dmaengine.h 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040
  1. /*
  2. * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 2 of the License, or (at your option)
  7. * any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc., 59
  16. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called COPYING.
  20. */
  21. #ifndef LINUX_DMAENGINE_H
  22. #define LINUX_DMAENGINE_H
  23. #include <linux/device.h>
  24. #include <linux/uio.h>
  25. #include <linux/bug.h>
  26. #include <linux/scatterlist.h>
  27. #include <linux/bitmap.h>
  28. #include <linux/types.h>
  29. #include <asm/page.h>
  30. /**
  31. * typedef dma_cookie_t - an opaque DMA cookie
  32. *
  33. * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
  34. */
  35. typedef s32 dma_cookie_t;
  36. #define DMA_MIN_COOKIE 1
  37. #define DMA_MAX_COOKIE INT_MAX
  38. #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
  39. /**
  40. * enum dma_status - DMA transaction status
  41. * @DMA_SUCCESS: transaction completed successfully
  42. * @DMA_IN_PROGRESS: transaction not yet processed
  43. * @DMA_PAUSED: transaction is paused
  44. * @DMA_ERROR: transaction failed
  45. */
  46. enum dma_status {
  47. DMA_SUCCESS,
  48. DMA_IN_PROGRESS,
  49. DMA_PAUSED,
  50. DMA_ERROR,
  51. };
  52. /**
  53. * enum dma_transaction_type - DMA transaction types/indexes
  54. *
  55. * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
  56. * automatically set as dma devices are registered.
  57. */
  58. enum dma_transaction_type {
  59. DMA_MEMCPY,
  60. DMA_XOR,
  61. DMA_PQ,
  62. DMA_XOR_VAL,
  63. DMA_PQ_VAL,
  64. DMA_INTERRUPT,
  65. DMA_SG,
  66. DMA_PRIVATE,
  67. DMA_ASYNC_TX,
  68. DMA_SLAVE,
  69. DMA_CYCLIC,
  70. DMA_INTERLEAVE,
  71. /* last transaction type for creation of the capabilities mask */
  72. DMA_TX_TYPE_END,
  73. };
  74. /**
  75. * enum dma_transfer_direction - dma transfer mode and direction indicator
  76. * @DMA_MEM_TO_MEM: Async/Memcpy mode
  77. * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
  78. * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
  79. * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
  80. */
  81. enum dma_transfer_direction {
  82. DMA_MEM_TO_MEM,
  83. DMA_MEM_TO_DEV,
  84. DMA_DEV_TO_MEM,
  85. DMA_DEV_TO_DEV,
  86. DMA_TRANS_NONE,
  87. };
  88. /**
  89. * Interleaved Transfer Request
  90. * ----------------------------
  91. * A chunk is collection of contiguous bytes to be transfered.
  92. * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
  93. * ICGs may or maynot change between chunks.
  94. * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
  95. * that when repeated an integral number of times, specifies the transfer.
  96. * A transfer template is specification of a Frame, the number of times
  97. * it is to be repeated and other per-transfer attributes.
  98. *
  99. * Practically, a client driver would have ready a template for each
  100. * type of transfer it is going to need during its lifetime and
  101. * set only 'src_start' and 'dst_start' before submitting the requests.
  102. *
  103. *
  104. * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
  105. * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
  106. *
  107. * == Chunk size
  108. * ... ICG
  109. */
  110. /**
  111. * struct data_chunk - Element of scatter-gather list that makes a frame.
  112. * @size: Number of bytes to read from source.
  113. * size_dst := fn(op, size_src), so doesn't mean much for destination.
  114. * @icg: Number of bytes to jump after last src/dst address of this
  115. * chunk and before first src/dst address for next chunk.
  116. * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
  117. * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
  118. */
  119. struct data_chunk {
  120. size_t size;
  121. size_t icg;
  122. };
  123. /**
  124. * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
  125. * and attributes.
  126. * @src_start: Bus address of source for the first chunk.
  127. * @dst_start: Bus address of destination for the first chunk.
  128. * @dir: Specifies the type of Source and Destination.
