var_t mask;
  4900. if (len < cpumask_size())
  4901. return -EINVAL;
  4902. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4903. return -ENOMEM;
  4904. ret = sched_getaffinity(pid, mask);
  4905. if (ret == 0) {
  4906. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  4907. ret = -EFAULT;
  4908. else
  4909. ret = cpumask_size();
  4910. }
  4911. free_cpumask_var(mask);
  4912. return ret;
  4913. }
  4914. /**
  4915. * sys_sched_yield - yield the current processor to other threads.
  4916. *
  4917. * This function yields the current CPU to other tasks. If there are no
  4918. * other threads running on this CPU then this function will return.
  4919. */
  4920. SYSCALL_DEFINE0(sched_yield)
  4921. {
  4922. struct rq *rq = this_rq_lock();
  4923. schedstat_inc(rq, yld_count);
  4924. current->sched_class->yield_task(rq);
  4925. /*
  4926. * Since we are going to call schedule() anyway, there's
  4927. * no need to preempt or enable interrupts:
  4928. */
  4929. __release(rq->lock);
  4930. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4931. _raw_spin_unlock(&rq->lock);
  4932. preempt_enable_no_resched();
  4933. schedule();
  4934. return 0;
  4935. }
  4936. static void __cond_resched(void)
  4937. {
  4938. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4939. __might_sleep(__FILE__, __LINE__);
  4940. #endif
  4941. /*
  4942. * The BKS might be reacquired before we have dropped
  4943. * PREEMPT_ACTIVE, which could trigger a second
  4944. * cond_resched() call.
  4945. */
  4946. do {
  4947. add_preempt_count(PREEMPT_ACTIVE);
  4948. schedule();
  4949. sub_preempt_count(PREEMPT_ACTIVE);
  4950. } while (need_resched());
  4951. }
  4952. int __sched _cond_resched(void)
  4953. {
  4954. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4955. system_state == SYSTEM_RUNNING) {
  4956. __cond_resched();
  4957. return 1;
  4958. }
  4959. return 0;
  4960. }
  4961. EXPORT_SYMBOL(_cond_resched);
  4962. /*
  4963. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4964. * call schedule, and on return reacquire the lock.
  4965. *
  4966. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4967. * operations here to prevent schedule() from being called twice (once via
  4968. * spin_unlock(), once by hand).
  4969. */
  4970. int cond_resched_lock(spinlock_t *lock)
  4971. {
  4972. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4973. int ret = 0;
  4974. if (spin_needbreak(lock) || resched) {
  4975. spin_unlock(lock);
  4976. if (resched && need_resched())
  4977. __cond_resched();
  4978. else
  4979. cpu_relax();
  4980. ret = 1;
  4981. spin_lock(lock);
  4982. }
  4983. return ret;
  4984. }
  4985. EXPORT_SYMBOL(cond_resched_lock);
  4986. int __sched cond_resched_softirq(void)
  4987. {
  4988. BUG_ON(!in_softirq());
  4989. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4990. local_bh_enable();
  4991. __cond_resched();
  4992. local_bh_disable();
  4993. return 1;
  4994. }
  4995. return 0;
  4996. }
  4997. EXPORT_SYMBOL(cond_resched_softirq);
  4998. /**
  4999. * yield - yield the current processor to other threads.
  5000. *
  5001. * This is a shortcut for kernel-space yielding - it marks the
  5002. * thread runnable and calls sys_sched_yield().
  5003. */
  5004. void __sched yield(void)
  5005. {
  5006. set_current_state(TASK_RUNNING);
  5007. sys_sched_yield();
  5008. }
  5009. EXPORT_SYMBOL(yield);
  5010. /*
  5011. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5012. * that process accounting knows that this is a task in IO wait state.
  5013. *
  5014. * But don't do that if it is a deliberate, throttling IO wait (this task
  5015. * has set its backing_dev_info: the queue against which it should throttle)
  5016. */
  5017. void __sched io_schedule(void)
  5018. {
  5019. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5020. delayacct_blkio_start();
  5021. atomic_inc(&rq->nr_iowait);
  5022. schedule();
  5023. atomic_dec(&rq->nr_iowait);
  5024. delayacct_blkio_end();
  5025. }
  5026. EXPORT_SYMBOL(io_schedule);
  5027. long __sched io_schedule_timeout(long timeout)
  5028. {
  5029. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5030. long ret;
  5031. delayacct_blkio_start();
  5032. atomic_inc(&rq->nr_iowait);
  5033. ret = schedule_timeout(timeout);
  5034. atomic_dec(&rq->nr_iowait);
  5035. delayacct_blkio_end();
  5036. return ret;
  5037. }
  5038. /**
  5039. * sys_sched_get_priority_max - return maximum RT priority.
  5040. * @policy: scheduling class.
  5041. *
  5042. * this syscall returns the maximum rt_priority that can be used
  5043. * by a given scheduling class.
  5044. */
  5045. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5046. {
  5047. int ret = -EINVAL;
  5048. switch (policy) {
  5049. case SCHED_FIFO:
  5050. case SCHED_RR:
  5051. ret = MAX_USER_RT_PRIO-1;
  5052. break;
  5053. case SCHED_NORMAL:
  5054. case SCHED_BATCH:
  5055. case SCHED_IDLE:
  5056. ret = 0;
  5057. break;
  5058. }
  5059. return ret;
  5060. }
  5061. /**
  5062. * sys_sched_get_priority_min - return minimum RT priority.
  5063. * @policy: scheduling class.
  5064. *
  5065. * this syscall returns the minimum rt_priority that can be used
  5066. * by a given scheduling class.
  5067. */
  5068. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5069. {
  5070. int ret = -EINVAL;
  5071. switch (policy) {
  5072. case SCHED_FIFO:
  5073. case SCHED_RR:
  5074. ret = 1;
  5075. break;
  5076. case SCHED_NORMAL:
  5077. case SCHED_BATCH:
  5078. case SCHED_IDLE:
  5079. ret = 0;
  5080. }
  5081. return ret;
  5082. }
  5083. /**
  5084. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5085. * @pid: pid of the process.
  5086. * @interval: userspace pointer to the timeslice value.
  5087. *
  5088. * this syscall writes the default timeslice value of a given process
  5089. * into the user-space timespec buffer. A value of '0' means infinity.
  5090. */
  5091. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5092. struct timespec __user *, interval)
  5093. {
  5094. struct task_struct *p;
  5095. unsigned int time_slice;
  5096. int retval;
  5097. struct timespec t;
  5098. if (pid < 0)
  5099. return -EINVAL;
  5100. retval = -ESRCH;
  5101. read_lock(&tasklist_lock);
  5102. p = find_process_by_pid(pid);
  5103. if (!p)
  5104. goto out_unlock;
  5105. retval = security_task_getscheduler(p);
  5106. if (retval)
  5107. goto out_unlock;
  5108. /*
  5109. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5110. * tasks that are on an otherwise idle runqueue:
  5111. */
  5112. time_slice = 0;
  5113. if (p->policy == SCHED_RR) {
  5114. time_slice = DEF_TIMESLICE;
  5115. } else if (p->policy != SCHED_FIFO) {
  5116. struct sched_entity *se = &p->se;
  5117. unsigned long flags;
  5118. struct rq *rq;
  5119. rq = task_rq_lock(p, &flags);
  5120. if (rq->cfs.load.weight)
  5121. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5122. task_rq_unlock(rq, &flags);
  5123. }
  5124. read_unlock(&tasklist_lock);
  5125. jiffies_to_timespec(time_slice, &t);
  5126. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5127. return retval;
  5128. out_unlock:
  5129. read_unlock(&tasklist_lock);
  5130. return retval;
  5131. }
  5132. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5133. void sched_show_task(struct task_struct *p)
  5134. {
  5135. unsigned long free = 0;
  5136. unsigned state;
  5137. state = p->state ? __ffs(p->state) + 1 : 0;
  5138. printk(KERN_INFO "%-13.13s %c", p->comm,
  5139. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5140. #if BITS_PER_LONG == 32
  5141. if (state == TASK_RUNNING)
  5142. printk(KERN_CONT " running ");
  5143. else
  5144. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5145. #else
  5146. if (state == TASK_RUNNING)
  5147. printk(KERN_CONT " running task ");
  5148. else
  5149. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5150. #endif
  5151. #ifdef CONFIG_DEBUG_STACK_USAGE
  5152. free = stack_not_used(p);
  5153. #endif
  5154. printk(KERN_CONT "%5lu %5d %6d\n", free,
  5155. task_pid_nr(p), task_pid_nr(p->real_parent));
  5156. show_stack(p, NULL);
  5157. }
  5158. void show_state_filter(unsigned long state_filter)
  5159. {
  5160. struct task_struct *g, *p;
  5161. #if BITS_PER_LONG == 32
  5162. printk(KERN_INFO
  5163. " task PC stack pid father\n");
  5164. #else
  5165. printk(KERN_INFO
  5166. " task PC stack pid father\n");
  5167. #endif
  5168. read_lock(&tasklist_lock);
  5169. do_each_thread(g, p) {
  5170. /*
  5171. * reset the NMI-timeout, listing all files on a slow
  5172. * console might take alot of time:
  5173. */
  5174. touch_nmi_watchdog();
  5175. if (!state_filter || (p->state & state_filter))
  5176. sched_show_task(p);
  5177. } while_each_thread(g, p);
  5178. touch_all_softlockup_watchdogs();
  5179. #ifdef CONFIG_SCHED_DEBUG
  5180. sysrq_sched_debug_show();
  5181. #endif
  5182. read_unlock(&tasklist_lock);
  5183. /*
  5184. * Only show locks if all tasks are dumped:
  5185. */
  5186. if (state_filter == -1)
  5187. debug_show_all_locks();
  5188. }
  5189. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5190. {
  5191. idle->sched_class = &idle_sched_class;
  5192. }
  5193. /**
  5194. * init_idle - set up an idle thread for a given CPU
  5195. * @idle: task in question
  5196. * @cpu: cpu the idle task belongs to
  5197. *
  5198. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5199. * flag, to make booting more robust.
  5200. */
  5201. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5202. {
  5203. struct rq *rq = cpu_rq(cpu);
  5204. unsigned long flags;
  5205. spin_lock_irqsave(&rq->lock, flags);
  5206. __sched_fork(idle);
  5207. idle->se.exec_start = sched_clock();
  5208. idle->prio = idle->normal_prio = MAX_PRIO;
  5209. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5210. __set_task_cpu(idle, cpu);
  5211. rq->curr = rq->idle = idle;
  5212. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5213. idle->oncpu = 1;
  5214. #endif
  5215. spin_unlock_irqrestore(&rq->lock, flags);
  5216. /* Set the preempt count _outside_ the spinlocks! */
  5217. #if defined(CONFIG_PREEMPT)
  5218. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5219. #else
  5220. task_thread_info(idle)->preempt_count = 0;
  5221. #endif
  5222. /*
  5223. * The idle tasks have their own, simple scheduling class:
  5224. */
  5225. idle->sched_class = &idle_sched_class;
  5226. ftrace_graph_init_task(idle);
  5227. }
  5228. /*
  5229. * In a system that switches off the HZ timer nohz_cpu_mask
  5230. * indicates which cpus entered this state. This is used
  5231. * in the rcu update to wait only for active cpus. For system
  5232. * which do not switch off the HZ timer nohz_cpu_mask should
  5233. * always be CPU_BITS_NONE.
  5234. */
  5235. cpumask_var_t nohz_cpu_mask;
  5236. /*
  5237. * Increase the granularity value when there are more CPUs,
  5238. * because with more CPUs the 'effective latency' as visible
  5239. * to users decreases. But the relationship is not linear,
  5240. * so pick a second-best guess by going with the log2 of the
  5241. * number of CPUs.
  5242. *
  5243. * This idea comes from the SD scheduler of Con Kolivas:
  5244. */
  5245. static inline void sched_init_granularity(void)
  5246. {
  5247. unsigned int factor = 1 + ilog2(num_online_cpus());
  5248. const unsigned long limit = 200000000;
  5249. sysctl_sched_min_granularity *= factor;
  5250. if (sysctl_sched_min_granularity > limit)
  5251. sysctl_sched_min_granularity = limit;
  5252. sysctl_sched_latency *= factor;
  5253. if (sysctl_sched_latency > limit)
  5254. sysctl_sched_latency = limit;
  5255. sysctl_sched_wakeup_granularity *= factor;
  5256. sysctl_sched_shares_ratelimit *= factor;
  5257. }
  5258. #ifdef CONFIG_SMP
  5259. /*
  5260. * This is how migration works:
  5261. *
  5262. * 1) we queue a struct migration_req structure in the source CPU's
  5263. * runqueue and wake up that CPU's migration thread.
  5264. * 2) we down() the locked semaphore => thread blocks.
  5265. * 3) migration thread wakes up (implicitly it forces the migrated
  5266. * thread off the CPU)
  5267. * 4) it gets the migration request and checks whether the migrated
  5268. * task is still in the wrong runqueue.
  5269. * 5) if it's in the wrong runqueue then the migration thread removes
  5270. * it and puts it into the right queue.
  5271. * 6) migration thread up()s the semaphore.
  5272. * 7) we wake up and the migration is done.
  5273. */
  5274. /*
  5275. * Change a given task's CPU affinity. Migrate the thread to a
  5276. * proper CPU and schedule it away if the CPU it's executing on
  5277. * is removed from the allowed bitmask.
  5278. *
  5279. * NOTE: the caller must have a valid reference to the task, the
  5280. * task must not exit() & deallocate itself prematurely. The
  5281. * call is not atomic; no spinlocks may be held.
  5282. */
  5283. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5284. {
  5285. struct migration_req req;
  5286. unsigned long flags;
  5287. struct rq *rq;
  5288. int ret = 0;
  5289. rq = task_rq_lock(p, &flags);
  5290. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5291. ret = -EINVAL;
  5292. goto out;
  5293. }
  5294. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5295. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5296. ret = -EINVAL;
  5297. goto out;
  5298. }
  5299. if (p->sched_class->set_cpus_allowed)
  5300. p->sched_class->set_cpus_allowed(p, new_mask);
  5301. else {
  5302. cpumask_copy(&p->cpus_allowed, new_mask);
  5303. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5304. }
  5305. /* Can the task run on the task's current CPU? If so, we're done */
  5306. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5307. goto out;
  5308. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5309. /* Need help from migration thread: drop lock and wait. */
  5310. task_rq_unlock(rq, &flags);
  5311. wake_up_process(rq->migration_thread);
  5312. wait_for_completion(&req.done);
  5313. tlb_migrate_finish(p->mm);
  5314. return 0;
  5315. }
  5316. out:
  5317. task_rq_unlock(rq, &flags);
  5318. return ret;
  5319. }
  5320. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5321. /*
  5322. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5323. * this because either it can't run here any more (set_cpus_allowed()
  5324. * away from this CPU, or CPU going down), or because we're
  5325. * attempting to rebalance this task on exec (sched_exec).
