kvm_main.c 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <linux/profile.h>
  40. #include <linux/kvm_para.h>
  41. #include <linux/pagemap.h>
  42. #include <linux/mman.h>
  43. #include <asm/processor.h>
  44. #include <asm/msr.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/desc.h>
  48. MODULE_AUTHOR("Qumranet");
  49. MODULE_LICENSE("GPL");
  50. static DEFINE_SPINLOCK(kvm_lock);
  51. static LIST_HEAD(vm_list);
  52. static cpumask_t cpus_hardware_enabled;
  53. struct kvm_x86_ops *kvm_x86_ops;
  54. struct kmem_cache *kvm_vcpu_cache;
  55. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  56. static __read_mostly struct preempt_ops kvm_preempt_ops;
  57. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  58. static struct kvm_stats_debugfs_item {
  59. const char *name;
  60. int offset;
  61. struct dentry *dentry;
  62. } debugfs_entries[] = {
  63. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  64. { "pf_guest", STAT_OFFSET(pf_guest) },
  65. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  66. { "invlpg", STAT_OFFSET(invlpg) },
  67. { "exits", STAT_OFFSET(exits) },
  68. { "io_exits", STAT_OFFSET(io_exits) },
  69. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  70. { "signal_exits", STAT_OFFSET(signal_exits) },
  71. { "irq_window", STAT_OFFSET(irq_window_exits) },
  72. { "halt_exits", STAT_OFFSET(halt_exits) },
  73. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  74. { "request_irq", STAT_OFFSET(request_irq_exits) },
  75. { "irq_exits", STAT_OFFSET(irq_exits) },
  76. { "light_exits", STAT_OFFSET(light_exits) },
  77. { "efer_reload", STAT_OFFSET(efer_reload) },
  78. { NULL }
  79. };
  80. static struct dentry *debugfs_dir;
  81. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  82. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  83. unsigned long arg);
  84. static inline int valid_vcpu(int n)
  85. {
  86. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  87. }
  88. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  89. {
  90. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  91. return;
  92. vcpu->guest_fpu_loaded = 1;
  93. fx_save(&vcpu->host_fx_image);
  94. fx_restore(&vcpu->guest_fx_image);
  95. }
  96. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  97. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  98. {
  99. if (!vcpu->guest_fpu_loaded)
  100. return;
  101. vcpu->guest_fpu_loaded = 0;
  102. fx_save(&vcpu->guest_fx_image);
  103. fx_restore(&vcpu->host_fx_image);
  104. }
  105. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  106. /*
  107. * Switches to specified vcpu, until a matching vcpu_put()
  108. */
  109. void vcpu_load(struct kvm_vcpu *vcpu)
  110. {
  111. int cpu;
  112. mutex_lock(&vcpu->mutex);
  113. cpu = get_cpu();
  114. preempt_notifier_register(&vcpu->preempt_notifier);
  115. kvm_arch_vcpu_load(vcpu, cpu);
  116. put_cpu();
  117. }
  118. void vcpu_put(struct kvm_vcpu *vcpu)
  119. {
  120. preempt_disable();
  121. kvm_arch_vcpu_put(vcpu);
  122. preempt_notifier_unregister(&vcpu->preempt_notifier);
  123. preempt_enable();
  124. mutex_unlock(&vcpu->mutex);
  125. }
  126. static void ack_flush(void *_completed)
  127. {
  128. }
  129. void kvm_flush_remote_tlbs(struct kvm *kvm)
  130. {
  131. int i, cpu;
  132. cpumask_t cpus;
  133. struct kvm_vcpu *vcpu;
  134. cpus_clear(cpus);
  135. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  136. vcpu = kvm->vcpus[i];
  137. if (!vcpu)
  138. continue;
  139. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  140. continue;
  141. cpu = vcpu->cpu;
  142. if (cpu != -1 && cpu != raw_smp_processor_id())
  143. cpu_set(cpu, cpus);
  144. }
  145. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  146. }
  147. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  148. {
  149. struct page *page;
  150. int r;
  151. mutex_init(&vcpu->mutex);
  152. vcpu->cpu = -1;
  153. vcpu->mmu.root_hpa = INVALID_PAGE;
  154. vcpu->kvm = kvm;
  155. vcpu->vcpu_id = id;
  156. if (!irqchip_in_kernel(kvm) || id == 0)
  157. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  158. else
  159. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  160. init_waitqueue_head(&vcpu->wq);
  161. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  162. if (!page) {
  163. r = -ENOMEM;
  164. goto fail;
  165. }
  166. vcpu->run = page_address(page);
  167. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  168. if (!page) {
  169. r = -ENOMEM;
  170. goto fail_free_run;
  171. }
  172. vcpu->pio_data = page_address(page);
  173. r = kvm_mmu_create(vcpu);
  174. if (r < 0)
  175. goto fail_free_pio_data;
  176. if (irqchip_in_kernel(kvm)) {
  177. r = kvm_create_lapic(vcpu);
  178. if (r < 0)
  179. goto fail_mmu_destroy;
  180. }
  181. return 0;
  182. fail_mmu_destroy:
  183. kvm_mmu_destroy(vcpu);
  184. fail_free_pio_data:
  185. free_page((unsigned long)vcpu->pio_data);
  186. fail_free_run:
  187. free_page((unsigned long)vcpu->run);
  188. fail:
  189. return r;
  190. }
  191. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  192. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  193. {
  194. kvm_free_lapic(vcpu);
  195. kvm_mmu_destroy(vcpu);
  196. free_page((unsigned long)vcpu->pio_data);
  197. free_page((unsigned long)vcpu->run);
  198. }
  199. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  200. static struct kvm *kvm_create_vm(void)
  201. {
  202. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  203. if (!kvm)
  204. return ERR_PTR(-ENOMEM);
  205. kvm_io_bus_init(&kvm->pio_bus);
  206. mutex_init(&kvm->lock);
  207. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  208. kvm_io_bus_init(&kvm->mmio_bus);
  209. spin_lock(&kvm_lock);
  210. list_add(&kvm->vm_list, &vm_list);
  211. spin_unlock(&kvm_lock);
  212. return kvm;
  213. }
  214. /*
  215. * Free any memory in @free but not in @dont.
  216. */
  217. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  218. struct kvm_memory_slot *dont)
  219. {
  220. if (!dont || free->rmap != dont->rmap)
  221. vfree(free->rmap);
  222. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  223. vfree(free->dirty_bitmap);
  224. free->npages = 0;
  225. free->dirty_bitmap = NULL;
  226. free->rmap = NULL;
  227. }
  228. static void kvm_free_physmem(struct kvm *kvm)
  229. {
  230. int i;
  231. for (i = 0; i < kvm->nmemslots; ++i)
  232. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  233. }
  234. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  235. {
  236. int i;
  237. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  238. if (vcpu->pio.guest_pages[i]) {
  239. kvm_release_page(vcpu->pio.guest_pages[i]);
  240. vcpu->pio.guest_pages[i] = NULL;
  241. }
  242. }
  243. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  244. {
  245. vcpu_load(vcpu);
  246. kvm_mmu_unload(vcpu);
  247. vcpu_put(vcpu);
  248. }
  249. static void kvm_free_vcpus(struct kvm *kvm)
  250. {
  251. unsigned int i;
  252. /*
  253. * Unpin any mmu pages first.
  254. */
  255. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  256. if (kvm->vcpus[i])
  257. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  258. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  259. if (kvm->vcpus[i]) {
  260. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  261. kvm->vcpus[i] = NULL;
  262. }
  263. }
  264. }
  265. static void kvm_destroy_vm(struct kvm *kvm)
  266. {
  267. spin_lock(&kvm_lock);
  268. list_del(&kvm->vm_list);
  269. spin_unlock(&kvm_lock);
  270. kvm_io_bus_destroy(&kvm->pio_bus);
  271. kvm_io_bus_destroy(&kvm->mmio_bus);
  272. kfree(kvm->vpic);
  273. kfree(kvm->vioapic);
  274. kvm_free_vcpus(kvm);
  275. kvm_free_physmem(kvm);
  276. kfree(kvm);
  277. }
  278. static int kvm_vm_release(struct inode *inode, struct file *filp)
  279. {
  280. struct kvm *kvm = filp->private_data;
  281. kvm_destroy_vm(kvm);
  282. return 0;
  283. }
  284. static void inject_gp(struct kvm_vcpu *vcpu)
  285. {
  286. kvm_x86_ops->inject_gp(vcpu, 0);
  287. }
  288. void fx_init(struct kvm_vcpu *vcpu)
  289. {
  290. unsigned after_mxcsr_mask;
  291. /* Initialize guest FPU by resetting ours and saving into guest's */
  292. preempt_disable();
  293. fx_save(&vcpu->host_fx_image);
  294. fpu_init();
  295. fx_save(&vcpu->guest_fx_image);
  296. fx_restore(&vcpu->host_fx_image);
  297. preempt_enable();
  298. vcpu->cr0 |= X86_CR0_ET;
  299. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  300. vcpu->guest_fx_image.mxcsr = 0x1f80;
  301. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  302. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  303. }
  304. EXPORT_SYMBOL_GPL(fx_init);
  305. /*
  306. * Allocate some memory and give it an address in the guest physical address
  307. * space.
  308. *
  309. * Discontiguous memory is allowed, mostly for framebuffers.
  310. *
  311. * Must be called holding kvm->lock.
