123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108 |
- /*
- * linux/mm/slab.c
- * Written by Mark Hemment, 1996/97.
- * (markhe@nextd.demon.co.uk)
- *
- * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
- *
- * Major cleanup, different bufctl logic, per-cpu arrays
- * (c) 2000 Manfred Spraul
- *
- * Cleanup, make the head arrays unconditional, preparation for NUMA
- * (c) 2002 Manfred Spraul
- *
- * An implementation of the Slab Allocator as described in outline in;
- * UNIX Internals: The New Frontiers by Uresh Vahalia
- * Pub: Prentice Hall ISBN 0-13-101908-2
- * or with a little more detail in;
- * The Slab Allocator: An Object-Caching Kernel Memory Allocator
- * Jeff Bonwick (Sun Microsystems).
- * Presented at: USENIX Summer 1994 Technical Conference
- *
- * The memory is organized in caches, one cache for each object type.
- * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
- * Each cache consists out of many slabs (they are small (usually one
- * page long) and always contiguous), and each slab contains multiple
- * initialized objects.
- *
- * This means, that your constructor is used only for newly allocated
- * slabs and you must pass objects with the same intializations to
- * kmem_cache_free.
- *
- * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
- * normal). If you need a special memory type, then must create a new
- * cache for that memory type.
- *
- * In order to reduce fragmentation, the slabs are sorted in 3 groups:
- * full slabs with 0 free objects
- * partial slabs
- * empty slabs with no allocated objects
- *
- * If partial slabs exist, then new allocations come from these slabs,
- * otherwise from empty slabs or new slabs are allocated.
- *
- * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
- * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
- *
- * Each cache has a short per-cpu head array, most allocs
- * and frees go into that array, and if that array overflows, then 1/2
- * of the entries in the array are given back into the global cache.
- * The head array is strictly LIFO and should improve the cache hit rates.
- * On SMP, it additionally reduces the spinlock operations.
- *
- * The c_cpuarray may not be read with enabled local interrupts -
- * it's changed with a smp_call_function().
- *
- * SMP synchronization:
- * constructors and destructors are called without any locking.
- * Several members in kmem_cache_t and struct slab never change, they
- * are accessed without any locking.
- * The per-cpu arrays are never accessed from the wrong cpu, no locking,
- * and local interrupts are disabled so slab code is preempt-safe.
- * The non-constant members are protected with a per-cache irq spinlock.
- *
- * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
- * in 2000 - many ideas in the current implementation are derived from
- * his patch.
- *
- * Further notes from the original documentation:
- *
- * 11 April '97. Started multi-threading - markhe
- * The global cache-chain is protected by the semaphore 'cache_chain_sem'.
- * The sem is only needed when accessing/extending the cache-chain, which
- * can never happen inside an interrupt (kmem_cache_create(),
- * kmem_cache_shrink() and kmem_cache_reap()).
- *
- * At present, each engine can be growing a cache. This should be blocked.
- *
- */
- #include <linux/config.h>
- #include <linux/slab.h>
- #include <linux/mm.h>
- #include <linux/swap.h>
- #include <linux/cache.h>
- #include <linux/interrupt.h>
- #include <linux/init.h>
- #include <linux/compiler.h>
- #include <linux/seq_file.h>
- #include <linux/notifier.h>
- #include <linux/kallsyms.h>
- #include <linux/cpu.h>
- #include <linux/sysctl.h>
- #include <linux/module.h>
- #include <linux/rcupdate.h>
- #include <linux/string.h>
- #include <asm/uaccess.h>
- #include <asm/cacheflush.h>
- #include <asm/tlbflush.h>
- #include <asm/page.h>
- /*
- * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
- * SLAB_RED_ZONE & SLAB_POISON.
- * 0 for faster, smaller code (especially in the critical paths).
- *
- * STATS - 1 to collect stats for /proc/slabinfo.
- * 0 for faster, smaller code (especially in the critical paths).
- *
- * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
- */
- #ifdef CONFIG_DEBUG_SLAB
- #define DEBUG 1
- #define STATS 1
- #define FORCED_DEBUG 1
- #else
- #define DEBUG 0
- #define STATS 0
- #define FORCED_DEBUG 0
- #endif
- /* Shouldn't this be in a header file somewhere? */
- #define BYTES_PER_WORD sizeof(void *)
- #ifndef cache_line_size
- #define cache_line_size() L1_CACHE_BYTES
- #endif
- #ifndef ARCH_KMALLOC_MINALIGN
- /*
- * Enforce a minimum alignment for the kmalloc caches.
- * Usually, the kmalloc caches are cache_line_size() aligned, except when
- * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
- * Some archs want to perform DMA into kmalloc caches and need a guaranteed
- * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
- * Note that this flag disables some debug features.
- */
- #define ARCH_KMALLOC_MINALIGN 0
- #endif
- #ifndef ARCH_SLAB_MINALIGN
- /*
- * Enforce a minimum alignment for all caches.
- * Intended for archs that get misalignment faults even for BYTES_PER_WORD
- * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
- * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
- * some debug features.
- */
- #define ARCH_SLAB_MINALIGN 0
- #endif
- #ifndef ARCH_KMALLOC_FLAGS
- #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
- #endif
- /* Legal flag mask for kmem_cache_create(). */
- #if DEBUG
- # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
- SLAB_POISON | SLAB_HWCACHE_ALIGN | \
- SLAB_NO_REAP | SLAB_CACHE_DMA | \
- SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
- SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
- SLAB_DESTROY_BY_RCU)
- #else
- # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
- SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
- SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
- SLAB_DESTROY_BY_RCU)
- #endif
- /*
- * kmem_bufctl_t:
- *
- * Bufctl's are used for linking objs within a slab
- * linked offsets.
- *
- * This implementation relies on "struct page" for locating the cache &
- * slab an object belongs to.
- * This allows the bufctl structure to be small (one int), but limits
- * the number of objects a slab (not a cache) can contain when off-slab
- * bufctls are used. The limit is the size of the largest general cache
- * that does not use off-slab slabs.
- * For 32bit archs with 4 kB pages, is this 56.
- * This is not serious, as it is only for large objects, when it is unwise
- * to have too many per slab.
- * Note: This limit can be raised by introducing a general cache whose size
- * is less than 512 (PAGE_SIZE<<3), but greater than 256.
- */
- #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
- #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
- #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
- /* Max number of objs-per-slab for caches which use off-slab slabs.
- * Needed to avoid a possible looping condition in cache_grow().
- */
- static unsigned long offslab_limit;
- /*
- * struct slab
- *
- * Manages the objs in a slab. Placed either at the beginning of mem allocated
- * for a slab, or allocated from an general cache.
- * Slabs are chained into three list: fully used, partial, fully free slabs.
- */
- struct slab {
- struct list_head list;
- unsigned long colouroff;
- void *s_mem; /* including colour offset */
- unsigned int inuse; /* num of objs active in slab */
- kmem_bufctl_t free;
- };
- /*
- * struct slab_rcu
- *
- * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
- * arrange for kmem_freepages to be called via RCU. This is useful if
- * we need to approach a kernel structure obliquely, from its address
- * obtained without the usual locking. We can lock the structure to
- * stabilize it and check it's still at the given address, only if we
- * can be sure that the memory has not been meanwhile reused for some
- * other kind of object (which our subsystem's lock might corrupt).
- *
- * rcu_read_lock before reading the address, then rcu_read_unlock after
- * taking the spinlock within the structure expected at that address.
- *
- * We assume struct slab_rcu can overlay struct slab when destroying.
- */
- struct slab_rcu {
- struct rcu_head head;
- kmem_cache_t *cachep;
- void *addr;
- };
- /*
- * struct array_cache
- *
- * Per cpu structures
- * Purpose:
- * - LIFO ordering, to hand out cache-warm objects from _alloc
- * - reduce the number of linked list operations
- * - reduce spinlock operations
- *
- * The limit is stored in the per-cpu structure to reduce the data cache
- * footprint.
- *
- */
- struct array_cache {
- unsigned int avail;
- unsigned int limit;
- unsigned int batchcount;
- unsigned int touched;
- };
- /* bootstrap: The caches do not work without cpuarrays anymore,
- * but the cpuarrays are allocated from the generic caches...
- */
- #define BOOT_CPUCACHE_ENTRIES 1
- struct arraycache_init {
- struct array_cache cache;
- void * entries[BOOT_CPUCACHE_ENTRIES];
- };
- /*
- * The slab lists of all objects.
- * Hopefully reduce the internal fragmentation
- * NUMA: The spinlock could be moved from the kmem_cache_t
- * into this structure, too. Figure out what causes
- * fewer cross-node spinlock operations.
- */
- struct kmem_list3 {
- struct list_head slabs_partial; /* partial list first, better asm code */
- struct list_head slabs_full;
- struct list_head slabs_free;
- unsigned long free_objects;
- int free_touched;
- unsigned long next_reap;
- struct array_cache *shared;
- };
- #define LIST3_INIT(parent) \
- { \
- .slabs_full = LIST_HEAD_INIT(parent.slabs_full), \
- .slabs_partial = LIST_HEAD_INIT(parent.slabs_partial), \
- .slabs_free = LIST_HEAD_INIT(parent.slabs_free) \
- }
- #define list3_data(cachep) \
- (&(cachep)->lists)
- /* NUMA: per-node */
- #define list3_data_ptr(cachep, ptr) \
- list3_data(cachep)
- /*
- * kmem_cache_t
- *
- * manages a cache.