  5326. *
  5327. * So we race with normal scheduler movements, but that's OK, as long
  5328. * as the task is no longer on this CPU.
  5329. *
  5330. * Returns non-zero if task was successfully migrated.
  5331. */
  5332. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5333. {
  5334. struct rq *rq_dest, *rq_src;
  5335. int ret = 0, on_rq;
  5336. if (unlikely(!cpu_active(dest_cpu)))
  5337. return ret;
  5338. rq_src = cpu_rq(src_cpu);
  5339. rq_dest = cpu_rq(dest_cpu);
  5340. double_rq_lock(rq_src, rq_dest);
  5341. /* Already moved. */
  5342. if (task_cpu(p) != src_cpu)
  5343. goto done;
  5344. /* Affinity changed (again). */
  5345. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5346. goto fail;
  5347. on_rq = p->se.on_rq;
  5348. if (on_rq)
  5349. deactivate_task(rq_src, p, 0);
  5350. set_task_cpu(p, dest_cpu);
  5351. if (on_rq) {
  5352. activate_task(rq_dest, p, 0);
  5353. check_preempt_curr(rq_dest, p, 0);
  5354. }
  5355. done:
  5356. ret = 1;
  5357. fail:
  5358. double_rq_unlock(rq_src, rq_dest);
  5359. return ret;
  5360. }
  5361. /*
  5362. * migration_thread - this is a highprio system thread that performs
  5363. * thread migration by bumping thread off CPU then 'pushing' onto
  5364. * another runqueue.
  5365. */
  5366. static int migration_thread(void *data)
  5367. {
  5368. int cpu = (long)data;
  5369. struct rq *rq;
  5370. rq = cpu_rq(cpu);
  5371. BUG_ON(rq->migration_thread != current);
  5372. set_current_state(TASK_INTERRUPTIBLE);
  5373. while (!kthread_should_stop()) {
  5374. struct migration_req *req;
  5375. struct list_head *head;
  5376. spin_lock_irq(&rq->lock);
  5377. if (cpu_is_offline(cpu)) {
  5378. spin_unlock_irq(&rq->lock);
  5379. goto wait_to_die;
  5380. }
  5381. if (rq->active_balance) {
  5382. active_load_balance(rq, cpu);
  5383. rq->active_balance = 0;
  5384. }
  5385. head = &rq->migration_queue;
  5386. if (list_empty(head)) {
  5387. spin_unlock_irq(&rq->lock);
  5388. schedule();
  5389. set_current_state(TASK_INTERRUPTIBLE);
  5390. continue;
  5391. }
  5392. req = list_entry(head->next, struct migration_req, list);
  5393. list_del_init(head->next);
  5394. spin_unlock(&rq->lock);
  5395. __migrate_task(req->task, cpu, req->dest_cpu);
  5396. local_irq_enable();
  5397. complete(&req->done);
  5398. }
  5399. __set_current_state(TASK_RUNNING);
  5400. return 0;
  5401. wait_to_die:
  5402. /* Wait for kthread_stop */
  5403. set_current_state(TASK_INTERRUPTIBLE);
  5404. while (!kthread_should_stop()) {
  5405. schedule();
  5406. set_current_state(TASK_INTERRUPTIBLE);
  5407. }
  5408. __set_current_state(TASK_RUNNING);
  5409. return 0;
  5410. }
  5411. #ifdef CONFIG_HOTPLUG_CPU
  5412. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5413. {
  5414. int ret;
  5415. local_irq_disable();
  5416. ret = __migrate_task(p, src_cpu, dest_cpu);
  5417. local_irq_enable();
  5418. return ret;
  5419. }
  5420. /*
  5421. * Figure out where task on dead CPU should go, use force if necessary.
  5422. */
  5423. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5424. {
  5425. int dest_cpu;
  5426. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  5427. again:
  5428. /* Look for allowed, online CPU in same node. */
  5429. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  5430. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5431. goto move;
  5432. /* Any allowed, online CPU? */
  5433. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  5434. if (dest_cpu < nr_cpu_ids)
  5435. goto move;
  5436. /* No more Mr. Nice Guy. */
  5437. if (dest_cpu >= nr_cpu_ids) {
  5438. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  5439. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  5440. /*
  5441. * Don't tell them about moving exiting tasks or
  5442. * kernel threads (both mm NULL), since they never
  5443. * leave kernel.
  5444. */
  5445. if (p->mm && printk_ratelimit()) {
  5446. printk(KERN_INFO "process %d (%s) no "
  5447. "longer affine to cpu%d\n",
  5448. task_pid_nr(p), p->comm, dead_cpu);
  5449. }
  5450. }
  5451. move:
  5452. /* It can have affinity changed while we were choosing. */
  5453. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  5454. goto again;
  5455. }
  5456. /*
  5457. * While a dead CPU has no uninterruptible tasks queued at this point,
  5458. * it might still have a nonzero ->nr_uninterruptible counter, because
  5459. * for performance reasons the counter is not stricly tracking tasks to
  5460. * their home CPUs. So we just add the counter to another CPU's counter,
  5461. * to keep the global sum constant after CPU-down:
  5462. */
  5463. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5464. {
  5465. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  5466. unsigned long flags;
  5467. local_irq_save(flags);
  5468. double_rq_lock(rq_src, rq_dest);
  5469. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5470. rq_src->nr_uninterruptible = 0;
  5471. double_rq_unlock(rq_src, rq_dest);
  5472. local_irq_restore(flags);
  5473. }
  5474. /* Run through task list and migrate tasks from the dead cpu. */
  5475. static void migrate_live_tasks(int src_cpu)
  5476. {
  5477. struct task_struct *p, *t;
  5478. read_lock(&tasklist_lock);
  5479. do_each_thread(t, p) {
  5480. if (p == current)
  5481. continue;
  5482. if (task_cpu(p) == src_cpu)
  5483. move_task_off_dead_cpu(src_cpu, p);
  5484. } while_each_thread(t, p);
  5485. read_unlock(&tasklist_lock);
  5486. }
  5487. /*
  5488. * Schedules idle task to be the next runnable task on current CPU.
  5489. * It does so by boosting its priority to highest possible.
  5490. * Used by CPU offline code.
  5491. */
  5492. void sched_idle_next(void)
  5493. {
  5494. int this_cpu = smp_processor_id();
  5495. struct rq *rq = cpu_rq(this_cpu);
  5496. struct task_struct *p = rq->idle;
  5497. unsigned long flags;
  5498. /* cpu has to be offline */
  5499. BUG_ON(cpu_online(this_cpu));
  5500. /*
  5501. * Strictly not necessary since rest of the CPUs are stopped by now
  5502. * and interrupts disabled on the current cpu.
  5503. */
  5504. spin_lock_irqsave(&rq->lock, flags);
  5505. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5506. update_rq_clock(rq);
  5507. activate_task(rq, p, 0);
  5508. spin_unlock_irqrestore(&rq->lock, flags);
  5509. }
  5510. /*
  5511. * Ensures that the idle task is using init_mm right before its cpu goes
  5512. * offline.
  5513. */
  5514. void idle_task_exit(void)
  5515. {
  5516. struct mm_struct *mm = current->active_mm;
  5517. BUG_ON(cpu_online(smp_processor_id()));
  5518. if (mm != &init_mm)
  5519. switch_mm(mm, &init_mm, current);
  5520. mmdrop(mm);
  5521. }
  5522. /* called under rq->lock with disabled interrupts */
  5523. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5524. {
  5525. struct rq *rq = cpu_rq(dead_cpu);
  5526. /* Must be exiting, otherwise would be on tasklist. */
  5527. BUG_ON(!p->exit_state);
  5528. /* Cannot have done final schedule yet: would have vanished. */
  5529. BUG_ON(p->state == TASK_DEAD);
  5530. get_task_struct(p);
  5531. /*
  5532. * Drop lock around migration; if someone else moves it,
  5533. * that's OK. No task can be added to this CPU, so iteration is
  5534. * fine.
  5535. */
  5536. spin_unlock_irq(&rq->lock);
  5537. move_task_off_dead_cpu(dead_cpu, p);
  5538. spin_lock_irq(&rq->lock);
  5539. put_task_struct(p);
  5540. }
  5541. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5542. static void migrate_dead_tasks(unsigned int dead_cpu)
  5543. {
  5544. struct rq *rq = cpu_rq(dead_cpu);
  5545. struct task_struct *next;
  5546. for ( ; ; ) {
  5547. if (!rq->nr_running)
  5548. break;
  5549. update_rq_clock(rq);
  5550. next = pick_next_task(rq, rq->curr);
  5551. if (!next)
  5552. break;
  5553. next->sched_class->put_prev_task(rq, next);
  5554. migrate_dead(dead_cpu, next);
  5555. }
  5556. }
  5557. #endif /* CONFIG_HOTPLUG_CPU */
  5558. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5559. static struct ctl_table sd_ctl_dir[] = {
  5560. {
  5561. .procname = "sched_domain",
  5562. .mode = 0555,
  5563. },
  5564. {0, },
  5565. };
  5566. static struct ctl_table sd_ctl_root[] = {
  5567. {
  5568. .ctl_name = CTL_KERN,
  5569. .procname = "kernel",
  5570. .mode = 0555,
  5571. .child = sd_ctl_dir,
  5572. },
  5573. {0, },
  5574. };
  5575. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5576. {
  5577. struct ctl_table *entry =
  5578. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5579. return entry;
  5580. }
  5581. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5582. {
  5583. struct ctl_table *entry;
  5584. /*
  5585. * In the intermediate directories, both the child directory and
  5586. * procname are dynamically allocated and could fail but the mode
  5587. * will always be set. In the lowest directory the names are
  5588. * static strings and all have proc handlers.
  5589. */
  5590. for (entry = *tablep; entry->mode; entry++) {
  5591. if (entry->child)
  5592. sd_free_ctl_entry(&entry->child);
  5593. if (entry->proc_handler == NULL)
  5594. kfree(entry->procname);
  5595. }
  5596. kfree(*tablep);
  5597. *tablep = NULL;
  5598. }
  5599. static void
  5600. set_table_entry(struct ctl_table *entry,
  5601. const char *procname, void *data, int maxlen,
  5602. mode_t mode, proc_handler *proc_handler)
  5603. {
  5604. entry->procname = procname;
  5605. entry->data = data;
  5606. entry->maxlen = maxlen;
  5607. entry->mode = mode;
  5608. entry->proc_handler = proc_handler;
  5609. }
  5610. static struct ctl_table *
  5611. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5612. {
  5613. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5614. if (table == NULL)
  5615. return NULL;
  5616. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5617. sizeof(long), 0644, proc_doulongvec_minmax);
  5618. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5619. sizeof(long), 0644, proc_doulongvec_minmax);
  5620. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5621. sizeof(int), 0644, proc_dointvec_minmax);
  5622. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5623. sizeof(int), 0644, proc_dointvec_minmax);
  5624. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5625. sizeof(int), 0644, proc_dointvec_minmax);
  5626. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5627. sizeof(int), 0644, proc_dointvec_minmax);
  5628. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5629. sizeof(int), 0644, proc_dointvec_minmax);
  5630. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5631. sizeof(int), 0644, proc_dointvec_minmax);
  5632. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5633. sizeof(int), 0644, proc_dointvec_minmax);
  5634. set_table_entry(&table[9], "cache_nice_tries",
  5635. &sd->cache_nice_tries,
  5636. sizeof(int), 0644, proc_dointvec_minmax);
  5637. set_table_entry(&table[10], "flags", &sd->flags,
  5638. sizeof(int), 0644, proc_dointvec_minmax);
  5639. set_table_entry(&table[11], "name", sd->name,
  5640. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5641. /* &table[12] is terminator */
  5642. return table;
  5643. }
  5644. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5645. {
  5646. struct ctl_table *entry, *table;
  5647. struct sched_domain *sd;
  5648. int domain_num = 0, i;
  5649. char buf[32];
  5650. for_each_domain(cpu, sd)
  5651. domain_num++;
  5652. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5653. if (table == NULL)
  5654. return NULL;
  5655. i = 0;
  5656. for_each_domain(cpu, sd) {
  5657. snprintf(buf, 32, "domain%d", i);
  5658. entry->procname = kstrdup(buf, GFP_KERNEL);
  5659. entry->mode = 0555;
  5660. entry->child = sd_alloc_ctl_domain_table(sd);
  5661. entry++;
  5662. i++;
  5663. }
  5664. return table;
  5665. }
  5666. static struct ctl_table_header *sd_sysctl_header;
  5667. static void register_sched_domain_sysctl(void)
  5668. {
  5669. int i, cpu_num = num_online_cpus();
  5670. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5671. char buf[32];
  5672. WARN_ON(sd_ctl_dir[0].child);
  5673. sd_ctl_dir[0].child = entry;
  5674. if (entry == NULL)
  5675. return;
  5676. for_each_online_cpu(i) {
  5677. snprintf(buf, 32, "cpu%d", i);
  5678. entry->procname = kstrdup(buf, GFP_KERNEL);
  5679. entry->mode = 0555;
  5680. entry->child = sd_alloc_ctl_cpu_table(i);
  5681. entry++;
  5682. }
  5683. WARN_ON(sd_sysctl_header);
  5684. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5685. }
  5686. /* may be called multiple times per register */
  5687. static void unregister_sched_domain_sysctl(void)
  5688. {
  5689. if (sd_sysctl_header)
  5690. unregister_sysctl_table(sd_sysctl_header);
  5691. sd_sysctl_header = NULL;
  5692. if (sd_ctl_dir[0].child)
  5693. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5694. }
  5695. #else
  5696. static void register_sched_domain_sysctl(void)
  5697. {
  5698. }
  5699. static void unregister_sched_domain_sysctl(void)
  5700. {
  5701. }
  5702. #endif
  5703. static void set_rq_online(struct rq *rq)
  5704. {
  5705. if (!rq->online) {
  5706. const struct sched_class *class;
  5707. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5708. rq->online = 1;
  5709. for_each_class(class) {
  5710. if (class->rq_online)
  5711. class->rq_online(rq);
  5712. }
  5713. }
  5714. }
  5715. static void set_rq_offline(struct rq *rq)
  5716. {
  5717. if (rq->online) {
  5718. const struct sched_class *class;
  5719. for_each_class(class) {
  5720. if (class->rq_offline)
  5721. class->rq_offline(rq);
  5722. }
  5723. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5724. rq->online = 0;
  5725. }
  5726. }
  5727. /*
  5728. * migration_call - callback that gets triggered when a CPU is added.