  312. */
  313. int __kvm_set_memory_region(struct kvm *kvm,
  314. struct kvm_userspace_memory_region *mem,
  315. int user_alloc)
  316. {
  317. int r;
  318. gfn_t base_gfn;
  319. unsigned long npages;
  320. unsigned long i;
  321. struct kvm_memory_slot *memslot;
  322. struct kvm_memory_slot old, new;
  323. r = -EINVAL;
  324. /* General sanity checks */
  325. if (mem->memory_size & (PAGE_SIZE - 1))
  326. goto out;
  327. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  328. goto out;
  329. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  330. goto out;
  331. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  332. goto out;
  333. memslot = &kvm->memslots[mem->slot];
  334. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  335. npages = mem->memory_size >> PAGE_SHIFT;
  336. if (!npages)
  337. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  338. new = old = *memslot;
  339. new.base_gfn = base_gfn;
  340. new.npages = npages;
  341. new.flags = mem->flags;
  342. /* Disallow changing a memory slot's size. */
  343. r = -EINVAL;
  344. if (npages && old.npages && npages != old.npages)
  345. goto out_free;
  346. /* Check for overlaps */
  347. r = -EEXIST;
  348. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  349. struct kvm_memory_slot *s = &kvm->memslots[i];
  350. if (s == memslot)
  351. continue;
  352. if (!((base_gfn + npages <= s->base_gfn) ||
  353. (base_gfn >= s->base_gfn + s->npages)))
  354. goto out_free;
  355. }
  356. /* Free page dirty bitmap if unneeded */
  357. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  358. new.dirty_bitmap = NULL;
  359. r = -ENOMEM;
  360. /* Allocate if a slot is being created */
  361. if (npages && !new.rmap) {
  362. new.rmap = vmalloc(npages * sizeof(struct page *));
  363. if (!new.rmap)
  364. goto out_free;
  365. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  366. new.user_alloc = user_alloc;
  367. if (user_alloc)
  368. new.userspace_addr = mem->userspace_addr;
  369. else {
  370. down_write(&current->mm->mmap_sem);
  371. new.userspace_addr = do_mmap(NULL, 0,
  372. npages * PAGE_SIZE,
  373. PROT_READ | PROT_WRITE,
  374. MAP_SHARED | MAP_ANONYMOUS,
  375. 0);
  376. up_write(&current->mm->mmap_sem);
  377. if (IS_ERR((void *)new.userspace_addr))
  378. goto out_free;
  379. }
  380. } else {
  381. if (!old.user_alloc && old.rmap) {
  382. int ret;
  383. down_write(&current->mm->mmap_sem);
  384. ret = do_munmap(current->mm, old.userspace_addr,
  385. old.npages * PAGE_SIZE);
  386. up_write(&current->mm->mmap_sem);
  387. if (ret < 0)
  388. printk(KERN_WARNING
  389. "kvm_vm_ioctl_set_memory_region: "
  390. "failed to munmap memory\n");
  391. }
  392. }
  393. /* Allocate page dirty bitmap if needed */
  394. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  395. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  396. new.dirty_bitmap = vmalloc(dirty_bytes);
  397. if (!new.dirty_bitmap)
  398. goto out_free;
  399. memset(new.dirty_bitmap, 0, dirty_bytes);
  400. }
  401. if (mem->slot >= kvm->nmemslots)
  402. kvm->nmemslots = mem->slot + 1;
  403. if (!kvm->n_requested_mmu_pages) {
  404. unsigned int n_pages;
  405. if (npages) {
  406. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  407. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  408. n_pages);
  409. } else {
  410. unsigned int nr_mmu_pages;
  411. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  412. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  413. nr_mmu_pages = max(nr_mmu_pages,
  414. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  415. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  416. }
  417. }
  418. *memslot = new;
  419. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  420. kvm_flush_remote_tlbs(kvm);
  421. kvm_free_physmem_slot(&old, &new);
  422. return 0;
  423. out_free:
  424. kvm_free_physmem_slot(&new, &old);
  425. out:
  426. return r;
  427. }
  428. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  429. int kvm_set_memory_region(struct kvm *kvm,
  430. struct kvm_userspace_memory_region *mem,
  431. int user_alloc)
  432. {
  433. int r;
  434. mutex_lock(&kvm->lock);
  435. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  436. mutex_unlock(&kvm->lock);
  437. return r;
  438. }
  439. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  440. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  441. struct
  442. kvm_userspace_memory_region *mem,
  443. int user_alloc)
  444. {
  445. if (mem->slot >= KVM_MEMORY_SLOTS)
  446. return -EINVAL;
  447. return kvm_set_memory_region(kvm, mem, user_alloc);
  448. }
  449. /*
  450. * Get (and clear) the dirty memory log for a memory slot.
  451. */
  452. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  453. struct kvm_dirty_log *log)
  454. {
  455. struct kvm_memory_slot *memslot;
  456. int r, i;
  457. int n;
  458. unsigned long any = 0;
  459. mutex_lock(&kvm->lock);
  460. r = -EINVAL;
  461. if (log->slot >= KVM_MEMORY_SLOTS)
  462. goto out;
  463. memslot = &kvm->memslots[log->slot];
  464. r = -ENOENT;
  465. if (!memslot->dirty_bitmap)
  466. goto out;
  467. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  468. for (i = 0; !any && i < n/sizeof(long); ++i)
  469. any = memslot->dirty_bitmap[i];
  470. r = -EFAULT;
  471. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  472. goto out;
  473. /* If nothing is dirty, don't bother messing with page tables. */
  474. if (any) {
  475. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  476. kvm_flush_remote_tlbs(kvm);
  477. memset(memslot->dirty_bitmap, 0, n);
  478. }
  479. r = 0;
  480. out:
  481. mutex_unlock(&kvm->lock);
  482. return r;
  483. }
  484. int is_error_page(struct page *page)
  485. {
  486. return page == bad_page;
  487. }
  488. EXPORT_SYMBOL_GPL(is_error_page);
  489. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  490. {
  491. int i;
  492. struct kvm_mem_alias *alias;
  493. for (i = 0; i < kvm->naliases; ++i) {
  494. alias = &kvm->aliases[i];
  495. if (gfn >= alias->base_gfn
  496. && gfn < alias->base_gfn + alias->npages)
  497. return alias->target_gfn + gfn - alias->base_gfn;
  498. }
  499. return gfn;
  500. }
  501. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  502. {
  503. int i;
  504. for (i = 0; i < kvm->nmemslots; ++i) {
  505. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  506. if (gfn >= memslot->base_gfn
  507. && gfn < memslot->base_gfn + memslot->npages)
  508. return memslot;
  509. }
  510. return NULL;
  511. }
  512. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  513. {
  514. gfn = unalias_gfn(kvm, gfn);
  515. return __gfn_to_memslot(kvm, gfn);
  516. }
  517. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  518. {
  519. int i;
  520. gfn = unalias_gfn(kvm, gfn);
  521. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  522. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  523. if (gfn >= memslot->base_gfn
  524. && gfn < memslot->base_gfn + memslot->npages)
  525. return 1;
  526. }
  527. return 0;
  528. }
  529. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  530. /*
  531. * Requires current->mm->mmap_sem to be held
  532. */
  533. static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
  534. {
  535. struct kvm_memory_slot *slot;
  536. struct page *page[1];
  537. int npages;
  538. might_sleep();
  539. gfn = unalias_gfn(kvm, gfn);
  540. slot = __gfn_to_memslot(kvm, gfn);
  541. if (!slot) {
  542. get_page(bad_page);
  543. return bad_page;
  544. }
  545. npages = get_user_pages(current, current->mm,
  546. slot->userspace_addr
  547. + (gfn - slot->base_gfn) * PAGE_SIZE, 1,
  548. 1, 1, page, NULL);
  549. if (npages != 1) {
  550. get_page(bad_page);
  551. return bad_page;
  552. }
  553. return page[0];
  554. }
  555. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  556. {
  557. struct page *page;
  558. down_read(&current->mm->mmap_sem);
  559. page = __gfn_to_page(kvm, gfn);
  560. up_read(&current->mm->mmap_sem);
  561. return page;
  562. }
  563. EXPORT_SYMBOL_GPL(gfn_to_page);
  564. void kvm_release_page(struct page *page)
  565. {
  566. if (!PageReserved(page))
  567. SetPageDirty(page);
  568. put_page(page);
  569. }
  570. EXPORT_SYMBOL_GPL(kvm_release_page);
  571. static int next_segment(unsigned long len, int offset)
  572. {
  573. if (len > PAGE_SIZE - offset)
  574. return PAGE_SIZE - offset;
  575. else
  576. return len;
  577. }
  578. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  579. int len)
  580. {
  581. void *page_virt;
  582. struct page *page;
  583. page = gfn_to_page(kvm, gfn);
  584. if (is_error_page(page)) {
  585. kvm_release_page(page);
  586. return -EFAULT;
  587. }
  588. page_virt = kmap_atomic(page, KM_USER0);
  589. memcpy(data, page_virt + offset, len);
  590. kunmap_atomic(page_virt, KM_USER0);
  591. kvm_release_page(page);
  592. return 0;
  593. }
  594. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  595. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  596. {
  597. gfn_t gfn = gpa >> PAGE_SHIFT;
  598. int seg;
  599. int offset = offset_in_page(gpa);
  600. int ret;
  601. while ((seg = next_segment(len, offset)) != 0) {
  602. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  603. if (ret < 0)
  604. return ret;
  605. offset = 0;
  606. len -= seg;
  607. data += seg;
  608. ++gfn;
  609. }
  610. return 0;
  611. }
  612. EXPORT_SYMBOL_GPL(kvm_read_guest);
  613. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  614. int offset, int len)
  615. {
  616. void *page_virt;
  617. struct page *page;
  618. page = gfn_to_page(kvm, gfn);
  619. if (is_error_page(page)) {
  620. kvm_release_page(page);
  621. return -EFAULT;
  622. }
  623. page_virt = kmap_atomic(page, KM_USER0);
  624. memcpy(page_virt + offset, data, len);
  625. kunmap_atomic(page_virt, KM_USER0);
  626. mark_page_dirty(kvm, gfn);
  627. kvm_release_page(page);
  628. return 0;
  629. }
  630. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  631. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  632. unsigned long len)
  633. {
  634. gfn_t gfn = gpa >> PAGE_SHIFT;
  635. int seg;
  636. int offset = offset_in_page(gpa);
  637. int ret;
  638. while ((seg = next_segment(len, offset)) != 0) {
  639. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  640. if (ret < 0)
  641. return ret;
  642. offset = 0;
  643. len -= seg;
  644. data += seg;
  645. ++gfn;
  646. }
  647. return 0;
  648. }
  649. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  650. {
  651. void *page_virt;
  652. struct page *page;
  653. page = gfn_to_page(kvm, gfn);
  654. if (is_error_page(page)) {
  655. kvm_release_page(page);
  656. return -EFAULT;
  657. }
  658. page_virt = kmap_atomic(page, KM_USER0);
  659. memset(page_virt + offset, 0, len);
  660. kunmap_atomic(page_virt, KM_USER0);
  661. kvm_release_page(page);
  662. return 0;
  663. }
  664. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  665. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  666. {
  667. gfn_t gfn = gpa >> PAGE_SHIFT;
  668. int seg;
  669. int offset = offset_in_page(gpa);
  670. int ret;
  671. while ((seg = next_segment(len, offset)) != 0) {
  672. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  673. if (ret < 0)
  674. return ret;
  675. offset = 0;
  676. len -= seg;
  677. ++gfn;
  678. }
  679. return 0;
  680. }
  681. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  682. /* WARNING: Does not work on aliased pages. */
  683. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  684. {
  685. struct kvm_memory_slot *memslot;
  686. memslot = __gfn_to_memslot(kvm, gfn);
  687. if (memslot && memslot->dirty_bitmap) {
  688. unsigned long rel_gfn = gfn - memslot->base_gfn;
  689. /* avoid RMW */
  690. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  691. set_bit(rel_gfn, memslot->dirty_bitmap);
  692. }
  693. }
  694. int emulator_read_std(unsigned long addr,
  695. void *val,
  696. unsigned int bytes,
  697. struct kvm_vcpu *vcpu)
  698. {
  699. void *data = val;
  700. while (bytes) {
  701. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  702. unsigned offset = addr & (PAGE_SIZE-1);
  703. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  704. int ret;
  705. if (gpa == UNMAPPED_GVA)
  706. return X86EMUL_PROPAGATE_FAULT;
  707. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  708. if (ret < 0)
  709. return X86EMUL_UNHANDLEABLE;
  710. bytes -= tocopy;
  711. data += tocopy;
  712. addr += tocopy;
  713. }
  714. return X86EMUL_CONTINUE;
  715. }
  716. EXPORT_SYMBOL_GPL(emulator_read_std);
  717. static int emulator_write_std(unsigned long addr,
  718. const void *val,
  719. unsigned int bytes,
  720. struct kvm_vcpu *vcpu)
  721. {
  722. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  723. return X86EMUL_UNHANDLEABLE;
  724. }
  725. /*
  726. * Only apic need an MMIO device hook, so shortcut now..