  129. * @src_inc: If the source address increments after reading from it.
  130. * @dst_inc: If the destination address increments after writing to it.
  131. * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
  132. * Otherwise, source is read contiguously (icg ignored).
  133. * Ignored if src_inc is false.
  134. * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
  135. * Otherwise, destination is filled contiguously (icg ignored).
  136. * Ignored if dst_inc is false.
  137. * @numf: Number of frames in this template.
  138. * @frame_size: Number of chunks in a frame i.e, size of sgl[].
  139. * @sgl: Array of {chunk,icg} pairs that make up a frame.
  140. */
  141. struct dma_interleaved_template {
  142. dma_addr_t src_start;
  143. dma_addr_t dst_start;
  144. enum dma_transfer_direction dir;
  145. bool src_inc;
  146. bool dst_inc;
  147. bool src_sgl;
  148. bool dst_sgl;
  149. size_t numf;
  150. size_t frame_size;
  151. struct data_chunk sgl[0];
  152. };
  153. /**
  154. * enum dma_ctrl_flags - DMA flags to augment operation preparation,
  155. * control completion, and communicate status.
  156. * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
  157. * this transaction
  158. * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
  159. * acknowledges receipt, i.e. has has a chance to establish any dependency
  160. * chains
  161. * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
  162. * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
  163. * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
  164. * (if not set, do the source dma-unmapping as page)
  165. * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
  166. * (if not set, do the destination dma-unmapping as page)
  167. * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
  168. * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
  169. * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
  170. * sources that were the result of a previous operation, in the case of a PQ
  171. * operation it continues the calculation with new sources
  172. * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
  173. * on the result of this operation
  174. */
  175. enum dma_ctrl_flags {
  176. DMA_PREP_INTERRUPT = (1 << 0),
  177. DMA_CTRL_ACK = (1 << 1),
  178. DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
  179. DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
  180. DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
  181. DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
  182. DMA_PREP_PQ_DISABLE_P = (1 << 6),
  183. DMA_PREP_PQ_DISABLE_Q = (1 << 7),
  184. DMA_PREP_CONTINUE = (1 << 8),
  185. DMA_PREP_FENCE = (1 << 9),
  186. };
  187. /**
  188. * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
  189. * on a running channel.
  190. * @DMA_TERMINATE_ALL: terminate all ongoing transfers
  191. * @DMA_PAUSE: pause ongoing transfers
  192. * @DMA_RESUME: resume paused transfer
  193. * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
  194. * that need to runtime reconfigure the slave channels (as opposed to passing
  195. * configuration data in statically from the platform). An additional
  196. * argument of struct dma_slave_config must be passed in with this
  197. * command.
  198. * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
  199. * into external start mode.
  200. */
  201. enum dma_ctrl_cmd {
  202. DMA_TERMINATE_ALL,
  203. DMA_PAUSE,
  204. DMA_RESUME,
  205. DMA_SLAVE_CONFIG,
  206. FSLDMA_EXTERNAL_START,
  207. };
  208. /**
  209. * enum sum_check_bits - bit position of pq_check_flags
  210. */
  211. enum sum_check_bits {
  212. SUM_CHECK_P = 0,
  213. SUM_CHECK_Q = 1,
  214. };
  215. /**
  216. * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
  217. * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
  218. * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
  219. */
  220. enum sum_check_flags {
  221. SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
  222. SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
  223. };
  224. /**
  225. * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
  226. * See linux/cpumask.h
  227. */
  228. typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
  229. /**
  230. * struct dma_chan_percpu - the per-CPU part of struct dma_chan
  231. * @memcpy_count: transaction counter
  232. * @bytes_transferred: byte counter
  233. */
  234. struct dma_chan_percpu {
  235. /* stats */
  236. unsigned long memcpy_count;
  237. unsigned long bytes_transferred;
  238. };
  239. /**
  240. * struct dma_chan - devices supply DMA channels, clients use them
  241. * @device: ptr to the dma device who supplies this channel, always !%NULL
