reassembly.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771
  1. /*
  2. * IPv6 fragment reassembly
  3. * Linux INET6 implementation
  4. *
  5. * Authors:
  6. * Pedro Roque <roque@di.fc.ul.pt>
  7. *
  8. * $Id: reassembly.c,v 1.26 2001/03/07 22:00:57 davem Exp $
  9. *
  10. * Based on: net/ipv4/ip_fragment.c
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * as published by the Free Software Foundation; either version
  15. * 2 of the License, or (at your option) any later version.
  16. */
  17. /*
  18. * Fixes:
  19. * Andi Kleen Make it work with multiple hosts.
  20. * More RFC compliance.
  21. *
  22. * Horst von Brand Add missing #include <linux/string.h>
  23. * Alexey Kuznetsov SMP races, threading, cleanup.
  24. * Patrick McHardy LRU queue of frag heads for evictor.
  25. * Mitsuru KANDA @USAGI Register inet6_protocol{}.
  26. * David Stevens and
  27. * YOSHIFUJI,H. @USAGI Always remove fragment header to
  28. * calculate ICV correctly.
  29. */
  30. #include <linux/config.h>
  31. #include <linux/errno.h>
  32. #include <linux/types.h>
  33. #include <linux/string.h>
  34. #include <linux/socket.h>
  35. #include <linux/sockios.h>
  36. #include <linux/jiffies.h>
  37. #include <linux/net.h>
  38. #include <linux/list.h>
  39. #include <linux/netdevice.h>
  40. #include <linux/in6.h>
  41. #include <linux/ipv6.h>
  42. #include <linux/icmpv6.h>
  43. #include <linux/random.h>
  44. #include <linux/jhash.h>
  45. #include <net/sock.h>
  46. #include <net/snmp.h>
  47. #include <net/ipv6.h>
  48. #include <net/protocol.h>
  49. #include <net/transp_v6.h>
  50. #include <net/rawv6.h>
  51. #include <net/ndisc.h>
  52. #include <net/addrconf.h>
  53. int sysctl_ip6frag_high_thresh = 256*1024;
  54. int sysctl_ip6frag_low_thresh = 192*1024;
  55. int sysctl_ip6frag_time = IPV6_FRAG_TIMEOUT;
  56. struct ip6frag_skb_cb
  57. {
  58. struct inet6_skb_parm h;
  59. int offset;
  60. };
  61. #define FRAG6_CB(skb) ((struct ip6frag_skb_cb*)((skb)->cb))
  62. /*
  63. * Equivalent of ipv4 struct ipq
  64. */
  65. struct frag_queue
  66. {
  67. struct frag_queue *next;
  68. struct list_head lru_list; /* lru list member */
  69. __u32 id; /* fragment id */
  70. struct in6_addr saddr;
  71. struct in6_addr daddr;
  72. spinlock_t lock;
  73. atomic_t refcnt;
  74. struct timer_list timer; /* expire timer */
  75. struct sk_buff *fragments;
  76. int len;
  77. int meat;
  78. int iif;
  79. struct timeval stamp;
  80. unsigned int csum;
  81. __u8 last_in; /* has first/last segment arrived? */
  82. #define COMPLETE 4
  83. #define FIRST_IN 2
  84. #define LAST_IN 1
  85. __u16 nhoffset;
  86. struct frag_queue **pprev;
  87. };
  88. /* Hash table. */
  89. #define IP6Q_HASHSZ 64
  90. static struct frag_queue *ip6_frag_hash[IP6Q_HASHSZ];
  91. static DEFINE_RWLOCK(ip6_frag_lock);
  92. static u32 ip6_frag_hash_rnd;
  93. static LIST_HEAD(ip6_frag_lru_list);
  94. int ip6_frag_nqueues = 0;
  95. static __inline__ void __fq_unlink(struct frag_queue *fq)
  96. {
  97. if(fq->next)
  98. fq->next->pprev = fq->pprev;
  99. *fq->pprev = fq->next;
  100. list_del(&fq->lru_list);
  101. ip6_frag_nqueues--;
  102. }
  103. static __inline__ void fq_unlink(struct frag_queue *fq)
  104. {
  105. write_lock(&ip6_frag_lock);
  106. __fq_unlink(fq);