  5729. * Here we can start up the necessary migration thread for the new CPU.
  5730. */
  5731. static int __cpuinit
  5732. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5733. {
  5734. struct task_struct *p;
  5735. int cpu = (long)hcpu;
  5736. unsigned long flags;
  5737. struct rq *rq;
  5738. switch (action) {
  5739. case CPU_UP_PREPARE:
  5740. case CPU_UP_PREPARE_FROZEN:
  5741. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5742. if (IS_ERR(p))
  5743. return NOTIFY_BAD;
  5744. kthread_bind(p, cpu);
  5745. /* Must be high prio: stop_machine expects to yield to it. */
  5746. rq = task_rq_lock(p, &flags);
  5747. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5748. task_rq_unlock(rq, &flags);
  5749. cpu_rq(cpu)->migration_thread = p;
  5750. break;
  5751. case CPU_ONLINE:
  5752. case CPU_ONLINE_FROZEN:
  5753. /* Strictly unnecessary, as first user will wake it. */
  5754. wake_up_process(cpu_rq(cpu)->migration_thread);
  5755. /* Update our root-domain */
  5756. rq = cpu_rq(cpu);
  5757. spin_lock_irqsave(&rq->lock, flags);
  5758. if (rq->rd) {
  5759. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5760. set_rq_online(rq);
  5761. }
  5762. spin_unlock_irqrestore(&rq->lock, flags);
  5763. break;
  5764. #ifdef CONFIG_HOTPLUG_CPU
  5765. case CPU_UP_CANCELED:
  5766. case CPU_UP_CANCELED_FROZEN:
  5767. if (!cpu_rq(cpu)->migration_thread)
  5768. break;
  5769. /* Unbind it from offline cpu so it can run. Fall thru. */
  5770. kthread_bind(cpu_rq(cpu)->migration_thread,
  5771. cpumask_any(cpu_online_mask));
  5772. kthread_stop(cpu_rq(cpu)->migration_thread);
  5773. cpu_rq(cpu)->migration_thread = NULL;
  5774. break;
  5775. case CPU_DEAD:
  5776. case CPU_DEAD_FROZEN:
  5777. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5778. migrate_live_tasks(cpu);
  5779. rq = cpu_rq(cpu);
  5780. kthread_stop(rq->migration_thread);
  5781. rq->migration_thread = NULL;
  5782. /* Idle task back to normal (off runqueue, low prio) */
  5783. spin_lock_irq(&rq->lock);
  5784. update_rq_clock(rq);
  5785. deactivate_task(rq, rq->idle, 0);
  5786. rq->idle->static_prio = MAX_PRIO;
  5787. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5788. rq->idle->sched_class = &idle_sched_class;
  5789. migrate_dead_tasks(cpu);
  5790. spin_unlock_irq(&rq->lock);
  5791. cpuset_unlock();
  5792. migrate_nr_uninterruptible(rq);
  5793. BUG_ON(rq->nr_running != 0);
  5794. /*
  5795. * No need to migrate the tasks: it was best-effort if
  5796. * they didn't take sched_hotcpu_mutex. Just wake up
  5797. * the requestors.
  5798. */
  5799. spin_lock_irq(&rq->lock);
  5800. while (!list_empty(&rq->migration_queue)) {
  5801. struct migration_req *req;
  5802. req = list_entry(rq->migration_queue.next,
  5803. struct migration_req, list);
  5804. list_del_init(&req->list);
  5805. spin_unlock_irq(&rq->lock);
  5806. complete(&req->done);
  5807. spin_lock_irq(&rq->lock);
  5808. }
  5809. spin_unlock_irq(&rq->lock);
  5810. break;
  5811. case CPU_DYING:
  5812. case CPU_DYING_FROZEN:
  5813. /* Update our root-domain */
  5814. rq = cpu_rq(cpu);
  5815. spin_lock_irqsave(&rq->lock, flags);
  5816. if (rq->rd) {
  5817. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5818. set_rq_offline(rq);
  5819. }
  5820. spin_unlock_irqrestore(&rq->lock, flags);
  5821. break;
  5822. #endif
  5823. }
  5824. return NOTIFY_OK;
  5825. }
  5826. /* Register at highest priority so that task migration (migrate_all_tasks)
  5827. * happens before everything else.
  5828. */
  5829. static struct notifier_block __cpuinitdata migration_notifier = {
  5830. .notifier_call = migration_call,
  5831. .priority = 10
  5832. };
  5833. static int __init migration_init(void)
  5834. {
  5835. void *cpu = (void *)(long)smp_processor_id();
  5836. int err;
  5837. /* Start one for the boot CPU: */
  5838. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5839. BUG_ON(err == NOTIFY_BAD);
  5840. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5841. register_cpu_notifier(&migration_notifier);
  5842. return err;
  5843. }
  5844. early_initcall(migration_init);
  5845. #endif
  5846. #ifdef CONFIG_SMP
  5847. #ifdef CONFIG_SCHED_DEBUG
  5848. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5849. struct cpumask *groupmask)
  5850. {
  5851. struct sched_group *group = sd->groups;
  5852. char str[256];
  5853. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5854. cpumask_clear(groupmask);
  5855. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5856. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5857. printk("does not load-balance\n");
  5858. if (sd->parent)
  5859. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5860. " has parent");
  5861. return -1;
  5862. }
  5863. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5864. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5865. printk(KERN_ERR "ERROR: domain->span does not contain "
  5866. "CPU%d\n", cpu);
  5867. }
  5868. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5869. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5870. " CPU%d\n", cpu);
  5871. }
  5872. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5873. do {
  5874. if (!group) {
  5875. printk("\n");
  5876. printk(KERN_ERR "ERROR: group is NULL\n");
  5877. break;
  5878. }
  5879. if (!group->__cpu_power) {
  5880. printk(KERN_CONT "\n");
  5881. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5882. "set\n");
  5883. break;
  5884. }
  5885. if (!cpumask_weight(sched_group_cpus(group))) {
  5886. printk(KERN_CONT "\n");
  5887. printk(KERN_ERR "ERROR: empty group\n");
  5888. break;
  5889. }
  5890. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5891. printk(KERN_CONT "\n");
  5892. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5893. break;
  5894. }
  5895. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5896. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5897. printk(KERN_CONT " %s", str);
  5898. group = group->next;
  5899. } while (group != sd->groups);
  5900. printk(KERN_CONT "\n");
  5901. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5902. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5903. if (sd->parent &&
  5904. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5905. printk(KERN_ERR "ERROR: parent span is not a superset "
  5906. "of domain->span\n");
  5907. return 0;
  5908. }
  5909. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5910. {
  5911. cpumask_var_t groupmask;
  5912. int level = 0;
  5913. if (!sd) {
  5914. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5915. return;
  5916. }
  5917. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5918. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5919. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5920. return;
  5921. }
  5922. for (;;) {
  5923. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5924. break;
  5925. level++;
  5926. sd = sd->parent;
  5927. if (!sd)
  5928. break;
  5929. }
  5930. free_cpumask_var(groupmask);
  5931. }
  5932. #else /* !CONFIG_SCHED_DEBUG */
  5933. # define sched_domain_debug(sd, cpu) do { } while (0)
  5934. #endif /* CONFIG_SCHED_DEBUG */
  5935. static int sd_degenerate(struct sched_domain *sd)
  5936. {
  5937. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5938. return 1;
  5939. /* Following flags need at least 2 groups */
  5940. if (sd->flags & (SD_LOAD_BALANCE |
  5941. SD_BALANCE_NEWIDLE |
  5942. SD_BALANCE_FORK |
  5943. SD_BALANCE_EXEC |
  5944. SD_SHARE_CPUPOWER |
  5945. SD_SHARE_PKG_RESOURCES)) {
  5946. if (sd->groups != sd->groups->next)
  5947. return 0;
  5948. }
  5949. /* Following flags don't use groups */
  5950. if (sd->flags & (SD_WAKE_IDLE |
  5951. SD_WAKE_AFFINE |
  5952. SD_WAKE_BALANCE))
  5953. return 0;
  5954. return 1;
  5955. }
  5956. static int
  5957. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5958. {
  5959. unsigned long cflags = sd->flags, pflags = parent->flags;
  5960. if (sd_degenerate(parent))
  5961. return 1;
  5962. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5963. return 0;
  5964. /* Does parent contain flags not in child? */
  5965. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5966. if (cflags & SD_WAKE_AFFINE)
  5967. pflags &= ~SD_WAKE_BALANCE;
  5968. /* Flags needing groups don't count if only 1 group in parent */
  5969. if (parent->groups == parent->groups->next) {
  5970. pflags &= ~(SD_LOAD_BALANCE |
  5971. SD_BALANCE_NEWIDLE |
  5972. SD_BALANCE_FORK |
  5973. SD_BALANCE_EXEC |
  5974. SD_SHARE_CPUPOWER |
  5975. SD_SHARE_PKG_RESOURCES);
  5976. if (nr_node_ids == 1)
  5977. pflags &= ~SD_SERIALIZE;
  5978. }
  5979. if (~cflags & pflags)
  5980. return 0;
  5981. return 1;
  5982. }
  5983. static void free_rootdomain(struct root_domain *rd)
  5984. {
  5985. cpupri_cleanup(&rd->cpupri);
  5986. free_cpumask_var(rd->rto_mask);
  5987. free_cpumask_var(rd->online);
  5988. free_cpumask_var(rd->span);
  5989. kfree(rd);
  5990. }
  5991. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5992. {
  5993. struct root_domain *old_rd = NULL;
  5994. unsigned long flags;
  5995. spin_lock_irqsave(&rq->lock, flags);
  5996. if (rq->rd) {
  5997. old_rd = rq->rd;
  5998. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5999. set_rq_offline(rq);
  6000. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6001. /*
  6002. * If we dont want to free the old_rt yet then
  6003. * set old_rd to NULL to skip the freeing later
  6004. * in this function:
  6005. */
  6006. if (!atomic_dec_and_test(&old_rd->refcount))
  6007. old_rd = NULL;
  6008. }
  6009. atomic_inc(&rd->refcount);
  6010. rq->rd = rd;
  6011. cpumask_set_cpu(rq->cpu, rd->span);
  6012. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6013. set_rq_online(rq);
  6014. spin_unlock_irqrestore(&rq->lock, flags);
  6015. if (old_rd)
  6016. free_rootdomain(old_rd);
  6017. }
  6018. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  6019. {
  6020. memset(rd, 0, sizeof(*rd));
  6021. if (bootmem) {
  6022. alloc_bootmem_cpumask_var(&def_root_domain.span);
  6023. alloc_bootmem_cpumask_var(&def_root_domain.online);
  6024. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  6025. cpupri_init(&rd->cpupri, true);
  6026. return 0;
  6027. }
  6028. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  6029. goto out;
  6030. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  6031. goto free_span;
  6032. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  6033. goto free_online;
  6034. if (cpupri_init(&rd->cpupri, false) != 0)
  6035. goto free_rto_mask;
  6036. return 0;
  6037. free_rto_mask:
  6038. free_cpumask_var(rd->rto_mask);
  6039. free_online:
  6040. free_cpumask_var(rd->online);
  6041. free_span:
  6042. free_cpumask_var(rd->span);
  6043. out:
  6044. return -ENOMEM;
  6045. }
  6046. static void init_defrootdomain(void)
  6047. {
  6048. init_rootdomain(&def_root_domain, true);
  6049. atomic_set(&def_root_domain.refcount, 1);
  6050. }
  6051. static struct root_domain *alloc_rootdomain(void)
  6052. {
  6053. struct root_domain *rd;
  6054. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6055. if (!rd)
  6056. return NULL;
  6057. if (init_rootdomain(rd, false) != 0) {
  6058. kfree(rd);
  6059. return NULL;
  6060. }
  6061. return rd;
  6062. }
  6063. /*
  6064. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6065. * hold the hotplug lock.
  6066. */
  6067. static void
  6068. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6069. {
  6070. struct rq *rq = cpu_rq(cpu);
  6071. struct sched_domain *tmp;
  6072. /* Remove the sched domains which do not contribute to scheduling. */
  6073. for (tmp = sd; tmp; ) {
  6074. struct sched_domain *parent = tmp->parent;
  6075. if (!parent)
  6076. break;
  6077. if (sd_parent_degenerate(tmp, parent)) {
  6078. tmp->parent = parent->parent;
  6079. if (parent->parent)
  6080. parent->parent->child = tmp;
  6081. } else
  6082. tmp = tmp->parent;
  6083. }
  6084. if (sd && sd_degenerate(sd)) {
  6085. sd = sd->parent;
  6086. if (sd)
  6087. sd->child = NULL;
  6088. }
  6089. sched_domain_debug(sd, cpu);
  6090. rq_attach_root(rq, rd);
  6091. rcu_assign_pointer(rq->sd, sd);
  6092. }
  6093. /* cpus with isolated domains */
  6094. static cpumask_var_t cpu_isolated_map;
  6095. /* Setup the mask of cpus configured for isolated domains */
  6096. static int __init isolated_cpu_setup(char *str)
  6097. {
  6098. cpulist_parse(str, cpu_isolated_map);
  6099. return 1;
  6100. }
  6101. __setup("isolcpus=", isolated_cpu_setup);
  6102. /*
  6103. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6104. * to a function which identifies what group(along with sched group) a CPU
  6105. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6106. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6107. *
  6108. * init_sched_build_groups will build a circular linked list of the groups
  6109. * covered by the given span, and will set each group's ->cpumask correctly,
  6110. * and ->cpu_power to 0.
  6111. */
  6112. static void
  6113. init_sched_build_groups(const struct cpumask *span,
  6114. const struct cpumask *cpu_map,
  6115. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6116. struct sched_group **sg,
  6117. struct cpumask *tmpmask),
  6118. struct cpumask *covered, struct cpumask *tmpmask)
  6119. {
  6120. struct sched_group *first = NULL, *last = NULL;
  6121. int i;
  6122. cpumask_clear(covered);
  6123. for_each_cpu(i, span) {
  6124. struct sched_group *sg;
  6125. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6126. int j;
  6127. if (cpumask_test_cpu(i, covered))
  6128. continue;
  6129. cpumask_clear(sched_group_cpus(sg));
  6130. sg->__cpu_power = 0;
  6131. for_each_cpu(j, span) {
  6132. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6133. continue;
  6134. cpumask_set_cpu(j, covered);
  6135. cpumask_set_cpu(j, sched_group_cpus(sg));
  6136. }
  6137. if (!first)
  6138. first = sg;
  6139. if (last)
  6140. last->next = sg;
  6141. last = sg;
  6142. }
  6143. last->next = first;
  6144. }
  6145. #define SD_NODES_PER_DOMAIN 16
  6146. #ifdef CONFIG_NUMA
  6147. /**
  6148. * find_next_best_node - find the next node to include in a sched_domain
  6149. * @node: node whose sched_domain we're building
  6150. * @used_nodes: nodes already in the sched_domain
  6151. *
  6152. * Find the next node to include in a given scheduling domain. Simply
  6153. * finds the closest node not already in the @used_nodes map.