  242. * @cookie: last cookie value returned to client
  243. * @completed_cookie: last completed cookie for this channel
  244. * @chan_id: channel ID for sysfs
  245. * @dev: class device for sysfs
  246. * @device_node: used to add this to the device chan list
  247. * @local: per-cpu pointer to a struct dma_chan_percpu
  248. * @client-count: how many clients are using this channel
  249. * @table_count: number of appearances in the mem-to-mem allocation table
  250. * @private: private data for certain client-channel associations
  251. */
  252. struct dma_chan {
  253. struct dma_device *device;
  254. dma_cookie_t cookie;
  255. dma_cookie_t completed_cookie;
  256. /* sysfs */
  257. int chan_id;
  258. struct dma_chan_dev *dev;
  259. struct list_head device_node;
  260. struct dma_chan_percpu __percpu *local;
  261. int client_count;
  262. int table_count;
  263. void *private;
  264. };
  265. /**
  266. * struct dma_chan_dev - relate sysfs device node to backing channel device
  267. * @chan - driver channel device
  268. * @device - sysfs device
  269. * @dev_id - parent dma_device dev_id
  270. * @idr_ref - reference count to gate release of dma_device dev_id
  271. */
  272. struct dma_chan_dev {
  273. struct dma_chan *chan;
  274. struct device device;
  275. int dev_id;
  276. atomic_t *idr_ref;
  277. };
  278. /**
  279. * enum dma_slave_buswidth - defines bus with of the DMA slave
  280. * device, source or target buses
  281. */
  282. enum dma_slave_buswidth {
  283. DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
  284. DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
  285. DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
  286. DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
  287. DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
  288. };
  289. /**
  290. * struct dma_slave_config - dma slave channel runtime config
  291. * @direction: whether the data shall go in or out on this slave
  292. * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
  293. * legal values, DMA_BIDIRECTIONAL is not acceptable since we
  294. * need to differentiate source and target addresses.
  295. * @src_addr: this is the physical address where DMA slave data
  296. * should be read (RX), if the source is memory this argument is
  297. * ignored.
  298. * @dst_addr: this is the physical address where DMA slave data
  299. * should be written (TX), if the source is memory this argument
  300. * is ignored.
  301. * @src_addr_width: this is the width in bytes of the source (RX)
  302. * register where DMA data shall be read. If the source
  303. * is memory this may be ignored depending on architecture.
  304. * Legal values: 1, 2, 4, 8.
  305. * @dst_addr_width: same as src_addr_width but for destination
  306. * target (TX) mutatis mutandis.
  307. * @src_maxburst: the maximum number of words (note: words, as in
  308. * units of the src_addr_width member, not bytes) that can be sent
  309. * in one burst to the device. Typically something like half the
  310. * FIFO depth on I/O peripherals so you don't overflow it. This
  311. * may or may not be applicable on memory sources.
  312. * @dst_maxburst: same as src_maxburst but for destination target
  313. * mutatis mutandis.
  314. * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
  315. * with 'true' if peripheral should be flow controller. Direction will be
  316. * selected at Runtime.
  317. * @slave_id: Slave requester id. Only valid for slave channels. The dma
  318. * slave peripheral will have unique id as dma requester which need to be
  319. * pass as slave config.
  320. *
  321. * This struct is passed in as configuration data to a DMA engine
  322. * in order to set up a certain channel for DMA transport at runtime.
  323. * The DMA device/engine has to provide support for an additional
  324. * command in the channel config interface, DMA_SLAVE_CONFIG
  325. * and this struct will then be passed in as an argument to the
  326. * DMA engine device_control() function.
  327. *
  328. * The rationale for adding configuration information to this struct
  329. * is as follows: if it is likely that most DMA slave controllers in
  330. * the world will support the configuration option, then make it
  331. * generic. If not: if it is fixed so that it be sent in static from
  332. * the platform data, then prefer to do that. Else, if it is neither
  333. * fixed at runtime, nor generic enough (such as bus mastership on
  334. * some CPU family and whatnot) then create a custom slave config
  335. * struct and pass that, then make this config a member of that
  336. * struct, if applicable.