  727. */
  728. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  729. gpa_t addr)
  730. {
  731. struct kvm_io_device *dev;
  732. if (vcpu->apic) {
  733. dev = &vcpu->apic->dev;
  734. if (dev->in_range(dev, addr))
  735. return dev;
  736. }
  737. return NULL;
  738. }
  739. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  740. gpa_t addr)
  741. {
  742. struct kvm_io_device *dev;
  743. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  744. if (dev == NULL)
  745. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  746. return dev;
  747. }
  748. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  749. gpa_t addr)
  750. {
  751. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  752. }
  753. static int emulator_read_emulated(unsigned long addr,
  754. void *val,
  755. unsigned int bytes,
  756. struct kvm_vcpu *vcpu)
  757. {
  758. struct kvm_io_device *mmio_dev;
  759. gpa_t gpa;
  760. if (vcpu->mmio_read_completed) {
  761. memcpy(val, vcpu->mmio_data, bytes);
  762. vcpu->mmio_read_completed = 0;
  763. return X86EMUL_CONTINUE;
  764. }
  765. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  766. /* For APIC access vmexit */
  767. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  768. goto mmio;
  769. if (emulator_read_std(addr, val, bytes, vcpu)
  770. == X86EMUL_CONTINUE)
  771. return X86EMUL_CONTINUE;
  772. if (gpa == UNMAPPED_GVA)
  773. return X86EMUL_PROPAGATE_FAULT;
  774. mmio:
  775. /*
  776. * Is this MMIO handled locally?
  777. */
  778. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  779. if (mmio_dev) {
  780. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  781. return X86EMUL_CONTINUE;
  782. }
  783. vcpu->mmio_needed = 1;
  784. vcpu->mmio_phys_addr = gpa;
  785. vcpu->mmio_size = bytes;
  786. vcpu->mmio_is_write = 0;
  787. return X86EMUL_UNHANDLEABLE;
  788. }
  789. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  790. const void *val, int bytes)
  791. {
  792. int ret;
  793. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  794. if (ret < 0)
  795. return 0;
  796. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  797. return 1;
  798. }
  799. static int emulator_write_emulated_onepage(unsigned long addr,
  800. const void *val,
  801. unsigned int bytes,
  802. struct kvm_vcpu *vcpu)
  803. {
  804. struct kvm_io_device *mmio_dev;
  805. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  806. if (gpa == UNMAPPED_GVA) {
  807. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  808. return X86EMUL_PROPAGATE_FAULT;
  809. }
  810. /* For APIC access vmexit */
  811. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  812. goto mmio;
  813. if (emulator_write_phys(vcpu, gpa, val, bytes))
  814. return X86EMUL_CONTINUE;
  815. mmio:
  816. /*
  817. * Is this MMIO handled locally?
  818. */
  819. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  820. if (mmio_dev) {
  821. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  822. return X86EMUL_CONTINUE;
  823. }
  824. vcpu->mmio_needed = 1;
  825. vcpu->mmio_phys_addr = gpa;
  826. vcpu->mmio_size = bytes;
  827. vcpu->mmio_is_write = 1;
  828. memcpy(vcpu->mmio_data, val, bytes);
  829. return X86EMUL_CONTINUE;
  830. }
  831. int emulator_write_emulated(unsigned long addr,
  832. const void *val,
  833. unsigned int bytes,
  834. struct kvm_vcpu *vcpu)
  835. {
  836. /* Crossing a page boundary? */
  837. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  838. int rc, now;
  839. now = -addr & ~PAGE_MASK;
  840. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  841. if (rc != X86EMUL_CONTINUE)
  842. return rc;
  843. addr += now;
  844. val += now;
  845. bytes -= now;
  846. }
  847. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  848. }
  849. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  850. static int emulator_cmpxchg_emulated(unsigned long addr,
  851. const void *old,
  852. const void *new,
  853. unsigned int bytes,
  854. struct kvm_vcpu *vcpu)
  855. {
  856. static int reported;
  857. if (!reported) {
  858. reported = 1;
  859. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  860. }
  861. return emulator_write_emulated(addr, new, bytes, vcpu);
  862. }
  863. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  864. {
  865. return kvm_x86_ops->get_segment_base(vcpu, seg);
  866. }
  867. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  868. {
  869. return X86EMUL_CONTINUE;
  870. }
  871. int emulate_clts(struct kvm_vcpu *vcpu)
  872. {
  873. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
  874. return X86EMUL_CONTINUE;
  875. }
  876. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  877. {
  878. struct kvm_vcpu *vcpu = ctxt->vcpu;
  879. switch (dr) {
  880. case 0 ... 3:
  881. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  882. return X86EMUL_CONTINUE;
  883. default:
  884. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  885. return X86EMUL_UNHANDLEABLE;
  886. }
  887. }
  888. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  889. {
  890. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  891. int exception;
  892. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  893. if (exception) {
  894. /* FIXME: better handling */
  895. return X86EMUL_UNHANDLEABLE;
  896. }
  897. return X86EMUL_CONTINUE;
  898. }
  899. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  900. {
  901. static int reported;
  902. u8 opcodes[4];
  903. unsigned long rip = vcpu->rip;
  904. unsigned long rip_linear;
  905. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  906. if (reported)
  907. return;
  908. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  909. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  910. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  911. reported = 1;
  912. }
  913. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  914. struct x86_emulate_ops emulate_ops = {
  915. .read_std = emulator_read_std,
  916. .write_std = emulator_write_std,
  917. .read_emulated = emulator_read_emulated,
  918. .write_emulated = emulator_write_emulated,
  919. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  920. };
  921. int emulate_instruction(struct kvm_vcpu *vcpu,
  922. struct kvm_run *run,
  923. unsigned long cr2,
  924. u16 error_code,
  925. int no_decode)
  926. {
  927. int r;
  928. vcpu->mmio_fault_cr2 = cr2;
  929. kvm_x86_ops->cache_regs(vcpu);
  930. vcpu->mmio_is_write = 0;
  931. vcpu->pio.string = 0;
  932. if (!no_decode) {
  933. int cs_db, cs_l;
  934. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  935. vcpu->emulate_ctxt.vcpu = vcpu;
  936. vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  937. vcpu->emulate_ctxt.cr2 = cr2;
  938. vcpu->emulate_ctxt.mode =
  939. (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
  940. ? X86EMUL_MODE_REAL : cs_l
  941. ? X86EMUL_MODE_PROT64 : cs_db
  942. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  943. if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  944. vcpu->emulate_ctxt.cs_base = 0;
  945. vcpu->emulate_ctxt.ds_base = 0;
  946. vcpu->emulate_ctxt.es_base = 0;
  947. vcpu->emulate_ctxt.ss_base = 0;
  948. } else {
  949. vcpu->emulate_ctxt.cs_base =
  950. get_segment_base(vcpu, VCPU_SREG_CS);
  951. vcpu->emulate_ctxt.ds_base =
  952. get_segment_base(vcpu, VCPU_SREG_DS);
  953. vcpu->emulate_ctxt.es_base =
  954. get_segment_base(vcpu, VCPU_SREG_ES);
  955. vcpu->emulate_ctxt.ss_base =
  956. get_segment_base(vcpu, VCPU_SREG_SS);
  957. }
  958. vcpu->emulate_ctxt.gs_base =
  959. get_segment_base(vcpu, VCPU_SREG_GS);
  960. vcpu->emulate_ctxt.fs_base =
  961. get_segment_base(vcpu, VCPU_SREG_FS);
  962. r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
  963. if (r) {
  964. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  965. return EMULATE_DONE;
  966. return EMULATE_FAIL;
  967. }
  968. }
  969. r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
  970. if (vcpu->pio.string)
  971. return EMULATE_DO_MMIO;
  972. if ((r || vcpu->mmio_is_write) && run) {
  973. run->exit_reason = KVM_EXIT_MMIO;
  974. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  975. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  976. run->mmio.len = vcpu->mmio_size;
  977. run->mmio.is_write = vcpu->mmio_is_write;
  978. }
  979. if (r) {
  980. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  981. return EMULATE_DONE;
  982. if (!vcpu->mmio_needed) {
  983. kvm_report_emulation_failure(vcpu, "mmio");
  984. return EMULATE_FAIL;
  985. }
  986. return EMULATE_DO_MMIO;
  987. }
  988. kvm_x86_ops->decache_regs(vcpu);
  989. kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
  990. if (vcpu->mmio_is_write) {
  991. vcpu->mmio_needed = 0;
  992. return EMULATE_DO_MMIO;
  993. }
  994. return EMULATE_DONE;
  995. }
  996. EXPORT_SYMBOL_GPL(emulate_instruction);
  997. /*
  998. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  999. */
  1000. static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1001. {
  1002. DECLARE_WAITQUEUE(wait, current);
  1003. add_wait_queue(&vcpu->wq, &wait);
  1004. /*
  1005. * We will block until either an interrupt or a signal wakes us up
  1006. */
  1007. while (!kvm_cpu_has_interrupt(vcpu)
  1008. && !signal_pending(current)
  1009. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  1010. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  1011. set_current_state(TASK_INTERRUPTIBLE);
  1012. vcpu_put(vcpu);
  1013. schedule();
  1014. vcpu_load(vcpu);
  1015. }
  1016. __set_current_state(TASK_RUNNING);
  1017. remove_wait_queue(&vcpu->wq, &wait);
  1018. }
  1019. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1020. {
  1021. ++vcpu->stat.halt_exits;
  1022. if (irqchip_in_kernel(vcpu->kvm)) {
  1023. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  1024. kvm_vcpu_block(vcpu);
  1025. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  1026. return -EINTR;
  1027. return 1;
  1028. } else {
  1029. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1030. return 0;
  1031. }
  1032. }
  1033. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1034. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  1035. {
  1036. unsigned long nr, a0, a1, a2, a3, ret;
  1037. kvm_x86_ops->cache_regs(vcpu);
  1038. nr = vcpu->regs[VCPU_REGS_RAX];
  1039. a0 = vcpu->regs[VCPU_REGS_RBX];
  1040. a1 = vcpu->regs[VCPU_REGS_RCX];
  1041. a2 = vcpu->regs[VCPU_REGS_RDX];
  1042. a3 = vcpu->regs[VCPU_REGS_RSI];
  1043. if (!is_long_mode(vcpu)) {
  1044. nr &= 0xFFFFFFFF;
  1045. a0 &= 0xFFFFFFFF;
  1046. a1 &= 0xFFFFFFFF;
  1047. a2 &= 0xFFFFFFFF;
  1048. a3 &= 0xFFFFFFFF;
  1049. }
  1050. switch (nr) {
  1051. default:
  1052. ret = -KVM_ENOSYS;
  1053. break;
  1054. }
  1055. vcpu->regs[VCPU_REGS_RAX] = ret;
  1056. kvm_x86_ops->decache_regs(vcpu);
  1057. return 0;
  1058. }
  1059. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  1060. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  1061. {
  1062. char instruction[3];
  1063. int ret = 0;
  1064. mutex_lock(&vcpu->kvm->lock);
  1065. /*
  1066. * Blow out the MMU to ensure that no other VCPU has an active mapping
  1067. * to ensure that the updated hypercall appears atomically across all
  1068. * VCPUs.