  6154. *
  6155. * Should use nodemask_t.
  6156. */
  6157. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6158. {
  6159. int i, n, val, min_val, best_node = 0;
  6160. min_val = INT_MAX;
  6161. for (i = 0; i < nr_node_ids; i++) {
  6162. /* Start at @node */
  6163. n = (node + i) % nr_node_ids;
  6164. if (!nr_cpus_node(n))
  6165. continue;
  6166. /* Skip already used nodes */
  6167. if (node_isset(n, *used_nodes))
  6168. continue;
  6169. /* Simple min distance search */
  6170. val = node_distance(node, n);
  6171. if (val < min_val) {
  6172. min_val = val;
  6173. best_node = n;
  6174. }
  6175. }
  6176. node_set(best_node, *used_nodes);
  6177. return best_node;
  6178. }
  6179. /**
  6180. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6181. * @node: node whose cpumask we're constructing
  6182. * @span: resulting cpumask
  6183. *
  6184. * Given a node, construct a good cpumask for its sched_domain to span. It
  6185. * should be one that prevents unnecessary balancing, but also spreads tasks
  6186. * out optimally.
  6187. */
  6188. static void sched_domain_node_span(int node, struct cpumask *span)
  6189. {
  6190. nodemask_t used_nodes;
  6191. int i;
  6192. cpumask_clear(span);
  6193. nodes_clear(used_nodes);
  6194. cpumask_or(span, span, cpumask_of_node(node));
  6195. node_set(node, used_nodes);
  6196. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6197. int next_node = find_next_best_node(node, &used_nodes);
  6198. cpumask_or(span, span, cpumask_of_node(next_node));
  6199. }
  6200. }
  6201. #endif /* CONFIG_NUMA */
  6202. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6203. /*
  6204. * The cpus mask in sched_group and sched_domain hangs off the end.
  6205. * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
  6206. * for nr_cpu_ids < CONFIG_NR_CPUS.
  6207. */
  6208. struct static_sched_group {
  6209. struct sched_group sg;
  6210. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6211. };
  6212. struct static_sched_domain {
  6213. struct sched_domain sd;
  6214. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6215. };
  6216. /*
  6217. * SMT sched-domains:
  6218. */
  6219. #ifdef CONFIG_SCHED_SMT
  6220. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6221. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6222. static int
  6223. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6224. struct sched_group **sg, struct cpumask *unused)
  6225. {
  6226. if (sg)
  6227. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6228. return cpu;
  6229. }
  6230. #endif /* CONFIG_SCHED_SMT */
  6231. /*
  6232. * multi-core sched-domains:
  6233. */
  6234. #ifdef CONFIG_SCHED_MC
  6235. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6236. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6237. #endif /* CONFIG_SCHED_MC */
  6238. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6239. static int
  6240. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6241. struct sched_group **sg, struct cpumask *mask)
  6242. {
  6243. int group;
  6244. cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
  6245. group = cpumask_first(mask);
  6246. if (sg)
  6247. *sg = &per_cpu(sched_group_core, group).sg;
  6248. return group;
  6249. }
  6250. #elif defined(CONFIG_SCHED_MC)
  6251. static int
  6252. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6253. struct sched_group **sg, struct cpumask *unused)
  6254. {
  6255. if (sg)
  6256. *sg = &per_cpu(sched_group_core, cpu).sg;
  6257. return cpu;
  6258. }
  6259. #endif
  6260. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6261. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6262. static int
  6263. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6264. struct sched_group **sg, struct cpumask *mask)
  6265. {
  6266. int group;
  6267. #ifdef CONFIG_SCHED_MC
  6268. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6269. group = cpumask_first(mask);
  6270. #elif defined(CONFIG_SCHED_SMT)
  6271. cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
  6272. group = cpumask_first(mask);
  6273. #else
  6274. group = cpu;
  6275. #endif
  6276. if (sg)
  6277. *sg = &per_cpu(sched_group_phys, group).sg;
  6278. return group;
  6279. }
  6280. #ifdef CONFIG_NUMA
  6281. /*
  6282. * The init_sched_build_groups can't handle what we want to do with node
  6283. * groups, so roll our own. Now each node has its own list of groups which
  6284. * gets dynamically allocated.
  6285. */
  6286. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6287. static struct sched_group ***sched_group_nodes_bycpu;
  6288. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6289. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6290. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6291. struct sched_group **sg,
  6292. struct cpumask *nodemask)
  6293. {
  6294. int group;
  6295. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6296. group = cpumask_first(nodemask);
  6297. if (sg)
  6298. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6299. return group;
  6300. }
  6301. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6302. {
  6303. struct sched_group *sg = group_head;
  6304. int j;
  6305. if (!sg)
  6306. return;
  6307. do {
  6308. for_each_cpu(j, sched_group_cpus(sg)) {
  6309. struct sched_domain *sd;
  6310. sd = &per_cpu(phys_domains, j).sd;
  6311. if (j != cpumask_first(sched_group_cpus(sd->groups))) {
  6312. /*
  6313. * Only add "power" once for each
  6314. * physical package.
  6315. */
  6316. continue;
  6317. }
  6318. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6319. }
  6320. sg = sg->next;
  6321. } while (sg != group_head);
  6322. }
  6323. #endif /* CONFIG_NUMA */
  6324. #ifdef CONFIG_NUMA
  6325. /* Free memory allocated for various sched_group structures */
  6326. static void free_sched_groups(const struct cpumask *cpu_map,
  6327. struct cpumask *nodemask)
  6328. {
  6329. int cpu, i;
  6330. for_each_cpu(cpu, cpu_map) {
  6331. struct sched_group **sched_group_nodes
  6332. = sched_group_nodes_bycpu[cpu];
  6333. if (!sched_group_nodes)
  6334. continue;
  6335. for (i = 0; i < nr_node_ids; i++) {
  6336. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6337. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6338. if (cpumask_empty(nodemask))
  6339. continue;
  6340. if (sg == NULL)
  6341. continue;
  6342. sg = sg->next;
  6343. next_sg:
  6344. oldsg = sg;
  6345. sg = sg->next;
  6346. kfree(oldsg);
  6347. if (oldsg != sched_group_nodes[i])
  6348. goto next_sg;
  6349. }
  6350. kfree(sched_group_nodes);
  6351. sched_group_nodes_bycpu[cpu] = NULL;
  6352. }
  6353. }
  6354. #else /* !CONFIG_NUMA */
  6355. static void free_sched_groups(const struct cpumask *cpu_map,
  6356. struct cpumask *nodemask)
  6357. {
  6358. }
  6359. #endif /* CONFIG_NUMA */
  6360. /*
  6361. * Initialize sched groups cpu_power.
  6362. *
  6363. * cpu_power indicates the capacity of sched group, which is used while
  6364. * distributing the load between different sched groups in a sched domain.
  6365. * Typically cpu_power for all the groups in a sched domain will be same unless
  6366. * there are asymmetries in the topology. If there are asymmetries, group
  6367. * having more cpu_power will pickup more load compared to the group having
  6368. * less cpu_power.
  6369. *
  6370. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6371. * the maximum number of tasks a group can handle in the presence of other idle
  6372. * or lightly loaded groups in the same sched domain.
  6373. */
  6374. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6375. {
  6376. struct sched_domain *child;
  6377. struct sched_group *group;
  6378. WARN_ON(!sd || !sd->groups);
  6379. if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
  6380. return;
  6381. child = sd->child;
  6382. sd->groups->__cpu_power = 0;
  6383. /*
  6384. * For perf policy, if the groups in child domain share resources
  6385. * (for example cores sharing some portions of the cache hierarchy
  6386. * or SMT), then set this domain groups cpu_power such that each group
  6387. * can handle only one task, when there are other idle groups in the
  6388. * same sched domain.
  6389. */
  6390. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6391. (child->flags &
  6392. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6393. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6394. return;
  6395. }
  6396. /*
  6397. * add cpu_power of each child group to this groups cpu_power
  6398. */
  6399. group = child->groups;
  6400. do {
  6401. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6402. group = group->next;
  6403. } while (group != child->groups);
  6404. }
  6405. /*
  6406. * Initializers for schedule domains
  6407. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6408. */
  6409. #ifdef CONFIG_SCHED_DEBUG
  6410. # define SD_INIT_NAME(sd, type) sd->name = #type
  6411. #else
  6412. # define SD_INIT_NAME(sd, type) do { } while (0)
  6413. #endif
  6414. #define SD_INIT(sd, type) sd_init_##type(sd)
  6415. #define SD_INIT_FUNC(type) \
  6416. static noinline void sd_init_##type(struct sched_domain *sd) \
  6417. { \
  6418. memset(sd, 0, sizeof(*sd)); \
  6419. *sd = SD_##type##_INIT; \
  6420. sd->level = SD_LV_##type; \
  6421. SD_INIT_NAME(sd, type); \
  6422. }
  6423. SD_INIT_FUNC(CPU)
  6424. #ifdef CONFIG_NUMA
  6425. SD_INIT_FUNC(ALLNODES)
  6426. SD_INIT_FUNC(NODE)
  6427. #endif
  6428. #ifdef CONFIG_SCHED_SMT
  6429. SD_INIT_FUNC(SIBLING)
  6430. #endif
  6431. #ifdef CONFIG_SCHED_MC
  6432. SD_INIT_FUNC(MC)
  6433. #endif
  6434. static int default_relax_domain_level = -1;
  6435. static int __init setup_relax_domain_level(char *str)
  6436. {
  6437. unsigned long val;
  6438. val = simple_strtoul(str, NULL, 0);
  6439. if (val < SD_LV_MAX)
  6440. default_relax_domain_level = val;
  6441. return 1;
  6442. }
  6443. __setup("relax_domain_level=", setup_relax_domain_level);
  6444. static void set_domain_attribute(struct sched_domain *sd,
  6445. struct sched_domain_attr *attr)
  6446. {
  6447. int request;
  6448. if (!attr || attr->relax_domain_level < 0) {
  6449. if (default_relax_domain_level < 0)
  6450. return;
  6451. else
  6452. request = default_relax_domain_level;
  6453. } else
  6454. request = attr->relax_domain_level;
  6455. if (request < sd->level) {
  6456. /* turn off idle balance on this domain */
  6457. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6458. } else {
  6459. /* turn on idle balance on this domain */
  6460. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6461. }
  6462. }
  6463. /*
  6464. * Build sched domains for a given set of cpus and attach the sched domains
  6465. * to the individual cpus
  6466. */
  6467. static int __build_sched_domains(const struct cpumask *cpu_map,
  6468. struct sched_domain_attr *attr)
  6469. {
  6470. int i, err = -ENOMEM;
  6471. struct root_domain *rd;
  6472. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  6473. tmpmask;
  6474. #ifdef CONFIG_NUMA
  6475. cpumask_var_t domainspan, covered, notcovered;
  6476. struct sched_group **sched_group_nodes = NULL;
  6477. int sd_allnodes = 0;
  6478. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  6479. goto out;
  6480. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  6481. goto free_domainspan;
  6482. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  6483. goto free_covered;
  6484. #endif
  6485. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  6486. goto free_notcovered;
  6487. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  6488. goto free_nodemask;
  6489. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  6490. goto free_this_sibling_map;
  6491. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  6492. goto free_this_core_map;
  6493. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  6494. goto free_send_covered;
  6495. #ifdef CONFIG_NUMA
  6496. /*
  6497. * Allocate the per-node list of sched groups
  6498. */
  6499. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6500. GFP_KERNEL);
  6501. if (!sched_group_nodes) {
  6502. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6503. goto free_tmpmask;
  6504. }
  6505. #endif
  6506. rd = alloc_rootdomain();
  6507. if (!rd) {
  6508. printk(KERN_WARNING "Cannot alloc root domain\n");
  6509. goto free_sched_groups;
  6510. }
  6511. #ifdef CONFIG_NUMA
  6512. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  6513. #endif
  6514. /*
  6515. * Set up domains for cpus specified by the cpu_map.