  337. */
  338. struct dma_slave_config {
  339. enum dma_transfer_direction direction;
  340. dma_addr_t src_addr;
  341. dma_addr_t dst_addr;
  342. enum dma_slave_buswidth src_addr_width;
  343. enum dma_slave_buswidth dst_addr_width;
  344. u32 src_maxburst;
  345. u32 dst_maxburst;
  346. bool device_fc;
  347. unsigned int slave_id;
  348. };
  349. static inline const char *dma_chan_name(struct dma_chan *chan)
  350. {
  351. return dev_name(&chan->dev->device);
  352. }
  353. void dma_chan_cleanup(struct kref *kref);
  354. /**
  355. * typedef dma_filter_fn - callback filter for dma_request_channel
  356. * @chan: channel to be reviewed
  357. * @filter_param: opaque parameter passed through dma_request_channel
  358. *
  359. * When this optional parameter is specified in a call to dma_request_channel a
  360. * suitable channel is passed to this routine for further dispositioning before
  361. * being returned. Where 'suitable' indicates a non-busy channel that
  362. * satisfies the given capability mask. It returns 'true' to indicate that the
  363. * channel is suitable.
  364. */
  365. typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
  366. typedef void (*dma_async_tx_callback)(void *dma_async_param);
  367. /**
  368. * struct dma_async_tx_descriptor - async transaction descriptor
  369. * ---dma generic offload fields---
  370. * @cookie: tracking cookie for this transaction, set to -EBUSY if
  371. * this tx is sitting on a dependency list
  372. * @flags: flags to augment operation preparation, control completion, and
  373. * communicate status
  374. * @phys: physical address of the descriptor
  375. * @chan: target channel for this operation
  376. * @tx_submit: set the prepared descriptor(s) to be executed by the engine
  377. * @callback: routine to call after this operation is complete
  378. * @callback_param: general parameter to pass to the callback routine
  379. * ---async_tx api specific fields---
  380. * @next: at completion submit this descriptor
  381. * @parent: pointer to the next level up in the dependency chain
  382. * @lock: protect the parent and next pointers
  383. */
  384. struct dma_async_tx_descriptor {
  385. dma_cookie_t cookie;
  386. enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
  387. dma_addr_t phys;
  388. struct dma_chan *chan;
  389. dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
  390. dma_async_tx_callback callback;
  391. void *callback_param;
  392. #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  393. struct dma_async_tx_descriptor *next;
  394. struct dma_async_tx_descriptor *parent;
  395. spinlock_t lock;
  396. #endif
  397. };
  398. #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  399. static inline void txd_lock(struct dma_async_tx_descriptor *txd)
  400. {
  401. }
  402. static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
  403. {
  404. }
  405. static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
  406. {
  407. BUG();
  408. }
  409. static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
  410. {
  411. }
  412. static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
  413. {
  414. }
  415. static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
  416. {
  417. return NULL;
  418. }
  419. static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
  420. {
  421. return NULL;
  422. }
  423. #else
  424. static inline void txd_lock(struct dma_async_tx_descriptor *txd)
  425. {
  426. spin_lock_bh(&txd->lock);
  427. }
  428. static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
  429. {
  430. spin_unlock_bh(&txd->lock);
  431. }
  432. static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
  433. {
  434. txd->next = next;
  435. next->parent = txd;
  436. }
  437. static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
  438. {
  439. txd->parent = NULL;
  440. }
  441. static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
  442. {
  443. txd->next = NULL;
  444. }
  445. static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
  446. {
  447. return txd->parent;
  448. }
  449. static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
  450. {
  451. return txd->next;
  452. }
  453. #endif
  454. /**
  455. * struct dma_tx_state - filled in to report the status of
  456. * a transfer.