- */
-
- struct kmem_cache_s {
- /* 1) per-cpu data, touched during every alloc/free */
- struct array_cache *array[NR_CPUS];
- unsigned int batchcount;
- unsigned int limit;
- /* 2) touched by every alloc & free from the backend */
- struct kmem_list3 lists;
- /* NUMA: kmem_3list_t *nodelists[MAX_NUMNODES] */
- unsigned int objsize;
- unsigned int flags; /* constant flags */
- unsigned int num; /* # of objs per slab */
- unsigned int free_limit; /* upper limit of objects in the lists */
- spinlock_t spinlock;
- /* 3) cache_grow/shrink */
- /* order of pgs per slab (2^n) */
- unsigned int gfporder;
- /* force GFP flags, e.g. GFP_DMA */
- unsigned int gfpflags;
- size_t colour; /* cache colouring range */
- unsigned int colour_off; /* colour offset */
- unsigned int colour_next; /* cache colouring */
- kmem_cache_t *slabp_cache;
- unsigned int slab_size;
- unsigned int dflags; /* dynamic flags */
- /* constructor func */
- void (*ctor)(void *, kmem_cache_t *, unsigned long);
- /* de-constructor func */
- void (*dtor)(void *, kmem_cache_t *, unsigned long);
- /* 4) cache creation/removal */
- const char *name;
- struct list_head next;
- /* 5) statistics */
- #if STATS
- unsigned long num_active;
- unsigned long num_allocations;
- unsigned long high_mark;
- unsigned long grown;
- unsigned long reaped;
- unsigned long errors;
- unsigned long max_freeable;
- unsigned long node_allocs;
- atomic_t allochit;
- atomic_t allocmiss;
- atomic_t freehit;
- atomic_t freemiss;
- #endif
- #if DEBUG
- int dbghead;
- int reallen;
- #endif
- };
- #define CFLGS_OFF_SLAB (0x80000000UL)
- #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
- #define BATCHREFILL_LIMIT 16
- /* Optimization question: fewer reaps means less
- * probability for unnessary cpucache drain/refill cycles.
- *
- * OTHO the cpuarrays can contain lots of objects,
- * which could lock up otherwise freeable slabs.
- */
- #define REAPTIMEOUT_CPUC (2*HZ)
- #define REAPTIMEOUT_LIST3 (4*HZ)
- #if STATS
- #define STATS_INC_ACTIVE(x) ((x)->num_active++)
- #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
- #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
- #define STATS_INC_GROWN(x) ((x)->grown++)
- #define STATS_INC_REAPED(x) ((x)->reaped++)
- #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
- (x)->high_mark = (x)->num_active; \
- } while (0)
- #define STATS_INC_ERR(x) ((x)->errors++)
- #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
- #define STATS_SET_FREEABLE(x, i) \
- do { if ((x)->max_freeable < i) \
- (x)->max_freeable = i; \
- } while (0)
- #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
- #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
- #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
- #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
- #else
- #define STATS_INC_ACTIVE(x) do { } while (0)
- #define STATS_DEC_ACTIVE(x) do { } while (0)
- #define STATS_INC_ALLOCED(x) do { } while (0)
- #define STATS_INC_GROWN(x) do { } while (0)
- #define STATS_INC_REAPED(x) do { } while (0)
- #define STATS_SET_HIGH(x) do { } while (0)
- #define STATS_INC_ERR(x) do { } while (0)
- #define STATS_INC_NODEALLOCS(x) do { } while (0)
- #define STATS_SET_FREEABLE(x, i) \
- do { } while (0)
- #define STATS_INC_ALLOCHIT(x) do { } while (0)
- #define STATS_INC_ALLOCMISS(x) do { } while (0)
- #define STATS_INC_FREEHIT(x) do { } while (0)
- #define STATS_INC_FREEMISS(x) do { } while (0)
- #endif
- #if DEBUG
- /* Magic nums for obj red zoning.
- * Placed in the first word before and the first word after an obj.
- */
- #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
- #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
- /* ...and for poisoning */
- #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
- #define POISON_FREE 0x6b /* for use-after-free poisoning */
- #define POISON_END 0xa5 /* end-byte of poisoning */
- /* memory layout of objects:
- * 0 : objp
- * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
- * the end of an object is aligned with the end of the real
- * allocation. Catches writes behind the end of the allocation.
- * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
- * redzone word.
- * cachep->dbghead: The real object.
- * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
- * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
- */
- static int obj_dbghead(kmem_cache_t *cachep)
- {
- return cachep->dbghead;
- }
- static int obj_reallen(kmem_cache_t *cachep)
- {
- return cachep->reallen;
- }
- static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
- {
- BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
- return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD);
- }
- static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
- {
- BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
- if (cachep->flags & SLAB_STORE_USER)
- return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD);
- return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD);
- }
- static void **dbg_userword(kmem_cache_t *cachep, void *objp)
- {
- BUG_ON(!(cachep->flags & SLAB_STORE_USER));
- return (void**)(objp+cachep->objsize-BYTES_PER_WORD);
- }
- #else
- #define obj_dbghead(x) 0
- #define obj_reallen(cachep) (cachep->objsize)
- #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
- #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
- #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
- #endif
- /*
- * Maximum size of an obj (in 2^order pages)
- * and absolute limit for the gfp order.
- */
- #if defined(CONFIG_LARGE_ALLOCS)
- #define MAX_OBJ_ORDER 13 /* up to 32Mb */
- #define MAX_GFP_ORDER 13 /* up to 32Mb */
- #elif defined(CONFIG_MMU)
- #define MAX_OBJ_ORDER 5 /* 32 pages */
- #define MAX_GFP_ORDER 5 /* 32 pages */
- #else
- #define MAX_OBJ_ORDER 8 /* up to 1Mb */
- #define MAX_GFP_ORDER 8 /* up to 1Mb */
- #endif
- /*
- * Do not go above this order unless 0 objects fit into the slab.
- */
- #define BREAK_GFP_ORDER_HI 1
- #define BREAK_GFP_ORDER_LO 0
- static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
- /* Macros for storing/retrieving the cachep and or slab from the
- * global 'mem_map'. These are used to find the slab an obj belongs to.
- * With kfree(), these are used to find the cache which an obj belongs to.
- */
- #define SET_PAGE_CACHE(pg,x) ((pg)->lru.next = (struct list_head *)(x))
- #define GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->lru.next)
- #define SET_PAGE_SLAB(pg,x) ((pg)->lru.prev = (struct list_head *)(x))
- #define GET_PAGE_SLAB(pg) ((struct slab *)(pg)->lru.prev)
- /* These are the default caches for kmalloc. Custom caches can have other sizes. */
- struct cache_sizes malloc_sizes[] = {
- #define CACHE(x) { .cs_size = (x) },
- #include <linux/kmalloc_sizes.h>
- CACHE(ULONG_MAX)
- #undef CACHE
- };
- EXPORT_SYMBOL(malloc_sizes);
- /* Must match cache_sizes above. Out of line to keep cache footprint low. */
- struct cache_names {
- char *name;
- char *name_dma;
- };
- static struct cache_names __initdata cache_names[] = {
- #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
- #include <linux/kmalloc_sizes.h>
- { NULL, }
- #undef CACHE
- };
- static struct arraycache_init initarray_cache __initdata =
- { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
- static struct arraycache_init initarray_generic =
- { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
- /* internal cache of cache description objs */
- static kmem_cache_t cache_cache = {
- .lists = LIST3_INIT(cache_cache.lists),
- .batchcount = 1,
- .limit = BOOT_CPUCACHE_ENTRIES,
- .objsize = sizeof(kmem_cache_t),
- .flags = SLAB_NO_REAP,
- .spinlock = SPIN_LOCK_UNLOCKED,
- .name = "kmem_cache",
- #if DEBUG
- .reallen = sizeof(kmem_cache_t),
- #endif
- };
- /* Guard access to the cache-chain. */
- static struct semaphore cache_chain_sem;
- static struct list_head cache_chain;
- /*
- * vm_enough_memory() looks at this to determine how many
- * slab-allocated pages are possibly freeable under pressure
- *
- * SLAB_RECLAIM_ACCOUNT turns this on per-slab
- */
- atomic_t slab_reclaim_pages;
- EXPORT_SYMBOL(slab_reclaim_pages);
- /*
- * chicken and egg problem: delay the per-cpu array allocation
- * until the general caches are up.
- */
- static enum {
- NONE,
- PARTIAL,
- FULL
- } g_cpucache_up;
- static DEFINE_PER_CPU(struct work_struct, reap_work);
- static void free_block(kmem_cache_t* cachep, void** objpp, int len);
- static void enable_cpucache (kmem_cache_t *cachep);
- static void cache_reap (void *unused);
- static inline void **ac_entry(struct array_cache *ac)
- {
- return (void**)(ac+1);
- }
- static inline struct array_cache *ac_data(kmem_cache_t *cachep)
- {
- return cachep->array[smp_processor_id()];
- }
- static inline kmem_cache_t *__find_general_cachep(size_t size, int gfpflags)
- {
- struct cache_sizes *csizep = malloc_sizes;
- #if DEBUG
- /* This happens if someone tries to call
- * kmem_cache_create(), or __kmalloc(), before
- * the generic caches are initialized.