  1069. */
  1070. kvm_mmu_zap_all(vcpu->kvm);
  1071. kvm_x86_ops->cache_regs(vcpu);
  1072. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  1073. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  1074. != X86EMUL_CONTINUE)
  1075. ret = -EFAULT;
  1076. mutex_unlock(&vcpu->kvm->lock);
  1077. return ret;
  1078. }
  1079. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1080. {
  1081. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1082. }
  1083. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1084. {
  1085. struct descriptor_table dt = { limit, base };
  1086. kvm_x86_ops->set_gdt(vcpu, &dt);
  1087. }
  1088. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1089. {
  1090. struct descriptor_table dt = { limit, base };
  1091. kvm_x86_ops->set_idt(vcpu, &dt);
  1092. }
  1093. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1094. unsigned long *rflags)
  1095. {
  1096. lmsw(vcpu, msw);
  1097. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1098. }
  1099. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1100. {
  1101. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1102. switch (cr) {
  1103. case 0:
  1104. return vcpu->cr0;
  1105. case 2:
  1106. return vcpu->cr2;
  1107. case 3:
  1108. return vcpu->cr3;
  1109. case 4:
  1110. return vcpu->cr4;
  1111. default:
  1112. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1113. return 0;
  1114. }
  1115. }
  1116. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1117. unsigned long *rflags)
  1118. {
  1119. switch (cr) {
  1120. case 0:
  1121. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1122. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1123. break;
  1124. case 2:
  1125. vcpu->cr2 = val;
  1126. break;
  1127. case 3:
  1128. set_cr3(vcpu, val);
  1129. break;
  1130. case 4:
  1131. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1132. break;
  1133. default:
  1134. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1135. }
  1136. }
  1137. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1138. {
  1139. u64 data;
  1140. switch (msr) {
  1141. case 0xc0010010: /* SYSCFG */
  1142. case 0xc0010015: /* HWCR */
  1143. case MSR_IA32_PLATFORM_ID:
  1144. case MSR_IA32_P5_MC_ADDR:
  1145. case MSR_IA32_P5_MC_TYPE:
  1146. case MSR_IA32_MC0_CTL:
  1147. case MSR_IA32_MCG_STATUS:
  1148. case MSR_IA32_MCG_CAP:
  1149. case MSR_IA32_MC0_MISC:
  1150. case MSR_IA32_MC0_MISC+4:
  1151. case MSR_IA32_MC0_MISC+8:
  1152. case MSR_IA32_MC0_MISC+12:
  1153. case MSR_IA32_MC0_MISC+16:
  1154. case MSR_IA32_UCODE_REV:
  1155. case MSR_IA32_PERF_STATUS:
  1156. case MSR_IA32_EBL_CR_POWERON:
  1157. /* MTRR registers */
  1158. case 0xfe:
  1159. case 0x200 ... 0x2ff:
  1160. data = 0;
  1161. break;
  1162. case 0xcd: /* fsb frequency */
  1163. data = 3;
  1164. break;
  1165. case MSR_IA32_APICBASE:
  1166. data = kvm_get_apic_base(vcpu);
  1167. break;
  1168. case MSR_IA32_MISC_ENABLE:
  1169. data = vcpu->ia32_misc_enable_msr;
  1170. break;
  1171. #ifdef CONFIG_X86_64
  1172. case MSR_EFER:
  1173. data = vcpu->shadow_efer;
  1174. break;
  1175. #endif
  1176. default:
  1177. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1178. return 1;
  1179. }
  1180. *pdata = data;
  1181. return 0;
  1182. }
  1183. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1184. /*
  1185. * Reads an msr value (of 'msr_index') into 'pdata'.
  1186. * Returns 0 on success, non-0 otherwise.
  1187. * Assumes vcpu_load() was already called.
  1188. */
  1189. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1190. {
  1191. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1192. }
  1193. #ifdef CONFIG_X86_64
  1194. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1195. {
  1196. if (efer & EFER_RESERVED_BITS) {
  1197. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1198. efer);
  1199. inject_gp(vcpu);
  1200. return;
  1201. }
  1202. if (is_paging(vcpu)
  1203. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1204. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1205. inject_gp(vcpu);
  1206. return;
  1207. }
  1208. kvm_x86_ops->set_efer(vcpu, efer);
  1209. efer &= ~EFER_LMA;
  1210. efer |= vcpu->shadow_efer & EFER_LMA;
  1211. vcpu->shadow_efer = efer;
  1212. }
  1213. #endif
  1214. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1215. {
  1216. switch (msr) {
  1217. #ifdef CONFIG_X86_64
  1218. case MSR_EFER:
  1219. set_efer(vcpu, data);
  1220. break;
  1221. #endif
  1222. case MSR_IA32_MC0_STATUS:
  1223. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1224. __FUNCTION__, data);
  1225. break;
  1226. case MSR_IA32_MCG_STATUS:
  1227. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1228. __FUNCTION__, data);
  1229. break;
  1230. case MSR_IA32_UCODE_REV:
  1231. case MSR_IA32_UCODE_WRITE:
  1232. case 0x200 ... 0x2ff: /* MTRRs */
  1233. break;
  1234. case MSR_IA32_APICBASE:
  1235. kvm_set_apic_base(vcpu, data);
  1236. break;
  1237. case MSR_IA32_MISC_ENABLE:
  1238. vcpu->ia32_misc_enable_msr = data;
  1239. break;
  1240. default:
  1241. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1242. return 1;
  1243. }
  1244. return 0;
  1245. }
  1246. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1247. /*
  1248. * Writes msr value into into the appropriate "register".
  1249. * Returns 0 on success, non-0 otherwise.
  1250. * Assumes vcpu_load() was already called.
  1251. */
  1252. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1253. {
  1254. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  1255. }
  1256. void kvm_resched(struct kvm_vcpu *vcpu)
  1257. {
  1258. if (!need_resched())
  1259. return;
  1260. cond_resched();
  1261. }
  1262. EXPORT_SYMBOL_GPL(kvm_resched);
  1263. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1264. {
  1265. int i;
  1266. u32 function;
  1267. struct kvm_cpuid_entry *e, *best;
  1268. kvm_x86_ops->cache_regs(vcpu);
  1269. function = vcpu->regs[VCPU_REGS_RAX];
  1270. vcpu->regs[VCPU_REGS_RAX] = 0;
  1271. vcpu->regs[VCPU_REGS_RBX] = 0;
  1272. vcpu->regs[VCPU_REGS_RCX] = 0;
  1273. vcpu->regs[VCPU_REGS_RDX] = 0;
  1274. best = NULL;
  1275. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1276. e = &vcpu->cpuid_entries[i];
  1277. if (e->function == function) {
  1278. best = e;
  1279. break;
  1280. }
  1281. /*
  1282. * Both basic or both extended?
  1283. */
  1284. if (((e->function ^ function) & 0x80000000) == 0)
  1285. if (!best || e->function > best->function)
  1286. best = e;
  1287. }
  1288. if (best) {
  1289. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1290. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1291. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1292. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1293. }
  1294. kvm_x86_ops->decache_regs(vcpu);
  1295. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1296. }
  1297. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1298. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1299. {
  1300. void *p = vcpu->pio_data;
  1301. void *q;
  1302. unsigned bytes;
  1303. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1304. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1305. PAGE_KERNEL);
  1306. if (!q) {
  1307. free_pio_guest_pages(vcpu);
  1308. return -ENOMEM;
  1309. }
  1310. q += vcpu->pio.guest_page_offset;
  1311. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1312. if (vcpu->pio.in)
  1313. memcpy(q, p, bytes);
  1314. else
  1315. memcpy(p, q, bytes);
  1316. q -= vcpu->pio.guest_page_offset;
  1317. vunmap(q);
  1318. free_pio_guest_pages(vcpu);
  1319. return 0;
  1320. }
  1321. static int complete_pio(struct kvm_vcpu *vcpu)
  1322. {
  1323. struct kvm_pio_request *io = &vcpu->pio;
  1324. long delta;
  1325. int r;
  1326. kvm_x86_ops->cache_regs(vcpu);
  1327. if (!io->string) {
  1328. if (io->in)
  1329. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1330. io->size);
  1331. } else {
  1332. if (io->in) {
  1333. r = pio_copy_data(vcpu);
  1334. if (r) {
  1335. kvm_x86_ops->cache_regs(vcpu);
  1336. return r;
  1337. }
  1338. }
  1339. delta = 1;
  1340. if (io->rep) {
  1341. delta *= io->cur_count;
  1342. /*
  1343. * The size of the register should really depend on
  1344. * current address size.