  457. * @last: last completed DMA cookie
  458. * @used: last issued DMA cookie (i.e. the one in progress)
  459. * @residue: the remaining number of bytes left to transmit
  460. * on the selected transfer for states DMA_IN_PROGRESS and
  461. * DMA_PAUSED if this is implemented in the driver, else 0
  462. */
  463. struct dma_tx_state {
  464. dma_cookie_t last;
  465. dma_cookie_t used;
  466. u32 residue;
  467. };
  468. /**
  469. * struct dma_device - info on the entity supplying DMA services
  470. * @chancnt: how many DMA channels are supported
  471. * @privatecnt: how many DMA channels are requested by dma_request_channel
  472. * @channels: the list of struct dma_chan
  473. * @global_node: list_head for global dma_device_list
  474. * @cap_mask: one or more dma_capability flags
  475. * @max_xor: maximum number of xor sources, 0 if no capability
  476. * @max_pq: maximum number of PQ sources and PQ-continue capability
  477. * @copy_align: alignment shift for memcpy operations
  478. * @xor_align: alignment shift for xor operations
  479. * @pq_align: alignment shift for pq operations
  480. * @fill_align: alignment shift for memset operations
  481. * @dev_id: unique device ID
  482. * @dev: struct device reference for dma mapping api
  483. * @device_alloc_chan_resources: allocate resources and return the
  484. * number of allocated descriptors
  485. * @device_free_chan_resources: release DMA channel's resources
  486. * @device_prep_dma_memcpy: prepares a memcpy operation
  487. * @device_prep_dma_xor: prepares a xor operation
  488. * @device_prep_dma_xor_val: prepares a xor validation operation
  489. * @device_prep_dma_pq: prepares a pq operation
  490. * @device_prep_dma_pq_val: prepares a pqzero_sum operation
  491. * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
  492. * @device_prep_slave_sg: prepares a slave dma operation
  493. * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
  494. * The function takes a buffer of size buf_len. The callback function will
  495. * be called after period_len bytes have been transferred.
  496. * @device_prep_interleaved_dma: Transfer expression in a generic way.
  497. * @device_control: manipulate all pending operations on a channel, returns
  498. * zero or error code
  499. * @device_tx_status: poll for transaction completion, the optional
  500. * txstate parameter can be supplied with a pointer to get a
  501. * struct with auxiliary transfer status information, otherwise the call
  502. * will just return a simple status code
  503. * @device_issue_pending: push pending transactions to hardware
  504. */
  505. struct dma_device {
  506. unsigned int chancnt;
  507. unsigned int privatecnt;
  508. struct list_head channels;
  509. struct list_head global_node;
  510. dma_cap_mask_t cap_mask;
  511. unsigned short max_xor;
  512. unsigned short max_pq;
  513. u8 copy_align;
  514. u8 xor_align;
  515. u8 pq_align;
  516. u8 fill_align;
  517. #define DMA_HAS_PQ_CONTINUE (1 << 15)
  518. int dev_id;
  519. struct device *dev;
  520. int (*device_alloc_chan_resources)(struct dma_chan *chan);
  521. void (*device_free_chan_resources)(struct dma_chan *chan);
  522. struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
  523. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  524. size_t len, unsigned long flags);
  525. struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
  526. struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
  527. unsigned int src_cnt, size_t len, unsigned long flags);
  528. struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
  529. struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
  530. size_t len, enum sum_check_flags *result, unsigned long flags);
  531. struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
  532. struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  533. unsigned int src_cnt, const unsigned char *scf,
  534. size_t len, unsigned long flags);
  535. struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
  536. struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  537. unsigned int src_cnt, const unsigned char *scf, size_t len,
  538. enum sum_check_flags *pqres, unsigned long flags);
  539. struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
  540. struct dma_chan *chan, unsigned long flags);
  541. struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
  542. struct dma_chan *chan,
  543. struct scatterlist *dst_sg, unsigned int dst_nents,
  544. struct scatterlist *src_sg, unsigned int src_nents,
  545. unsigned long flags);
  546. struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
  547. struct dma_chan *chan, struct scatterlist *sgl,
  548. unsigned int sg_len, enum dma_transfer_direction direction,
  549. unsigned long flags, void *context);
  550. struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
  551. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  552. size_t period_len, enum dma_transfer_direction direction,