  107. write_unlock(&ip6_frag_lock);
  108. }
  109. static unsigned int ip6qhashfn(u32 id, struct in6_addr *saddr,
  110. struct in6_addr *daddr)
  111. {
  112. u32 a, b, c;
  113. a = saddr->s6_addr32[0];
  114. b = saddr->s6_addr32[1];
  115. c = saddr->s6_addr32[2];
  116. a += JHASH_GOLDEN_RATIO;
  117. b += JHASH_GOLDEN_RATIO;
  118. c += ip6_frag_hash_rnd;
  119. __jhash_mix(a, b, c);
  120. a += saddr->s6_addr32[3];
  121. b += daddr->s6_addr32[0];
  122. c += daddr->s6_addr32[1];
  123. __jhash_mix(a, b, c);
  124. a += daddr->s6_addr32[2];
  125. b += daddr->s6_addr32[3];
  126. c += id;
  127. __jhash_mix(a, b, c);
  128. return c & (IP6Q_HASHSZ - 1);
  129. }
  130. static struct timer_list ip6_frag_secret_timer;
  131. int sysctl_ip6frag_secret_interval = 10 * 60 * HZ;
  132. static void ip6_frag_secret_rebuild(unsigned long dummy)
  133. {
  134. unsigned long now = jiffies;
  135. int i;
  136. write_lock(&ip6_frag_lock);
  137. get_random_bytes(&ip6_frag_hash_rnd, sizeof(u32));
  138. for (i = 0; i < IP6Q_HASHSZ; i++) {
  139. struct frag_queue *q;
  140. q = ip6_frag_hash[i];
  141. while (q) {
  142. struct frag_queue *next = q->next;
  143. unsigned int hval = ip6qhashfn(q->id,
  144. &q->saddr,
  145. &q->daddr);
  146. if (hval != i) {
  147. /* Unlink. */
  148. if (q->next)
  149. q->next->pprev = q->pprev;
  150. *q->pprev = q->next;
  151. /* Relink to new hash chain. */
  152. if ((q->next = ip6_frag_hash[hval]) != NULL)
  153. q->next->pprev = &q->next;
  154. ip6_frag_hash[hval] = q;
  155. q->pprev = &ip6_frag_hash[hval];
  156. }
  157. q = next;
  158. }
  159. }
  160. write_unlock(&ip6_frag_lock);
  161. mod_timer(&ip6_frag_secret_timer, now + sysctl_ip6frag_secret_interval);
  162. }
  163. atomic_t ip6_frag_mem = ATOMIC_INIT(0);
  164. /* Memory Tracking Functions. */
  165. static inline void frag_kfree_skb(struct sk_buff *skb, int *work)
  166. {
  167. if (work)
  168. *work -= skb->truesize;
  169. atomic_sub(skb->truesize, &ip6_frag_mem);
  170. kfree_skb(skb);
  171. }
  172. static inline void frag_free_queue(struct frag_queue *fq, int *work)
  173. {
  174. if (work)
  175. *work -= sizeof(struct frag_queue);
  176. atomic_sub(sizeof(struct frag_queue), &ip6_frag_mem);
  177. kfree(fq);
  178. }
  179. static inline struct frag_queue *frag_alloc_queue(void)
  180. {
  181. struct frag_queue *fq = kmalloc(sizeof(struct frag_queue), GFP_ATOMIC);
  182. if(!fq)
  183. return NULL;
  184. atomic_add(sizeof(struct frag_queue), &ip6_frag_mem);
  185. return fq;
  186. }
  187. /* Destruction primitives. */
  188. /* Complete destruction of fq. */
  189. static void ip6_frag_destroy(struct frag_queue *fq, int *work)
  190. {
  191. struct sk_buff *fp;
  192. BUG_TRAP(fq->last_in&COMPLETE);
  193. BUG_TRAP(del_timer(&fq->timer) == 0);
  194. /* Release all fragment data. */
  195. fp = fq->fragments;
  196. while (fp) {
  197. struct sk_buff *xp = fp->next;
  198. frag_kfree_skb(fp, work);
  199. fp = xp;
  200. }
  201. frag_free_queue(fq, work);
  202. }
  203. static __inline__ void fq_put(struct frag_queue *fq, int *work)
  204. {
  205. if (atomic_dec_and_test(&fq->refcnt))
  206. ip6_frag_destroy(fq, work);
  207. }
  208. /* Kill fq entry. It is not destroyed immediately,
  209. * because caller (and someone more) holds reference count.