  1345. */
  1346. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1347. }
  1348. if (io->down)
  1349. delta = -delta;
  1350. delta *= io->size;
  1351. if (io->in)
  1352. vcpu->regs[VCPU_REGS_RDI] += delta;
  1353. else
  1354. vcpu->regs[VCPU_REGS_RSI] += delta;
  1355. }
  1356. kvm_x86_ops->decache_regs(vcpu);
  1357. io->count -= io->cur_count;
  1358. io->cur_count = 0;
  1359. return 0;
  1360. }
  1361. static void kernel_pio(struct kvm_io_device *pio_dev,
  1362. struct kvm_vcpu *vcpu,
  1363. void *pd)
  1364. {
  1365. /* TODO: String I/O for in kernel device */
  1366. mutex_lock(&vcpu->kvm->lock);
  1367. if (vcpu->pio.in)
  1368. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1369. vcpu->pio.size,
  1370. pd);
  1371. else
  1372. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1373. vcpu->pio.size,
  1374. pd);
  1375. mutex_unlock(&vcpu->kvm->lock);
  1376. }
  1377. static void pio_string_write(struct kvm_io_device *pio_dev,
  1378. struct kvm_vcpu *vcpu)
  1379. {
  1380. struct kvm_pio_request *io = &vcpu->pio;
  1381. void *pd = vcpu->pio_data;
  1382. int i;
  1383. mutex_lock(&vcpu->kvm->lock);
  1384. for (i = 0; i < io->cur_count; i++) {
  1385. kvm_iodevice_write(pio_dev, io->port,
  1386. io->size,
  1387. pd);
  1388. pd += io->size;
  1389. }
  1390. mutex_unlock(&vcpu->kvm->lock);
  1391. }
  1392. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1393. int size, unsigned port)
  1394. {
  1395. struct kvm_io_device *pio_dev;
  1396. vcpu->run->exit_reason = KVM_EXIT_IO;
  1397. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1398. vcpu->run->io.size = vcpu->pio.size = size;
  1399. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1400. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1401. vcpu->run->io.port = vcpu->pio.port = port;
  1402. vcpu->pio.in = in;
  1403. vcpu->pio.string = 0;
  1404. vcpu->pio.down = 0;
  1405. vcpu->pio.guest_page_offset = 0;
  1406. vcpu->pio.rep = 0;
  1407. kvm_x86_ops->cache_regs(vcpu);
  1408. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1409. kvm_x86_ops->decache_regs(vcpu);
  1410. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1411. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1412. if (pio_dev) {
  1413. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1414. complete_pio(vcpu);
  1415. return 1;
  1416. }
  1417. return 0;
  1418. }
  1419. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1420. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1421. int size, unsigned long count, int down,
  1422. gva_t address, int rep, unsigned port)
  1423. {
  1424. unsigned now, in_page;
  1425. int i, ret = 0;
  1426. int nr_pages = 1;
  1427. struct page *page;
  1428. struct kvm_io_device *pio_dev;
  1429. vcpu->run->exit_reason = KVM_EXIT_IO;
  1430. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1431. vcpu->run->io.size = vcpu->pio.size = size;
  1432. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1433. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1434. vcpu->run->io.port = vcpu->pio.port = port;
  1435. vcpu->pio.in = in;
  1436. vcpu->pio.string = 1;
  1437. vcpu->pio.down = down;
  1438. vcpu->pio.guest_page_offset = offset_in_page(address);
  1439. vcpu->pio.rep = rep;
  1440. if (!count) {
  1441. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1442. return 1;
  1443. }
  1444. if (!down)
  1445. in_page = PAGE_SIZE - offset_in_page(address);
  1446. else
  1447. in_page = offset_in_page(address) + size;
  1448. now = min(count, (unsigned long)in_page / size);
  1449. if (!now) {
  1450. /*
  1451. * String I/O straddles page boundary. Pin two guest pages
  1452. * so that we satisfy atomicity constraints. Do just one
  1453. * transaction to avoid complexity.
  1454. */
  1455. nr_pages = 2;
  1456. now = 1;
  1457. }
  1458. if (down) {
  1459. /*
  1460. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1461. */
  1462. pr_unimpl(vcpu, "guest string pio down\n");
  1463. inject_gp(vcpu);
  1464. return 1;
  1465. }
  1466. vcpu->run->io.count = now;
  1467. vcpu->pio.cur_count = now;
  1468. if (vcpu->pio.cur_count == vcpu->pio.count)
  1469. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1470. for (i = 0; i < nr_pages; ++i) {
  1471. mutex_lock(&vcpu->kvm->lock);
  1472. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1473. vcpu->pio.guest_pages[i] = page;
  1474. mutex_unlock(&vcpu->kvm->lock);
  1475. if (!page) {
  1476. inject_gp(vcpu);
  1477. free_pio_guest_pages(vcpu);
  1478. return 1;
  1479. }
  1480. }
  1481. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1482. if (!vcpu->pio.in) {
  1483. /* string PIO write */
  1484. ret = pio_copy_data(vcpu);
  1485. if (ret >= 0 && pio_dev) {
  1486. pio_string_write(pio_dev, vcpu);
  1487. complete_pio(vcpu);
  1488. if (vcpu->pio.count == 0)
  1489. ret = 1;
  1490. }
  1491. } else if (pio_dev)
  1492. pr_unimpl(vcpu, "no string pio read support yet, "
  1493. "port %x size %d count %ld\n",
  1494. port, size, count);
  1495. return ret;
  1496. }
  1497. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1498. /*
  1499. * Check if userspace requested an interrupt window, and that the
  1500. * interrupt window is open.
  1501. *
  1502. * No need to exit to userspace if we already have an interrupt queued.
  1503. */
  1504. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1505. struct kvm_run *kvm_run)
  1506. {
  1507. return (!vcpu->irq_summary &&
  1508. kvm_run->request_interrupt_window &&
  1509. vcpu->interrupt_window_open &&
  1510. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  1511. }
  1512. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1513. struct kvm_run *kvm_run)
  1514. {
  1515. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  1516. kvm_run->cr8 = get_cr8(vcpu);
  1517. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1518. if (irqchip_in_kernel(vcpu->kvm))
  1519. kvm_run->ready_for_interrupt_injection = 1;
  1520. else
  1521. kvm_run->ready_for_interrupt_injection =
  1522. (vcpu->interrupt_window_open &&
  1523. vcpu->irq_summary == 0);
  1524. }
  1525. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1526. {
  1527. int r;
  1528. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1529. pr_debug("vcpu %d received sipi with vector # %x\n",
  1530. vcpu->vcpu_id, vcpu->sipi_vector);
  1531. kvm_lapic_reset(vcpu);
  1532. r = kvm_x86_ops->vcpu_reset(vcpu);
  1533. if (r)
  1534. return r;
  1535. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1536. }
  1537. preempted:
  1538. if (vcpu->guest_debug.enabled)
  1539. kvm_x86_ops->guest_debug_pre(vcpu);
  1540. again:
  1541. r = kvm_mmu_reload(vcpu);
  1542. if (unlikely(r))
  1543. goto out;
  1544. kvm_inject_pending_timer_irqs(vcpu);
  1545. preempt_disable();
  1546. kvm_x86_ops->prepare_guest_switch(vcpu);
  1547. kvm_load_guest_fpu(vcpu);
  1548. local_irq_disable();
  1549. if (signal_pending(current)) {
  1550. local_irq_enable();
  1551. preempt_enable();
  1552. r = -EINTR;
  1553. kvm_run->exit_reason = KVM_EXIT_INTR;
  1554. ++vcpu->stat.signal_exits;
  1555. goto out;
  1556. }
  1557. if (irqchip_in_kernel(vcpu->kvm))
  1558. kvm_x86_ops->inject_pending_irq(vcpu);
  1559. else if (!vcpu->mmio_read_completed)
  1560. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  1561. vcpu->guest_mode = 1;
  1562. kvm_guest_enter();
  1563. if (vcpu->requests)
  1564. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  1565. kvm_x86_ops->tlb_flush(vcpu);
  1566. kvm_x86_ops->run(vcpu, kvm_run);
  1567. vcpu->guest_mode = 0;
  1568. local_irq_enable();
  1569. ++vcpu->stat.exits;
  1570. /*
  1571. * We must have an instruction between local_irq_enable() and
  1572. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  1573. * the interrupt shadow. The stat.exits increment will do nicely.
  1574. * But we need to prevent reordering, hence this barrier():
  1575. */
  1576. barrier();
  1577. kvm_guest_exit();
  1578. preempt_enable();
  1579. /*
  1580. * Profile KVM exit RIPs:
  1581. */
  1582. if (unlikely(prof_on == KVM_PROFILING)) {
  1583. kvm_x86_ops->cache_regs(vcpu);
  1584. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  1585. }
  1586. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  1587. if (r > 0) {
  1588. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1589. r = -EINTR;
  1590. kvm_run->exit_reason = KVM_EXIT_INTR;
  1591. ++vcpu->stat.request_irq_exits;
  1592. goto out;
  1593. }
  1594. if (!need_resched()) {
  1595. ++vcpu->stat.light_exits;
  1596. goto again;
  1597. }
  1598. }
  1599. out:
  1600. if (r > 0) {
  1601. kvm_resched(vcpu);
  1602. goto preempted;
  1603. }
  1604. post_kvm_run_save(vcpu, kvm_run);
  1605. return r;
  1606. }
  1607. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1608. {
  1609. int r;
  1610. sigset_t sigsaved;
  1611. vcpu_load(vcpu);
  1612. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1613. kvm_vcpu_block(vcpu);
  1614. vcpu_put(vcpu);
  1615. return -EAGAIN;
  1616. }
  1617. if (vcpu->sigset_active)
  1618. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1619. /* re-sync apic's tpr */
  1620. if (!irqchip_in_kernel(vcpu->kvm))
  1621. set_cr8(vcpu, kvm_run->cr8);
  1622. if (vcpu->pio.cur_count) {
  1623. r = complete_pio(vcpu);
  1624. if (r)
  1625. goto out;
  1626. }
  1627. #if CONFIG_HAS_IOMEM
  1628. if (vcpu->mmio_needed) {
  1629. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1630. vcpu->mmio_read_completed = 1;
  1631. vcpu->mmio_needed = 0;
  1632. r = emulate_instruction(vcpu, kvm_run,
  1633. vcpu->mmio_fault_cr2, 0, 1);
  1634. if (r == EMULATE_DO_MMIO) {
  1635. /*
  1636. * Read-modify-write. Back to userspace.