  553. unsigned long flags, void *context);
  554. struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
  555. struct dma_chan *chan, struct dma_interleaved_template *xt,
  556. unsigned long flags);
  557. int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  558. unsigned long arg);
  559. enum dma_status (*device_tx_status)(struct dma_chan *chan,
  560. dma_cookie_t cookie,
  561. struct dma_tx_state *txstate);
  562. void (*device_issue_pending)(struct dma_chan *chan);
  563. };
  564. static inline int dmaengine_device_control(struct dma_chan *chan,
  565. enum dma_ctrl_cmd cmd,
  566. unsigned long arg)
  567. {
  568. if (chan->device->device_control)
  569. return chan->device->device_control(chan, cmd, arg);
  570. return -ENOSYS;
  571. }
  572. static inline int dmaengine_slave_config(struct dma_chan *chan,
  573. struct dma_slave_config *config)
  574. {
  575. return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
  576. (unsigned long)config);
  577. }
  578. static inline bool is_slave_direction(enum dma_transfer_direction direction)
  579. {
  580. return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
  581. }
  582. static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
  583. struct dma_chan *chan, dma_addr_t buf, size_t len,
  584. enum dma_transfer_direction dir, unsigned long flags)
  585. {
  586. struct scatterlist sg;
  587. sg_init_table(&sg, 1);
  588. sg_dma_address(&sg) = buf;
  589. sg_dma_len(&sg) = len;
  590. return chan->device->device_prep_slave_sg(chan, &sg, 1,
  591. dir, flags, NULL);
  592. }
  593. static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
  594. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  595. enum dma_transfer_direction dir, unsigned long flags)
  596. {
  597. return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
  598. dir, flags, NULL);
  599. }
  600. #ifdef CONFIG_RAPIDIO_DMA_ENGINE
  601. struct rio_dma_ext;
  602. static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
  603. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  604. enum dma_transfer_direction dir, unsigned long flags,
  605. struct rio_dma_ext *rio_ext)
  606. {
  607. return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
  608. dir, flags, rio_ext);
  609. }
  610. #endif
  611. static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
  612. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  613. size_t period_len, enum dma_transfer_direction dir,
  614. unsigned long flags)
  615. {
  616. return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
  617. period_len, dir, flags, NULL);
  618. }
  619. static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
  620. struct dma_chan *chan, struct dma_interleaved_template *xt,
  621. unsigned long flags)
  622. {
  623. return chan->device->device_prep_interleaved_dma(chan, xt, flags);
  624. }
  625. static inline int dmaengine_terminate_all(struct dma_chan *chan)
  626. {
  627. return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
  628. }
  629. static inline int dmaengine_pause(struct dma_chan *chan)
  630. {
  631. return dmaengine_device_control(chan, DMA_PAUSE, 0);
  632. }
  633. static inline int dmaengine_resume(struct dma_chan *chan)
  634. {
  635. return dmaengine_device_control(chan, DMA_RESUME, 0);
  636. }
  637. static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
  638. dma_cookie_t cookie, struct dma_tx_state *state)
  639. {
  640. return chan->device->device_tx_status(chan, cookie, state);
  641. }
  642. static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
  643. {
  644. return desc->tx_submit(desc);
  645. }
  646. static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
  647. {
  648. size_t mask;
  649. if (!align)
  650. return true;
  651. mask = (1 << align) - 1;
  652. if (mask & (off1 | off2 | len))
  653. return false;
  654. return true;
  655. }
  656. static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
  657. size_t off2, size_t len)
  658. {
  659. return dmaengine_check_align(dev->copy_align, off1, off2, len);
  660. }
  661. static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
  662. size_t off2, size_t len)
  663. {
  664. return dmaengine_check_align(dev->xor_align, off1, off2, len);
  665. }
  666. static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
  667. size_t off2, size_t len)
  668. {
  669. return dmaengine_check_align(dev->pq_align, off1, off2, len);
  670. }
  671. static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
  672. size_t off2, size_t len)
  673. {
  674. return dmaengine_check_align(dev->fill_align, off1, off2, len);
  675. }
  676. static inline void
  677. dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
  678. {
  679. dma->max_pq = maxpq;
  680. if (has_pq_continue)
  681. dma->max_pq |= DMA_HAS_PQ_CONTINUE;
  682. }
  683. static inline bool dmaf_continue(enum dma_ctrl_flags flags)
  684. {