  6516. */
  6517. for_each_cpu(i, cpu_map) {
  6518. struct sched_domain *sd = NULL, *p;
  6519. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  6520. #ifdef CONFIG_NUMA
  6521. if (cpumask_weight(cpu_map) >
  6522. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  6523. sd = &per_cpu(allnodes_domains, i).sd;
  6524. SD_INIT(sd, ALLNODES);
  6525. set_domain_attribute(sd, attr);
  6526. cpumask_copy(sched_domain_span(sd), cpu_map);
  6527. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6528. p = sd;
  6529. sd_allnodes = 1;
  6530. } else
  6531. p = NULL;
  6532. sd = &per_cpu(node_domains, i).sd;
  6533. SD_INIT(sd, NODE);
  6534. set_domain_attribute(sd, attr);
  6535. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6536. sd->parent = p;
  6537. if (p)
  6538. p->child = sd;
  6539. cpumask_and(sched_domain_span(sd),
  6540. sched_domain_span(sd), cpu_map);
  6541. #endif
  6542. p = sd;
  6543. sd = &per_cpu(phys_domains, i).sd;
  6544. SD_INIT(sd, CPU);
  6545. set_domain_attribute(sd, attr);
  6546. cpumask_copy(sched_domain_span(sd), nodemask);
  6547. sd->parent = p;
  6548. if (p)
  6549. p->child = sd;
  6550. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6551. #ifdef CONFIG_SCHED_MC
  6552. p = sd;
  6553. sd = &per_cpu(core_domains, i).sd;
  6554. SD_INIT(sd, MC);
  6555. set_domain_attribute(sd, attr);
  6556. cpumask_and(sched_domain_span(sd), cpu_map,
  6557. cpu_coregroup_mask(i));
  6558. sd->parent = p;
  6559. p->child = sd;
  6560. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6561. #endif
  6562. #ifdef CONFIG_SCHED_SMT
  6563. p = sd;
  6564. sd = &per_cpu(cpu_domains, i).sd;
  6565. SD_INIT(sd, SIBLING);
  6566. set_domain_attribute(sd, attr);
  6567. cpumask_and(sched_domain_span(sd),
  6568. &per_cpu(cpu_sibling_map, i), cpu_map);
  6569. sd->parent = p;
  6570. p->child = sd;
  6571. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6572. #endif
  6573. }
  6574. #ifdef CONFIG_SCHED_SMT
  6575. /* Set up CPU (sibling) groups */
  6576. for_each_cpu(i, cpu_map) {
  6577. cpumask_and(this_sibling_map,
  6578. &per_cpu(cpu_sibling_map, i), cpu_map);
  6579. if (i != cpumask_first(this_sibling_map))
  6580. continue;
  6581. init_sched_build_groups(this_sibling_map, cpu_map,
  6582. &cpu_to_cpu_group,
  6583. send_covered, tmpmask);
  6584. }
  6585. #endif
  6586. #ifdef CONFIG_SCHED_MC
  6587. /* Set up multi-core groups */
  6588. for_each_cpu(i, cpu_map) {
  6589. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  6590. if (i != cpumask_first(this_core_map))
  6591. continue;
  6592. init_sched_build_groups(this_core_map, cpu_map,
  6593. &cpu_to_core_group,
  6594. send_covered, tmpmask);
  6595. }
  6596. #endif
  6597. /* Set up physical groups */
  6598. for (i = 0; i < nr_node_ids; i++) {
  6599. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6600. if (cpumask_empty(nodemask))
  6601. continue;
  6602. init_sched_build_groups(nodemask, cpu_map,
  6603. &cpu_to_phys_group,
  6604. send_covered, tmpmask);
  6605. }
  6606. #ifdef CONFIG_NUMA
  6607. /* Set up node groups */
  6608. if (sd_allnodes) {
  6609. init_sched_build_groups(cpu_map, cpu_map,
  6610. &cpu_to_allnodes_group,
  6611. send_covered, tmpmask);
  6612. }
  6613. for (i = 0; i < nr_node_ids; i++) {
  6614. /* Set up node groups */
  6615. struct sched_group *sg, *prev;
  6616. int j;
  6617. cpumask_clear(covered);
  6618. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6619. if (cpumask_empty(nodemask)) {
  6620. sched_group_nodes[i] = NULL;
  6621. continue;
  6622. }
  6623. sched_domain_node_span(i, domainspan);
  6624. cpumask_and(domainspan, domainspan, cpu_map);
  6625. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6626. GFP_KERNEL, i);
  6627. if (!sg) {
  6628. printk(KERN_WARNING "Can not alloc domain group for "
  6629. "node %d\n", i);
  6630. goto error;
  6631. }
  6632. sched_group_nodes[i] = sg;
  6633. for_each_cpu(j, nodemask) {
  6634. struct sched_domain *sd;
  6635. sd = &per_cpu(node_domains, j).sd;
  6636. sd->groups = sg;
  6637. }
  6638. sg->__cpu_power = 0;
  6639. cpumask_copy(sched_group_cpus(sg), nodemask);
  6640. sg->next = sg;
  6641. cpumask_or(covered, covered, nodemask);
  6642. prev = sg;
  6643. for (j = 0; j < nr_node_ids; j++) {
  6644. int n = (i + j) % nr_node_ids;
  6645. cpumask_complement(notcovered, covered);
  6646. cpumask_and(tmpmask, notcovered, cpu_map);
  6647. cpumask_and(tmpmask, tmpmask, domainspan);
  6648. if (cpumask_empty(tmpmask))
  6649. break;
  6650. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  6651. if (cpumask_empty(tmpmask))
  6652. continue;
  6653. sg = kmalloc_node(sizeof(struct sched_group) +
  6654. cpumask_size(),
  6655. GFP_KERNEL, i);
  6656. if (!sg) {
  6657. printk(KERN_WARNING
  6658. "Can not alloc domain group for node %d\n", j);
  6659. goto error;
  6660. }
  6661. sg->__cpu_power = 0;
  6662. cpumask_copy(sched_group_cpus(sg), tmpmask);
  6663. sg->next = prev->next;
  6664. cpumask_or(covered, covered, tmpmask);
  6665. prev->next = sg;
  6666. prev = sg;
  6667. }
  6668. }
  6669. #endif
  6670. /* Calculate CPU power for physical packages and nodes */
  6671. #ifdef CONFIG_SCHED_SMT
  6672. for_each_cpu(i, cpu_map) {
  6673. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  6674. init_sched_groups_power(i, sd);
  6675. }
  6676. #endif
  6677. #ifdef CONFIG_SCHED_MC
  6678. for_each_cpu(i, cpu_map) {
  6679. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  6680. init_sched_groups_power(i, sd);
  6681. }
  6682. #endif
  6683. for_each_cpu(i, cpu_map) {
  6684. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  6685. init_sched_groups_power(i, sd);
  6686. }
  6687. #ifdef CONFIG_NUMA
  6688. for (i = 0; i < nr_node_ids; i++)
  6689. init_numa_sched_groups_power(sched_group_nodes[i]);
  6690. if (sd_allnodes) {
  6691. struct sched_group *sg;
  6692. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6693. tmpmask);
  6694. init_numa_sched_groups_power(sg);
  6695. }
  6696. #endif
  6697. /* Attach the domains */
  6698. for_each_cpu(i, cpu_map) {
  6699. struct sched_domain *sd;
  6700. #ifdef CONFIG_SCHED_SMT
  6701. sd = &per_cpu(cpu_domains, i).sd;
  6702. #elif defined(CONFIG_SCHED_MC)
  6703. sd = &per_cpu(core_domains, i).sd;
  6704. #else
  6705. sd = &per_cpu(phys_domains, i).sd;
  6706. #endif
  6707. cpu_attach_domain(sd, rd, i);
  6708. }
  6709. err = 0;
  6710. free_tmpmask:
  6711. free_cpumask_var(tmpmask);
  6712. free_send_covered:
  6713. free_cpumask_var(send_covered);
  6714. free_this_core_map:
  6715. free_cpumask_var(this_core_map);
  6716. free_this_sibling_map:
  6717. free_cpumask_var(this_sibling_map);
  6718. free_nodemask:
  6719. free_cpumask_var(nodemask);
  6720. free_notcovered:
  6721. #ifdef CONFIG_NUMA
  6722. free_cpumask_var(notcovered);
  6723. free_covered:
  6724. free_cpumask_var(covered);
  6725. free_domainspan:
  6726. free_cpumask_var(domainspan);
  6727. out:
  6728. #endif
  6729. return err;
  6730. free_sched_groups:
  6731. #ifdef CONFIG_NUMA
  6732. kfree(sched_group_nodes);
  6733. #endif
  6734. goto free_tmpmask;
  6735. #ifdef CONFIG_NUMA
  6736. error:
  6737. free_sched_groups(cpu_map, tmpmask);
  6738. free_rootdomain(rd);
  6739. goto free_tmpmask;
  6740. #endif
  6741. }
  6742. static int build_sched_domains(const struct cpumask *cpu_map)
  6743. {
  6744. return __build_sched_domains(cpu_map, NULL);
  6745. }
  6746. static struct cpumask *doms_cur; /* current sched domains */
  6747. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6748. static struct sched_domain_attr *dattr_cur;
  6749. /* attribues of custom domains in 'doms_cur' */
  6750. /*
  6751. * Special case: If a kmalloc of a doms_cur partition (array of
  6752. * cpumask) fails, then fallback to a single sched domain,
  6753. * as determined by the single cpumask fallback_doms.
  6754. */
  6755. static cpumask_var_t fallback_doms;
  6756. /*
  6757. * arch_update_cpu_topology lets virtualized architectures update the
  6758. * cpu core maps. It is supposed to return 1 if the topology changed
  6759. * or 0 if it stayed the same.
  6760. */
  6761. int __attribute__((weak)) arch_update_cpu_topology(void)
  6762. {
  6763. return 0;
  6764. }
  6765. /*
  6766. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6767. * For now this just excludes isolated cpus, but could be used to
  6768. * exclude other special cases in the future.
  6769. */
  6770. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6771. {
  6772. int err;
  6773. arch_update_cpu_topology();
  6774. ndoms_cur = 1;
  6775. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  6776. if (!doms_cur)
  6777. doms_cur = fallback_doms;
  6778. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  6779. dattr_cur = NULL;
  6780. err = build_sched_domains(doms_cur);
  6781. register_sched_domain_sysctl();
  6782. return err;
  6783. }
  6784. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6785. struct cpumask *tmpmask)
  6786. {
  6787. free_sched_groups(cpu_map, tmpmask);
  6788. }
  6789. /*
  6790. * Detach sched domains from a group of cpus specified in cpu_map
  6791. * These cpus will now be attached to the NULL domain
  6792. */
  6793. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6794. {
  6795. /* Save because hotplug lock held. */
  6796. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6797. int i;
  6798. for_each_cpu(i, cpu_map)
  6799. cpu_attach_domain(NULL, &def_root_domain, i);
  6800. synchronize_sched();
  6801. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6802. }
  6803. /* handle null as "default" */
  6804. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6805. struct sched_domain_attr *new, int idx_new)
  6806. {
  6807. struct sched_domain_attr tmp;
  6808. /* fast path */
  6809. if (!new && !cur)
  6810. return 1;
  6811. tmp = SD_ATTR_INIT;
  6812. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6813. new ? (new + idx_new) : &tmp,
  6814. sizeof(struct sched_domain_attr));
  6815. }
  6816. /*
  6817. * Partition sched domains as specified by the 'ndoms_new'
  6818. * cpumasks in the array doms_new[] of cpumasks. This compares
  6819. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6820. * It destroys each deleted domain and builds each new domain.
  6821. *
  6822. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  6823. * The masks don't intersect (don't overlap.) We should setup one
  6824. * sched domain for each mask. CPUs not in any of the cpumasks will
  6825. * not be load balanced. If the same cpumask appears both in the
  6826. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6827. * it as it is.
  6828. *
  6829. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6830. * ownership of it and will kfree it when done with it. If the caller
  6831. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  6832. * ndoms_new == 1, and partition_sched_domains() will fallback to
  6833. * the single partition 'fallback_doms', it also forces the domains
  6834. * to be rebuilt.
  6835. *
  6836. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6837. * ndoms_new == 0 is a special case for destroying existing domains,
  6838. * and it will not create the default domain.
  6839. *
  6840. * Call with hotplug lock held
  6841. */
  6842. /* FIXME: Change to struct cpumask *doms_new[] */
  6843. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  6844. struct sched_domain_attr *dattr_new)
  6845. {
  6846. int i, j, n;
  6847. int new_topology;
  6848. mutex_lock(&sched_domains_mutex);
  6849. /* always unregister in case we don't destroy any domains */
  6850. unregister_sched_domain_sysctl();
  6851. /* Let architecture update cpu core mappings. */
  6852. new_topology = arch_update_cpu_topology();
  6853. n = doms_new ? ndoms_new : 0;
  6854. /* Destroy deleted domains */
  6855. for (i = 0; i < ndoms_cur; i++) {
  6856. for (j = 0; j < n && !new_topology; j++) {
  6857. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  6858. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6859. goto match1;
  6860. }
  6861. /* no match - a current sched domain not in new doms_new[] */
  6862. detach_destroy_domains(doms_cur + i);
  6863. match1:
  6864. ;
  6865. }
  6866. if (doms_new == NULL) {
  6867. ndoms_cur = 0;
  6868. doms_new = fallback_doms;
  6869. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  6870. WARN_ON_ONCE(dattr_new);
  6871. }
  6872. /* Build new domains */
  6873. for (i = 0; i < ndoms_new; i++) {
  6874. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6875. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  6876. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6877. goto match2;
  6878. }
  6879. /* no match - add a new doms_new */
  6880. __build_sched_domains(doms_new + i,
  6881. dattr_new ? dattr_new + i : NULL);
  6882. match2:
  6883. ;
  6884. }
  6885. /* Remember the new sched domains */
  6886. if (doms_cur != fallback_doms)
  6887. kfree(doms_cur);
  6888. kfree(dattr_cur); /* kfree(NULL) is safe */
  6889. doms_cur = doms_new;
  6890. dattr_cur = dattr_new;
  6891. ndoms_cur = ndoms_new;
  6892. register_sched_domain_sysctl();
  6893. mutex_unlock(&sched_domains_mutex);
  6894. }
  6895. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6896. static void arch_reinit_sched_domains(void)
  6897. {
  6898. get_online_cpus();
  6899. /* Destroy domains first to force the rebuild */
  6900. partition_sched_domains(0, NULL, NULL);
  6901. rebuild_sched_domains();
  6902. put_online_cpus();
  6903. }
  6904. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6905. {
  6906. unsigned int level = 0;
  6907. if (sscanf(buf, "%u", &level) != 1)
  6908. return -EINVAL;
  6909. /*
  6910. * level is always be positive so don't check for
  6911. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6912. * What happens on 0 or 1 byte write,
  6913. * need to check for count as well?
  6914. */
  6915. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6916. return -EINVAL;
  6917. if (smt)
  6918. sched_smt_power_savings = level;
  6919. else
  6920. sched_mc_power_savings = level;
  6921. arch_reinit_sched_domains();
  6922. return count;
  6923. }
  6924. #ifdef CONFIG_SCHED_MC
  6925. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6926. char *page)
  6927. {
  6928. return sprintf(page, "%u\n", sched_mc_power_savings);
  6929. }
  6930. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6931. const char *buf, size_t count)
  6932. {
  6933. return sched_power_savings_store(buf, count, 0);
  6934. }
  6935. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6936. sched_mc_power_savings_show,
  6937. sched_mc_power_savings_store);
  6938. #endif
  6939. #ifdef CONFIG_SCHED_SMT
  6940. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6941. char *page)
  6942. {
  6943. return sprintf(page, "%u\n", sched_smt_power_savings);
  6944. }
  6945. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6946. const char *buf, size_t count)
  6947. {
  6948. return sched_power_savings_store(buf, count, 1);
  6949. }
  6950. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6951. sched_smt_power_savings_show,
  6952. sched_smt_power_savings_store);
  6953. #endif
  6954. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6955. {
  6956. int err = 0;
  6957. #ifdef CONFIG_SCHED_SMT
  6958. if (smt_capable())
  6959. err = sysfs_create_file(&cls->kset.kobj,
  6960. &attr_sched_smt_power_savings.attr);
  6961. #endif
  6962. #ifdef CONFIG_SCHED_MC
  6963. if (!err && mc_capable())
  6964. err = sysfs_create_file(&cls->kset.kobj,
  6965. &attr_sched_mc_power_savings.attr);
  6966. #endif
  6967. return err;
  6968. }
  6969. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6970. #ifndef CONFIG_CPUSETS
  6971. /*
  6972. * Add online and remove offline CPUs from the scheduler domains.
  6973. * When cpusets are enabled they take over this function.