  1637. */
  1638. r = 0;
  1639. goto out;
  1640. }
  1641. }
  1642. #endif
  1643. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1644. kvm_x86_ops->cache_regs(vcpu);
  1645. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1646. kvm_x86_ops->decache_regs(vcpu);
  1647. }
  1648. r = __vcpu_run(vcpu, kvm_run);
  1649. out:
  1650. if (vcpu->sigset_active)
  1651. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1652. vcpu_put(vcpu);
  1653. return r;
  1654. }
  1655. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1656. struct kvm_regs *regs)
  1657. {
  1658. vcpu_load(vcpu);
  1659. kvm_x86_ops->cache_regs(vcpu);
  1660. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1661. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1662. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1663. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1664. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1665. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1666. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1667. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1668. #ifdef CONFIG_X86_64
  1669. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1670. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1671. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1672. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1673. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1674. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1675. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1676. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1677. #endif
  1678. regs->rip = vcpu->rip;
  1679. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1680. /*
  1681. * Don't leak debug flags in case they were set for guest debugging
  1682. */
  1683. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1684. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1685. vcpu_put(vcpu);
  1686. return 0;
  1687. }
  1688. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1689. struct kvm_regs *regs)
  1690. {
  1691. vcpu_load(vcpu);
  1692. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1693. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1694. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1695. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1696. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1697. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1698. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1699. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1700. #ifdef CONFIG_X86_64
  1701. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1702. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1703. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1704. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1705. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1706. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1707. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1708. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1709. #endif
  1710. vcpu->rip = regs->rip;
  1711. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  1712. kvm_x86_ops->decache_regs(vcpu);
  1713. vcpu_put(vcpu);
  1714. return 0;
  1715. }
  1716. static void get_segment(struct kvm_vcpu *vcpu,
  1717. struct kvm_segment *var, int seg)
  1718. {
  1719. return kvm_x86_ops->get_segment(vcpu, var, seg);
  1720. }
  1721. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1722. struct kvm_sregs *sregs)
  1723. {
  1724. struct descriptor_table dt;
  1725. int pending_vec;
  1726. vcpu_load(vcpu);
  1727. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1728. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1729. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1730. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1731. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1732. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1733. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1734. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1735. kvm_x86_ops->get_idt(vcpu, &dt);
  1736. sregs->idt.limit = dt.limit;
  1737. sregs->idt.base = dt.base;
  1738. kvm_x86_ops->get_gdt(vcpu, &dt);
  1739. sregs->gdt.limit = dt.limit;
  1740. sregs->gdt.base = dt.base;
  1741. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1742. sregs->cr0 = vcpu->cr0;
  1743. sregs->cr2 = vcpu->cr2;
  1744. sregs->cr3 = vcpu->cr3;
  1745. sregs->cr4 = vcpu->cr4;
  1746. sregs->cr8 = get_cr8(vcpu);
  1747. sregs->efer = vcpu->shadow_efer;
  1748. sregs->apic_base = kvm_get_apic_base(vcpu);
  1749. if (irqchip_in_kernel(vcpu->kvm)) {
  1750. memset(sregs->interrupt_bitmap, 0,
  1751. sizeof sregs->interrupt_bitmap);
  1752. pending_vec = kvm_x86_ops->get_irq(vcpu);
  1753. if (pending_vec >= 0)
  1754. set_bit(pending_vec,
  1755. (unsigned long *)sregs->interrupt_bitmap);
  1756. } else
  1757. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1758. sizeof sregs->interrupt_bitmap);
  1759. vcpu_put(vcpu);
  1760. return 0;
  1761. }
  1762. static void set_segment(struct kvm_vcpu *vcpu,
  1763. struct kvm_segment *var, int seg)
  1764. {
  1765. return kvm_x86_ops->set_segment(vcpu, var, seg);
  1766. }
  1767. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1768. struct kvm_sregs *sregs)
  1769. {
  1770. int mmu_reset_needed = 0;
  1771. int i, pending_vec, max_bits;
  1772. struct descriptor_table dt;
  1773. vcpu_load(vcpu);
  1774. dt.limit = sregs->idt.limit;
  1775. dt.base = sregs->idt.base;
  1776. kvm_x86_ops->set_idt(vcpu, &dt);
  1777. dt.limit = sregs->gdt.limit;
  1778. dt.base = sregs->gdt.base;
  1779. kvm_x86_ops->set_gdt(vcpu, &dt);
  1780. vcpu->cr2 = sregs->cr2;
  1781. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1782. vcpu->cr3 = sregs->cr3;
  1783. set_cr8(vcpu, sregs->cr8);
  1784. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1785. #ifdef CONFIG_X86_64
  1786. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  1787. #endif
  1788. kvm_set_apic_base(vcpu, sregs->apic_base);
  1789. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1790. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1791. vcpu->cr0 = sregs->cr0;
  1792. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  1793. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1794. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  1795. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1796. load_pdptrs(vcpu, vcpu->cr3);
  1797. if (mmu_reset_needed)
  1798. kvm_mmu_reset_context(vcpu);
  1799. if (!irqchip_in_kernel(vcpu->kvm)) {
  1800. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1801. sizeof vcpu->irq_pending);
  1802. vcpu->irq_summary = 0;
  1803. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1804. if (vcpu->irq_pending[i])
  1805. __set_bit(i, &vcpu->irq_summary);
  1806. } else {
  1807. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  1808. pending_vec = find_first_bit(
  1809. (const unsigned long *)sregs->interrupt_bitmap,
  1810. max_bits);
  1811. /* Only pending external irq is handled here */
  1812. if (pending_vec < max_bits) {
  1813. kvm_x86_ops->set_irq(vcpu, pending_vec);
  1814. pr_debug("Set back pending irq %d\n",
  1815. pending_vec);
  1816. }
  1817. }
  1818. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1819. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1820. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1821. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1822. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1823. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1824. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1825. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1826. vcpu_put(vcpu);
  1827. return 0;
  1828. }
  1829. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1830. {
  1831. struct kvm_segment cs;
  1832. get_segment(vcpu, &cs, VCPU_SREG_CS);
  1833. *db = cs.db;
  1834. *l = cs.l;
  1835. }
  1836. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  1837. /*
  1838. * Translate a guest virtual address to a guest physical address.
  1839. */
  1840. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1841. struct kvm_translation *tr)
  1842. {
  1843. unsigned long vaddr = tr->linear_address;
  1844. gpa_t gpa;
  1845. vcpu_load(vcpu);
  1846. mutex_lock(&vcpu->kvm->lock);
  1847. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1848. tr->physical_address = gpa;
  1849. tr->valid = gpa != UNMAPPED_GVA;
  1850. tr->writeable = 1;
  1851. tr->usermode = 0;
  1852. mutex_unlock(&vcpu->kvm->lock);
  1853. vcpu_put(vcpu);
  1854. return 0;
  1855. }
  1856. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1857. struct kvm_interrupt *irq)
  1858. {
  1859. if (irq->irq < 0 || irq->irq >= 256)
  1860. return -EINVAL;
  1861. if (irqchip_in_kernel(vcpu->kvm))
  1862. return -ENXIO;
  1863. vcpu_load(vcpu);
  1864. set_bit(irq->irq, vcpu->irq_pending);
  1865. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1866. vcpu_put(vcpu);
  1867. return 0;
  1868. }
  1869. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1870. struct kvm_debug_guest *dbg)
  1871. {
  1872. int r;
  1873. vcpu_load(vcpu);
  1874. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  1875. vcpu_put(vcpu);
  1876. return r;
  1877. }
  1878. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1879. unsigned long address,
  1880. int *type)
  1881. {
  1882. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1883. unsigned long pgoff;
  1884. struct page *page;
  1885. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1886. if (pgoff == 0)
  1887. page = virt_to_page(vcpu->run);
  1888. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1889. page = virt_to_page(vcpu->pio_data);
  1890. else
  1891. return NOPAGE_SIGBUS;
  1892. get_page(page);
  1893. if (type != NULL)
  1894. *type = VM_FAULT_MINOR;
  1895. return page;
  1896. }
  1897. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1898. .nopage = kvm_vcpu_nopage,
  1899. };
  1900. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1901. {
  1902. vma->vm_ops = &kvm_vcpu_vm_ops;
  1903. return 0;
  1904. }
  1905. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1906. {
  1907. struct kvm_vcpu *vcpu = filp->private_data;
  1908. fput(vcpu->kvm->filp);
  1909. return 0;
  1910. }
  1911. static struct file_operations kvm_vcpu_fops = {
  1912. .release = kvm_vcpu_release,
  1913. .unlocked_ioctl = kvm_vcpu_ioctl,
  1914. .compat_ioctl = kvm_vcpu_ioctl,
  1915. .mmap = kvm_vcpu_mmap,
  1916. };
  1917. /*
  1918. * Allocates an inode for the vcpu.
  1919. */
  1920. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1921. {
  1922. int fd, r;
  1923. struct inode *inode;
  1924. struct file *file;
  1925. r = anon_inode_getfd(&fd, &inode, &file,
  1926. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  1927. if (r)
  1928. return r;
  1929. atomic_inc(&vcpu->kvm->filp->f_count);
  1930. return fd;
  1931. }
  1932. /*
  1933. * Creates some virtual cpus. Good luck creating more than one.