  685. return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
  686. }
  687. static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
  688. {
  689. enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
  690. return (flags & mask) == mask;
  691. }
  692. static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
  693. {
  694. return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
  695. }
  696. static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
  697. {
  698. return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
  699. }
  700. /* dma_maxpq - reduce maxpq in the face of continued operations
  701. * @dma - dma device with PQ capability
  702. * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
  703. *
  704. * When an engine does not support native continuation we need 3 extra
  705. * source slots to reuse P and Q with the following coefficients:
  706. * 1/ {00} * P : remove P from Q', but use it as a source for P'
  707. * 2/ {01} * Q : use Q to continue Q' calculation
  708. * 3/ {00} * Q : subtract Q from P' to cancel (2)
  709. *
  710. * In the case where P is disabled we only need 1 extra source:
  711. * 1/ {01} * Q : use Q to continue Q' calculation
  712. */
  713. static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
  714. {
  715. if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
  716. return dma_dev_to_maxpq(dma);
  717. else if (dmaf_p_disabled_continue(flags))
  718. return dma_dev_to_maxpq(dma) - 1;
  719. else if (dmaf_continue(flags))
  720. return dma_dev_to_maxpq(dma) - 3;
  721. BUG();
  722. }
  723. /* --- public DMA engine API --- */
  724. #ifdef CONFIG_DMA_ENGINE
  725. void dmaengine_get(void);
  726. void dmaengine_put(void);
  727. #else
  728. static inline void dmaengine_get(void)
  729. {
  730. }
  731. static inline void dmaengine_put(void)
  732. {
  733. }
  734. #endif
  735. #ifdef CONFIG_NET_DMA
  736. #define net_dmaengine_get() dmaengine_get()
  737. #define net_dmaengine_put() dmaengine_put()
  738. #else
  739. static inline void net_dmaengine_get(void)
  740. {
  741. }
  742. static inline void net_dmaengine_put(void)
  743. {
  744. }
  745. #endif
  746. #ifdef CONFIG_ASYNC_TX_DMA
  747. #define async_dmaengine_get() dmaengine_get()
  748. #define async_dmaengine_put() dmaengine_put()
  749. #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  750. #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
  751. #else
  752. #define async_dma_find_channel(type) dma_find_channel(type)
  753. #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
  754. #else
  755. static inline void async_dmaengine_get(void)
  756. {
  757. }
  758. static inline void async_dmaengine_put(void)
  759. {
  760. }
  761. static inline struct dma_chan *
  762. async_dma_find_channel(enum dma_transaction_type type)
  763. {
  764. return NULL;
  765. }
  766. #endif /* CONFIG_ASYNC_TX_DMA */
  767. dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
  768. void *dest, void *src, size_t len);
  769. dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
  770. struct page *page, unsigned int offset, void *kdata, size_t len);
  771. dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
  772. struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
  773. unsigned int src_off, size_t len);
  774. void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
  775. struct dma_chan *chan);
  776. static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
  777. {
  778. tx->flags |= DMA_CTRL_ACK;
  779. }
  780. static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
  781. {
  782. tx->flags &= ~DMA_CTRL_ACK;
  783. }
  784. static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
  785. {
  786. return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
  787. }
  788. #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
  789. static inline void
  790. __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
  791. {
  792. set_bit(tx_type, dstp->bits);
  793. }
  794. #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
  795. static inline void
  796. __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
  797. {
  798. clear_bit(tx_type, dstp->bits);
  799. }
  800. #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
  801. static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
  802. {
  803. bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
  804. }
  805. #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
  806. static inline int
  807. __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
  808. {
  809. return test_bit(tx_type, srcp->bits);
  810. }
  811. #define for_each_dma_cap_mask(cap, mask) \
  812. for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
  813. /**
  814. * dma_async_issue_pending - flush pending transactions to HW
  815. * @chan: target DMA channel
  816. *
  817. * This allows drivers to push copies to HW in batches,
  818. * reducing MMIO writes where possible.
