dn_dev.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483
  1. /*
  2. * DECnet An implementation of the DECnet protocol suite for the LINUX
  3. * operating system. DECnet is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * DECnet Device Layer
  7. *
  8. * Authors: Steve Whitehouse <SteveW@ACM.org>
  9. * Eduardo Marcelo Serrat <emserrat@geocities.com>
  10. *
  11. * Changes:
  12. * Steve Whitehouse : Devices now see incoming frames so they
  13. * can mark on who it came from.
  14. * Steve Whitehouse : Fixed bug in creating neighbours. Each neighbour
  15. * can now have a device specific setup func.
  16. * Steve Whitehouse : Added /proc/sys/net/decnet/conf/<dev>/
  17. * Steve Whitehouse : Fixed bug which sometimes killed timer
  18. * Steve Whitehouse : Multiple ifaddr support
  19. * Steve Whitehouse : SIOCGIFCONF is now a compile time option
  20. * Steve Whitehouse : /proc/sys/net/decnet/conf/<sys>/forwarding
  21. * Steve Whitehouse : Removed timer1 - it's a user space issue now
  22. * Patrick Caulfield : Fixed router hello message format
  23. * Steve Whitehouse : Got rid of constant sizes for blksize for
  24. * devices. All mtu based now.
  25. */
  26. #include <linux/config.h>
  27. #include <linux/module.h>
  28. #include <linux/moduleparam.h>
  29. #include <linux/init.h>
  30. #include <linux/net.h>
  31. #include <linux/netdevice.h>
  32. #include <linux/proc_fs.h>
  33. #include <linux/seq_file.h>
  34. #include <linux/timer.h>
  35. #include <linux/string.h>
  36. #include <linux/if_arp.h>
  37. #include <linux/if_ether.h>
  38. #include <linux/skbuff.h>
  39. #include <linux/rtnetlink.h>
  40. #include <linux/sysctl.h>
  41. #include <linux/notifier.h>
  42. #include <asm/uaccess.h>
  43. #include <asm/system.h>
  44. #include <net/neighbour.h>
  45. #include <net/dst.h>
  46. #include <net/flow.h>
  47. #include <net/dn.h>
  48. #include <net/dn_dev.h>
  49. #include <net/dn_route.h>
  50. #include <net/dn_neigh.h>
  51. #include <net/dn_fib.h>
  52. #define DN_IFREQ_SIZE (sizeof(struct ifreq) - sizeof(struct sockaddr) + sizeof(struct sockaddr_dn))
  53. static char dn_rt_all_end_mcast[ETH_ALEN] = {0xAB,0x00,0x00,0x04,0x00,0x00};
  54. static char dn_rt_all_rt_mcast[ETH_ALEN] = {0xAB,0x00,0x00,0x03,0x00,0x00};
  55. static char dn_hiord[ETH_ALEN] = {0xAA,0x00,0x04,0x00,0x00,0x00};
  56. static unsigned char dn_eco_version[3] = {0x02,0x00,0x00};
  57. extern struct neigh_table dn_neigh_table;
  58. /*
  59. * decnet_address is kept in network order.
  60. */
  61. dn_address decnet_address = 0;
  62. static DEFINE_RWLOCK(dndev_lock);
  63. static struct net_device *decnet_default_device;
  64. static struct notifier_block *dnaddr_chain;
  65. static struct dn_dev *dn_dev_create(struct net_device *dev, int *err);
  66. static void dn_dev_delete(struct net_device *dev);
  67. static void rtmsg_ifa(int event, struct dn_ifaddr *ifa);
  68. static int dn_eth_up(struct net_device *);
  69. static void dn_eth_down(struct net_device *);
  70. static void dn_send_brd_hello(struct net_device *dev, struct dn_ifaddr *ifa);
  71. static void dn_send_ptp_hello(struct net_device *dev, struct dn_ifaddr *ifa);
  72. static struct dn_dev_parms dn_dev_list[] = {
  73. {
  74. .type = ARPHRD_ETHER, /* Ethernet */
  75. .mode = DN_DEV_BCAST,
  76. .state = DN_DEV_S_RU,
  77. .t2 = 1,
  78. .t3 = 10,
  79. .name = "ethernet",
  80. .ctl_name = NET_DECNET_CONF_ETHER,
  81. .up = dn_eth_up,
  82. .down = dn_eth_down,
  83. .timer3 = dn_send_brd_hello,
  84. },
  85. {
  86. .type = ARPHRD_IPGRE, /* DECnet tunneled over GRE in IP */
  87. .mode = DN_DEV_BCAST,
  88. .state = DN_DEV_S_RU,
  89. .t2 = 1,
  90. .t3 = 10,
  91. .name = "ipgre",
  92. .ctl_name = NET_DECNET_CONF_GRE,
  93. .timer3 = dn_send_brd_hello,
  94. },
  95. #if 0
  96. {
  97. .type = ARPHRD_X25, /* Bog standard X.25 */
  98. .mode = DN_DEV_UCAST,
  99. .state = DN_DEV_S_DS,
  100. .t2 = 1,
  101. .t3 = 120,
  102. .name = "x25",
  103. .ctl_name = NET_DECNET_CONF_X25,
  104. .timer3 = dn_send_ptp_hello,
  105. },
  106. #endif
  107. #if 0
  108. {
  109. .type = ARPHRD_PPP, /* DECnet over PPP */
  110. .mode = DN_DEV_BCAST,
  111. .state = DN_DEV_S_RU,
  112. .t2 = 1,
  113. .t3 = 10,
  114. .name = "ppp",
  115. .ctl_name = NET_DECNET_CONF_PPP,
  116. .timer3 = dn_send_brd_hello,
  117. },
  118. #endif
  119. {
  120. .type = ARPHRD_DDCMP, /* DECnet over DDCMP */
  121. .mode = DN_DEV_UCAST,
  122. .state = DN_DEV_S_DS,
  123. .t2 = 1,
  124. .t3 = 120,
  125. .name = "ddcmp",
  126. .ctl_name = NET_DECNET_CONF_DDCMP,
  127. .timer3 = dn_send_ptp_hello,
  128. },
  129. {
  130. .type = ARPHRD_LOOPBACK, /* Loopback interface - always last */
  131. .mode = DN_DEV_BCAST,
  132. .state = DN_DEV_S_RU,
  133. .t2 = 1,
  134. .t3 = 10,
  135. .name = "loopback",
  136. .ctl_name = NET_DECNET_CONF_LOOPBACK,
  137. .timer3 = dn_send_brd_hello,
  138. }
  139. };
  140. #define DN_DEV_LIST_SIZE (sizeof(dn_dev_list)/sizeof(struct dn_dev_parms))
  141. #define DN_DEV_PARMS_OFFSET(x) ((int) ((char *) &((struct dn_dev_parms *)0)->x))
  142. #ifdef CONFIG_SYSCTL
  143. static int min_t2[] = { 1 };
  144. static int max_t2[] = { 60 }; /* No max specified, but this seems sensible */
  145. static int min_t3[] = { 1 };
  146. static int max_t3[] = { 8191 }; /* Must fit in 16 bits when multiplied by BCT3MULT or T3MULT */