  1934. */
  1935. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1936. {
  1937. int r;
  1938. struct kvm_vcpu *vcpu;
  1939. if (!valid_vcpu(n))
  1940. return -EINVAL;
  1941. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  1942. if (IS_ERR(vcpu))
  1943. return PTR_ERR(vcpu);
  1944. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1945. /* We do fxsave: this must be aligned. */
  1946. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  1947. vcpu_load(vcpu);
  1948. r = kvm_x86_ops->vcpu_reset(vcpu);
  1949. if (r == 0)
  1950. r = kvm_mmu_setup(vcpu);
  1951. vcpu_put(vcpu);
  1952. if (r < 0)
  1953. goto free_vcpu;
  1954. mutex_lock(&kvm->lock);
  1955. if (kvm->vcpus[n]) {
  1956. r = -EEXIST;
  1957. mutex_unlock(&kvm->lock);
  1958. goto mmu_unload;
  1959. }
  1960. kvm->vcpus[n] = vcpu;
  1961. mutex_unlock(&kvm->lock);
  1962. /* Now it's all set up, let userspace reach it */
  1963. r = create_vcpu_fd(vcpu);
  1964. if (r < 0)
  1965. goto unlink;
  1966. return r;
  1967. unlink:
  1968. mutex_lock(&kvm->lock);
  1969. kvm->vcpus[n] = NULL;
  1970. mutex_unlock(&kvm->lock);
  1971. mmu_unload:
  1972. vcpu_load(vcpu);
  1973. kvm_mmu_unload(vcpu);
  1974. vcpu_put(vcpu);
  1975. free_vcpu:
  1976. kvm_x86_ops->vcpu_free(vcpu);
  1977. return r;
  1978. }
  1979. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1980. {
  1981. if (sigset) {
  1982. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1983. vcpu->sigset_active = 1;
  1984. vcpu->sigset = *sigset;
  1985. } else
  1986. vcpu->sigset_active = 0;
  1987. return 0;
  1988. }
  1989. /*
  1990. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  1991. * we have asm/x86/processor.h
  1992. */
  1993. struct fxsave {
  1994. u16 cwd;
  1995. u16 swd;
  1996. u16 twd;
  1997. u16 fop;
  1998. u64 rip;
  1999. u64 rdp;
  2000. u32 mxcsr;
  2001. u32 mxcsr_mask;
  2002. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2003. #ifdef CONFIG_X86_64
  2004. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2005. #else
  2006. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2007. #endif
  2008. };
  2009. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2010. {
  2011. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2012. vcpu_load(vcpu);
  2013. memcpy(fpu->fpr, fxsave->st_space, 128);
  2014. fpu->fcw = fxsave->cwd;
  2015. fpu->fsw = fxsave->swd;
  2016. fpu->ftwx = fxsave->twd;
  2017. fpu->last_opcode = fxsave->fop;
  2018. fpu->last_ip = fxsave->rip;
  2019. fpu->last_dp = fxsave->rdp;
  2020. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2021. vcpu_put(vcpu);
  2022. return 0;
  2023. }
  2024. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2025. {
  2026. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2027. vcpu_load(vcpu);
  2028. memcpy(fxsave->st_space, fpu->fpr, 128);
  2029. fxsave->cwd = fpu->fcw;
  2030. fxsave->swd = fpu->fsw;
  2031. fxsave->twd = fpu->ftwx;
  2032. fxsave->fop = fpu->last_opcode;
  2033. fxsave->rip = fpu->last_ip;
  2034. fxsave->rdp = fpu->last_dp;
  2035. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2036. vcpu_put(vcpu);
  2037. return 0;
  2038. }
  2039. static long kvm_vcpu_ioctl(struct file *filp,
  2040. unsigned int ioctl, unsigned long arg)
  2041. {
  2042. struct kvm_vcpu *vcpu = filp->private_data;
  2043. void __user *argp = (void __user *)arg;
  2044. int r;
  2045. switch (ioctl) {
  2046. case KVM_RUN:
  2047. r = -EINVAL;
  2048. if (arg)
  2049. goto out;
  2050. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2051. break;
  2052. case KVM_GET_REGS: {
  2053. struct kvm_regs kvm_regs;
  2054. memset(&kvm_regs, 0, sizeof kvm_regs);
  2055. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2056. if (r)
  2057. goto out;
  2058. r = -EFAULT;
  2059. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2060. goto out;
  2061. r = 0;
  2062. break;
  2063. }
  2064. case KVM_SET_REGS: {
  2065. struct kvm_regs kvm_regs;
  2066. r = -EFAULT;
  2067. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2068. goto out;
  2069. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2070. if (r)
  2071. goto out;
  2072. r = 0;
  2073. break;
  2074. }
  2075. case KVM_GET_SREGS: {
  2076. struct kvm_sregs kvm_sregs;
  2077. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2078. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2079. if (r)
  2080. goto out;
  2081. r = -EFAULT;
  2082. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2083. goto out;
  2084. r = 0;
  2085. break;
  2086. }
  2087. case KVM_SET_SREGS: {
  2088. struct kvm_sregs kvm_sregs;
  2089. r = -EFAULT;
  2090. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2091. goto out;
  2092. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2093. if (r)
  2094. goto out;
  2095. r = 0;
  2096. break;
  2097. }
  2098. case KVM_TRANSLATE: {
  2099. struct kvm_translation tr;
  2100. r = -EFAULT;
  2101. if (copy_from_user(&tr, argp, sizeof tr))
  2102. goto out;
  2103. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2104. if (r)
  2105. goto out;
  2106. r = -EFAULT;
  2107. if (copy_to_user(argp, &tr, sizeof tr))
  2108. goto out;
  2109. r = 0;
  2110. break;
  2111. }
  2112. case KVM_INTERRUPT: {
  2113. struct kvm_interrupt irq;
  2114. r = -EFAULT;
  2115. if (copy_from_user(&irq, argp, sizeof irq))
  2116. goto out;
  2117. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2118. if (r)
  2119. goto out;
  2120. r = 0;
  2121. break;
  2122. }
  2123. case KVM_DEBUG_GUEST: {
  2124. struct kvm_debug_guest dbg;
  2125. r = -EFAULT;
  2126. if (copy_from_user(&dbg, argp, sizeof dbg))
  2127. goto out;
  2128. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2129. if (r)
  2130. goto out;
  2131. r = 0;
  2132. break;
  2133. }
  2134. case KVM_SET_SIGNAL_MASK: {
  2135. struct kvm_signal_mask __user *sigmask_arg = argp;
  2136. struct kvm_signal_mask kvm_sigmask;
  2137. sigset_t sigset, *p;
  2138. p = NULL;
  2139. if (argp) {
  2140. r = -EFAULT;
  2141. if (copy_from_user(&kvm_sigmask, argp,
  2142. sizeof kvm_sigmask))
  2143. goto out;
  2144. r = -EINVAL;
  2145. if (kvm_sigmask.len != sizeof sigset)
  2146. goto out;
  2147. r = -EFAULT;
  2148. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2149. sizeof sigset))
  2150. goto out;
  2151. p = &sigset;
  2152. }
  2153. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2154. break;
  2155. }
  2156. case KVM_GET_FPU: {
  2157. struct kvm_fpu fpu;
  2158. memset(&fpu, 0, sizeof fpu);
  2159. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2160. if (r)
  2161. goto out;
  2162. r = -EFAULT;
  2163. if (copy_to_user(argp, &fpu, sizeof fpu))
  2164. goto out;
  2165. r = 0;
  2166. break;
  2167. }
  2168. case KVM_SET_FPU: {
  2169. struct kvm_fpu fpu;
  2170. r = -EFAULT;
  2171. if (copy_from_user(&fpu, argp, sizeof fpu))
  2172. goto out;
  2173. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2174. if (r)
  2175. goto out;
  2176. r = 0;
  2177. break;
  2178. }
  2179. default:
  2180. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  2181. }
  2182. out:
  2183. return r;
  2184. }
  2185. static long kvm_vm_ioctl(struct file *filp,
  2186. unsigned int ioctl, unsigned long arg)
  2187. {
  2188. struct kvm *kvm = filp->private_data;
  2189. void __user *argp = (void __user *)arg;
  2190. int r;
  2191. switch (ioctl) {
  2192. case KVM_CREATE_VCPU:
  2193. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2194. if (r < 0)
  2195. goto out;
  2196. break;
  2197. case KVM_SET_USER_MEMORY_REGION: {
  2198. struct kvm_userspace_memory_region kvm_userspace_mem;
  2199. r = -EFAULT;
  2200. if (copy_from_user(&kvm_userspace_mem, argp,
  2201. sizeof kvm_userspace_mem))
  2202. goto out;
  2203. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  2204. if (r)
  2205. goto out;
  2206. break;
  2207. }
  2208. case KVM_GET_DIRTY_LOG: {
  2209. struct kvm_dirty_log log;
  2210. r = -EFAULT;
  2211. if (copy_from_user(&log, argp, sizeof log))
  2212. goto out;
  2213. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2214. if (r)
  2215. goto out;
  2216. break;
  2217. }
  2218. default:
  2219. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  2220. }
  2221. out:
  2222. return r;
  2223. }
  2224. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2225. unsigned long address,
  2226. int *type)
  2227. {
  2228. struct kvm *kvm = vma->vm_file->private_data;
  2229. unsigned long pgoff;
  2230. struct page *page;
  2231. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2232. if (!kvm_is_visible_gfn(kvm, pgoff))
  2233. return NOPAGE_SIGBUS;
  2234. /* current->mm->mmap_sem is already held so call lockless version */
  2235. page = __gfn_to_page(kvm, pgoff);
  2236. if (is_error_page(page)) {
  2237. kvm_release_page(page);
  2238. return NOPAGE_SIGBUS;
  2239. }
  2240. if (type != NULL)
  2241. *type = VM_FAULT_MINOR;
  2242. return page;
  2243. }
  2244. static struct vm_operations_struct kvm_vm_vm_ops = {
  2245. .nopage = kvm_vm_nopage,
  2246. };
  2247. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2248. {
  2249. vma->vm_ops = &kvm_vm_vm_ops;
  2250. return 0;
  2251. }
  2252. static struct file_operations kvm_vm_fops = {
  2253. .release = kvm_vm_release,
  2254. .unlocked_ioctl = kvm_vm_ioctl,
  2255. .compat_ioctl = kvm_vm_ioctl,
  2256. .mmap = kvm_vm_mmap,
  2257. };
  2258. static int kvm_dev_ioctl_create_vm(void)
  2259. {
  2260. int fd, r;
  2261. struct inode *inode;
  2262. struct file *file;
  2263. struct kvm *kvm;
  2264. kvm = kvm_create_vm();
  2265. if (IS_ERR(kvm))
  2266. return PTR_ERR(kvm);
  2267. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2268. if (r) {
  2269. kvm_destroy_vm(kvm);
  2270. return r;
  2271. }
  2272. kvm->filp = file;
  2273. return fd;
  2274. }
  2275. static long kvm_dev_ioctl(struct file *filp,
  2276. unsigned int ioctl, unsigned long arg)
  2277. {
  2278. void __user *argp = (void __user *)arg;
  2279. long r = -EINVAL;
  2280. switch (ioctl) {
  2281. case KVM_GET_API_VERSION:
  2282. r = -EINVAL;
  2283. if (arg)
  2284. goto out;
  2285. r = KVM_API_VERSION;
  2286. break;
  2287. case KVM_CREATE_VM:
  2288. r = -EINVAL;
  2289. if (arg)
  2290. goto out;
  2291. r = kvm_dev_ioctl_create_vm();
  2292. break;
  2293. case KVM_CHECK_EXTENSION: {
  2294. int ext = (long)argp;
  2295. switch (ext) {
  2296. case KVM_CAP_IRQCHIP:
  2297. case KVM_CAP_HLT:
  2298. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  2299. case KVM_CAP_USER_MEMORY:
  2300. case KVM_CAP_SET_TSS_ADDR:
  2301. r = 1;
  2302. break;
  2303. default:
  2304. r = 0;
  2305. break;
  2306. }
  2307. break;
  2308. }
  2309. case KVM_GET_VCPU_MMAP_SIZE:
  2310. r = -EINVAL;
  2311. if (arg)
  2312. goto out;
  2313. r = 2 * PAGE_SIZE;
  2314. break;
  2315. default:
  2316. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2317. }
  2318. out:
  2319. return r;
  2320. }
  2321. static struct file_operations kvm_chardev_ops = {
  2322. .unlocked_ioctl = kvm_dev_ioctl,
  2323. .compat_ioctl = kvm_dev_ioctl,
  2324. };
  2325. static struct miscdevice kvm_dev = {
  2326. KVM_MINOR,
  2327. "kvm",
  2328. &kvm_chardev_ops,
  2329. };
  2330. /*
  2331. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2332. * cached on it.