  210. */
  211. static __inline__ void fq_kill(struct frag_queue *fq)
  212. {
  213. if (del_timer(&fq->timer))
  214. atomic_dec(&fq->refcnt);
  215. if (!(fq->last_in & COMPLETE)) {
  216. fq_unlink(fq);
  217. atomic_dec(&fq->refcnt);
  218. fq->last_in |= COMPLETE;
  219. }
  220. }
  221. static void ip6_evictor(void)
  222. {
  223. struct frag_queue *fq;
  224. struct list_head *tmp;
  225. int work;
  226. work = atomic_read(&ip6_frag_mem) - sysctl_ip6frag_low_thresh;
  227. if (work <= 0)
  228. return;
  229. while(work > 0) {
  230. read_lock(&ip6_frag_lock);
  231. if (list_empty(&ip6_frag_lru_list)) {
  232. read_unlock(&ip6_frag_lock);
  233. return;
  234. }
  235. tmp = ip6_frag_lru_list.next;
  236. fq = list_entry(tmp, struct frag_queue, lru_list);
  237. atomic_inc(&fq->refcnt);
  238. read_unlock(&ip6_frag_lock);
  239. spin_lock(&fq->lock);
  240. if (!(fq->last_in&COMPLETE))
  241. fq_kill(fq);
  242. spin_unlock(&fq->lock);
  243. fq_put(fq, &work);
  244. IP6_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
  245. }
  246. }
  247. static void ip6_frag_expire(unsigned long data)
  248. {
  249. struct frag_queue *fq = (struct frag_queue *) data;
  250. spin_lock(&fq->lock);
  251. if (fq->last_in & COMPLETE)
  252. goto out;
  253. fq_kill(fq);
  254. IP6_INC_STATS_BH(IPSTATS_MIB_REASMTIMEOUT);
  255. IP6_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
  256. /* Send error only if the first segment arrived. */
  257. if (fq->last_in&FIRST_IN && fq->fragments) {
  258. struct net_device *dev = dev_get_by_index(fq->iif);
  259. /*
  260. But use as source device on which LAST ARRIVED
  261. segment was received. And do not use fq->dev
  262. pointer directly, device might already disappeared.
  263. */
  264. if (dev) {
  265. fq->fragments->dev = dev;
  266. icmpv6_send(fq->fragments, ICMPV6_TIME_EXCEED, ICMPV6_EXC_FRAGTIME, 0,
  267. dev);
  268. dev_put(dev);
  269. }
  270. }
  271. out:
  272. spin_unlock(&fq->lock);
  273. fq_put(fq, NULL);
  274. }
  275. /* Creation primitives. */
  276. static struct frag_queue *ip6_frag_intern(unsigned int hash,
  277. struct frag_queue *fq_in)
  278. {
  279. struct frag_queue *fq;
  280. write_lock(&ip6_frag_lock);
  281. #ifdef CONFIG_SMP
  282. for (fq = ip6_frag_hash[hash]; fq; fq = fq->next) {
  283. if (fq->id == fq_in->id &&
  284. ipv6_addr_equal(&fq_in->saddr, &fq->saddr) &&
  285. ipv6_addr_equal(&fq_in->daddr, &fq->daddr)) {
  286. atomic_inc(&fq->refcnt);
  287. write_unlock(&ip6_frag_lock);
  288. fq_in->last_in |= COMPLETE;
  289. fq_put(fq_in, NULL);
  290. return fq;
  291. }
  292. }
  293. #endif
  294. fq = fq_in;
  295. if (!mod_timer(&fq->timer, jiffies + sysctl_ip6frag_time))
  296. atomic_inc(&fq->refcnt);
  297. atomic_inc(&fq->refcnt);
  298. if((fq->next = ip6_frag_hash[hash]) != NULL)