  147. static int min_priority[1];
  148. static int max_priority[] = { 127 }; /* From DECnet spec */
  149. static int dn_forwarding_proc(ctl_table *, int, struct file *,
  150. void __user *, size_t *, loff_t *);
  151. static int dn_forwarding_sysctl(ctl_table *table, int __user *name, int nlen,
  152. void __user *oldval, size_t __user *oldlenp,
  153. void __user *newval, size_t newlen,
  154. void **context);
  155. static struct dn_dev_sysctl_table {
  156. struct ctl_table_header *sysctl_header;
  157. ctl_table dn_dev_vars[5];
  158. ctl_table dn_dev_dev[2];
  159. ctl_table dn_dev_conf_dir[2];
  160. ctl_table dn_dev_proto_dir[2];
  161. ctl_table dn_dev_root_dir[2];
  162. } dn_dev_sysctl = {
  163. NULL,
  164. {
  165. {
  166. .ctl_name = NET_DECNET_CONF_DEV_FORWARDING,
  167. .procname = "forwarding",
  168. .data = (void *)DN_DEV_PARMS_OFFSET(forwarding),
  169. .maxlen = sizeof(int),
  170. .mode = 0644,
  171. .proc_handler = dn_forwarding_proc,
  172. .strategy = dn_forwarding_sysctl,
  173. },
  174. {
  175. .ctl_name = NET_DECNET_CONF_DEV_PRIORITY,
  176. .procname = "priority",
  177. .data = (void *)DN_DEV_PARMS_OFFSET(priority),
  178. .maxlen = sizeof(int),
  179. .mode = 0644,
  180. .proc_handler = proc_dointvec_minmax,
  181. .strategy = sysctl_intvec,
  182. .extra1 = &min_priority,
  183. .extra2 = &max_priority
  184. },
  185. {
  186. .ctl_name = NET_DECNET_CONF_DEV_T2,
  187. .procname = "t2",
  188. .data = (void *)DN_DEV_PARMS_OFFSET(t2),
  189. .maxlen = sizeof(int),
  190. .mode = 0644,
  191. .proc_handler = proc_dointvec_minmax,
  192. .strategy = sysctl_intvec,
  193. .extra1 = &min_t2,
  194. .extra2 = &max_t2
  195. },
  196. {
  197. .ctl_name = NET_DECNET_CONF_DEV_T3,
  198. .procname = "t3",
  199. .data = (void *)DN_DEV_PARMS_OFFSET(t3),
  200. .maxlen = sizeof(int),
  201. .mode = 0644,
  202. .proc_handler = proc_dointvec_minmax,
  203. .strategy = sysctl_intvec,
  204. .extra1 = &min_t3,
  205. .extra2 = &max_t3
  206. },
  207. {0}
  208. },
  209. {{
  210. .ctl_name = 0,
  211. .procname = "",
  212. .mode = 0555,
  213. .child = dn_dev_sysctl.dn_dev_vars
  214. }, {0}},
  215. {{
  216. .ctl_name = NET_DECNET_CONF,
  217. .procname = "conf",
  218. .mode = 0555,
  219. .child = dn_dev_sysctl.dn_dev_dev
  220. }, {0}},
  221. {{
  222. .ctl_name = NET_DECNET,
  223. .procname = "decnet",
  224. .mode = 0555,
  225. .child = dn_dev_sysctl.dn_dev_conf_dir
  226. }, {0}},
  227. {{
  228. .ctl_name = CTL_NET,
  229. .procname = "net",
  230. .mode = 0555,
  231. .child = dn_dev_sysctl.dn_dev_proto_dir
  232. }, {0}}
  233. };
  234. static void dn_dev_sysctl_register(struct net_device *dev, struct dn_dev_parms *parms)
  235. {
  236. struct dn_dev_sysctl_table *t;
  237. int i;
  238. t = kmalloc(sizeof(*t), GFP_KERNEL);
  239. if (t == NULL)
  240. return;
  241. memcpy(t, &dn_dev_sysctl, sizeof(*t));
  242. for(i = 0; i < ARRAY_SIZE(t->dn_dev_vars) - 1; i++) {
  243. long offset = (long)t->dn_dev_vars[i].data;
  244. t->dn_dev_vars[i].data = ((char *)parms) + offset;
  245. t->dn_dev_vars[i].de = NULL;
  246. }
  247. if (dev) {
  248. t->dn_dev_dev[0].procname = dev->name;
  249. t->dn_dev_dev[0].ctl_name = dev->ifindex;
  250. } else {
  251. t->dn_dev_dev[0].procname = parms->name;
  252. t->dn_dev_dev[0].ctl_name = parms->ctl_name;
  253. }
  254. t->dn_dev_dev[0].child = t->dn_dev_vars;
  255. t->dn_dev_dev[0].de = NULL;
  256. t->dn_dev_conf_dir[0].child = t->dn_dev_dev;
  257. t->dn_dev_conf_dir[0].de = NULL;
  258. t->dn_dev_proto_dir[0].child = t->dn_dev_conf_dir;
  259. t->dn_dev_proto_dir[0].de = NULL;
  260. t->dn_dev_root_dir[0].child = t->dn_dev_proto_dir;
  261. t->dn_dev_root_dir[0].de = NULL;
  262. t->dn_dev_vars[0].extra1 = (void *)dev;
  263. t->sysctl_header = register_sysctl_table(t->dn_dev_root_dir, 0);
  264. if (t->sysctl_header == NULL)
  265. kfree(t);
  266. else
  267. parms->sysctl = t;
  268. }
  269. static void dn_dev_sysctl_unregister(struct dn_dev_parms *parms)
  270. {
  271. if (parms->sysctl) {
  272. struct dn_dev_sysctl_table *t = parms->sysctl;
  273. parms->sysctl = NULL;
  274. unregister_sysctl_table(t->sysctl_header);
  275. kfree(t);
  276. }
  277. }
  278. static int dn_forwarding_proc(ctl_table *table, int write,
  279. struct file *filep,
  280. void __user *buffer,
  281. size_t *lenp, loff_t *ppos)
  282. {
  283. #ifdef CONFIG_DECNET_ROUTER
  284. struct net_device *dev = table->extra1;
  285. struct dn_dev *dn_db;
  286. int err;
  287. int tmp, old;
  288. if (table->extra1 == NULL)
  289. return -EINVAL;
  290. dn_db = dev->dn_ptr;
  291. old = dn_db->parms.forwarding;
  292. err = proc_dointvec(table, write, filep, buffer, lenp, ppos);
  293. if ((err >= 0) && write) {
  294. if (dn_db->parms.forwarding < 0)
  295. dn_db->parms.forwarding = 0;
  296. if (dn_db->parms.forwarding > 2)
  297. dn_db->parms.forwarding = 2;
  298. /*
  299. * What an ugly hack this is... its works, just. It
  300. * would be nice if sysctl/proc were just that little
  301. * bit more flexible so I don't have to write a special
  302. * routine, or suffer hacks like this - SJW
  303. */
  304. tmp = dn_db->parms.forwarding;
  305. dn_db->parms.forwarding = old;
  306. if (dn_db->parms.down)
  307. dn_db->parms.down(dev);
  308. dn_db->parms.forwarding = tmp;
  309. if (dn_db->parms.up)
  310. dn_db->parms.up(dev);
  311. }
  312. return err;