  6974. */
  6975. static int update_sched_domains(struct notifier_block *nfb,
  6976. unsigned long action, void *hcpu)
  6977. {
  6978. switch (action) {
  6979. case CPU_ONLINE:
  6980. case CPU_ONLINE_FROZEN:
  6981. case CPU_DEAD:
  6982. case CPU_DEAD_FROZEN:
  6983. partition_sched_domains(1, NULL, NULL);
  6984. return NOTIFY_OK;
  6985. default:
  6986. return NOTIFY_DONE;
  6987. }
  6988. }
  6989. #endif
  6990. static int update_runtime(struct notifier_block *nfb,
  6991. unsigned long action, void *hcpu)
  6992. {
  6993. int cpu = (int)(long)hcpu;
  6994. switch (action) {
  6995. case CPU_DOWN_PREPARE:
  6996. case CPU_DOWN_PREPARE_FROZEN:
  6997. disable_runtime(cpu_rq(cpu));
  6998. return NOTIFY_OK;
  6999. case CPU_DOWN_FAILED:
  7000. case CPU_DOWN_FAILED_FROZEN:
  7001. case CPU_ONLINE:
  7002. case CPU_ONLINE_FROZEN:
  7003. enable_runtime(cpu_rq(cpu));
  7004. return NOTIFY_OK;
  7005. default:
  7006. return NOTIFY_DONE;
  7007. }
  7008. }
  7009. void __init sched_init_smp(void)
  7010. {
  7011. cpumask_var_t non_isolated_cpus;
  7012. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7013. #if defined(CONFIG_NUMA)
  7014. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7015. GFP_KERNEL);
  7016. BUG_ON(sched_group_nodes_bycpu == NULL);
  7017. #endif
  7018. get_online_cpus();
  7019. mutex_lock(&sched_domains_mutex);
  7020. arch_init_sched_domains(cpu_online_mask);
  7021. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7022. if (cpumask_empty(non_isolated_cpus))
  7023. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7024. mutex_unlock(&sched_domains_mutex);
  7025. put_online_cpus();
  7026. #ifndef CONFIG_CPUSETS
  7027. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7028. hotcpu_notifier(update_sched_domains, 0);
  7029. #endif
  7030. /* RT runtime code needs to handle some hotplug events */
  7031. hotcpu_notifier(update_runtime, 0);
  7032. init_hrtick();
  7033. /* Move init over to a non-isolated CPU */
  7034. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7035. BUG();
  7036. sched_init_granularity();
  7037. free_cpumask_var(non_isolated_cpus);
  7038. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7039. init_sched_rt_class();
  7040. }
  7041. #else
  7042. void __init sched_init_smp(void)
  7043. {
  7044. sched_init_granularity();
  7045. }
  7046. #endif /* CONFIG_SMP */
  7047. int in_sched_functions(unsigned long addr)
  7048. {
  7049. return in_lock_functions(addr) ||
  7050. (addr >= (unsigned long)__sched_text_start
  7051. && addr < (unsigned long)__sched_text_end);
  7052. }
  7053. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7054. {
  7055. cfs_rq->tasks_timeline = RB_ROOT;
  7056. INIT_LIST_HEAD(&cfs_rq->tasks);
  7057. #ifdef CONFIG_FAIR_GROUP_SCHED
  7058. cfs_rq->rq = rq;
  7059. #endif
  7060. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7061. }
  7062. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7063. {
  7064. struct rt_prio_array *array;
  7065. int i;
  7066. array = &rt_rq->active;
  7067. for (i = 0; i < MAX_RT_PRIO; i++) {
  7068. INIT_LIST_HEAD(array->queue + i);
  7069. __clear_bit(i, array->bitmap);
  7070. }
  7071. /* delimiter for bitsearch: */
  7072. __set_bit(MAX_RT_PRIO, array->bitmap);
  7073. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7074. rt_rq->highest_prio = MAX_RT_PRIO;
  7075. #endif
  7076. #ifdef CONFIG_SMP
  7077. rt_rq->rt_nr_migratory = 0;
  7078. rt_rq->overloaded = 0;
  7079. #endif
  7080. rt_rq->rt_time = 0;
  7081. rt_rq->rt_throttled = 0;
  7082. rt_rq->rt_runtime = 0;
  7083. spin_lock_init(&rt_rq->rt_runtime_lock);
  7084. #ifdef CONFIG_RT_GROUP_SCHED
  7085. rt_rq->rt_nr_boosted = 0;
  7086. rt_rq->rq = rq;
  7087. #endif
  7088. }
  7089. #ifdef CONFIG_FAIR_GROUP_SCHED
  7090. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7091. struct sched_entity *se, int cpu, int add,
  7092. struct sched_entity *parent)
  7093. {
  7094. struct rq *rq = cpu_rq(cpu);
  7095. tg->cfs_rq[cpu] = cfs_rq;
  7096. init_cfs_rq(cfs_rq, rq);
  7097. cfs_rq->tg = tg;
  7098. if (add)
  7099. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7100. tg->se[cpu] = se;
  7101. /* se could be NULL for init_task_group */
  7102. if (!se)
  7103. return;
  7104. if (!parent)
  7105. se->cfs_rq = &rq->cfs;
  7106. else
  7107. se->cfs_rq = parent->my_q;
  7108. se->my_q = cfs_rq;
  7109. se->load.weight = tg->shares;
  7110. se->load.inv_weight = 0;
  7111. se->parent = parent;
  7112. }
  7113. #endif
  7114. #ifdef CONFIG_RT_GROUP_SCHED
  7115. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7116. struct sched_rt_entity *rt_se, int cpu, int add,
  7117. struct sched_rt_entity *parent)
  7118. {
  7119. struct rq *rq = cpu_rq(cpu);
  7120. tg->rt_rq[cpu] = rt_rq;
  7121. init_rt_rq(rt_rq, rq);
  7122. rt_rq->tg = tg;
  7123. rt_rq->rt_se = rt_se;
  7124. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7125. if (add)
  7126. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7127. tg->rt_se[cpu] = rt_se;
  7128. if (!rt_se)
  7129. return;
  7130. if (!parent)
  7131. rt_se->rt_rq = &rq->rt;
  7132. else
  7133. rt_se->rt_rq = parent->my_q;
  7134. rt_se->my_q = rt_rq;
  7135. rt_se->parent = parent;
  7136. INIT_LIST_HEAD(&rt_se->run_list);
  7137. }
  7138. #endif
  7139. void __init sched_init(void)
  7140. {
  7141. int i, j;
  7142. unsigned long alloc_size = 0, ptr;
  7143. #ifdef CONFIG_FAIR_GROUP_SCHED
  7144. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7145. #endif
  7146. #ifdef CONFIG_RT_GROUP_SCHED
  7147. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7148. #endif
  7149. #ifdef CONFIG_USER_SCHED
  7150. alloc_size *= 2;
  7151. #endif
  7152. /*
  7153. * As sched_init() is called before page_alloc is setup,
  7154. * we use alloc_bootmem().
  7155. */
  7156. if (alloc_size) {
  7157. ptr = (unsigned long)alloc_bootmem(alloc_size);
  7158. #ifdef CONFIG_FAIR_GROUP_SCHED
  7159. init_task_group.se = (struct sched_entity **)ptr;
  7160. ptr += nr_cpu_ids * sizeof(void **);
  7161. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7162. ptr += nr_cpu_ids * sizeof(void **);
  7163. #ifdef CONFIG_USER_SCHED
  7164. root_task_group.se = (struct sched_entity **)ptr;
  7165. ptr += nr_cpu_ids * sizeof(void **);
  7166. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7167. ptr += nr_cpu_ids * sizeof(void **);
  7168. #endif /* CONFIG_USER_SCHED */
  7169. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7170. #ifdef CONFIG_RT_GROUP_SCHED
  7171. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7172. ptr += nr_cpu_ids * sizeof(void **);
  7173. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7174. ptr += nr_cpu_ids * sizeof(void **);
  7175. #ifdef CONFIG_USER_SCHED
  7176. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7177. ptr += nr_cpu_ids * sizeof(void **);
  7178. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7179. ptr += nr_cpu_ids * sizeof(void **);
  7180. #endif /* CONFIG_USER_SCHED */
  7181. #endif /* CONFIG_RT_GROUP_SCHED */
  7182. }
  7183. #ifdef CONFIG_SMP
  7184. init_defrootdomain();
  7185. #endif
  7186. init_rt_bandwidth(&def_rt_bandwidth,
  7187. global_rt_period(), global_rt_runtime());
  7188. #ifdef CONFIG_RT_GROUP_SCHED
  7189. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7190. global_rt_period(), global_rt_runtime());
  7191. #ifdef CONFIG_USER_SCHED
  7192. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7193. global_rt_period(), RUNTIME_INF);
  7194. #endif /* CONFIG_USER_SCHED */
  7195. #endif /* CONFIG_RT_GROUP_SCHED */
  7196. #ifdef CONFIG_GROUP_SCHED
  7197. list_add(&init_task_group.list, &task_groups);
  7198. INIT_LIST_HEAD(&init_task_group.children);
  7199. #ifdef CONFIG_USER_SCHED
  7200. INIT_LIST_HEAD(&root_task_group.children);
  7201. init_task_group.parent = &root_task_group;
  7202. list_add(&init_task_group.siblings, &root_task_group.children);
  7203. #endif /* CONFIG_USER_SCHED */
  7204. #endif /* CONFIG_GROUP_SCHED */
  7205. for_each_possible_cpu(i) {
  7206. struct rq *rq;
  7207. rq = cpu_rq(i);
  7208. spin_lock_init(&rq->lock);
  7209. rq->nr_running = 0;
  7210. init_cfs_rq(&rq->cfs, rq);
  7211. init_rt_rq(&rq->rt, rq);
  7212. #ifdef CONFIG_FAIR_GROUP_SCHED
  7213. init_task_group.shares = init_task_group_load;
  7214. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7215. #ifdef CONFIG_CGROUP_SCHED
  7216. /*
  7217. * How much cpu bandwidth does init_task_group get?
  7218. *
  7219. * In case of task-groups formed thr' the cgroup filesystem, it
  7220. * gets 100% of the cpu resources in the system. This overall
  7221. * system cpu resource is divided among the tasks of
  7222. * init_task_group and its child task-groups in a fair manner,
  7223. * based on each entity's (task or task-group's) weight
  7224. * (se->load.weight).
  7225. *
  7226. * In other words, if init_task_group has 10 tasks of weight
  7227. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7228. * then A0's share of the cpu resource is:
  7229. *
  7230. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7231. *
  7232. * We achieve this by letting init_task_group's tasks sit
  7233. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7234. */
  7235. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7236. #elif defined CONFIG_USER_SCHED
  7237. root_task_group.shares = NICE_0_LOAD;
  7238. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7239. /*
  7240. * In case of task-groups formed thr' the user id of tasks,
  7241. * init_task_group represents tasks belonging to root user.
  7242. * Hence it forms a sibling of all subsequent groups formed.
  7243. * In this case, init_task_group gets only a fraction of overall
  7244. * system cpu resource, based on the weight assigned to root
  7245. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7246. * by letting tasks of init_task_group sit in a separate cfs_rq
  7247. * (init_cfs_rq) and having one entity represent this group of
  7248. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7249. */
  7250. init_tg_cfs_entry(&init_task_group,
  7251. &per_cpu(init_cfs_rq, i),
  7252. &per_cpu(init_sched_entity, i), i, 1,
  7253. root_task_group.se[i]);
  7254. #endif
  7255. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7256. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7257. #ifdef CONFIG_RT_GROUP_SCHED
  7258. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7259. #ifdef CONFIG_CGROUP_SCHED
  7260. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7261. #elif defined CONFIG_USER_SCHED
  7262. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7263. init_tg_rt_entry(&init_task_group,
  7264. &per_cpu(init_rt_rq, i),
  7265. &per_cpu(init_sched_rt_entity, i), i, 1,
  7266. root_task_group.rt_se[i]);
  7267. #endif
  7268. #endif
  7269. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7270. rq->cpu_load[j] = 0;
  7271. #ifdef CONFIG_SMP
  7272. rq->sd = NULL;
  7273. rq->rd = NULL;
  7274. rq->active_balance = 0;
  7275. rq->next_balance = jiffies;
  7276. rq->push_cpu = 0;
  7277. rq->cpu = i;
  7278. rq->online = 0;
  7279. rq->migration_thread = NULL;
  7280. INIT_LIST_HEAD(&rq->migration_queue);
  7281. rq_attach_root(rq, &def_root_domain);
  7282. #endif
  7283. init_rq_hrtick(rq);
  7284. atomic_set(&rq->nr_iowait, 0);
  7285. }
  7286. set_load_weight(&init_task);
  7287. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7288. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7289. #endif
  7290. #ifdef CONFIG_SMP
  7291. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7292. #endif
  7293. #ifdef CONFIG_RT_MUTEXES
  7294. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7295. #endif
  7296. /*
  7297. * The boot idle thread does lazy MMU switching as well:
  7298. */
  7299. atomic_inc(&init_mm.mm_count);
  7300. enter_lazy_tlb(&init_mm, current);
  7301. /*
  7302. * Make us the idle thread. Technically, schedule() should not be
  7303. * called from this thread, however somewhere below it might be,
  7304. * but because we are the idle thread, we just pick up running again
  7305. * when this runqueue becomes "idle".