- */
- BUG_ON(csizep->cs_cachep == NULL);
- #endif
- while (size > csizep->cs_size)
- csizep++;
- /*
- * Really subtile: The last entry with cs->cs_size==ULONG_MAX
- * has cs_{dma,}cachep==NULL. Thus no special case
- * for large kmalloc calls required.
- */
- if (unlikely(gfpflags & GFP_DMA))
- return csizep->cs_dmacachep;
- return csizep->cs_cachep;
- }
- kmem_cache_t *kmem_find_general_cachep(size_t size, int gfpflags)
- {
- return __find_general_cachep(size, gfpflags);
- }
- EXPORT_SYMBOL(kmem_find_general_cachep);
- /* Cal the num objs, wastage, and bytes left over for a given slab size. */
- static void cache_estimate(unsigned long gfporder, size_t size, size_t align,
- int flags, size_t *left_over, unsigned int *num)
- {
- int i;
- size_t wastage = PAGE_SIZE<<gfporder;
- size_t extra = 0;
- size_t base = 0;
- if (!(flags & CFLGS_OFF_SLAB)) {
- base = sizeof(struct slab);
- extra = sizeof(kmem_bufctl_t);
- }
- i = 0;
- while (i*size + ALIGN(base+i*extra, align) <= wastage)
- i++;
- if (i > 0)
- i--;
- if (i > SLAB_LIMIT)
- i = SLAB_LIMIT;
- *num = i;
- wastage -= i*size;
- wastage -= ALIGN(base+i*extra, align);
- *left_over = wastage;
- }
- #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
- static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
- {
- printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
- function, cachep->name, msg);
- dump_stack();
- }
- /*
- * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
- * via the workqueue/eventd.
- * Add the CPU number into the expiration time to minimize the possibility of
- * the CPUs getting into lockstep and contending for the global cache chain
- * lock.
- */
- static void __devinit start_cpu_timer(int cpu)
- {
- struct work_struct *reap_work = &per_cpu(reap_work, cpu);
- /*
- * When this gets called from do_initcalls via cpucache_init(),
- * init_workqueues() has already run, so keventd will be setup
- * at that time.
- */
- if (keventd_up() && reap_work->func == NULL) {
- INIT_WORK(reap_work, cache_reap, NULL);
- schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
- }
- }
- static struct array_cache *alloc_arraycache(int cpu, int entries,
- int batchcount)
- {
- int memsize = sizeof(void*)*entries+sizeof(struct array_cache);
- struct array_cache *nc = NULL;
- if (cpu == -1)
- nc = kmalloc(memsize, GFP_KERNEL);
- else
- nc = kmalloc_node(memsize, GFP_KERNEL, cpu_to_node(cpu));
- if (nc) {
- nc->avail = 0;
- nc->limit = entries;
- nc->batchcount = batchcount;
- nc->touched = 0;
- }
- return nc;
- }
- static int __devinit cpuup_callback(struct notifier_block *nfb,
- unsigned long action, void *hcpu)
- {
- long cpu = (long)hcpu;
- kmem_cache_t* cachep;
- switch (action) {
- case CPU_UP_PREPARE:
- down(&cache_chain_sem);
- list_for_each_entry(cachep, &cache_chain, next) {
- struct array_cache *nc;
- nc = alloc_arraycache(cpu, cachep->limit, cachep->batchcount);
- if (!nc)
- goto bad;
- spin_lock_irq(&cachep->spinlock);
- cachep->array[cpu] = nc;
- cachep->free_limit = (1+num_online_cpus())*cachep->batchcount
- + cachep->num;
- spin_unlock_irq(&cachep->spinlock);
- }
- up(&cache_chain_sem);
- break;
- case CPU_ONLINE:
- start_cpu_timer(cpu);
- break;
- #ifdef CONFIG_HOTPLUG_CPU
- case CPU_DEAD:
- /* fall thru */
- case CPU_UP_CANCELED:
- down(&cache_chain_sem);
- list_for_each_entry(cachep, &cache_chain, next) {
- struct array_cache *nc;
- spin_lock_irq(&cachep->spinlock);
- /* cpu is dead; no one can alloc from it. */
- nc = cachep->array[cpu];
- cachep->array[cpu] = NULL;
- cachep->free_limit -= cachep->batchcount;
- free_block(cachep, ac_entry(nc), nc->avail);
- spin_unlock_irq(&cachep->spinlock);
- kfree(nc);
- }
- up(&cache_chain_sem);
- break;
- #endif
- }
- return NOTIFY_OK;
- bad:
- up(&cache_chain_sem);
- return NOTIFY_BAD;
- }
- static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
- /* Initialisation.
- * Called after the gfp() functions have been enabled, and before smp_init().
- */
- void __init kmem_cache_init(void)
- {
- size_t left_over;
- struct cache_sizes *sizes;
- struct cache_names *names;
- /*
- * Fragmentation resistance on low memory - only use bigger
- * page orders on machines with more than 32MB of memory.
- */
- if (num_physpages > (32 << 20) >> PAGE_SHIFT)
- slab_break_gfp_order = BREAK_GFP_ORDER_HI;
-
- /* Bootstrap is tricky, because several objects are allocated
- * from caches that do not exist yet:
- * 1) initialize the cache_cache cache: it contains the kmem_cache_t
- * structures of all caches, except cache_cache itself: cache_cache
- * is statically allocated.
- * Initially an __init data area is used for the head array, it's
- * replaced with a kmalloc allocated array at the end of the bootstrap.
- * 2) Create the first kmalloc cache.
- * The kmem_cache_t for the new cache is allocated normally. An __init
- * data area is used for the head array.
- * 3) Create the remaining kmalloc caches, with minimally sized head arrays.
- * 4) Replace the __init data head arrays for cache_cache and the first
- * kmalloc cache with kmalloc allocated arrays.
- * 5) Resize the head arrays of the kmalloc caches to their final sizes.
- */
- /* 1) create the cache_cache */
- init_MUTEX(&cache_chain_sem);
- INIT_LIST_HEAD(&cache_chain);
- list_add(&cache_cache.next, &cache_chain);
- cache_cache.colour_off = cache_line_size();
- cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
- cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size());
- cache_estimate(0, cache_cache.objsize, cache_line_size(), 0,
- &left_over, &cache_cache.num);
- if (!cache_cache.num)
- BUG();
- cache_cache.colour = left_over/cache_cache.colour_off;
- cache_cache.colour_next = 0;
- cache_cache.slab_size = ALIGN(cache_cache.num*sizeof(kmem_bufctl_t) +
- sizeof(struct slab), cache_line_size());
- /* 2+3) create the kmalloc caches */
- sizes = malloc_sizes;
- names = cache_names;
- while (sizes->cs_size != ULONG_MAX) {
- /* For performance, all the general caches are L1 aligned.
- * This should be particularly beneficial on SMP boxes, as it
- * eliminates "false sharing".
- * Note for systems short on memory removing the alignment will
- * allow tighter packing of the smaller caches. */
- sizes->cs_cachep = kmem_cache_create(names->name,
- sizes->cs_size, ARCH_KMALLOC_MINALIGN,
- (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
- /* Inc off-slab bufctl limit until the ceiling is hit. */
- if (!(OFF_SLAB(sizes->cs_cachep))) {
- offslab_limit = sizes->cs_size-sizeof(struct slab);
- offslab_limit /= sizeof(kmem_bufctl_t);
- }
- sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
- sizes->cs_size, ARCH_KMALLOC_MINALIGN,
- (ARCH_KMALLOC_FLAGS | SLAB_CACHE_DMA | SLAB_PANIC),
- NULL, NULL);
- sizes++;
- names++;
- }
- /* 4) Replace the bootstrap head arrays */
- {
- void * ptr;
-
- ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
- local_irq_disable();
- BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
- memcpy(ptr, ac_data(&cache_cache), sizeof(struct arraycache_init));
- cache_cache.array[smp_processor_id()] = ptr;
- local_irq_enable();
-
- ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
- local_irq_disable();
- BUG_ON(ac_data(malloc_sizes[0].cs_cachep) != &initarray_generic.cache);
- memcpy(ptr, ac_data(malloc_sizes[0].cs_cachep),
- sizeof(struct arraycache_init));
- malloc_sizes[0].cs_cachep->array[smp_processor_id()] = ptr;
- local_irq_enable();
- }
- /* 5) resize the head arrays to their final sizes */
- {
- kmem_cache_t *cachep;
- down(&cache_chain_sem);
- list_for_each_entry(cachep, &cache_chain, next)
- enable_cpucache(cachep);
- up(&cache_chain_sem);
- }
- /* Done! */
- g_cpucache_up = FULL;
- /* Register a cpu startup notifier callback
- * that initializes ac_data for all new cpus
- */
- register_cpu_notifier(&cpucache_notifier);
-
- /* The reap timers are started later, with a module init call:
- * That part of the kernel is not yet operational.
- */
- }
- static int __init cpucache_init(void)
- {
- int cpu;
- /*
- * Register the timers that return unneeded
- * pages to gfp.
- */
- for (cpu = 0; cpu < NR_CPUS; cpu++) {
- if (cpu_online(cpu))
- start_cpu_timer(cpu);
- }
- return 0;
- }
- __initcall(cpucache_init);
- /*
- * Interface to system's page allocator. No need to hold the cache-lock.