  313. #else
  314. return -EINVAL;
  315. #endif
  316. }
  317. static int dn_forwarding_sysctl(ctl_table *table, int __user *name, int nlen,
  318. void __user *oldval, size_t __user *oldlenp,
  319. void __user *newval, size_t newlen,
  320. void **context)
  321. {
  322. #ifdef CONFIG_DECNET_ROUTER
  323. struct net_device *dev = table->extra1;
  324. struct dn_dev *dn_db;
  325. int value;
  326. if (table->extra1 == NULL)
  327. return -EINVAL;
  328. dn_db = dev->dn_ptr;
  329. if (newval && newlen) {
  330. if (newlen != sizeof(int))
  331. return -EINVAL;
  332. if (get_user(value, (int __user *)newval))
  333. return -EFAULT;
  334. if (value < 0)
  335. return -EINVAL;
  336. if (value > 2)
  337. return -EINVAL;
  338. if (dn_db->parms.down)
  339. dn_db->parms.down(dev);
  340. dn_db->parms.forwarding = value;
  341. if (dn_db->parms.up)
  342. dn_db->parms.up(dev);
  343. }
  344. return 0;
  345. #else
  346. return -EINVAL;
  347. #endif
  348. }
  349. #else /* CONFIG_SYSCTL */
  350. static void dn_dev_sysctl_unregister(struct dn_dev_parms *parms)
  351. {
  352. }
  353. static void dn_dev_sysctl_register(struct net_device *dev, struct dn_dev_parms *parms)
  354. {
  355. }
  356. #endif /* CONFIG_SYSCTL */
  357. static inline __u16 mtu2blksize(struct net_device *dev)
  358. {
  359. u32 blksize = dev->mtu;
  360. if (blksize > 0xffff)
  361. blksize = 0xffff;
  362. if (dev->type == ARPHRD_ETHER ||
  363. dev->type == ARPHRD_PPP ||
  364. dev->type == ARPHRD_IPGRE ||
  365. dev->type == ARPHRD_LOOPBACK)
  366. blksize -= 2;
  367. return (__u16)blksize;
  368. }
  369. static struct dn_ifaddr *dn_dev_alloc_ifa(void)
  370. {
  371. struct dn_ifaddr *ifa;
  372. ifa = kmalloc(sizeof(*ifa), GFP_KERNEL);
  373. if (ifa) {
  374. memset(ifa, 0, sizeof(*ifa));
  375. }
  376. return ifa;
  377. }
  378. static __inline__ void dn_dev_free_ifa(struct dn_ifaddr *ifa)
  379. {
  380. kfree(ifa);
  381. }
  382. static void dn_dev_del_ifa(struct dn_dev *dn_db, struct dn_ifaddr **ifap, int destroy)
  383. {
  384. struct dn_ifaddr *ifa1 = *ifap;
  385. unsigned char mac_addr[6];
  386. struct net_device *dev = dn_db->dev;
  387. ASSERT_RTNL();
  388. *ifap = ifa1->ifa_next;
  389. if (dn_db->dev->type == ARPHRD_ETHER) {
  390. if (ifa1->ifa_local != dn_htons(dn_eth2dn(dev->dev_addr))) {
  391. dn_dn2eth(mac_addr, ifa1->ifa_local);
  392. dev_mc_delete(dev, mac_addr, ETH_ALEN, 0);
  393. }
  394. }
  395. rtmsg_ifa(RTM_DELADDR, ifa1);
  396. notifier_call_chain(&dnaddr_chain, NETDEV_DOWN, ifa1);
  397. if (destroy) {
  398. dn_dev_free_ifa(ifa1);
  399. if (dn_db->ifa_list == NULL)
  400. dn_dev_delete(dn_db->dev);
  401. }
  402. }
  403. static int dn_dev_insert_ifa(struct dn_dev *dn_db, struct dn_ifaddr *ifa)
  404. {
  405. struct net_device *dev = dn_db->dev;
  406. struct dn_ifaddr *ifa1;
  407. unsigned char mac_addr[6];
  408. ASSERT_RTNL();
  409. /* Check for duplicates */
  410. for(ifa1 = dn_db->ifa_list; ifa1; ifa1 = ifa1->ifa_next) {
  411. if (ifa1->ifa_local == ifa->ifa_local)
  412. return -EEXIST;
  413. }
  414. if (dev->type == ARPHRD_ETHER) {
  415. if (ifa->ifa_local != dn_htons(dn_eth2dn(dev->dev_addr))) {
  416. dn_dn2eth(mac_addr, ifa->ifa_local);
  417. dev_mc_add(dev, mac_addr, ETH_ALEN, 0);
  418. dev_mc_upload(dev);
  419. }
  420. }
  421. ifa->ifa_next = dn_db->ifa_list;
  422. dn_db->ifa_list = ifa;
  423. rtmsg_ifa(RTM_NEWADDR, ifa);
  424. notifier_call_chain(&dnaddr_chain, NETDEV_UP, ifa);
  425. return 0;
  426. }
  427. static int dn_dev_set_ifa(struct net_device *dev, struct dn_ifaddr *ifa)
  428. {
  429. struct dn_dev *dn_db = dev->dn_ptr;
  430. int rv;
  431. if (dn_db == NULL) {
  432. int err;
  433. dn_db = dn_dev_create(dev, &err);
  434. if (dn_db == NULL)
  435. return err;
  436. }
  437. ifa->ifa_dev = dn_db;
  438. if (dev->flags & IFF_LOOPBACK)
  439. ifa->ifa_scope = RT_SCOPE_HOST;
  440. rv = dn_dev_insert_ifa(dn_db, ifa);
  441. if (rv)
  442. dn_dev_free_ifa(ifa);
  443. return rv;
  444. }
  445. int dn_dev_ioctl(unsigned int cmd, void __user *arg)
  446. {
  447. char buffer[DN_IFREQ_SIZE];
  448. struct ifreq *ifr = (struct ifreq *)buffer;
  449. struct sockaddr_dn *sdn = (struct sockaddr_dn *)&ifr->ifr_addr;
  450. struct dn_dev *dn_db;
  451. struct net_device *dev;
  452. struct dn_ifaddr *ifa = NULL, **ifap = NULL;
  453. int ret = 0;
  454. if (copy_from_user(ifr, arg, DN_IFREQ_SIZE))
  455. return -EFAULT;
  456. ifr->ifr_name[IFNAMSIZ-1] = 0;
  457. #ifdef CONFIG_KMOD
  458. dev_load(ifr->ifr_name);
  459. #endif
  460. switch(cmd) {
  461. case SIOCGIFADDR:
  462. break;
  463. case SIOCSIFADDR:
  464. if (!capable(CAP_NET_ADMIN))
  465. return -EACCES;
  466. if (sdn->sdn_family != AF_DECnet)
  467. return -EINVAL;
  468. break;
  469. default:
  470. return -EINVAL;
  471. }
  472. rtnl_lock();
  473. if ((dev = __dev_get_by_name(ifr->ifr_name)) == NULL) {
  474. ret = -ENODEV;
  475. goto done;
  476. }
  477. if ((dn_db = dev->dn_ptr) != NULL) {
  478. for (ifap = &dn_db->ifa_list; (ifa=*ifap) != NULL; ifap = &ifa->ifa_next)
  479. if (strcmp(ifr->ifr_name, ifa->ifa_label) == 0)
  480. break;
  481. }
  482. if (ifa == NULL && cmd != SIOCSIFADDR) {
  483. ret = -EADDRNOTAVAIL;
  484. goto done;
  485. }
  486. switch(cmd) {
  487. case SIOCGIFADDR:
  488. *((dn_address *)sdn->sdn_nodeaddr) = ifa->ifa_local;