  819. */
  820. static inline void dma_async_issue_pending(struct dma_chan *chan)
  821. {
  822. chan->device->device_issue_pending(chan);
  823. }
  824. /**
  825. * dma_async_is_tx_complete - poll for transaction completion
  826. * @chan: DMA channel
  827. * @cookie: transaction identifier to check status of
  828. * @last: returns last completed cookie, can be NULL
  829. * @used: returns last issued cookie, can be NULL
  830. *
  831. * If @last and @used are passed in, upon return they reflect the driver
  832. * internal state and can be used with dma_async_is_complete() to check
  833. * the status of multiple cookies without re-checking hardware state.
  834. */
  835. static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
  836. dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
  837. {
  838. struct dma_tx_state state;
  839. enum dma_status status;
  840. status = chan->device->device_tx_status(chan, cookie, &state);
  841. if (last)
  842. *last = state.last;
  843. if (used)
  844. *used = state.used;
  845. return status;
  846. }
  847. /**
  848. * dma_async_is_complete - test a cookie against chan state
  849. * @cookie: transaction identifier to test status of
  850. * @last_complete: last know completed transaction
  851. * @last_used: last cookie value handed out
  852. *
  853. * dma_async_is_complete() is used in dma_async_is_tx_complete()
  854. * the test logic is separated for lightweight testing of multiple cookies
  855. */
  856. static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
  857. dma_cookie_t last_complete, dma_cookie_t last_used)
  858. {
  859. if (last_complete <= last_used) {
  860. if ((cookie <= last_complete) || (cookie > last_used))
  861. return DMA_SUCCESS;
  862. } else {
  863. if ((cookie <= last_complete) && (cookie > last_used))
  864. return DMA_SUCCESS;
  865. }
  866. return DMA_IN_PROGRESS;
  867. }
  868. static inline void
  869. dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
  870. {
  871. if (st) {
  872. st->last = last;
  873. st->used = used;
  874. st->residue = residue;
  875. }
  876. }
  877. enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
  878. #ifdef CONFIG_DMA_ENGINE
  879. enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
  880. void dma_issue_pending_all(void);
  881. struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
  882. dma_filter_fn fn, void *fn_param);
  883. struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
  884. void dma_release_channel(struct dma_chan *chan);
  885. #else
  886. static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
  887. {
  888. return DMA_SUCCESS;
  889. }
  890. static inline void dma_issue_pending_all(void)
  891. {
  892. }
  893. static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
  894. dma_filter_fn fn, void *fn_param)
  895. {
  896. return NULL;
  897. }
  898. static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
  899. const char *name)
  900. {
  901. return NULL;
  902. }
  903. static inline void dma_release_channel(struct dma_chan *chan)
  904. {
  905. }
  906. #endif
  907. /* --- DMA device --- */
  908. int dma_async_device_register(struct dma_device *device);
  909. void dma_async_device_unregister(struct dma_device *device);
  910. void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
  911. struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
  912. struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
  913. struct dma_chan *net_dma_find_channel(void);
  914. #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
  915. #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
  916. __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
  917. static inline struct dma_chan
  918. *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
  919. dma_filter_fn fn, void *fn_param,
  920. struct device *dev, char *name)
  921. {
  922. struct dma_chan *chan;
  923. chan = dma_request_slave_channel(dev, name);
  924. if (chan)
  925. return chan;
  926. return __dma_request_channel(mask, fn, fn_param);
  927. }
  928. /* --- Helper iov-locking functions --- */
  929. struct dma_page_list {
  930. char __user *base_address;
  931. int nr_pages;
  932. struct page **pages;
  933. };
  934. struct dma_pinned_list {
  935. int nr_iovecs;
  936. struct dma_page_list page_list[0];
  937. };
  938. struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
  939. void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
  940. dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
  941. struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
  942. dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
  943. struct dma_pinned_list *pinned_list, struct page *page,
  944. unsigned int offset, size_t len);
  945. #endif /* DMAENGINE_H */