- *
- * If we requested dmaable memory, we will get it. Even if we
- * did not request dmaable memory, we might get it, but that
- * would be relatively rare and ignorable.
- */
- static void *kmem_getpages(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid)
- {
- struct page *page;
- void *addr;
- int i;
- flags |= cachep->gfpflags;
- if (likely(nodeid == -1)) {
- page = alloc_pages(flags, cachep->gfporder);
- } else {
- page = alloc_pages_node(nodeid, flags, cachep->gfporder);
- }
- if (!page)
- return NULL;
- addr = page_address(page);
- i = (1 << cachep->gfporder);
- if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
- atomic_add(i, &slab_reclaim_pages);
- add_page_state(nr_slab, i);
- while (i--) {
- SetPageSlab(page);
- page++;
- }
- return addr;
- }
- /*
- * Interface to system's page release.
- */
- static void kmem_freepages(kmem_cache_t *cachep, void *addr)
- {
- unsigned long i = (1<<cachep->gfporder);
- struct page *page = virt_to_page(addr);
- const unsigned long nr_freed = i;
- while (i--) {
- if (!TestClearPageSlab(page))
- BUG();
- page++;
- }
- sub_page_state(nr_slab, nr_freed);
- if (current->reclaim_state)
- current->reclaim_state->reclaimed_slab += nr_freed;
- free_pages((unsigned long)addr, cachep->gfporder);
- if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
- atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages);
- }
- static void kmem_rcu_free(struct rcu_head *head)
- {
- struct slab_rcu *slab_rcu = (struct slab_rcu *) head;
- kmem_cache_t *cachep = slab_rcu->cachep;
- kmem_freepages(cachep, slab_rcu->addr);
- if (OFF_SLAB(cachep))
- kmem_cache_free(cachep->slabp_cache, slab_rcu);
- }
- #if DEBUG
- #ifdef CONFIG_DEBUG_PAGEALLOC
- static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
- unsigned long caller)
- {
- int size = obj_reallen(cachep);
- addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)];
- if (size < 5*sizeof(unsigned long))
- return;
- *addr++=0x12345678;
- *addr++=caller;
- *addr++=smp_processor_id();
- size -= 3*sizeof(unsigned long);
- {
- unsigned long *sptr = &caller;
- unsigned long svalue;
- while (!kstack_end(sptr)) {
- svalue = *sptr++;
- if (kernel_text_address(svalue)) {
- *addr++=svalue;
- size -= sizeof(unsigned long);
- if (size <= sizeof(unsigned long))
- break;
- }
- }
- }
- *addr++=0x87654321;
- }
- #endif
- static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
- {
- int size = obj_reallen(cachep);
- addr = &((char*)addr)[obj_dbghead(cachep)];
- memset(addr, val, size);
- *(unsigned char *)(addr+size-1) = POISON_END;
- }
- static void dump_line(char *data, int offset, int limit)
- {
- int i;
- printk(KERN_ERR "%03x:", offset);
- for (i=0;i<limit;i++) {
- printk(" %02x", (unsigned char)data[offset+i]);
- }
- printk("\n");
- }
- #endif
- #if DEBUG
- static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
- {
- int i, size;
- char *realobj;
- if (cachep->flags & SLAB_RED_ZONE) {
- printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
- *dbg_redzone1(cachep, objp),
- *dbg_redzone2(cachep, objp));
- }
- if (cachep->flags & SLAB_STORE_USER) {
- printk(KERN_ERR "Last user: [<%p>]",
- *dbg_userword(cachep, objp));
- print_symbol("(%s)",
- (unsigned long)*dbg_userword(cachep, objp));
- printk("\n");
- }
- realobj = (char*)objp+obj_dbghead(cachep);
- size = obj_reallen(cachep);
- for (i=0; i<size && lines;i+=16, lines--) {
- int limit;
- limit = 16;
- if (i+limit > size)
- limit = size-i;
- dump_line(realobj, i, limit);
- }
- }
- static void check_poison_obj(kmem_cache_t *cachep, void *objp)
- {
- char *realobj;
- int size, i;
- int lines = 0;
- realobj = (char*)objp+obj_dbghead(cachep);
- size = obj_reallen(cachep);
- for (i=0;i<size;i++) {
- char exp = POISON_FREE;
- if (i == size-1)
- exp = POISON_END;
- if (realobj[i] != exp) {
- int limit;
- /* Mismatch ! */
- /* Print header */
- if (lines == 0) {
- printk(KERN_ERR "Slab corruption: start=%p, len=%d\n",
- realobj, size);
- print_objinfo(cachep, objp, 0);
- }
- /* Hexdump the affected line */
- i = (i/16)*16;
- limit = 16;
- if (i+limit > size)
- limit = size-i;
- dump_line(realobj, i, limit);
- i += 16;
- lines++;
- /* Limit to 5 lines */
- if (lines > 5)
- break;
- }
- }
- if (lines != 0) {
- /* Print some data about the neighboring objects, if they
- * exist:
- */
- struct slab *slabp = GET_PAGE_SLAB(virt_to_page(objp));
- int objnr;
- objnr = (objp-slabp->s_mem)/cachep->objsize;
- if (objnr) {
- objp = slabp->s_mem+(objnr-1)*cachep->objsize;
- realobj = (char*)objp+obj_dbghead(cachep);
- printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
- realobj, size);
- print_objinfo(cachep, objp, 2);
- }
- if (objnr+1 < cachep->num) {
- objp = slabp->s_mem+(objnr+1)*cachep->objsize;
- realobj = (char*)objp+obj_dbghead(cachep);
- printk(KERN_ERR "Next obj: start=%p, len=%d\n",
- realobj, size);
- print_objinfo(cachep, objp, 2);
- }
- }
- }
- #endif
- /* Destroy all the objs in a slab, and release the mem back to the system.
- * Before calling the slab must have been unlinked from the cache.
- * The cache-lock is not held/needed.
- */
- static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp)
- {
- void *addr = slabp->s_mem - slabp->colouroff;
- #if DEBUG
- int i;
- for (i = 0; i < cachep->num; i++) {
- void *objp = slabp->s_mem + cachep->objsize * i;
- if (cachep->flags & SLAB_POISON) {
- #ifdef CONFIG_DEBUG_PAGEALLOC
- if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep))
- kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1);
- else
- check_poison_obj(cachep, objp);
- #else
- check_poison_obj(cachep, objp);
- #endif
- }
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "start of a freed object "
- "was overwritten");
- if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "end of a freed object "
- "was overwritten");
- }
- if (cachep->dtor && !(cachep->flags & SLAB_POISON))
- (cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0);
- }
- #else
- if (cachep->dtor) {
- int i;
- for (i = 0; i < cachep->num; i++) {
- void* objp = slabp->s_mem+cachep->objsize*i;
- (cachep->dtor)(objp, cachep, 0);
- }
- }
- #endif
- if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
- struct slab_rcu *slab_rcu;
- slab_rcu = (struct slab_rcu *) slabp;
- slab_rcu->cachep = cachep;
- slab_rcu->addr = addr;
- call_rcu(&slab_rcu->head, kmem_rcu_free);
- } else {
- kmem_freepages(cachep, addr);
- if (OFF_SLAB(cachep))
- kmem_cache_free(cachep->slabp_cache, slabp);
- }
- }
- /**
- * kmem_cache_create - Create a cache.
- * @name: A string which is used in /proc/slabinfo to identify this cache.
- * @size: The size of objects to be created in this cache.
- * @align: The required alignment for the objects.
- * @flags: SLAB flags
- * @ctor: A constructor for the objects.
- * @dtor: A destructor for the objects.
- *
- * Returns a ptr to the cache on success, NULL on failure.
- * Cannot be called within a int, but can be interrupted.
- * The @ctor is run when new pages are allocated by the cache
- * and the @dtor is run before the pages are handed back.
- *
- * @name must be valid until the cache is destroyed. This implies that
- * the module calling this has to destroy the cache before getting
- * unloaded.
- *
- * The flags are
- *
- * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
- * to catch references to uninitialised memory.
- *
- * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
- * for buffer overruns.
- *
- * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
- * memory pressure.
- *
- * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
- * cacheline. This can be beneficial if you're counting cycles as closely
- * as davem.
- */
- kmem_cache_t *
- kmem_cache_create (const char *name, size_t size, size_t align,
- unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
- void (*dtor)(void*, kmem_cache_t *, unsigned long))
- {
- size_t left_over, slab_size, ralign;
- kmem_cache_t *cachep = NULL;
- /*
- * Sanity checks... these are all serious usage bugs.
- */
- if ((!name) ||
- in_interrupt() ||
- (size < BYTES_PER_WORD) ||
- (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||
- (dtor && !ctor)) {
- printk(KERN_ERR "%s: Early error in slab %s\n",
- __FUNCTION__, name);
- BUG();
- }
- #if DEBUG
- WARN_ON(strchr(name, ' ')); /* It confuses parsers */
- if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
- /* No constructor, but inital state check requested */
- printk(KERN_ERR "%s: No con, but init state check "
- "requested - %s\n", __FUNCTION__, name);
- flags &= ~SLAB_DEBUG_INITIAL;
- }
- #if FORCED_DEBUG
- /*
- * Enable redzoning and last user accounting, except for caches with
- * large objects, if the increased size would increase the object size
- * above the next power of two: caches with object sizes just above a
- * power of two have a significant amount of internal fragmentation.