  299. fq->next->pprev = &fq->next;
  300. ip6_frag_hash[hash] = fq;
  301. fq->pprev = &ip6_frag_hash[hash];
  302. INIT_LIST_HEAD(&fq->lru_list);
  303. list_add_tail(&fq->lru_list, &ip6_frag_lru_list);
  304. ip6_frag_nqueues++;
  305. write_unlock(&ip6_frag_lock);
  306. return fq;
  307. }
  308. static struct frag_queue *
  309. ip6_frag_create(unsigned int hash, u32 id, struct in6_addr *src, struct in6_addr *dst)
  310. {
  311. struct frag_queue *fq;
  312. if ((fq = frag_alloc_queue()) == NULL)
  313. goto oom;
  314. memset(fq, 0, sizeof(struct frag_queue));
  315. fq->id = id;
  316. ipv6_addr_copy(&fq->saddr, src);
  317. ipv6_addr_copy(&fq->daddr, dst);
  318. init_timer(&fq->timer);
  319. fq->timer.function = ip6_frag_expire;
  320. fq->timer.data = (long) fq;
  321. spin_lock_init(&fq->lock);
  322. atomic_set(&fq->refcnt, 1);
  323. return ip6_frag_intern(hash, fq);
  324. oom:
  325. IP6_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
  326. return NULL;
  327. }
  328. static __inline__ struct frag_queue *
  329. fq_find(u32 id, struct in6_addr *src, struct in6_addr *dst)
  330. {
  331. struct frag_queue *fq;
  332. unsigned int hash = ip6qhashfn(id, src, dst);
  333. read_lock(&ip6_frag_lock);
  334. for(fq = ip6_frag_hash[hash]; fq; fq = fq->next) {
  335. if (fq->id == id &&
  336. ipv6_addr_equal(src, &fq->saddr) &&
  337. ipv6_addr_equal(dst, &fq->daddr)) {
  338. atomic_inc(&fq->refcnt);
  339. read_unlock(&ip6_frag_lock);
  340. return fq;
  341. }
  342. }
  343. read_unlock(&ip6_frag_lock);
  344. return ip6_frag_create(hash, id, src, dst);
  345. }
  346. static void ip6_frag_queue(struct frag_queue *fq, struct sk_buff *skb,
  347. struct frag_hdr *fhdr, int nhoff)
  348. {
  349. struct sk_buff *prev, *next;
  350. int offset, end;
  351. if (fq->last_in & COMPLETE)
  352. goto err;
  353. offset = ntohs(fhdr->frag_off) & ~0x7;
  354. end = offset + (ntohs(skb->nh.ipv6h->payload_len) -
  355. ((u8 *) (fhdr + 1) - (u8 *) (skb->nh.ipv6h + 1)));
  356. if ((unsigned int)end > IPV6_MAXPLEN) {
  357. IP6_INC_STATS_BH(IPSTATS_MIB_INHDRERRORS);
  358. icmpv6_param_prob(skb,ICMPV6_HDR_FIELD, (u8*)&fhdr->frag_off - skb->nh.raw);
  359. return;
  360. }
  361. if (skb->ip_summed == CHECKSUM_HW)
  362. skb->csum = csum_sub(skb->csum,
  363. csum_partial(skb->nh.raw, (u8*)(fhdr+1)-skb->nh.raw, 0));
  364. /* Is this the final fragment? */
  365. if (!(fhdr->frag_off & htons(IP6_MF))) {
  366. /* If we already have some bits beyond end
  367. * or have different end, the segment is corrupted.
  368. */
  369. if (end < fq->len ||
  370. ((fq->last_in & LAST_IN) && end != fq->len))
  371. goto err;
  372. fq->last_in |= LAST_IN;
  373. fq->len = end;
  374. } else {
  375. /* Check if the fragment is rounded to 8 bytes.