  489. goto rarok;
  490. case SIOCSIFADDR:
  491. if (!ifa) {
  492. if ((ifa = dn_dev_alloc_ifa()) == NULL) {
  493. ret = -ENOBUFS;
  494. break;
  495. }
  496. memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
  497. } else {
  498. if (ifa->ifa_local == dn_saddr2dn(sdn))
  499. break;
  500. dn_dev_del_ifa(dn_db, ifap, 0);
  501. }
  502. ifa->ifa_local = ifa->ifa_address = dn_saddr2dn(sdn);
  503. ret = dn_dev_set_ifa(dev, ifa);
  504. }
  505. done:
  506. rtnl_unlock();
  507. return ret;
  508. rarok:
  509. if (copy_to_user(arg, ifr, DN_IFREQ_SIZE))
  510. ret = -EFAULT;
  511. goto done;
  512. }
  513. struct net_device *dn_dev_get_default(void)
  514. {
  515. struct net_device *dev;
  516. read_lock(&dndev_lock);
  517. dev = decnet_default_device;
  518. if (dev) {
  519. if (dev->dn_ptr)
  520. dev_hold(dev);
  521. else
  522. dev = NULL;
  523. }
  524. read_unlock(&dndev_lock);
  525. return dev;
  526. }
  527. int dn_dev_set_default(struct net_device *dev, int force)
  528. {
  529. struct net_device *old = NULL;
  530. int rv = -EBUSY;
  531. if (!dev->dn_ptr)
  532. return -ENODEV;
  533. write_lock(&dndev_lock);
  534. if (force || decnet_default_device == NULL) {
  535. old = decnet_default_device;
  536. decnet_default_device = dev;
  537. rv = 0;
  538. }
  539. write_unlock(&dndev_lock);
  540. if (old)
  541. dev_put(dev);
  542. return rv;
  543. }
  544. static void dn_dev_check_default(struct net_device *dev)
  545. {
  546. write_lock(&dndev_lock);
  547. if (dev == decnet_default_device) {
  548. decnet_default_device = NULL;
  549. } else {
  550. dev = NULL;
  551. }
  552. write_unlock(&dndev_lock);
  553. if (dev)
  554. dev_put(dev);
  555. }
  556. static struct dn_dev *dn_dev_by_index(int ifindex)
  557. {
  558. struct net_device *dev;
  559. struct dn_dev *dn_dev = NULL;
  560. dev = dev_get_by_index(ifindex);
  561. if (dev) {
  562. dn_dev = dev->dn_ptr;
  563. dev_put(dev);
  564. }
  565. return dn_dev;
  566. }
  567. static int dn_dev_rtm_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  568. {
  569. struct rtattr **rta = arg;
  570. struct dn_dev *dn_db;
  571. struct ifaddrmsg *ifm = NLMSG_DATA(nlh);
  572. struct dn_ifaddr *ifa, **ifap;
  573. if ((dn_db = dn_dev_by_index(ifm->ifa_index)) == NULL)
  574. return -EADDRNOTAVAIL;
  575. for(ifap = &dn_db->ifa_list; (ifa=*ifap) != NULL; ifap = &ifa->ifa_next) {
  576. void *tmp = rta[IFA_LOCAL-1];
  577. if ((tmp && memcmp(RTA_DATA(tmp), &ifa->ifa_local, 2)) ||
  578. (rta[IFA_LABEL-1] && rtattr_strcmp(rta[IFA_LABEL-1], ifa->ifa_label)))
  579. continue;
  580. dn_dev_del_ifa(dn_db, ifap, 1);
  581. return 0;
  582. }
  583. return -EADDRNOTAVAIL;
  584. }
  585. static int dn_dev_rtm_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  586. {
  587. struct rtattr **rta = arg;
  588. struct net_device *dev;
  589. struct dn_dev *dn_db;
  590. struct ifaddrmsg *ifm = NLMSG_DATA(nlh);
  591. struct dn_ifaddr *ifa;
  592. int rv;
  593. if (rta[IFA_LOCAL-1] == NULL)
  594. return -EINVAL;
  595. if ((dev = __dev_get_by_index(ifm->ifa_index)) == NULL)
  596. return -ENODEV;
  597. if ((dn_db = dev->dn_ptr) == NULL) {
  598. int err;
  599. dn_db = dn_dev_create(dev, &err);
  600. if (!dn_db)
  601. return err;
  602. }
  603. if ((ifa = dn_dev_alloc_ifa()) == NULL)
  604. return -ENOBUFS;
  605. if (!rta[IFA_ADDRESS - 1])
  606. rta[IFA_ADDRESS - 1] = rta[IFA_LOCAL - 1];
  607. memcpy(&ifa->ifa_local, RTA_DATA(rta[IFA_LOCAL-1]), 2);
  608. memcpy(&ifa->ifa_address, RTA_DATA(rta[IFA_ADDRESS-1]), 2);
  609. ifa->ifa_flags = ifm->ifa_flags;
  610. ifa->ifa_scope = ifm->ifa_scope;
  611. ifa->ifa_dev = dn_db;
  612. if (rta[IFA_LABEL-1])
  613. rtattr_strlcpy(ifa->ifa_label, rta[IFA_LABEL-1], IFNAMSIZ);
  614. else
  615. memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
  616. rv = dn_dev_insert_ifa(dn_db, ifa);
  617. if (rv)
  618. dn_dev_free_ifa(ifa);
  619. return rv;
  620. }
  621. static int dn_dev_fill_ifaddr(struct sk_buff *skb, struct dn_ifaddr *ifa,
  622. u32 pid, u32 seq, int event, unsigned int flags)
  623. {
  624. struct ifaddrmsg *ifm;
  625. struct nlmsghdr *nlh;
  626. unsigned char *b = skb->tail;
  627. nlh = NLMSG_NEW(skb, pid, seq, event, sizeof(*ifm), flags);
  628. ifm = NLMSG_DATA(nlh);
  629. ifm->ifa_family = AF_DECnet;
  630. ifm->ifa_prefixlen = 16;
  631. ifm->ifa_flags = ifa->ifa_flags | IFA_F_PERMANENT;
  632. ifm->ifa_scope = ifa->ifa_scope;
  633. ifm->ifa_index = ifa->ifa_dev->dev->ifindex;
  634. if (ifa->ifa_address)
  635. RTA_PUT(skb, IFA_ADDRESS, 2, &ifa->ifa_address);
  636. if (ifa->ifa_local)
  637. RTA_PUT(skb, IFA_LOCAL, 2, &ifa->ifa_local);
  638. if (ifa->ifa_label[0])
  639. RTA_PUT(skb, IFA_LABEL, IFNAMSIZ, &ifa->ifa_label);
  640. nlh->nlmsg_len = skb->tail - b;
  641. return skb->len;
  642. nlmsg_failure:
  643. rtattr_failure:
  644. skb_trim(skb, b - skb->data);
  645. return -1;
  646. }
  647. static void rtmsg_ifa(int event, struct dn_ifaddr *ifa)
  648. {
  649. struct sk_buff *skb;
  650. int size = NLMSG_SPACE(sizeof(struct ifaddrmsg)+128);
  651. skb = alloc_skb(size, GFP_KERNEL);
  652. if (!skb) {
  653. netlink_set_err(rtnl, 0, RTMGRP_DECnet_IFADDR, ENOBUFS);
  654. return;
  655. }
  656. if (dn_dev_fill_ifaddr(skb, ifa, 0, 0, event, 0) < 0) {
  657. kfree_skb(skb);
  658. netlink_set_err(rtnl, 0, RTMGRP_DECnet_IFADDR, EINVAL);