  7306. */
  7307. init_idle(current, smp_processor_id());
  7308. /*
  7309. * During early bootup we pretend to be a normal task:
  7310. */
  7311. current->sched_class = &fair_sched_class;
  7312. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7313. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7314. #ifdef CONFIG_SMP
  7315. #ifdef CONFIG_NO_HZ
  7316. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7317. #endif
  7318. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7319. #endif /* SMP */
  7320. scheduler_running = 1;
  7321. }
  7322. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7323. void __might_sleep(char *file, int line)
  7324. {
  7325. #ifdef in_atomic
  7326. static unsigned long prev_jiffy; /* ratelimiting */
  7327. if ((!in_atomic() && !irqs_disabled()) ||
  7328. system_state != SYSTEM_RUNNING || oops_in_progress)
  7329. return;
  7330. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7331. return;
  7332. prev_jiffy = jiffies;
  7333. printk(KERN_ERR
  7334. "BUG: sleeping function called from invalid context at %s:%d\n",
  7335. file, line);
  7336. printk(KERN_ERR
  7337. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7338. in_atomic(), irqs_disabled(),
  7339. current->pid, current->comm);
  7340. debug_show_held_locks(current);
  7341. if (irqs_disabled())
  7342. print_irqtrace_events(current);
  7343. dump_stack();
  7344. #endif
  7345. }
  7346. EXPORT_SYMBOL(__might_sleep);
  7347. #endif
  7348. #ifdef CONFIG_MAGIC_SYSRQ
  7349. static void normalize_task(struct rq *rq, struct task_struct *p)
  7350. {
  7351. int on_rq;
  7352. update_rq_clock(rq);
  7353. on_rq = p->se.on_rq;
  7354. if (on_rq)
  7355. deactivate_task(rq, p, 0);
  7356. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7357. if (on_rq) {
  7358. activate_task(rq, p, 0);
  7359. resched_task(rq->curr);
  7360. }
  7361. }
  7362. void normalize_rt_tasks(void)
  7363. {
  7364. struct task_struct *g, *p;
  7365. unsigned long flags;
  7366. struct rq *rq;
  7367. read_lock_irqsave(&tasklist_lock, flags);
  7368. do_each_thread(g, p) {
  7369. /*
  7370. * Only normalize user tasks:
  7371. */
  7372. if (!p->mm)
  7373. continue;
  7374. p->se.exec_start = 0;
  7375. #ifdef CONFIG_SCHEDSTATS
  7376. p->se.wait_start = 0;
  7377. p->se.sleep_start = 0;
  7378. p->se.block_start = 0;
  7379. #endif
  7380. if (!rt_task(p)) {
  7381. /*
  7382. * Renice negative nice level userspace
  7383. * tasks back to 0:
  7384. */
  7385. if (TASK_NICE(p) < 0 && p->mm)
  7386. set_user_nice(p, 0);
  7387. continue;
  7388. }
  7389. spin_lock(&p->pi_lock);
  7390. rq = __task_rq_lock(p);
  7391. normalize_task(rq, p);
  7392. __task_rq_unlock(rq);
  7393. spin_unlock(&p->pi_lock);
  7394. } while_each_thread(g, p);
  7395. read_unlock_irqrestore(&tasklist_lock, flags);
  7396. }
  7397. #endif /* CONFIG_MAGIC_SYSRQ */
  7398. #ifdef CONFIG_IA64
  7399. /*
  7400. * These functions are only useful for the IA64 MCA handling.
  7401. *
  7402. * They can only be called when the whole system has been
  7403. * stopped - every CPU needs to be quiescent, and no scheduling
  7404. * activity can take place. Using them for anything else would
  7405. * be a serious bug, and as a result, they aren't even visible
  7406. * under any other configuration.
  7407. */
  7408. /**
  7409. * curr_task - return the current task for a given cpu.
  7410. * @cpu: the processor in question.
  7411. *
  7412. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7413. */
  7414. struct task_struct *curr_task(int cpu)
  7415. {
  7416. return cpu_curr(cpu);
  7417. }
  7418. /**
  7419. * set_curr_task - set the current task for a given cpu.
  7420. * @cpu: the processor in question.
  7421. * @p: the task pointer to set.
  7422. *
  7423. * Description: This function must only be used when non-maskable interrupts
  7424. * are serviced on a separate stack. It allows the architecture to switch the
  7425. * notion of the current task on a cpu in a non-blocking manner. This function
  7426. * must be called with all CPU's synchronized, and interrupts disabled, the
  7427. * and caller must save the original value of the current task (see
  7428. * curr_task() above) and restore that value before reenabling interrupts and
  7429. * re-starting the system.
  7430. *
  7431. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7432. */
  7433. void set_curr_task(int cpu, struct task_struct *p)
  7434. {
  7435. cpu_curr(cpu) = p;
  7436. }
  7437. #endif
  7438. #ifdef CONFIG_FAIR_GROUP_SCHED
  7439. static void free_fair_sched_group(struct task_group *tg)
  7440. {
  7441. int i;
  7442. for_each_possible_cpu(i) {
  7443. if (tg->cfs_rq)
  7444. kfree(tg->cfs_rq[i]);
  7445. if (tg->se)
  7446. kfree(tg->se[i]);
  7447. }
  7448. kfree(tg->cfs_rq);
  7449. kfree(tg->se);
  7450. }
  7451. static
  7452. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7453. {
  7454. struct cfs_rq *cfs_rq;
  7455. struct sched_entity *se;
  7456. struct rq *rq;
  7457. int i;
  7458. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7459. if (!tg->cfs_rq)
  7460. goto err;
  7461. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7462. if (!tg->se)
  7463. goto err;
  7464. tg->shares = NICE_0_LOAD;
  7465. for_each_possible_cpu(i) {
  7466. rq = cpu_rq(i);
  7467. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7468. GFP_KERNEL, cpu_to_node(i));
  7469. if (!cfs_rq)
  7470. goto err;
  7471. se = kzalloc_node(sizeof(struct sched_entity),
  7472. GFP_KERNEL, cpu_to_node(i));
  7473. if (!se)
  7474. goto err;
  7475. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7476. }
  7477. return 1;
  7478. err:
  7479. return 0;
  7480. }
  7481. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7482. {
  7483. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7484. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7485. }
  7486. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7487. {
  7488. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7489. }
  7490. #else /* !CONFG_FAIR_GROUP_SCHED */
  7491. static inline void free_fair_sched_group(struct task_group *tg)
  7492. {
  7493. }
  7494. static inline
  7495. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7496. {
  7497. return 1;
  7498. }
  7499. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7500. {
  7501. }
  7502. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7503. {
  7504. }
  7505. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7506. #ifdef CONFIG_RT_GROUP_SCHED
  7507. static void free_rt_sched_group(struct task_group *tg)
  7508. {
  7509. int i;
  7510. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7511. for_each_possible_cpu(i) {
  7512. if (tg->rt_rq)
  7513. kfree(tg->rt_rq[i]);
  7514. if (tg->rt_se)
  7515. kfree(tg->rt_se[i]);
  7516. }
  7517. kfree(tg->rt_rq);
  7518. kfree(tg->rt_se);
  7519. }
  7520. static
  7521. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7522. {
  7523. struct rt_rq *rt_rq;
  7524. struct sched_rt_entity *rt_se;
  7525. struct rq *rq;
  7526. int i;
  7527. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7528. if (!tg->rt_rq)
  7529. goto err;
  7530. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7531. if (!tg->rt_se)
  7532. goto err;
  7533. init_rt_bandwidth(&tg->rt_bandwidth,
  7534. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7535. for_each_possible_cpu(i) {
  7536. rq = cpu_rq(i);
  7537. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7538. GFP_KERNEL, cpu_to_node(i));
  7539. if (!rt_rq)
  7540. goto err;
  7541. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7542. GFP_KERNEL, cpu_to_node(i));
  7543. if (!rt_se)
  7544. goto err;
  7545. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7546. }
  7547. return 1;
  7548. err:
  7549. return 0;
  7550. }
  7551. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7552. {
  7553. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7554. &cpu_rq(cpu)->leaf_rt_rq_list);
  7555. }
  7556. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7557. {
  7558. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7559. }
  7560. #else /* !CONFIG_RT_GROUP_SCHED */
  7561. static inline void free_rt_sched_group(struct task_group *tg)
  7562. {
  7563. }
  7564. static inline
  7565. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7566. {
  7567. return 1;
  7568. }
  7569. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7570. {
  7571. }
  7572. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7573. {
  7574. }
  7575. #endif /* CONFIG_RT_GROUP_SCHED */
  7576. #ifdef CONFIG_GROUP_SCHED
  7577. static void free_sched_group(struct task_group *tg)
  7578. {
  7579. free_fair_sched_group(tg);
  7580. free_rt_sched_group(tg);
  7581. kfree(tg);
  7582. }
  7583. /* allocate runqueue etc for a new task group */
  7584. struct task_group *sched_create_group(struct task_group *parent)
  7585. {
  7586. struct task_group *tg;
  7587. unsigned long flags;
  7588. int i;
  7589. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7590. if (!tg)
  7591. return ERR_PTR(-ENOMEM);
  7592. if (!alloc_fair_sched_group(tg, parent))
  7593. goto err;
  7594. if (!alloc_rt_sched_group(tg, parent))
  7595. goto err;
  7596. spin_lock_irqsave(&task_group_lock, flags);
  7597. for_each_possible_cpu(i) {
  7598. register_fair_sched_group(tg, i);
  7599. register_rt_sched_group(tg, i);
  7600. }
  7601. list_add_rcu(&tg->list, &task_groups);
  7602. WARN_ON(!parent); /* root should already exist */
  7603. tg->parent = parent;
  7604. INIT_LIST_HEAD(&tg->children);
  7605. list_add_rcu(&tg->siblings, &parent->children);
  7606. spin_unlock_irqrestore(&task_group_lock, flags);
  7607. return tg;
  7608. err:
  7609. free_sched_group(tg);
  7610. return ERR_PTR(-ENOMEM);
  7611. }
  7612. /* rcu callback to free various structures associated with a task group */
  7613. static void free_sched_group_rcu(struct rcu_head *rhp)
  7614. {
  7615. /* now it should be safe to free those cfs_rqs */
  7616. free_sched_group(container_of(rhp, struct task_group, rcu));
  7617. }
  7618. /* Destroy runqueue etc associated with a task group */
  7619. void sched_destroy_group(struct task_group *tg)
  7620. {
  7621. unsigned long flags;
  7622. int i;
  7623. spin_lock_irqsave(&task_group_lock, flags);
  7624. for_each_possible_cpu(i) {
  7625. unregister_fair_sched_group(tg, i);
  7626. unregister_rt_sched_group(tg, i);
  7627. }
  7628. list_del_rcu(&tg->list);
  7629. list_del_rcu(&tg->siblings);
  7630. spin_unlock_irqrestore(&task_group_lock, flags);
  7631. /* wait for possible concurrent references to cfs_rqs complete */
  7632. call_rcu(&tg->rcu, free_sched_group_rcu);
  7633. }
  7634. /* change task's runqueue when it moves between groups.
  7635. * The caller of this function should have put the task in its new group
  7636. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7637. * reflect its new group.
  7638. */
  7639. void sched_move_task(struct task_struct *tsk)
  7640. {
  7641. int on_rq, running;
  7642. unsigned long flags;
  7643. struct rq *rq;
  7644. rq = task_rq_lock(tsk, &flags);
  7645. update_rq_clock(rq);
  7646. running = task_current(rq, tsk);
  7647. on_rq = tsk->se.on_rq;
  7648. if (on_rq)
  7649. dequeue_task(rq, tsk, 0);
  7650. if (unlikely(running))
  7651. tsk->sched_class->put_prev_task(rq, tsk);
  7652. set_task_rq(tsk, task_cpu(tsk));
  7653. #ifdef CONFIG_FAIR_GROUP_SCHED
  7654. if (tsk->sched_class->moved_group)
  7655. tsk->sched_class->moved_group(tsk);
  7656. #endif
  7657. if (unlikely(running))
  7658. tsk->sched_class->set_curr_task(rq);
  7659. if (on_rq)
  7660. enqueue_task(rq, tsk, 0);
  7661. task_rq_unlock(rq, &flags);
  7662. }
  7663. #endif /* CONFIG_GROUP_SCHED */
  7664. #ifdef CONFIG_FAIR_GROUP_SCHED
  7665. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7666. {
  7667. struct cfs_rq *cfs_rq = se->cfs_rq;
  7668. int on_rq;
  7669. on_rq = se->on_rq;
  7670. if (on_rq)
  7671. dequeue_entity(cfs_rq, se, 0);
  7672. se->load.weight = shares;
  7673. se->load.inv_weight = 0;
  7674. if (on_rq)
  7675. enqueue_entity(cfs_rq, se, 0);
  7676. }
  7677. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7678. {
  7679. struct cfs_rq *cfs_rq = se->cfs_rq;
  7680. struct rq *rq = cfs_rq->rq;
  7681. unsigned long flags;
  7682. spin_lock_irqsave(&rq->lock, flags);
  7683. __set_se_shares(se, shares);
  7684. spin_unlock_irqrestore(&rq->lock, flags);
  7685. }
  7686. static DEFINE_MUTEX(shares_mutex);
  7687. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7688. {
  7689. int i;
  7690. unsigned long flags;
  7691. /*
  7692. * We can't change the weight of the root cgroup.
  7693. */
  7694. if (!tg->se[0])
  7695. return -EINVAL;
  7696. if (shares < MIN_SHARES)
  7697. shares = MIN_SHARES;
  7698. else if (shares > MAX_SHARES)
  7699. shares = MAX_SHARES;
  7700. mutex_lock(&shares_mutex);
  7701. if (tg->shares == shares)
  7702. goto done;
  7703. spin_lock_irqsave(&task_group_lock, flags);
  7704. for_each_possible_cpu(i)
  7705. unregister_fair_sched_group(tg, i);
  7706. list_del_rcu(&tg->siblings);
  7707. spin_unlock_irqrestore(&task_group_lock, flags);
  7708. /* wait for any ongoing reference to this group to finish */
  7709. synchronize_sched();
  7710. /*
  7711. * Now we are free to modify the group's share on each cpu
  7712. * w/o tripping rebalance_share or load_balance_fair.
  7713. */
  7714. tg->shares = shares;
  7715. for_each_possible_cpu(i) {
  7716. /*
  7717. * force a rebalance
  7718. */
  7719. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7720. set_se_shares(tg->se[i], shares);
  7721. }
  7722. /*
  7723. * Enable load balance activity on this group, by inserting it back on
  7724. * each cpu's rq->leaf_cfs_rq_list.
  7725. */
  7726. spin_lock_irqsave(&task_group_lock, flags);
  7727. for_each_possible_cpu(i)
  7728. register_fair_sched_group(tg, i);
  7729. list_add_rcu(&tg->siblings, &tg->parent->children);
  7730. spin_unlock_irqrestore(&task_group_lock, flags);
  7731. done:
  7732. mutex_unlock(&shares_mutex);
  7733. return 0;
  7734. }
  7735. unsigned long sched_group_shares(struct task_group *tg)
  7736. {
  7737. return tg->shares;
  7738. }
  7739. #endif
  7740. #ifdef CONFIG_RT_GROUP_SCHED
  7741. /*
  7742. * Ensure that the real time constraints are schedulable.
  7743. */
  7744. static DEFINE_MUTEX(rt_constraints_mutex);
  7745. static unsigned long to_ratio(u64 period, u64 runtime)
  7746. {
  7747. if (runtime == RUNTIME_INF)
  7748. return 1ULL << 20;
  7749. return div64_u64(runtime << 20, period);
  7750. }
  7751. /* Must be called with tasklist_lock held */
  7752. static inline int tg_has_rt_tasks(struct task_group *tg)
  7753. {
  7754. struct task_struct *g, *p;
  7755. do_each_thread(g, p) {
  7756. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7757. return 1;
  7758. } while_each_thread(g, p);
  7759. return 0;
  7760. }
  7761. struct rt_schedulable_data {
  7762. struct task_group *tg;
  7763. u64 rt_period;
  7764. u64 rt_runtime;
  7765. };
  7766. static int tg_schedulable(struct task_group *tg, void *data)
  7767. {
  7768. struct rt_schedulable_data *d = data;
  7769. struct task_group *child;
  7770. unsigned long total, sum = 0;
  7771. u64 period, runtime;
  7772. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7773. runtime = tg->rt_bandwidth.rt_runtime;
  7774. if (tg == d->tg) {
  7775. period = d->rt_period;
  7776. runtime = d->rt_runtime;
  7777. }
  7778. #ifdef CONFIG_USER_SCHED
  7779. if (tg == &root_task_group) {
  7780. period = global_rt_period();
  7781. runtime = global_rt_runtime();
  7782. }
  7783. #endif
  7784. /*
  7785. * Cannot have more runtime than the period.