  376. * Required by the RFC.
  377. */
  378. if (end & 0x7) {
  379. /* RFC2460 says always send parameter problem in
  380. * this case. -DaveM
  381. */
  382. IP6_INC_STATS_BH(IPSTATS_MIB_INHDRERRORS);
  383. icmpv6_param_prob(skb, ICMPV6_HDR_FIELD,
  384. offsetof(struct ipv6hdr, payload_len));
  385. return;
  386. }
  387. if (end > fq->len) {
  388. /* Some bits beyond end -> corruption. */
  389. if (fq->last_in & LAST_IN)
  390. goto err;
  391. fq->len = end;
  392. }
  393. }
  394. if (end == offset)
  395. goto err;
  396. /* Point into the IP datagram 'data' part. */
  397. if (!pskb_pull(skb, (u8 *) (fhdr + 1) - skb->data))
  398. goto err;
  399. if (end-offset < skb->len) {
  400. if (pskb_trim(skb, end - offset))
  401. goto err;
  402. if (skb->ip_summed != CHECKSUM_UNNECESSARY)
  403. skb->ip_summed = CHECKSUM_NONE;
  404. }
  405. /* Find out which fragments are in front and at the back of us
  406. * in the chain of fragments so far. We must know where to put
  407. * this fragment, right?
  408. */
  409. prev = NULL;
  410. for(next = fq->fragments; next != NULL; next = next->next) {
  411. if (FRAG6_CB(next)->offset >= offset)
  412. break; /* bingo! */
  413. prev = next;
  414. }
  415. /* We found where to put this one. Check for overlap with
  416. * preceding fragment, and, if needed, align things so that
  417. * any overlaps are eliminated.
  418. */
  419. if (prev) {
  420. int i = (FRAG6_CB(prev)->offset + prev->len) - offset;
  421. if (i > 0) {
  422. offset += i;
  423. if (end <= offset)
  424. goto err;
  425. if (!pskb_pull(skb, i))
  426. goto err;
  427. if (skb->ip_summed != CHECKSUM_UNNECESSARY)
  428. skb->ip_summed = CHECKSUM_NONE;
  429. }
  430. }
  431. /* Look for overlap with succeeding segments.
  432. * If we can merge fragments, do it.
  433. */
  434. while (next && FRAG6_CB(next)->offset < end) {
  435. int i = end - FRAG6_CB(next)->offset; /* overlap is 'i' bytes */
  436. if (i < next->len) {
  437. /* Eat head of the next overlapped fragment
  438. * and leave the loop. The next ones cannot overlap.
  439. */
  440. if (!pskb_pull(next, i))
  441. goto err;
  442. FRAG6_CB(next)->offset += i; /* next fragment */
  443. fq->meat -= i;
  444. if (next->ip_summed != CHECKSUM_UNNECESSARY)
  445. next->ip_summed = CHECKSUM_NONE;
  446. break;
  447. } else {
  448. struct sk_buff *free_it = next;
  449. /* Old fragment is completely overridden with
  450. * new one drop it.
  451. */
  452. next = next->next;
  453. if (prev)
  454. prev->next = next;
  455. else
  456. fq->fragments = next;
  457. fq->meat -= free_it->len;
  458. frag_kfree_skb(free_it, NULL);
  459. }
  460. }
  461. FRAG6_CB(skb)->offset = offset;
  462. /* Insert this fragment in the chain of fragments. */
  463. skb->next = next;
  464. if (prev)
  465. prev->next = skb;
  466. else
  467. fq->fragments = skb;
  468. if (skb->dev)
  469. fq->iif = skb->dev->ifindex;
  470. skb->dev = NULL;
  471. fq->stamp = skb->stamp;
  472. fq->meat += skb->len;
  473. atomic_add(skb->truesize, &ip6_frag_mem);
  474. /* The first fragment.
  475. * nhoffset is obtained from the first fragment, of course.