  659. return;
  660. }
  661. NETLINK_CB(skb).dst_groups = RTMGRP_DECnet_IFADDR;
  662. netlink_broadcast(rtnl, skb, 0, RTMGRP_DECnet_IFADDR, GFP_KERNEL);
  663. }
  664. static int dn_dev_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb)
  665. {
  666. int idx, dn_idx;
  667. int s_idx, s_dn_idx;
  668. struct net_device *dev;
  669. struct dn_dev *dn_db;
  670. struct dn_ifaddr *ifa;
  671. s_idx = cb->args[0];
  672. s_dn_idx = dn_idx = cb->args[1];
  673. read_lock(&dev_base_lock);
  674. for(dev = dev_base, idx = 0; dev; dev = dev->next, idx++) {
  675. if (idx < s_idx)
  676. continue;
  677. if (idx > s_idx)
  678. s_dn_idx = 0;
  679. if ((dn_db = dev->dn_ptr) == NULL)
  680. continue;
  681. for(ifa = dn_db->ifa_list, dn_idx = 0; ifa; ifa = ifa->ifa_next, dn_idx++) {
  682. if (dn_idx < s_dn_idx)
  683. continue;
  684. if (dn_dev_fill_ifaddr(skb, ifa,
  685. NETLINK_CB(cb->skb).pid,
  686. cb->nlh->nlmsg_seq,
  687. RTM_NEWADDR,
  688. NLM_F_MULTI) <= 0)
  689. goto done;
  690. }
  691. }
  692. done:
  693. read_unlock(&dev_base_lock);
  694. cb->args[0] = idx;
  695. cb->args[1] = dn_idx;
  696. return skb->len;
  697. }
  698. static int dn_dev_get_first(struct net_device *dev, dn_address *addr)
  699. {
  700. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  701. struct dn_ifaddr *ifa;
  702. int rv = -ENODEV;
  703. if (dn_db == NULL)
  704. goto out;
  705. ifa = dn_db->ifa_list;
  706. if (ifa != NULL) {
  707. *addr = ifa->ifa_local;
  708. rv = 0;
  709. }
  710. out:
  711. return rv;
  712. }
  713. /*
  714. * Find a default address to bind to.
  715. *
  716. * This is one of those areas where the initial VMS concepts don't really
  717. * map onto the Linux concepts, and since we introduced multiple addresses
  718. * per interface we have to cope with slightly odd ways of finding out what
  719. * "our address" really is. Mostly it's not a problem; for this we just guess
  720. * a sensible default. Eventually the routing code will take care of all the
  721. * nasties for us I hope.
  722. */
  723. int dn_dev_bind_default(dn_address *addr)
  724. {
  725. struct net_device *dev;
  726. int rv;
  727. dev = dn_dev_get_default();
  728. last_chance:
  729. if (dev) {
  730. read_lock(&dev_base_lock);
  731. rv = dn_dev_get_first(dev, addr);
  732. read_unlock(&dev_base_lock);
  733. dev_put(dev);
  734. if (rv == 0 || dev == &loopback_dev)
  735. return rv;
  736. }
  737. dev = &loopback_dev;
  738. dev_hold(dev);
  739. goto last_chance;
  740. }
  741. static void dn_send_endnode_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  742. {
  743. struct endnode_hello_message *msg;
  744. struct sk_buff *skb = NULL;
  745. unsigned short int *pktlen;
  746. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  747. if ((skb = dn_alloc_skb(NULL, sizeof(*msg), GFP_ATOMIC)) == NULL)
  748. return;
  749. skb->dev = dev;
  750. msg = (struct endnode_hello_message *)skb_put(skb,sizeof(*msg));
  751. msg->msgflg = 0x0D;
  752. memcpy(msg->tiver, dn_eco_version, 3);
  753. dn_dn2eth(msg->id, ifa->ifa_local);
  754. msg->iinfo = DN_RT_INFO_ENDN;
  755. msg->blksize = dn_htons(mtu2blksize(dev));
  756. msg->area = 0x00;
  757. memset(msg->seed, 0, 8);
  758. memcpy(msg->neighbor, dn_hiord, ETH_ALEN);
  759. if (dn_db->router) {
  760. struct dn_neigh *dn = (struct dn_neigh *)dn_db->router;
  761. dn_dn2eth(msg->neighbor, dn->addr);
  762. }
  763. msg->timer = dn_htons((unsigned short)dn_db->parms.t3);
  764. msg->mpd = 0x00;
  765. msg->datalen = 0x02;
  766. memset(msg->data, 0xAA, 2);
  767. pktlen = (unsigned short *)skb_push(skb,2);
  768. *pktlen = dn_htons(skb->len - 2);
  769. skb->nh.raw = skb->data;
  770. dn_rt_finish_output(skb, dn_rt_all_rt_mcast, msg->id);
  771. }
  772. #define DRDELAY (5 * HZ)
  773. static int dn_am_i_a_router(struct dn_neigh *dn, struct dn_dev *dn_db, struct dn_ifaddr *ifa)
  774. {
  775. /* First check time since device went up */
  776. if ((jiffies - dn_db->uptime) < DRDELAY)
  777. return 0;
  778. /* If there is no router, then yes... */
  779. if (!dn_db->router)
  780. return 1;
  781. /* otherwise only if we have a higher priority or.. */
  782. if (dn->priority < dn_db->parms.priority)
  783. return 1;
  784. /* if we have equal priority and a higher node number */
  785. if (dn->priority != dn_db->parms.priority)
  786. return 0;
  787. if (dn_ntohs(dn->addr) < dn_ntohs(ifa->ifa_local))
  788. return 1;
  789. return 0;
  790. }
  791. static void dn_send_router_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  792. {
  793. int n;
  794. struct dn_dev *dn_db = dev->dn_ptr;
  795. struct dn_neigh *dn = (struct dn_neigh *)dn_db->router;
  796. struct sk_buff *skb;
  797. size_t size;
  798. unsigned char *ptr;
  799. unsigned char *i1, *i2;
  800. unsigned short *pktlen;
  801. char *src;
  802. if (mtu2blksize(dev) < (26 + 7))
  803. return;
  804. n = mtu2blksize(dev) - 26;
  805. n /= 7;
  806. if (n > 32)
  807. n = 32;
  808. size = 2 + 26 + 7 * n;
  809. if ((skb = dn_alloc_skb(NULL, size, GFP_ATOMIC)) == NULL)
  810. return;
  811. skb->dev = dev;
  812. ptr = skb_put(skb, size);
  813. *ptr++ = DN_RT_PKT_CNTL | DN_RT_PKT_ERTH;
  814. *ptr++ = 2; /* ECO */
  815. *ptr++ = 0;
  816. *ptr++ = 0;
  817. dn_dn2eth(ptr, ifa->ifa_local);
  818. src = ptr;
  819. ptr += ETH_ALEN;
  820. *ptr++ = dn_db->parms.forwarding == 1 ?