- */
- if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD)))
- flags |= SLAB_RED_ZONE|SLAB_STORE_USER;
- if (!(flags & SLAB_DESTROY_BY_RCU))
- flags |= SLAB_POISON;
- #endif
- if (flags & SLAB_DESTROY_BY_RCU)
- BUG_ON(flags & SLAB_POISON);
- #endif
- if (flags & SLAB_DESTROY_BY_RCU)
- BUG_ON(dtor);
- /*
- * Always checks flags, a caller might be expecting debug
- * support which isn't available.
- */
- if (flags & ~CREATE_MASK)
- BUG();
- /* Check that size is in terms of words. This is needed to avoid
- * unaligned accesses for some archs when redzoning is used, and makes
- * sure any on-slab bufctl's are also correctly aligned.
- */
- if (size & (BYTES_PER_WORD-1)) {
- size += (BYTES_PER_WORD-1);
- size &= ~(BYTES_PER_WORD-1);
- }
- /* calculate out the final buffer alignment: */
- /* 1) arch recommendation: can be overridden for debug */
- if (flags & SLAB_HWCACHE_ALIGN) {
- /* Default alignment: as specified by the arch code.
- * Except if an object is really small, then squeeze multiple
- * objects into one cacheline.
- */
- ralign = cache_line_size();
- while (size <= ralign/2)
- ralign /= 2;
- } else {
- ralign = BYTES_PER_WORD;
- }
- /* 2) arch mandated alignment: disables debug if necessary */
- if (ralign < ARCH_SLAB_MINALIGN) {
- ralign = ARCH_SLAB_MINALIGN;
- if (ralign > BYTES_PER_WORD)
- flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
- }
- /* 3) caller mandated alignment: disables debug if necessary */
- if (ralign < align) {
- ralign = align;
- if (ralign > BYTES_PER_WORD)
- flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
- }
- /* 4) Store it. Note that the debug code below can reduce
- * the alignment to BYTES_PER_WORD.
- */
- align = ralign;
- /* Get cache's description obj. */
- cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
- if (!cachep)
- goto opps;
- memset(cachep, 0, sizeof(kmem_cache_t));
- #if DEBUG
- cachep->reallen = size;
- if (flags & SLAB_RED_ZONE) {
- /* redzoning only works with word aligned caches */
- align = BYTES_PER_WORD;
- /* add space for red zone words */
- cachep->dbghead += BYTES_PER_WORD;
- size += 2*BYTES_PER_WORD;
- }
- if (flags & SLAB_STORE_USER) {
- /* user store requires word alignment and
- * one word storage behind the end of the real
- * object.
- */
- align = BYTES_PER_WORD;
- size += BYTES_PER_WORD;
- }
- #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
- if (size > 128 && cachep->reallen > cache_line_size() && size < PAGE_SIZE) {
- cachep->dbghead += PAGE_SIZE - size;
- size = PAGE_SIZE;
- }
- #endif
- #endif
- /* Determine if the slab management is 'on' or 'off' slab. */
- if (size >= (PAGE_SIZE>>3))
- /*
- * Size is large, assume best to place the slab management obj
- * off-slab (should allow better packing of objs).
- */
- flags |= CFLGS_OFF_SLAB;
- size = ALIGN(size, align);
- if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
- /*
- * A VFS-reclaimable slab tends to have most allocations
- * as GFP_NOFS and we really don't want to have to be allocating
- * higher-order pages when we are unable to shrink dcache.
- */
- cachep->gfporder = 0;
- cache_estimate(cachep->gfporder, size, align, flags,
- &left_over, &cachep->num);
- } else {
- /*
- * Calculate size (in pages) of slabs, and the num of objs per
- * slab. This could be made much more intelligent. For now,
- * try to avoid using high page-orders for slabs. When the
- * gfp() funcs are more friendly towards high-order requests,
- * this should be changed.
- */
- do {
- unsigned int break_flag = 0;
- cal_wastage:
- cache_estimate(cachep->gfporder, size, align, flags,
- &left_over, &cachep->num);
- if (break_flag)
- break;
- if (cachep->gfporder >= MAX_GFP_ORDER)
- break;
- if (!cachep->num)
- goto next;
- if (flags & CFLGS_OFF_SLAB &&
- cachep->num > offslab_limit) {
- /* This num of objs will cause problems. */
- cachep->gfporder--;
- break_flag++;
- goto cal_wastage;
- }
- /*
- * Large num of objs is good, but v. large slabs are
- * currently bad for the gfp()s.
- */
- if (cachep->gfporder >= slab_break_gfp_order)
- break;
- if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder))
- break; /* Acceptable internal fragmentation. */
- next:
- cachep->gfporder++;
- } while (1);
- }
- if (!cachep->num) {
- printk("kmem_cache_create: couldn't create cache %s.\n", name);
- kmem_cache_free(&cache_cache, cachep);
- cachep = NULL;
- goto opps;
- }
- slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t)
- + sizeof(struct slab), align);
- /*
- * If the slab has been placed off-slab, and we have enough space then
- * move it on-slab. This is at the expense of any extra colouring.
- */
- if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
- flags &= ~CFLGS_OFF_SLAB;
- left_over -= slab_size;
- }
- if (flags & CFLGS_OFF_SLAB) {
- /* really off slab. No need for manual alignment */
- slab_size = cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab);
- }
- cachep->colour_off = cache_line_size();
- /* Offset must be a multiple of the alignment. */
- if (cachep->colour_off < align)
- cachep->colour_off = align;
- cachep->colour = left_over/cachep->colour_off;
- cachep->slab_size = slab_size;
- cachep->flags = flags;
- cachep->gfpflags = 0;
- if (flags & SLAB_CACHE_DMA)
- cachep->gfpflags |= GFP_DMA;
- spin_lock_init(&cachep->spinlock);
- cachep->objsize = size;
- /* NUMA */
- INIT_LIST_HEAD(&cachep->lists.slabs_full);
- INIT_LIST_HEAD(&cachep->lists.slabs_partial);
- INIT_LIST_HEAD(&cachep->lists.slabs_free);
- if (flags & CFLGS_OFF_SLAB)
- cachep->slabp_cache = kmem_find_general_cachep(slab_size,0);
- cachep->ctor = ctor;
- cachep->dtor = dtor;
- cachep->name = name;
- /* Don't let CPUs to come and go */
- lock_cpu_hotplug();
- if (g_cpucache_up == FULL) {
- enable_cpucache(cachep);
- } else {
- if (g_cpucache_up == NONE) {
- /* Note: the first kmem_cache_create must create
- * the cache that's used by kmalloc(24), otherwise
- * the creation of further caches will BUG().
- */
- cachep->array[smp_processor_id()] = &initarray_generic.cache;
- g_cpucache_up = PARTIAL;
- } else {
- cachep->array[smp_processor_id()] = kmalloc(sizeof(struct arraycache_init),GFP_KERNEL);
- }
- BUG_ON(!ac_data(cachep));
- ac_data(cachep)->avail = 0;
- ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
- ac_data(cachep)->batchcount = 1;
- ac_data(cachep)->touched = 0;
- cachep->batchcount = 1;
- cachep->limit = BOOT_CPUCACHE_ENTRIES;
- cachep->free_limit = (1+num_online_cpus())*cachep->batchcount
- + cachep->num;
- }
- cachep->lists.next_reap = jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
- /* Need the semaphore to access the chain. */
- down(&cache_chain_sem);
- {
- struct list_head *p;
- mm_segment_t old_fs;
- old_fs = get_fs();
- set_fs(KERNEL_DS);
- list_for_each(p, &cache_chain) {
- kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
- char tmp;
- /* This happens when the module gets unloaded and doesn't
- destroy its slab cache and noone else reuses the vmalloc
- area of the module. Print a warning. */
- if (__get_user(tmp,pc->name)) {
- printk("SLAB: cache with size %d has lost its name\n",
- pc->objsize);
- continue;
- }
- if (!strcmp(pc->name,name)) {
- printk("kmem_cache_create: duplicate cache %s\n",name);
- up(&cache_chain_sem);
- unlock_cpu_hotplug();
- BUG();
- }
- }
- set_fs(old_fs);
- }
- /* cache setup completed, link it into the list */
- list_add(&cachep->next, &cache_chain);
- up(&cache_chain_sem);
- unlock_cpu_hotplug();
- opps:
- if (!cachep && (flags & SLAB_PANIC))
- panic("kmem_cache_create(): failed to create slab `%s'\n",
- name);
- return cachep;
- }
- EXPORT_SYMBOL(kmem_cache_create);
- #if DEBUG
- static void check_irq_off(void)
- {
- BUG_ON(!irqs_disabled());
- }
- static void check_irq_on(void)
- {
- BUG_ON(irqs_disabled());
- }
- static void check_spinlock_acquired(kmem_cache_t *cachep)
- {
- #ifdef CONFIG_SMP
- check_irq_off();
- BUG_ON(spin_trylock(&cachep->spinlock));
- #endif
- }
- #else
- #define check_irq_off() do { } while(0)
- #define check_irq_on() do { } while(0)
- #define check_spinlock_acquired(x) do { } while(0)
- #endif
- /*
- * Waits for all CPUs to execute func().