  476. */
  477. if (offset == 0) {
  478. fq->nhoffset = nhoff;
  479. fq->last_in |= FIRST_IN;
  480. }
  481. write_lock(&ip6_frag_lock);
  482. list_move_tail(&fq->lru_list, &ip6_frag_lru_list);
  483. write_unlock(&ip6_frag_lock);
  484. return;
  485. err:
  486. IP6_INC_STATS(IPSTATS_MIB_REASMFAILS);
  487. kfree_skb(skb);
  488. }
  489. /*
  490. * Check if this packet is complete.
  491. * Returns NULL on failure by any reason, and pointer
  492. * to current nexthdr field in reassembled frame.
  493. *
  494. * It is called with locked fq, and caller must check that
  495. * queue is eligible for reassembly i.e. it is not COMPLETE,
  496. * the last and the first frames arrived and all the bits are here.
  497. */
  498. static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff **skb_in,
  499. unsigned int *nhoffp,
  500. struct net_device *dev)
  501. {
  502. struct sk_buff *fp, *head = fq->fragments;
  503. int payload_len;
  504. unsigned int nhoff;
  505. fq_kill(fq);
  506. BUG_TRAP(head != NULL);
  507. BUG_TRAP(FRAG6_CB(head)->offset == 0);
  508. /* Unfragmented part is taken from the first segment. */
  509. payload_len = (head->data - head->nh.raw) - sizeof(struct ipv6hdr) + fq->len - sizeof(struct frag_hdr);
  510. if (payload_len > IPV6_MAXPLEN)
  511. goto out_oversize;
  512. /* Head of list must not be cloned. */
  513. if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
  514. goto out_oom;
  515. /* If the first fragment is fragmented itself, we split
  516. * it to two chunks: the first with data and paged part
  517. * and the second, holding only fragments. */
  518. if (skb_shinfo(head)->frag_list) {
  519. struct sk_buff *clone;
  520. int i, plen = 0;
  521. if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
  522. goto out_oom;
  523. clone->next = head->next;
  524. head->next = clone;
  525. skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
  526. skb_shinfo(head)->frag_list = NULL;
  527. for (i=0; i<skb_shinfo(head)->nr_frags; i++)
  528. plen += skb_shinfo(head)->frags[i].size;
  529. clone->len = clone->data_len = head->data_len - plen;
  530. head->data_len -= clone->len;
  531. head->len -= clone->len;
  532. clone->csum = 0;
  533. clone->ip_summed = head->ip_summed;
  534. atomic_add(clone->truesize, &ip6_frag_mem);
  535. }
  536. /* We have to remove fragment header from datagram and to relocate
  537. * header in order to calculate ICV correctly. */
  538. nhoff = fq->nhoffset;
  539. head->nh.raw[nhoff] = head->h.raw[0];
  540. memmove(head->head + sizeof(struct frag_hdr), head->head,
  541. (head->data - head->head) - sizeof(struct frag_hdr));
  542. head->mac.raw += sizeof(struct frag_hdr);
  543. head->nh.raw += sizeof(struct frag_hdr);
  544. skb_shinfo(head)->frag_list = head->next;
  545. head->h.raw = head->data;
  546. skb_push(head, head->data - head->nh.raw);
  547. atomic_sub(head->truesize, &ip6_frag_mem);
  548. for (fp=head->next; fp; fp = fp->next) {
  549. head->data_len += fp->len;
  550. head->len += fp->len;
  551. if (head->ip_summed != fp->ip_summed)
  552. head->ip_summed = CHECKSUM_NONE;
  553. else if (head->ip_summed == CHECKSUM_HW)
  554. head->csum = csum_add(head->csum, fp->csum);
  555. head->truesize += fp->truesize;