  7786. */
  7787. if (runtime > period && runtime != RUNTIME_INF)
  7788. return -EINVAL;
  7789. /*
  7790. * Ensure we don't starve existing RT tasks.
  7791. */
  7792. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7793. return -EBUSY;
  7794. total = to_ratio(period, runtime);
  7795. /*
  7796. * Nobody can have more than the global setting allows.
  7797. */
  7798. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7799. return -EINVAL;
  7800. /*
  7801. * The sum of our children's runtime should not exceed our own.
  7802. */
  7803. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7804. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7805. runtime = child->rt_bandwidth.rt_runtime;
  7806. if (child == d->tg) {
  7807. period = d->rt_period;
  7808. runtime = d->rt_runtime;
  7809. }
  7810. sum += to_ratio(period, runtime);
  7811. }
  7812. if (sum > total)
  7813. return -EINVAL;
  7814. return 0;
  7815. }
  7816. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7817. {
  7818. struct rt_schedulable_data data = {
  7819. .tg = tg,
  7820. .rt_period = period,
  7821. .rt_runtime = runtime,
  7822. };
  7823. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7824. }
  7825. static int tg_set_bandwidth(struct task_group *tg,
  7826. u64 rt_period, u64 rt_runtime)
  7827. {
  7828. int i, err = 0;
  7829. mutex_lock(&rt_constraints_mutex);
  7830. read_lock(&tasklist_lock);
  7831. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7832. if (err)
  7833. goto unlock;
  7834. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7835. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7836. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7837. for_each_possible_cpu(i) {
  7838. struct rt_rq *rt_rq = tg->rt_rq[i];
  7839. spin_lock(&rt_rq->rt_runtime_lock);
  7840. rt_rq->rt_runtime = rt_runtime;
  7841. spin_unlock(&rt_rq->rt_runtime_lock);
  7842. }
  7843. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7844. unlock:
  7845. read_unlock(&tasklist_lock);
  7846. mutex_unlock(&rt_constraints_mutex);
  7847. return err;
  7848. }
  7849. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7850. {
  7851. u64 rt_runtime, rt_period;
  7852. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7853. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7854. if (rt_runtime_us < 0)
  7855. rt_runtime = RUNTIME_INF;
  7856. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7857. }
  7858. long sched_group_rt_runtime(struct task_group *tg)
  7859. {
  7860. u64 rt_runtime_us;
  7861. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7862. return -1;
  7863. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7864. do_div(rt_runtime_us, NSEC_PER_USEC);
  7865. return rt_runtime_us;
  7866. }
  7867. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7868. {
  7869. u64 rt_runtime, rt_period;
  7870. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7871. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7872. if (rt_period == 0)
  7873. return -EINVAL;
  7874. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7875. }
  7876. long sched_group_rt_period(struct task_group *tg)
  7877. {
  7878. u64 rt_period_us;
  7879. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7880. do_div(rt_period_us, NSEC_PER_USEC);
  7881. return rt_period_us;
  7882. }
  7883. static int sched_rt_global_constraints(void)
  7884. {
  7885. u64 runtime, period;
  7886. int ret = 0;
  7887. if (sysctl_sched_rt_period <= 0)
  7888. return -EINVAL;
  7889. runtime = global_rt_runtime();
  7890. period = global_rt_period();
  7891. /*
  7892. * Sanity check on the sysctl variables.
  7893. */
  7894. if (runtime > period && runtime != RUNTIME_INF)
  7895. return -EINVAL;
  7896. mutex_lock(&rt_constraints_mutex);
  7897. read_lock(&tasklist_lock);
  7898. ret = __rt_schedulable(NULL, 0, 0);
  7899. read_unlock(&tasklist_lock);
  7900. mutex_unlock(&rt_constraints_mutex);
  7901. return ret;
  7902. }
  7903. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7904. {
  7905. /* Don't accept realtime tasks when there is no way for them to run */
  7906. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7907. return 0;
  7908. return 1;
  7909. }
  7910. #else /* !CONFIG_RT_GROUP_SCHED */
  7911. static int sched_rt_global_constraints(void)
  7912. {
  7913. unsigned long flags;
  7914. int i;
  7915. if (sysctl_sched_rt_period <= 0)
  7916. return -EINVAL;
  7917. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7918. for_each_possible_cpu(i) {
  7919. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7920. spin_lock(&rt_rq->rt_runtime_lock);
  7921. rt_rq->rt_runtime = global_rt_runtime();
  7922. spin_unlock(&rt_rq->rt_runtime_lock);
  7923. }
  7924. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7925. return 0;
  7926. }
  7927. #endif /* CONFIG_RT_GROUP_SCHED */
  7928. int sched_rt_handler(struct ctl_table *table, int write,
  7929. struct file *filp, void __user *buffer, size_t *lenp,
  7930. loff_t *ppos)
  7931. {
  7932. int ret;
  7933. int old_period, old_runtime;
  7934. static DEFINE_MUTEX(mutex);
  7935. mutex_lock(&mutex);
  7936. old_period = sysctl_sched_rt_period;
  7937. old_runtime = sysctl_sched_rt_runtime;
  7938. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7939. if (!ret && write) {
  7940. ret = sched_rt_global_constraints();
  7941. if (ret) {
  7942. sysctl_sched_rt_period = old_period;
  7943. sysctl_sched_rt_runtime = old_runtime;
  7944. } else {
  7945. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7946. def_rt_bandwidth.rt_period =
  7947. ns_to_ktime(global_rt_period());
  7948. }
  7949. }
  7950. mutex_unlock(&mutex);
  7951. return ret;
  7952. }
  7953. #ifdef CONFIG_CGROUP_SCHED
  7954. /* return corresponding task_group object of a cgroup */
  7955. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7956. {
  7957. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7958. struct task_group, css);
  7959. }
  7960. static struct cgroup_subsys_state *
  7961. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7962. {
  7963. struct task_group *tg, *parent;
  7964. if (!cgrp->parent) {
  7965. /* This is early initialization for the top cgroup */
  7966. return &init_task_group.css;
  7967. }
  7968. parent = cgroup_tg(cgrp->parent);
  7969. tg = sched_create_group(parent);
  7970. if (IS_ERR(tg))
  7971. return ERR_PTR(-ENOMEM);
  7972. return &tg->css;
  7973. }
  7974. static void
  7975. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7976. {
  7977. struct task_group *tg = cgroup_tg(cgrp);
  7978. sched_destroy_group(tg);
  7979. }
  7980. static int
  7981. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7982. struct task_struct *tsk)
  7983. {
  7984. #ifdef CONFIG_RT_GROUP_SCHED
  7985. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7986. return -EINVAL;
  7987. #else
  7988. /* We don't support RT-tasks being in separate groups */
  7989. if (tsk->sched_class != &fair_sched_class)
  7990. return -EINVAL;
  7991. #endif
  7992. return 0;
  7993. }
  7994. static void
  7995. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7996. struct cgroup *old_cont, struct task_struct *tsk)
  7997. {
  7998. sched_move_task(tsk);
  7999. }
  8000. #ifdef CONFIG_FAIR_GROUP_SCHED
  8001. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8002. u64 shareval)
  8003. {
  8004. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8005. }
  8006. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8007. {
  8008. struct task_group *tg = cgroup_tg(cgrp);
  8009. return (u64) tg->shares;
  8010. }
  8011. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8012. #ifdef CONFIG_RT_GROUP_SCHED
  8013. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8014. s64 val)
  8015. {
  8016. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8017. }
  8018. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8019. {
  8020. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8021. }
  8022. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8023. u64 rt_period_us)
  8024. {
  8025. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8026. }
  8027. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8028. {
  8029. return sched_group_rt_period(cgroup_tg(cgrp));
  8030. }
  8031. #endif /* CONFIG_RT_GROUP_SCHED */
  8032. static struct cftype cpu_files[] = {
  8033. #ifdef CONFIG_FAIR_GROUP_SCHED
  8034. {
  8035. .name = "shares",
  8036. .read_u64 = cpu_shares_read_u64,
  8037. .write_u64 = cpu_shares_write_u64,
  8038. },
  8039. #endif
  8040. #ifdef CONFIG_RT_GROUP_SCHED
  8041. {
  8042. .name = "rt_runtime_us",
  8043. .read_s64 = cpu_rt_runtime_read,
  8044. .write_s64 = cpu_rt_runtime_write,
  8045. },
  8046. {
  8047. .name = "rt_period_us",
  8048. .read_u64 = cpu_rt_period_read_uint,
  8049. .write_u64 = cpu_rt_period_write_uint,
  8050. },
  8051. #endif
  8052. };
  8053. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8054. {
  8055. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8056. }
  8057. struct cgroup_subsys cpu_cgroup_subsys = {
  8058. .name = "cpu",
  8059. .create = cpu_cgroup_create,
  8060. .destroy = cpu_cgroup_destroy,
  8061. .can_attach = cpu_cgroup_can_attach,
  8062. .attach = cpu_cgroup_attach,
  8063. .populate = cpu_cgroup_populate,
  8064. .subsys_id = cpu_cgroup_subsys_id,
  8065. .early_init = 1,
  8066. };
  8067. #endif /* CONFIG_CGROUP_SCHED */
  8068. #ifdef CONFIG_CGROUP_CPUACCT
  8069. /*
  8070. * CPU accounting code for task groups.
  8071. *
  8072. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8073. * (balbir@in.ibm.com).
  8074. */
  8075. /* track cpu usage of a group of tasks and its child groups */
  8076. struct cpuacct {
  8077. struct cgroup_subsys_state css;
  8078. /* cpuusage holds pointer to a u64-type object on every cpu */
  8079. u64 *cpuusage;
  8080. struct cpuacct *parent;
  8081. };
  8082. struct cgroup_subsys cpuacct_subsys;
  8083. /* return cpu accounting group corresponding to this container */
  8084. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8085. {
  8086. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8087. struct cpuacct, css);
  8088. }
  8089. /* return cpu accounting group to which this task belongs */
  8090. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8091. {
  8092. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8093. struct cpuacct, css);
  8094. }
  8095. /* create a new cpu accounting group */
  8096. static struct cgroup_subsys_state *cpuacct_create(
  8097. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8098. {
  8099. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8100. if (!ca)
  8101. return ERR_PTR(-ENOMEM);
  8102. ca->cpuusage = alloc_percpu(u64);
  8103. if (!ca->cpuusage) {
  8104. kfree(ca);
  8105. return ERR_PTR(-ENOMEM);
  8106. }
  8107. if (cgrp->parent)
  8108. ca->parent = cgroup_ca(cgrp->parent);
  8109. return &ca->css;
  8110. }
  8111. /* destroy an existing cpu accounting group */
  8112. static void
  8113. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8114. {
  8115. struct cpuacct *ca = cgroup_ca(cgrp);
  8116. free_percpu(ca->cpuusage);
  8117. kfree(ca);
  8118. }
  8119. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8120. {
  8121. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  8122. u64 data;
  8123. #ifndef CONFIG_64BIT
  8124. /*
  8125. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8126. */
  8127. spin_lock_irq(&cpu_rq(cpu)->lock);
  8128. data = *cpuusage;
  8129. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8130. #else
  8131. data = *cpuusage;
  8132. #endif
  8133. return data;
  8134. }
  8135. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8136. {
  8137. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  8138. #ifndef CONFIG_64BIT
  8139. /*
  8140. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8141. */
  8142. spin_lock_irq(&cpu_rq(cpu)->lock);
  8143. *cpuusage = val;
  8144. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8145. #else
  8146. *cpuusage = val;
  8147. #endif
  8148. }
  8149. /* return total cpu usage (in nanoseconds) of a group */
  8150. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8151. {
  8152. struct cpuacct *ca = cgroup_ca(cgrp);
  8153. u64 totalcpuusage = 0;
  8154. int i;
  8155. for_each_present_cpu(i)
  8156. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8157. return totalcpuusage;
  8158. }
  8159. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8160. u64 reset)
  8161. {
  8162. struct cpuacct *ca = cgroup_ca(cgrp);
  8163. int err = 0;
  8164. int i;
  8165. if (reset) {
  8166. err = -EINVAL;
  8167. goto out;
  8168. }
  8169. for_each_present_cpu(i)
  8170. cpuacct_cpuusage_write(ca, i, 0);
  8171. out:
  8172. return err;
  8173. }
  8174. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8175. struct seq_file *m)
  8176. {
  8177. struct cpuacct *ca = cgroup_ca(cgroup);
  8178. u64 percpu;
  8179. int i;
  8180. for_each_present_cpu(i) {
  8181. percpu = cpuacct_cpuusage_read(ca, i);
  8182. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8183. }
  8184. seq_printf(m, "\n");
  8185. return 0;
  8186. }
  8187. static struct cftype files[] = {
  8188. {
  8189. .name = "usage",
  8190. .read_u64 = cpuusage_read,
  8191. .write_u64 = cpuusage_write,
  8192. },
  8193. {
  8194. .name = "usage_percpu",
  8195. .read_seq_string = cpuacct_percpu_seq_read,
  8196. },
  8197. };
  8198. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8199. {
  8200. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8201. }
  8202. /*
  8203. * charge this task's execution time to its accounting group.
  8204. *
  8205. * called with rq->lock held.
  8206. */
  8207. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8208. {
  8209. struct cpuacct *ca;
  8210. int cpu;
  8211. if (!cpuacct_subsys.active)
  8212. return;
  8213. cpu = task_cpu(tsk);
  8214. ca = task_ca(tsk);
  8215. for (; ca; ca = ca->parent) {
  8216. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  8217. *cpuusage += cputime;
  8218. }
  8219. }
  8220. struct cgroup_subsys cpuacct_subsys = {
  8221. .name = "cpuacct",
  8222. .create = cpuacct_create,
  8223. .destroy = cpuacct_destroy,
  8224. .populate = cpuacct_populate,
  8225. .subsys_id = cpuacct_subsys_id,
  8226. };
  8227. #endif /* CONFIG_CGROUP_CPUACCT */