- */
- static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg)
- {
- check_irq_on();
- preempt_disable();
- local_irq_disable();
- func(arg);
- local_irq_enable();
- if (smp_call_function(func, arg, 1, 1))
- BUG();
- preempt_enable();
- }
- static void drain_array_locked(kmem_cache_t* cachep,
- struct array_cache *ac, int force);
- static void do_drain(void *arg)
- {
- kmem_cache_t *cachep = (kmem_cache_t*)arg;
- struct array_cache *ac;
- check_irq_off();
- ac = ac_data(cachep);
- spin_lock(&cachep->spinlock);
- free_block(cachep, &ac_entry(ac)[0], ac->avail);
- spin_unlock(&cachep->spinlock);
- ac->avail = 0;
- }
- static void drain_cpu_caches(kmem_cache_t *cachep)
- {
- smp_call_function_all_cpus(do_drain, cachep);
- check_irq_on();
- spin_lock_irq(&cachep->spinlock);
- if (cachep->lists.shared)
- drain_array_locked(cachep, cachep->lists.shared, 1);
- spin_unlock_irq(&cachep->spinlock);
- }
- /* NUMA shrink all list3s */
- static int __cache_shrink(kmem_cache_t *cachep)
- {
- struct slab *slabp;
- int ret;
- drain_cpu_caches(cachep);
- check_irq_on();
- spin_lock_irq(&cachep->spinlock);
- for(;;) {
- struct list_head *p;
- p = cachep->lists.slabs_free.prev;
- if (p == &cachep->lists.slabs_free)
- break;
- slabp = list_entry(cachep->lists.slabs_free.prev, struct slab, list);
- #if DEBUG
- if (slabp->inuse)
- BUG();
- #endif
- list_del(&slabp->list);
- cachep->lists.free_objects -= cachep->num;
- spin_unlock_irq(&cachep->spinlock);
- slab_destroy(cachep, slabp);
- spin_lock_irq(&cachep->spinlock);
- }
- ret = !list_empty(&cachep->lists.slabs_full) ||
- !list_empty(&cachep->lists.slabs_partial);
- spin_unlock_irq(&cachep->spinlock);
- return ret;
- }
- /**
- * kmem_cache_shrink - Shrink a cache.
- * @cachep: The cache to shrink.
- *
- * Releases as many slabs as possible for a cache.
- * To help debugging, a zero exit status indicates all slabs were released.
- */
- int kmem_cache_shrink(kmem_cache_t *cachep)
- {
- if (!cachep || in_interrupt())
- BUG();
- return __cache_shrink(cachep);
- }
- EXPORT_SYMBOL(kmem_cache_shrink);
- /**
- * kmem_cache_destroy - delete a cache
- * @cachep: the cache to destroy
- *
- * Remove a kmem_cache_t object from the slab cache.
- * Returns 0 on success.
- *
- * It is expected this function will be called by a module when it is
- * unloaded. This will remove the cache completely, and avoid a duplicate
- * cache being allocated each time a module is loaded and unloaded, if the
- * module doesn't have persistent in-kernel storage across loads and unloads.
- *
- * The cache must be empty before calling this function.
- *
- * The caller must guarantee that noone will allocate memory from the cache
- * during the kmem_cache_destroy().
- */
- int kmem_cache_destroy(kmem_cache_t * cachep)
- {
- int i;
- if (!cachep || in_interrupt())
- BUG();
- /* Don't let CPUs to come and go */
- lock_cpu_hotplug();
- /* Find the cache in the chain of caches. */
- down(&cache_chain_sem);
- /*
- * the chain is never empty, cache_cache is never destroyed
- */
- list_del(&cachep->next);
- up(&cache_chain_sem);
- if (__cache_shrink(cachep)) {
- slab_error(cachep, "Can't free all objects");
- down(&cache_chain_sem);
- list_add(&cachep->next,&cache_chain);
- up(&cache_chain_sem);
- unlock_cpu_hotplug();
- return 1;
- }
- if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
- synchronize_rcu();
- /* no cpu_online check required here since we clear the percpu
- * array on cpu offline and set this to NULL.
- */
- for (i = 0; i < NR_CPUS; i++)
- kfree(cachep->array[i]);
- /* NUMA: free the list3 structures */
- kfree(cachep->lists.shared);
- cachep->lists.shared = NULL;
- kmem_cache_free(&cache_cache, cachep);
- unlock_cpu_hotplug();
- return 0;
- }
- EXPORT_SYMBOL(kmem_cache_destroy);
- /* Get the memory for a slab management obj. */
- static struct slab* alloc_slabmgmt(kmem_cache_t *cachep,
- void *objp, int colour_off, unsigned int __nocast local_flags)
- {
- struct slab *slabp;
-
- if (OFF_SLAB(cachep)) {
- /* Slab management obj is off-slab. */
- slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
- if (!slabp)
- return NULL;
- } else {
- slabp = objp+colour_off;
- colour_off += cachep->slab_size;
- }
- slabp->inuse = 0;
- slabp->colouroff = colour_off;
- slabp->s_mem = objp+colour_off;
- return slabp;
- }
- static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
- {
- return (kmem_bufctl_t *)(slabp+1);
- }
- static void cache_init_objs(kmem_cache_t *cachep,
- struct slab *slabp, unsigned long ctor_flags)
- {
- int i;
- for (i = 0; i < cachep->num; i++) {
- void* objp = slabp->s_mem+cachep->objsize*i;
- #if DEBUG
- /* need to poison the objs? */
- if (cachep->flags & SLAB_POISON)
- poison_obj(cachep, objp, POISON_FREE);
- if (cachep->flags & SLAB_STORE_USER)
- *dbg_userword(cachep, objp) = NULL;
- if (cachep->flags & SLAB_RED_ZONE) {
- *dbg_redzone1(cachep, objp) = RED_INACTIVE;
- *dbg_redzone2(cachep, objp) = RED_INACTIVE;
- }
- /*
- * Constructors are not allowed to allocate memory from
- * the same cache which they are a constructor for.
- * Otherwise, deadlock. They must also be threaded.
- */
- if (cachep->ctor && !(cachep->flags & SLAB_POISON))
- cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags);
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "constructor overwrote the"
- " end of an object");
- if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "constructor overwrote the"
- " start of an object");
- }
- if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
- kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
- #else
- if (cachep->ctor)
- cachep->ctor(objp, cachep, ctor_flags);
- #endif
- slab_bufctl(slabp)[i] = i+1;
- }
- slab_bufctl(slabp)[i-1] = BUFCTL_END;
- slabp->free = 0;
- }
- static void kmem_flagcheck(kmem_cache_t *cachep, unsigned int flags)
- {
- if (flags & SLAB_DMA) {
- if (!(cachep->gfpflags & GFP_DMA))
- BUG();
- } else {
- if (cachep->gfpflags & GFP_DMA)
- BUG();
- }
- }
- static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
- {
- int i;
- struct page *page;
- /* Nasty!!!!!! I hope this is OK. */
- i = 1 << cachep->gfporder;
- page = virt_to_page(objp);
- do {
- SET_PAGE_CACHE(page, cachep);
- SET_PAGE_SLAB(page, slabp);
- page++;
- } while (--i);
- }
- /*
- * Grow (by 1) the number of slabs within a cache. This is called by
- * kmem_cache_alloc() when there are no active objs left in a cache.
- */
- static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid)
- {
- struct slab *slabp;
- void *objp;
- size_t offset;
- unsigned int local_flags;
- unsigned long ctor_flags;
- /* Be lazy and only check for valid flags here,
- * keeping it out of the critical path in kmem_cache_alloc().
- */
- if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
- BUG();
- if (flags & SLAB_NO_GROW)
- return 0;
- ctor_flags = SLAB_CTOR_CONSTRUCTOR;
- local_flags = (flags & SLAB_LEVEL_MASK);
- if (!(local_flags & __GFP_WAIT))
- /*
- * Not allowed to sleep. Need to tell a constructor about
- * this - it might need to know...
- */
- ctor_flags |= SLAB_CTOR_ATOMIC;
- /* About to mess with non-constant members - lock. */
- check_irq_off();
- spin_lock(&cachep->spinlock);
- /* Get colour for the slab, and cal the next value. */
- offset = cachep->colour_next;
- cachep->colour_next++;
- if (cachep->colour_next >= cachep->colour)
- cachep->colour_next = 0;
- offset *= cachep->colour_off;
- spin_unlock(&cachep->spinlock);
- if (local_flags & __GFP_WAIT)
- local_irq_enable();
- /*
- * The test for missing atomic flag is performed here, rather than
- * the more obvious place, simply to reduce the critical path length
- * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
- * will eventually be caught here (where it matters).
- */
- kmem_flagcheck(cachep, flags);
- /* Get mem for the objs. */
- if (!(objp = kmem_getpages(cachep, flags, nodeid)))
- goto failed;
- /* Get slab management. */
- if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
- goto opps1;
- set_slab_attr(cachep, slabp, objp);
- cache_init_objs(cachep, slabp, ctor_flags);
- if (local_flags & __GFP_WAIT)
- local_irq_disable();
- check_irq_off();
- spin_lock(&cachep->spinlock);
- /* Make slab active. */
- list_add_tail(&slabp->list, &(list3_data(cachep)->slabs_free));
- STATS_INC_GROWN(cachep);
- list3_data(cachep)->free_objects += cachep->num;
- spin_unlock(&cachep->spinlock);
- return 1;
- opps1:
- kmem_freepages(cachep, objp);
- failed:
- if (local_flags & __GFP_WAIT)
- local_irq_disable();
- return 0;
- }
- #if DEBUG
- /*
- * Perform extra freeing checks:
- * - detect bad pointers.