  556. atomic_sub(fp->truesize, &ip6_frag_mem);
  557. }
  558. head->next = NULL;
  559. head->dev = dev;
  560. head->stamp = fq->stamp;
  561. head->nh.ipv6h->payload_len = htons(payload_len);
  562. *skb_in = head;
  563. /* Yes, and fold redundant checksum back. 8) */
  564. if (head->ip_summed == CHECKSUM_HW)
  565. head->csum = csum_partial(head->nh.raw, head->h.raw-head->nh.raw, head->csum);
  566. IP6_INC_STATS_BH(IPSTATS_MIB_REASMOKS);
  567. fq->fragments = NULL;
  568. *nhoffp = nhoff;
  569. return 1;
  570. out_oversize:
  571. if (net_ratelimit())
  572. printk(KERN_DEBUG "ip6_frag_reasm: payload len = %d\n", payload_len);
  573. goto out_fail;
  574. out_oom:
  575. if (net_ratelimit())
  576. printk(KERN_DEBUG "ip6_frag_reasm: no memory for reassembly\n");
  577. out_fail:
  578. IP6_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
  579. return -1;
  580. }
  581. static int ipv6_frag_rcv(struct sk_buff **skbp, unsigned int *nhoffp)
  582. {
  583. struct sk_buff *skb = *skbp;
  584. struct net_device *dev = skb->dev;
  585. struct frag_hdr *fhdr;
  586. struct frag_queue *fq;
  587. struct ipv6hdr *hdr;
  588. hdr = skb->nh.ipv6h;
  589. IP6_INC_STATS_BH(IPSTATS_MIB_REASMREQDS);
  590. /* Jumbo payload inhibits frag. header */
  591. if (hdr->payload_len==0) {
  592. IP6_INC_STATS(IPSTATS_MIB_INHDRERRORS);
  593. icmpv6_param_prob(skb, ICMPV6_HDR_FIELD, skb->h.raw-skb->nh.raw);
  594. return -1;
  595. }
  596. if (!pskb_may_pull(skb, (skb->h.raw-skb->data)+sizeof(struct frag_hdr))) {
  597. IP6_INC_STATS(IPSTATS_MIB_INHDRERRORS);
  598. icmpv6_param_prob(skb, ICMPV6_HDR_FIELD, skb->h.raw-skb->nh.raw);
  599. return -1;
  600. }
  601. hdr = skb->nh.ipv6h;
  602. fhdr = (struct frag_hdr *)skb->h.raw;
  603. if (!(fhdr->frag_off & htons(0xFFF9))) {
  604. /* It is not a fragmented frame */
  605. skb->h.raw += sizeof(struct frag_hdr);
  606. IP6_INC_STATS_BH(IPSTATS_MIB_REASMOKS);
  607. *nhoffp = (u8*)fhdr - skb->nh.raw;
  608. return 1;
  609. }
  610. if (atomic_read(&ip6_frag_mem) > sysctl_ip6frag_high_thresh)
  611. ip6_evictor();
  612. if ((fq = fq_find(fhdr->identification, &hdr->saddr, &hdr->daddr)) != NULL) {
  613. int ret = -1;
  614. spin_lock(&fq->lock);
  615. ip6_frag_queue(fq, skb, fhdr, *nhoffp);
  616. if (fq->last_in == (FIRST_IN|LAST_IN) &&
  617. fq->meat == fq->len)
  618. ret = ip6_frag_reasm(fq, skbp, nhoffp, dev);
  619. spin_unlock(&fq->lock);
  620. fq_put(fq, NULL);
  621. return ret;
  622. }
  623. IP6_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
  624. kfree_skb(skb);
  625. return -1;
  626. }
  627. static struct inet6_protocol frag_protocol =
  628. {
  629. .handler = ipv6_frag_rcv,
  630. .flags = INET6_PROTO_NOPOLICY,
  631. };
  632. void __init ipv6_frag_init(void)
  633. {
  634. if (inet6_add_protocol(&frag_protocol, IPPROTO_FRAGMENT) < 0)
  635. printk(KERN_ERR "ipv6_frag_init: Could not register protocol\n");
  636. ip6_frag_hash_rnd = (u32) ((num_physpages ^ (num_physpages>>7)) ^
  637. (jiffies ^ (jiffies >> 6)));
  638. init_timer(&ip6_frag_secret_timer);
  639. ip6_frag_secret_timer.function = ip6_frag_secret_rebuild;
  640. ip6_frag_secret_timer.expires = jiffies + sysctl_ip6frag_secret_interval;
  641. add_timer(&ip6_frag_secret_timer);
  642. }