  821. DN_RT_INFO_L1RT : DN_RT_INFO_L2RT;
  822. *((unsigned short *)ptr) = dn_htons(mtu2blksize(dev));
  823. ptr += 2;
  824. *ptr++ = dn_db->parms.priority; /* Priority */
  825. *ptr++ = 0; /* Area: Reserved */
  826. *((unsigned short *)ptr) = dn_htons((unsigned short)dn_db->parms.t3);
  827. ptr += 2;
  828. *ptr++ = 0; /* MPD: Reserved */
  829. i1 = ptr++;
  830. memset(ptr, 0, 7); /* Name: Reserved */
  831. ptr += 7;
  832. i2 = ptr++;
  833. n = dn_neigh_elist(dev, ptr, n);
  834. *i2 = 7 * n;
  835. *i1 = 8 + *i2;
  836. skb_trim(skb, (27 + *i2));
  837. pktlen = (unsigned short *)skb_push(skb, 2);
  838. *pktlen = dn_htons(skb->len - 2);
  839. skb->nh.raw = skb->data;
  840. if (dn_am_i_a_router(dn, dn_db, ifa)) {
  841. struct sk_buff *skb2 = skb_copy(skb, GFP_ATOMIC);
  842. if (skb2) {
  843. dn_rt_finish_output(skb2, dn_rt_all_end_mcast, src);
  844. }
  845. }
  846. dn_rt_finish_output(skb, dn_rt_all_rt_mcast, src);
  847. }
  848. static void dn_send_brd_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  849. {
  850. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  851. if (dn_db->parms.forwarding == 0)
  852. dn_send_endnode_hello(dev, ifa);
  853. else
  854. dn_send_router_hello(dev, ifa);
  855. }
  856. static void dn_send_ptp_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  857. {
  858. int tdlen = 16;
  859. int size = dev->hard_header_len + 2 + 4 + tdlen;
  860. struct sk_buff *skb = dn_alloc_skb(NULL, size, GFP_ATOMIC);
  861. int i;
  862. unsigned char *ptr;
  863. char src[ETH_ALEN];
  864. if (skb == NULL)
  865. return ;
  866. skb->dev = dev;
  867. skb_push(skb, dev->hard_header_len);
  868. ptr = skb_put(skb, 2 + 4 + tdlen);
  869. *ptr++ = DN_RT_PKT_HELO;
  870. *((dn_address *)ptr) = ifa->ifa_local;
  871. ptr += 2;
  872. *ptr++ = tdlen;
  873. for(i = 0; i < tdlen; i++)
  874. *ptr++ = 0252;
  875. dn_dn2eth(src, ifa->ifa_local);
  876. dn_rt_finish_output(skb, dn_rt_all_rt_mcast, src);
  877. }
  878. static int dn_eth_up(struct net_device *dev)
  879. {
  880. struct dn_dev *dn_db = dev->dn_ptr;
  881. if (dn_db->parms.forwarding == 0)
  882. dev_mc_add(dev, dn_rt_all_end_mcast, ETH_ALEN, 0);
  883. else
  884. dev_mc_add(dev, dn_rt_all_rt_mcast, ETH_ALEN, 0);
  885. dev_mc_upload(dev);
  886. dn_db->use_long = 1;
  887. return 0;
  888. }
  889. static void dn_eth_down(struct net_device *dev)
  890. {
  891. struct dn_dev *dn_db = dev->dn_ptr;
  892. if (dn_db->parms.forwarding == 0)
  893. dev_mc_delete(dev, dn_rt_all_end_mcast, ETH_ALEN, 0);
  894. else
  895. dev_mc_delete(dev, dn_rt_all_rt_mcast, ETH_ALEN, 0);
  896. }
  897. static void dn_dev_set_timer(struct net_device *dev);
  898. static void dn_dev_timer_func(unsigned long arg)
  899. {
  900. struct net_device *dev = (struct net_device *)arg;
  901. struct dn_dev *dn_db = dev->dn_ptr;
  902. struct dn_ifaddr *ifa;
  903. if (dn_db->t3 <= dn_db->parms.t2) {
  904. if (dn_db->parms.timer3) {
  905. for(ifa = dn_db->ifa_list; ifa; ifa = ifa->ifa_next) {
  906. if (!(ifa->ifa_flags & IFA_F_SECONDARY))
  907. dn_db->parms.timer3(dev, ifa);
  908. }
  909. }
  910. dn_db->t3 = dn_db->parms.t3;
  911. } else {
  912. dn_db->t3 -= dn_db->parms.t2;
  913. }
  914. dn_dev_set_timer(dev);
  915. }
  916. static void dn_dev_set_timer(struct net_device *dev)
  917. {
  918. struct dn_dev *dn_db = dev->dn_ptr;
  919. if (dn_db->parms.t2 > dn_db->parms.t3)
  920. dn_db->parms.t2 = dn_db->parms.t3;
  921. dn_db->timer.data = (unsigned long)dev;
  922. dn_db->timer.function = dn_dev_timer_func;
  923. dn_db->timer.expires = jiffies + (dn_db->parms.t2 * HZ);
  924. add_timer(&dn_db->timer);
  925. }
  926. struct dn_dev *dn_dev_create(struct net_device *dev, int *err)
  927. {
  928. int i;
  929. struct dn_dev_parms *p = dn_dev_list;
  930. struct dn_dev *dn_db;
  931. for(i = 0; i < DN_DEV_LIST_SIZE; i++, p++) {
  932. if (p->type == dev->type)
  933. break;
  934. }
  935. *err = -ENODEV;
  936. if (i == DN_DEV_LIST_SIZE)
  937. return NULL;
  938. *err = -ENOBUFS;
  939. if ((dn_db = kmalloc(sizeof(struct dn_dev), GFP_ATOMIC)) == NULL)
  940. return NULL;
  941. memset(dn_db, 0, sizeof(struct dn_dev));
  942. memcpy(&dn_db->parms, p, sizeof(struct dn_dev_parms));
  943. smp_wmb();
  944. dev->dn_ptr = dn_db;
  945. dn_db->dev = dev;
  946. init_timer(&dn_db->timer);
  947. dn_db->uptime = jiffies;
  948. if (dn_db->parms.up) {
  949. if (dn_db->parms.up(dev) < 0) {
  950. dev->dn_ptr = NULL;
  951. kfree(dn_db);
  952. return NULL;
  953. }
  954. }
  955. dn_db->neigh_parms = neigh_parms_alloc(dev, &dn_neigh_table);
  956. dn_dev_sysctl_register(dev, &dn_db->parms);
  957. dn_dev_set_timer(dev);
  958. *err = 0;
  959. return dn_db;
  960. }
  961. /*
  962. * This processes a device up event. We only start up
  963. * the loopback device & ethernet devices with correct
  964. * MAC addreses automatically. Others must be started
  965. * specifically.