- * - POISON/RED_ZONE checking
- * - destructor calls, for caches with POISON+dtor
- */
- static void kfree_debugcheck(const void *objp)
- {
- struct page *page;
- if (!virt_addr_valid(objp)) {
- printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
- (unsigned long)objp);
- BUG();
- }
- page = virt_to_page(objp);
- if (!PageSlab(page)) {
- printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp);
- BUG();
- }
- }
- static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
- void *caller)
- {
- struct page *page;
- unsigned int objnr;
- struct slab *slabp;
- objp -= obj_dbghead(cachep);
- kfree_debugcheck(objp);
- page = virt_to_page(objp);
- if (GET_PAGE_CACHE(page) != cachep) {
- printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n",
- GET_PAGE_CACHE(page),cachep);
- printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
- printk(KERN_ERR "%p is %s.\n", GET_PAGE_CACHE(page), GET_PAGE_CACHE(page)->name);
- WARN_ON(1);
- }
- slabp = GET_PAGE_SLAB(page);
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
- slab_error(cachep, "double free, or memory outside"
- " object was overwritten");
- printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
- objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
- }
- *dbg_redzone1(cachep, objp) = RED_INACTIVE;
- *dbg_redzone2(cachep, objp) = RED_INACTIVE;
- }
- if (cachep->flags & SLAB_STORE_USER)
- *dbg_userword(cachep, objp) = caller;
- objnr = (objp-slabp->s_mem)/cachep->objsize;
- BUG_ON(objnr >= cachep->num);
- BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize);
- if (cachep->flags & SLAB_DEBUG_INITIAL) {
- /* Need to call the slab's constructor so the
- * caller can perform a verify of its state (debugging).
- * Called without the cache-lock held.
- */
- cachep->ctor(objp+obj_dbghead(cachep),
- cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
- }
- if (cachep->flags & SLAB_POISON && cachep->dtor) {
- /* we want to cache poison the object,
- * call the destruction callback
- */
- cachep->dtor(objp+obj_dbghead(cachep), cachep, 0);
- }
- if (cachep->flags & SLAB_POISON) {
- #ifdef CONFIG_DEBUG_PAGEALLOC
- if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
- store_stackinfo(cachep, objp, (unsigned long)caller);
- kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
- } else {
- poison_obj(cachep, objp, POISON_FREE);
- }
- #else
- poison_obj(cachep, objp, POISON_FREE);
- #endif
- }
- return objp;
- }
- static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
- {
- kmem_bufctl_t i;
- int entries = 0;
-
- check_spinlock_acquired(cachep);
- /* Check slab's freelist to see if this obj is there. */
- for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
- entries++;
- if (entries > cachep->num || i >= cachep->num)
- goto bad;
- }
- if (entries != cachep->num - slabp->inuse) {
- bad:
- printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
- cachep->name, cachep->num, slabp, slabp->inuse);
- for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) {
- if ((i%16)==0)
- printk("\n%03x:", i);
- printk(" %02x", ((unsigned char*)slabp)[i]);
- }
- printk("\n");
- BUG();
- }
- }
- #else
- #define kfree_debugcheck(x) do { } while(0)
- #define cache_free_debugcheck(x,objp,z) (objp)
- #define check_slabp(x,y) do { } while(0)
- #endif
- static void *cache_alloc_refill(kmem_cache_t *cachep, unsigned int __nocast flags)
- {
- int batchcount;
- struct kmem_list3 *l3;
- struct array_cache *ac;
- check_irq_off();
- ac = ac_data(cachep);
- retry:
- batchcount = ac->batchcount;
- if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
- /* if there was little recent activity on this
- * cache, then perform only a partial refill.
- * Otherwise we could generate refill bouncing.
- */
- batchcount = BATCHREFILL_LIMIT;
- }
- l3 = list3_data(cachep);
- BUG_ON(ac->avail > 0);
- spin_lock(&cachep->spinlock);
- if (l3->shared) {
- struct array_cache *shared_array = l3->shared;
- if (shared_array->avail) {
- if (batchcount > shared_array->avail)
- batchcount = shared_array->avail;
- shared_array->avail -= batchcount;
- ac->avail = batchcount;
- memcpy(ac_entry(ac), &ac_entry(shared_array)[shared_array->avail],
- sizeof(void*)*batchcount);
- shared_array->touched = 1;
- goto alloc_done;
- }
- }
- while (batchcount > 0) {
- struct list_head *entry;
- struct slab *slabp;
- /* Get slab alloc is to come from. */
- entry = l3->slabs_partial.next;
- if (entry == &l3->slabs_partial) {
- l3->free_touched = 1;
- entry = l3->slabs_free.next;
- if (entry == &l3->slabs_free)
- goto must_grow;
- }
- slabp = list_entry(entry, struct slab, list);
- check_slabp(cachep, slabp);
- check_spinlock_acquired(cachep);
- while (slabp->inuse < cachep->num && batchcount--) {
- kmem_bufctl_t next;
- STATS_INC_ALLOCED(cachep);
- STATS_INC_ACTIVE(cachep);
- STATS_SET_HIGH(cachep);
- /* get obj pointer */
- ac_entry(ac)[ac->avail++] = slabp->s_mem + slabp->free*cachep->objsize;
- slabp->inuse++;
- next = slab_bufctl(slabp)[slabp->free];
- #if DEBUG
- slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
- #endif
- slabp->free = next;
- }
- check_slabp(cachep, slabp);
- /* move slabp to correct slabp list: */
- list_del(&slabp->list);
- if (slabp->free == BUFCTL_END)
- list_add(&slabp->list, &l3->slabs_full);
- else
- list_add(&slabp->list, &l3->slabs_partial);
- }
- must_grow:
- l3->free_objects -= ac->avail;
- alloc_done:
- spin_unlock(&cachep->spinlock);
- if (unlikely(!ac->avail)) {
- int x;
- x = cache_grow(cachep, flags, -1);
-
- // cache_grow can reenable interrupts, then ac could change.
- ac = ac_data(cachep);
- if (!x && ac->avail == 0) // no objects in sight? abort
- return NULL;
- if (!ac->avail) // objects refilled by interrupt?
- goto retry;
- }
- ac->touched = 1;
- return ac_entry(ac)[--ac->avail];
- }
- static inline void
- cache_alloc_debugcheck_before(kmem_cache_t *cachep, unsigned int __nocast flags)
- {
- might_sleep_if(flags & __GFP_WAIT);
- #if DEBUG
- kmem_flagcheck(cachep, flags);
- #endif
- }
- #if DEBUG
- static void *
- cache_alloc_debugcheck_after(kmem_cache_t *cachep,
- unsigned long flags, void *objp, void *caller)
- {
- if (!objp)
- return objp;
- if (cachep->flags & SLAB_POISON) {
- #ifdef CONFIG_DEBUG_PAGEALLOC
- if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
- kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1);
- else
- check_poison_obj(cachep, objp);
- #else
- check_poison_obj(cachep, objp);
- #endif
- poison_obj(cachep, objp, POISON_INUSE);
- }
- if (cachep->flags & SLAB_STORE_USER)
- *dbg_userword(cachep, objp) = caller;
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
- slab_error(cachep, "double free, or memory outside"
- " object was overwritten");
- printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
- objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
- }
- *dbg_redzone1(cachep, objp) = RED_ACTIVE;
- *dbg_redzone2(cachep, objp) = RED_ACTIVE;
- }
- objp += obj_dbghead(cachep);
- if (cachep->ctor && cachep->flags & SLAB_POISON) {
- unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
- if (!(flags & __GFP_WAIT))
- ctor_flags |= SLAB_CTOR_ATOMIC;
- cachep->ctor(objp, cachep, ctor_flags);
- }
- return objp;
- }
- #else
- #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
- #endif
- static inline void *__cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags)
- {
- unsigned long save_flags;
- void* objp;
- struct array_cache *ac;
- cache_alloc_debugcheck_before(cachep, flags);
- local_irq_save(save_flags);
- ac = ac_data(cachep);
- if (likely(ac->avail)) {
- STATS_INC_ALLOCHIT(cachep);
- ac->touched = 1;
- objp = ac_entry(ac)[--ac->avail];
- } else {
- STATS_INC_ALLOCMISS(cachep);
- objp = cache_alloc_refill(cachep, flags);
- }
- local_irq_restore(save_flags);
- objp = cache_alloc_debugcheck_after(cachep, flags, objp, __builtin_return_address(0));
- return objp;
- }
- /*
- * NUMA: different approach needed if the spinlock is moved into
- * the l3 structure
- */
- static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects)
- {
- int i;
- check_spinlock_acquired(cachep);
- /* NUMA: move add into loop */
- cachep->lists.free_objects += nr_objects;
- for (i = 0; i < nr_objects; i++) {
- void *objp = objpp[i];
- struct slab *slabp;
- unsigned int objnr;
- slabp = GET_PAGE_SLAB(virt_to_page(objp));
- list_del(&slabp->list);
- objnr = (objp - slabp->s_mem) / cachep->objsize;
- check_slabp(cachep, slabp);
- #if DEBUG
- if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
- printk(KERN_ERR "slab: double free detected in cache '%s', objp %p.\n",
- cachep->name, objp);
- BUG();
- }
- #endif
- slab_bufctl(slabp)[objnr] = slabp->free;
- slabp->free = objnr;
- STATS_DEC_ACTIVE(cachep);
- slabp->inuse--;
- check_slabp(cachep, slabp);
- /* fixup slab chains */
- if (slabp->inuse == 0) {
- if (cachep->lists.free_objects > cachep->free_limit) {
- cachep->lists.free_objects -= cachep->num;
- slab_destroy(cachep, slabp);
- } else {
- list_add(&slabp->list,
- &list3_data_ptr(cachep, objp)->slabs_free);
- }
- } else {
- /* Unconditionally move a slab to the end of the
- * partial list on free - maximum time for the
- * other objects to be freed, too.