  2333. */
  2334. static void decache_vcpus_on_cpu(int cpu)
  2335. {
  2336. struct kvm *vm;
  2337. struct kvm_vcpu *vcpu;
  2338. int i;
  2339. spin_lock(&kvm_lock);
  2340. list_for_each_entry(vm, &vm_list, vm_list)
  2341. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2342. vcpu = vm->vcpus[i];
  2343. if (!vcpu)
  2344. continue;
  2345. /*
  2346. * If the vcpu is locked, then it is running on some
  2347. * other cpu and therefore it is not cached on the
  2348. * cpu in question.
  2349. *
  2350. * If it's not locked, check the last cpu it executed
  2351. * on.
  2352. */
  2353. if (mutex_trylock(&vcpu->mutex)) {
  2354. if (vcpu->cpu == cpu) {
  2355. kvm_x86_ops->vcpu_decache(vcpu);
  2356. vcpu->cpu = -1;
  2357. }
  2358. mutex_unlock(&vcpu->mutex);
  2359. }
  2360. }
  2361. spin_unlock(&kvm_lock);
  2362. }
  2363. static void hardware_enable(void *junk)
  2364. {
  2365. int cpu = raw_smp_processor_id();
  2366. if (cpu_isset(cpu, cpus_hardware_enabled))
  2367. return;
  2368. cpu_set(cpu, cpus_hardware_enabled);
  2369. kvm_x86_ops->hardware_enable(NULL);
  2370. }
  2371. static void hardware_disable(void *junk)
  2372. {
  2373. int cpu = raw_smp_processor_id();
  2374. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2375. return;
  2376. cpu_clear(cpu, cpus_hardware_enabled);
  2377. decache_vcpus_on_cpu(cpu);
  2378. kvm_x86_ops->hardware_disable(NULL);
  2379. }
  2380. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2381. void *v)
  2382. {
  2383. int cpu = (long)v;
  2384. switch (val) {
  2385. case CPU_DYING:
  2386. case CPU_DYING_FROZEN:
  2387. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2388. cpu);
  2389. hardware_disable(NULL);
  2390. break;
  2391. case CPU_UP_CANCELED:
  2392. case CPU_UP_CANCELED_FROZEN:
  2393. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2394. cpu);
  2395. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2396. break;
  2397. case CPU_ONLINE:
  2398. case CPU_ONLINE_FROZEN:
  2399. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2400. cpu);
  2401. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2402. break;
  2403. }
  2404. return NOTIFY_OK;
  2405. }
  2406. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2407. void *v)
  2408. {
  2409. if (val == SYS_RESTART) {
  2410. /*
  2411. * Some (well, at least mine) BIOSes hang on reboot if
  2412. * in vmx root mode.
  2413. */
  2414. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2415. on_each_cpu(hardware_disable, NULL, 0, 1);
  2416. }
  2417. return NOTIFY_OK;
  2418. }
  2419. static struct notifier_block kvm_reboot_notifier = {
  2420. .notifier_call = kvm_reboot,
  2421. .priority = 0,
  2422. };
  2423. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2424. {
  2425. memset(bus, 0, sizeof(*bus));
  2426. }
  2427. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2428. {
  2429. int i;
  2430. for (i = 0; i < bus->dev_count; i++) {
  2431. struct kvm_io_device *pos = bus->devs[i];
  2432. kvm_iodevice_destructor(pos);
  2433. }
  2434. }
  2435. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2436. {
  2437. int i;
  2438. for (i = 0; i < bus->dev_count; i++) {
  2439. struct kvm_io_device *pos = bus->devs[i];
  2440. if (pos->in_range(pos, addr))
  2441. return pos;
  2442. }
  2443. return NULL;
  2444. }
  2445. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2446. {
  2447. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2448. bus->devs[bus->dev_count++] = dev;
  2449. }
  2450. static struct notifier_block kvm_cpu_notifier = {
  2451. .notifier_call = kvm_cpu_hotplug,
  2452. .priority = 20, /* must be > scheduler priority */
  2453. };
  2454. static u64 stat_get(void *_offset)
  2455. {
  2456. unsigned offset = (long)_offset;
  2457. u64 total = 0;
  2458. struct kvm *kvm;
  2459. struct kvm_vcpu *vcpu;
  2460. int i;
  2461. spin_lock(&kvm_lock);
  2462. list_for_each_entry(kvm, &vm_list, vm_list)
  2463. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2464. vcpu = kvm->vcpus[i];
  2465. if (vcpu)
  2466. total += *(u32 *)((void *)vcpu + offset);
  2467. }
  2468. spin_unlock(&kvm_lock);
  2469. return total;
  2470. }
  2471. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2472. static __init void kvm_init_debug(void)
  2473. {
  2474. struct kvm_stats_debugfs_item *p;
  2475. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2476. for (p = debugfs_entries; p->name; ++p)
  2477. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2478. (void *)(long)p->offset,
  2479. &stat_fops);
  2480. }
  2481. static void kvm_exit_debug(void)
  2482. {
  2483. struct kvm_stats_debugfs_item *p;
  2484. for (p = debugfs_entries; p->name; ++p)
  2485. debugfs_remove(p->dentry);
  2486. debugfs_remove(debugfs_dir);
  2487. }
  2488. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2489. {
  2490. hardware_disable(NULL);
  2491. return 0;
  2492. }
  2493. static int kvm_resume(struct sys_device *dev)
  2494. {
  2495. hardware_enable(NULL);
  2496. return 0;
  2497. }
  2498. static struct sysdev_class kvm_sysdev_class = {
  2499. .name = "kvm",
  2500. .suspend = kvm_suspend,
  2501. .resume = kvm_resume,
  2502. };
  2503. static struct sys_device kvm_sysdev = {
  2504. .id = 0,
  2505. .cls = &kvm_sysdev_class,
  2506. };
  2507. struct page *bad_page;
  2508. static inline
  2509. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2510. {
  2511. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2512. }
  2513. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2514. {
  2515. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2516. kvm_x86_ops->vcpu_load(vcpu, cpu);
  2517. }
  2518. static void kvm_sched_out(struct preempt_notifier *pn,
  2519. struct task_struct *next)
  2520. {
  2521. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2522. kvm_x86_ops->vcpu_put(vcpu);
  2523. }
  2524. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  2525. struct module *module)
  2526. {
  2527. int r;
  2528. int cpu;
  2529. if (kvm_x86_ops) {
  2530. printk(KERN_ERR "kvm: already loaded the other module\n");
  2531. return -EEXIST;
  2532. }
  2533. if (!ops->cpu_has_kvm_support()) {
  2534. printk(KERN_ERR "kvm: no hardware support\n");
  2535. return -EOPNOTSUPP;
  2536. }
  2537. if (ops->disabled_by_bios()) {
  2538. printk(KERN_ERR "kvm: disabled by bios\n");
  2539. return -EOPNOTSUPP;
  2540. }
  2541. kvm_x86_ops = ops;
  2542. r = kvm_x86_ops->hardware_setup();
  2543. if (r < 0)
  2544. goto out;
  2545. for_each_online_cpu(cpu) {
  2546. smp_call_function_single(cpu,
  2547. kvm_x86_ops->check_processor_compatibility,
  2548. &r, 0, 1);
  2549. if (r < 0)
  2550. goto out_free_0;
  2551. }
  2552. on_each_cpu(hardware_enable, NULL, 0, 1);
  2553. r = register_cpu_notifier(&kvm_cpu_notifier);
  2554. if (r)
  2555. goto out_free_1;
  2556. register_reboot_notifier(&kvm_reboot_notifier);
  2557. r = sysdev_class_register(&kvm_sysdev_class);
  2558. if (r)
  2559. goto out_free_2;
  2560. r = sysdev_register(&kvm_sysdev);
  2561. if (r)
  2562. goto out_free_3;
  2563. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2564. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2565. __alignof__(struct kvm_vcpu), 0, 0);
  2566. if (!kvm_vcpu_cache) {
  2567. r = -ENOMEM;
  2568. goto out_free_4;
  2569. }
  2570. kvm_chardev_ops.owner = module;
  2571. r = misc_register(&kvm_dev);
  2572. if (r) {
  2573. printk(KERN_ERR "kvm: misc device register failed\n");
  2574. goto out_free;
  2575. }
  2576. kvm_preempt_ops.sched_in = kvm_sched_in;
  2577. kvm_preempt_ops.sched_out = kvm_sched_out;
  2578. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2579. return 0;
  2580. out_free:
  2581. kmem_cache_destroy(kvm_vcpu_cache);
  2582. out_free_4:
  2583. sysdev_unregister(&kvm_sysdev);
  2584. out_free_3:
  2585. sysdev_class_unregister(&kvm_sysdev_class);
  2586. out_free_2:
  2587. unregister_reboot_notifier(&kvm_reboot_notifier);
  2588. unregister_cpu_notifier(&kvm_cpu_notifier);
  2589. out_free_1:
  2590. on_each_cpu(hardware_disable, NULL, 0, 1);
  2591. out_free_0:
  2592. kvm_x86_ops->hardware_unsetup();
  2593. out:
  2594. kvm_x86_ops = NULL;
  2595. return r;
  2596. }
  2597. EXPORT_SYMBOL_GPL(kvm_init_x86);
  2598. void kvm_exit_x86(void)
  2599. {
  2600. misc_deregister(&kvm_dev);
  2601. kmem_cache_destroy(kvm_vcpu_cache);
  2602. sysdev_unregister(&kvm_sysdev);
  2603. sysdev_class_unregister(&kvm_sysdev_class);
  2604. unregister_reboot_notifier(&kvm_reboot_notifier);
  2605. unregister_cpu_notifier(&kvm_cpu_notifier);
  2606. on_each_cpu(hardware_disable, NULL, 0, 1);
  2607. kvm_x86_ops->hardware_unsetup();
  2608. kvm_x86_ops = NULL;
  2609. }
  2610. EXPORT_SYMBOL_GPL(kvm_exit_x86);
  2611. static __init int kvm_init(void)
  2612. {
  2613. int r;
  2614. r = kvm_mmu_module_init();
  2615. if (r)
  2616. goto out4;
  2617. kvm_init_debug();
  2618. kvm_arch_init();
  2619. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2620. if (bad_page == NULL) {
  2621. r = -ENOMEM;
  2622. goto out;
  2623. }
  2624. return 0;
  2625. out:
  2626. kvm_exit_debug();
  2627. kvm_mmu_module_exit();
  2628. out4:
  2629. return r;
  2630. }
  2631. static __exit void kvm_exit(void)
  2632. {
  2633. kvm_exit_debug();
  2634. __free_page(bad_page);
  2635. kvm_mmu_module_exit();
  2636. }
  2637. module_init(kvm_init)
  2638. module_exit(kvm_exit)