  966. *
  967. * FIXME: How should we configure the loopback address ? If we could dispense
  968. * with using decnet_address here and for autobind, it will be one less thing
  969. * for users to worry about setting up.
  970. */
  971. void dn_dev_up(struct net_device *dev)
  972. {
  973. struct dn_ifaddr *ifa;
  974. dn_address addr = decnet_address;
  975. int maybe_default = 0;
  976. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  977. if ((dev->type != ARPHRD_ETHER) && (dev->type != ARPHRD_LOOPBACK))
  978. return;
  979. /*
  980. * Need to ensure that loopback device has a dn_db attached to it
  981. * to allow creation of neighbours against it, even though it might
  982. * not have a local address of its own. Might as well do the same for
  983. * all autoconfigured interfaces.
  984. */
  985. if (dn_db == NULL) {
  986. int err;
  987. dn_db = dn_dev_create(dev, &err);
  988. if (dn_db == NULL)
  989. return;
  990. }
  991. if (dev->type == ARPHRD_ETHER) {
  992. if (memcmp(dev->dev_addr, dn_hiord, 4) != 0)
  993. return;
  994. addr = dn_htons(dn_eth2dn(dev->dev_addr));
  995. maybe_default = 1;
  996. }
  997. if (addr == 0)
  998. return;
  999. if ((ifa = dn_dev_alloc_ifa()) == NULL)
  1000. return;
  1001. ifa->ifa_local = ifa->ifa_address = addr;
  1002. ifa->ifa_flags = 0;
  1003. ifa->ifa_scope = RT_SCOPE_UNIVERSE;
  1004. strcpy(ifa->ifa_label, dev->name);
  1005. dn_dev_set_ifa(dev, ifa);
  1006. /*
  1007. * Automagically set the default device to the first automatically
  1008. * configured ethernet card in the system.
  1009. */
  1010. if (maybe_default) {
  1011. dev_hold(dev);
  1012. if (dn_dev_set_default(dev, 0))
  1013. dev_put(dev);
  1014. }
  1015. }
  1016. static void dn_dev_delete(struct net_device *dev)
  1017. {
  1018. struct dn_dev *dn_db = dev->dn_ptr;
  1019. if (dn_db == NULL)
  1020. return;
  1021. del_timer_sync(&dn_db->timer);
  1022. dn_dev_sysctl_unregister(&dn_db->parms);
  1023. dn_dev_check_default(dev);
  1024. neigh_ifdown(&dn_neigh_table, dev);
  1025. if (dn_db->parms.down)
  1026. dn_db->parms.down(dev);
  1027. dev->dn_ptr = NULL;
  1028. neigh_parms_release(&dn_neigh_table, dn_db->neigh_parms);
  1029. neigh_ifdown(&dn_neigh_table, dev);
  1030. if (dn_db->router)
  1031. neigh_release(dn_db->router);
  1032. if (dn_db->peer)
  1033. neigh_release(dn_db->peer);
  1034. kfree(dn_db);
  1035. }
  1036. void dn_dev_down(struct net_device *dev)
  1037. {
  1038. struct dn_dev *dn_db = dev->dn_ptr;
  1039. struct dn_ifaddr *ifa;
  1040. if (dn_db == NULL)
  1041. return;
  1042. while((ifa = dn_db->ifa_list) != NULL) {
  1043. dn_dev_del_ifa(dn_db, &dn_db->ifa_list, 0);
  1044. dn_dev_free_ifa(ifa);
  1045. }
  1046. dn_dev_delete(dev);
  1047. }
  1048. void dn_dev_init_pkt(struct sk_buff *skb)
  1049. {
  1050. return;
  1051. }
  1052. void dn_dev_veri_pkt(struct sk_buff *skb)
  1053. {
  1054. return;
  1055. }
  1056. void dn_dev_hello(struct sk_buff *skb)
  1057. {
  1058. return;
  1059. }
  1060. void dn_dev_devices_off(void)
  1061. {
  1062. struct net_device *dev;
  1063. rtnl_lock();
  1064. for(dev = dev_base; dev; dev = dev->next)
  1065. dn_dev_down(dev);
  1066. rtnl_unlock();
  1067. }
  1068. void dn_dev_devices_on(void)
  1069. {
  1070. struct net_device *dev;
  1071. rtnl_lock();
  1072. for(dev = dev_base; dev; dev = dev->next) {
  1073. if (dev->flags & IFF_UP)
  1074. dn_dev_up(dev);
  1075. }
  1076. rtnl_unlock();
  1077. }
  1078. int register_dnaddr_notifier(struct notifier_block *nb)
  1079. {
  1080. return notifier_chain_register(&dnaddr_chain, nb);
  1081. }
  1082. int unregister_dnaddr_notifier(struct notifier_block *nb)
  1083. {
  1084. return notifier_chain_unregister(&dnaddr_chain, nb);
  1085. }
  1086. #ifdef CONFIG_PROC_FS
  1087. static inline struct net_device *dn_dev_get_next(struct seq_file *seq, struct net_device *dev)
  1088. {
  1089. do {
  1090. dev = dev->next;
  1091. } while(dev && !dev->dn_ptr);
  1092. return dev;
  1093. }
  1094. static struct net_device *dn_dev_get_idx(struct seq_file *seq, loff_t pos)
  1095. {
  1096. struct net_device *dev;
  1097. dev = dev_base;
  1098. if (dev && !dev->dn_ptr)
  1099. dev = dn_dev_get_next(seq, dev);
  1100. if (pos) {
  1101. while(dev && (dev = dn_dev_get_next(seq, dev)))
  1102. --pos;
  1103. }
  1104. return dev;
  1105. }
  1106. static void *dn_dev_seq_start(struct seq_file *seq, loff_t *pos)
  1107. {
  1108. if (*pos) {
  1109. struct net_device *dev;
  1110. read_lock(&dev_base_lock);
  1111. dev = dn_dev_get_idx(seq, *pos - 1);
  1112. if (dev == NULL)
  1113. read_unlock(&dev_base_lock);
  1114. return dev;
  1115. }
  1116. return SEQ_START_TOKEN;
  1117. }
  1118. static void *dn_dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1119. {
  1120. struct net_device *dev = v;
  1121. loff_t one = 1;
  1122. if (v == SEQ_START_TOKEN) {
  1123. dev = dn_dev_seq_start(seq, &one);
  1124. } else {
  1125. dev = dn_dev_get_next(seq, dev);
  1126. if (dev == NULL)
  1127. read_unlock(&dev_base_lock);
  1128. }
  1129. ++*pos;
  1130. return dev;
  1131. }
  1132. static void dn_dev_seq_stop(struct seq_file *seq, void *v)
  1133. {
  1134. if (v && v != SEQ_START_TOKEN)
  1135. read_unlock(&dev_base_lock);
  1136. }
  1137. static char *dn_type2asc(char type)
  1138. {
  1139. switch(type) {
  1140. case DN_DEV_BCAST:
  1141. return "B";
  1142. case DN_DEV_UCAST:
  1143. return "U";
  1144. case DN_DEV_MPOINT:
  1145. return "M";
  1146. }
  1147. return "?";
  1148. }
  1149. static int dn_dev_seq_show(struct seq_file *seq, void *v)
  1150. {
  1151. if (v == SEQ_START_TOKEN)
  1152. seq_puts(seq, "Name Flags T1 Timer1 T3 Timer3 BlkSize Pri State DevType Router Peer\n");
  1153. else {
  1154. struct net_device *dev = v;
  1155. char peer_buf[DN_ASCBUF_LEN];
  1156. char router_buf[DN_ASCBUF_LEN];
  1157. struct dn_dev *dn_db = dev->dn_ptr;
  1158. seq_printf(seq, "%-8s %1s %04u %04u %04lu %04lu"
  1159. " %04hu %03d %02x %-10s %-7s %-7s\n",
  1160. dev->name ? dev->name : "???",
  1161. dn_type2asc(dn_db->parms.mode),
  1162. 0, 0,
  1163. dn_db->t3, dn_db->parms.t3,
  1164. mtu2blksize(dev),
  1165. dn_db->parms.priority,
  1166. dn_db->parms.state, dn_db->parms.name,
  1167. dn_db->router ? dn_addr2asc(dn_ntohs(*(dn_address *)dn_db->router->primary_key), router_buf) : "",
  1168. dn_db->peer ? dn_addr2asc(dn_ntohs(*(dn_address *)dn_db->peer->primary_key), peer_buf) : "");
  1169. }
  1170. return 0;
  1171. }
  1172. static struct seq_operations dn_dev_seq_ops = {
  1173. .start = dn_dev_seq_start,
  1174. .next = dn_dev_seq_next,
  1175. .stop = dn_dev_seq_stop,
  1176. .show = dn_dev_seq_show,
  1177. };
  1178. static int dn_dev_seq_open(struct inode *inode, struct file *file)
  1179. {
  1180. return seq_open(file, &dn_dev_seq_ops);
  1181. }
  1182. static struct file_operations dn_dev_seq_fops = {
  1183. .owner = THIS_MODULE,
  1184. .open = dn_dev_seq_open,
  1185. .read = seq_read,
  1186. .llseek = seq_lseek,
  1187. .release = seq_release,
  1188. };
  1189. #endif /* CONFIG_PROC_FS */
  1190. static struct rtnetlink_link dnet_rtnetlink_table[RTM_NR_MSGTYPES] =
  1191. {
  1192. [RTM_NEWADDR - RTM_BASE] = { .doit = dn_dev_rtm_newaddr, },
  1193. [RTM_DELADDR - RTM_BASE] = { .doit = dn_dev_rtm_deladdr, },
  1194. [RTM_GETADDR - RTM_BASE] = { .dumpit = dn_dev_dump_ifaddr, },
  1195. #ifdef CONFIG_DECNET_ROUTER
  1196. [RTM_NEWROUTE - RTM_BASE] = { .doit = dn_fib_rtm_newroute, },
  1197. [RTM_DELROUTE - RTM_BASE] = { .doit = dn_fib_rtm_delroute, },
  1198. [RTM_GETROUTE - RTM_BASE] = { .doit = dn_cache_getroute,
  1199. .dumpit = dn_fib_dump, },
  1200. [RTM_NEWRULE - RTM_BASE] = { .doit = dn_fib_rtm_newrule, },
  1201. [RTM_DELRULE - RTM_BASE] = { .doit = dn_fib_rtm_delrule, },
  1202. [RTM_GETRULE - RTM_BASE] = { .dumpit = dn_fib_dump_rules, },
  1203. #else
  1204. [RTM_GETROUTE - RTM_BASE] = { .doit = dn_cache_getroute,
  1205. .dumpit = dn_cache_dump, },
  1206. #endif
  1207. };
  1208. static int __initdata addr[2];
  1209. module_param_array(addr, int, NULL, 0444);
  1210. MODULE_PARM_DESC(addr, "The DECnet address of this machine: area,node");
  1211. void __init dn_dev_init(void)
  1212. {
  1213. if (addr[0] > 63 || addr[0] < 0) {
  1214. printk(KERN_ERR "DECnet: Area must be between 0 and 63");
  1215. return;
  1216. }
  1217. if (addr[1] > 1023 || addr[1] < 0) {
  1218. printk(KERN_ERR "DECnet: Node must be between 0 and 1023");
  1219. return;
  1220. }
  1221. decnet_address = dn_htons((addr[0] << 10) | addr[1]);
  1222. dn_dev_devices_on();
  1223. rtnetlink_links[PF_DECnet] = dnet_rtnetlink_table;
  1224. proc_net_fops_create("decnet_dev", S_IRUGO, &dn_dev_seq_fops);
  1225. #ifdef CONFIG_SYSCTL
  1226. {
  1227. int i;
  1228. for(i = 0; i < DN_DEV_LIST_SIZE; i++)
  1229. dn_dev_sysctl_register(NULL, &dn_dev_list[i]);
  1230. }
  1231. #endif /* CONFIG_SYSCTL */
  1232. }
  1233. void __exit dn_dev_cleanup(void)
  1234. {
  1235. rtnetlink_links[PF_DECnet] = NULL;
  1236. #ifdef CONFIG_SYSCTL
  1237. {
  1238. int i;
  1239. for(i = 0; i < DN_DEV_LIST_SIZE; i++)
  1240. dn_dev_sysctl_unregister(&dn_dev_list[i]);
  1241. }
  1242. #endif /* CONFIG_SYSCTL */
  1243. proc_net_remove("decnet_dev");
  1244. dn_dev_devices_off();
  1245. }