- */
- list_add_tail(&slabp->list,
- &list3_data_ptr(cachep, objp)->slabs_partial);
- }
- }
- }
- static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
- {
- int batchcount;
- batchcount = ac->batchcount;
- #if DEBUG
- BUG_ON(!batchcount || batchcount > ac->avail);
- #endif
- check_irq_off();
- spin_lock(&cachep->spinlock);
- if (cachep->lists.shared) {
- struct array_cache *shared_array = cachep->lists.shared;
- int max = shared_array->limit-shared_array->avail;
- if (max) {
- if (batchcount > max)
- batchcount = max;
- memcpy(&ac_entry(shared_array)[shared_array->avail],
- &ac_entry(ac)[0],
- sizeof(void*)*batchcount);
- shared_array->avail += batchcount;
- goto free_done;
- }
- }
- free_block(cachep, &ac_entry(ac)[0], batchcount);
- free_done:
- #if STATS
- {
- int i = 0;
- struct list_head *p;
- p = list3_data(cachep)->slabs_free.next;
- while (p != &(list3_data(cachep)->slabs_free)) {
- struct slab *slabp;
- slabp = list_entry(p, struct slab, list);
- BUG_ON(slabp->inuse);
- i++;
- p = p->next;
- }
- STATS_SET_FREEABLE(cachep, i);
- }
- #endif
- spin_unlock(&cachep->spinlock);
- ac->avail -= batchcount;
- memmove(&ac_entry(ac)[0], &ac_entry(ac)[batchcount],
- sizeof(void*)*ac->avail);
- }
- /*
- * __cache_free
- * Release an obj back to its cache. If the obj has a constructed
- * state, it must be in this state _before_ it is released.
- *
- * Called with disabled ints.
- */
- static inline void __cache_free(kmem_cache_t *cachep, void *objp)
- {
- struct array_cache *ac = ac_data(cachep);
- check_irq_off();
- objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
- if (likely(ac->avail < ac->limit)) {
- STATS_INC_FREEHIT(cachep);
- ac_entry(ac)[ac->avail++] = objp;
- return;
- } else {
- STATS_INC_FREEMISS(cachep);
- cache_flusharray(cachep, ac);
- ac_entry(ac)[ac->avail++] = objp;
- }
- }
- /**
- * kmem_cache_alloc - Allocate an object
- * @cachep: The cache to allocate from.
- * @flags: See kmalloc().
- *
- * Allocate an object from this cache. The flags are only relevant
- * if the cache has no available objects.
- */
- void *kmem_cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags)
- {
- return __cache_alloc(cachep, flags);
- }
- EXPORT_SYMBOL(kmem_cache_alloc);
- /**
- * kmem_ptr_validate - check if an untrusted pointer might
- * be a slab entry.
- * @cachep: the cache we're checking against
- * @ptr: pointer to validate
- *
- * This verifies that the untrusted pointer looks sane:
- * it is _not_ a guarantee that the pointer is actually
- * part of the slab cache in question, but it at least
- * validates that the pointer can be dereferenced and
- * looks half-way sane.
- *
- * Currently only used for dentry validation.
- */
- int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
- {
- unsigned long addr = (unsigned long) ptr;
- unsigned long min_addr = PAGE_OFFSET;
- unsigned long align_mask = BYTES_PER_WORD-1;
- unsigned long size = cachep->objsize;
- struct page *page;
- if (unlikely(addr < min_addr))
- goto out;
- if (unlikely(addr > (unsigned long)high_memory - size))
- goto out;
- if (unlikely(addr & align_mask))
- goto out;
- if (unlikely(!kern_addr_valid(addr)))
- goto out;
- if (unlikely(!kern_addr_valid(addr + size - 1)))
- goto out;
- page = virt_to_page(ptr);
- if (unlikely(!PageSlab(page)))
- goto out;
- if (unlikely(GET_PAGE_CACHE(page) != cachep))
- goto out;
- return 1;
- out:
- return 0;
- }
- #ifdef CONFIG_NUMA
- /**
- * kmem_cache_alloc_node - Allocate an object on the specified node
- * @cachep: The cache to allocate from.
- * @flags: See kmalloc().
- * @nodeid: node number of the target node.
- *
- * Identical to kmem_cache_alloc, except that this function is slow
- * and can sleep. And it will allocate memory on the given node, which
- * can improve the performance for cpu bound structures.
- */
- void *kmem_cache_alloc_node(kmem_cache_t *cachep, int flags, int nodeid)
- {
- int loop;
- void *objp;
- struct slab *slabp;
- kmem_bufctl_t next;
- for (loop = 0;;loop++) {
- struct list_head *q;
- objp = NULL;
- check_irq_on();
- spin_lock_irq(&cachep->spinlock);
- /* walk through all partial and empty slab and find one
- * from the right node */
- list_for_each(q,&cachep->lists.slabs_partial) {
- slabp = list_entry(q, struct slab, list);
- if (page_to_nid(virt_to_page(slabp->s_mem)) == nodeid ||
- loop > 2)
- goto got_slabp;
- }
- list_for_each(q, &cachep->lists.slabs_free) {
- slabp = list_entry(q, struct slab, list);
- if (page_to_nid(virt_to_page(slabp->s_mem)) == nodeid ||
- loop > 2)
- goto got_slabp;
- }
- spin_unlock_irq(&cachep->spinlock);
- local_irq_disable();
- if (!cache_grow(cachep, flags, nodeid)) {
- local_irq_enable();
- return NULL;
- }
- local_irq_enable();
- }
- got_slabp:
- /* found one: allocate object */
- check_slabp(cachep, slabp);
- check_spinlock_acquired(cachep);
- STATS_INC_ALLOCED(cachep);
- STATS_INC_ACTIVE(cachep);
- STATS_SET_HIGH(cachep);
- STATS_INC_NODEALLOCS(cachep);
- objp = slabp->s_mem + slabp->free*cachep->objsize;
- slabp->inuse++;
- next = slab_bufctl(slabp)[slabp->free];
- #if DEBUG
- slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
- #endif
- slabp->free = next;
- check_slabp(cachep, slabp);
- /* move slabp to correct slabp list: */
- list_del(&slabp->list);
- if (slabp->free == BUFCTL_END)
- list_add(&slabp->list, &cachep->lists.slabs_full);
- else
- list_add(&slabp->list, &cachep->lists.slabs_partial);
- list3_data(cachep)->free_objects--;
- spin_unlock_irq(&cachep->spinlock);
- objp = cache_alloc_debugcheck_after(cachep, GFP_KERNEL, objp,
- __builtin_return_address(0));
- return objp;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_node);
- void *kmalloc_node(size_t size, int flags, int node)
- {
- kmem_cache_t *cachep;
- cachep = kmem_find_general_cachep(size, flags);
- if (unlikely(cachep == NULL))
- return NULL;
- return kmem_cache_alloc_node(cachep, flags, node);
- }
- EXPORT_SYMBOL(kmalloc_node);
- #endif
- /**
- * kmalloc - allocate memory
- * @size: how many bytes of memory are required.
- * @flags: the type of memory to allocate.
- *
- * kmalloc is the normal method of allocating memory
- * in the kernel.
- *
- * The @flags argument may be one of:
- *
- * %GFP_USER - Allocate memory on behalf of user. May sleep.
- *
- * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
- *
- * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
- *
- * Additionally, the %GFP_DMA flag may be set to indicate the memory
- * must be suitable for DMA. This can mean different things on different
- * platforms. For example, on i386, it means that the memory must come
- * from the first 16MB.
- */
- void *__kmalloc(size_t size, unsigned int __nocast flags)
- {
- kmem_cache_t *cachep;
- /* If you want to save a few bytes .text space: replace
- * __ with kmem_.
- * Then kmalloc uses the uninlined functions instead of the inline
- * functions.
- */
- cachep = __find_general_cachep(size, flags);
- if (unlikely(cachep == NULL))
- return NULL;
- return __cache_alloc(cachep, flags);
- }
- EXPORT_SYMBOL(__kmalloc);
- #ifdef CONFIG_SMP
- /**
- * __alloc_percpu - allocate one copy of the object for every present
- * cpu in the system, zeroing them.
- * Objects should be dereferenced using the per_cpu_ptr macro only.
- *
- * @size: how many bytes of memory are required.
- * @align: the alignment, which can't be greater than SMP_CACHE_BYTES.
- */
- void *__alloc_percpu(size_t size, size_t align)
- {
- int i;
- struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL);
- if (!pdata)
- return NULL;
- for (i = 0; i < NR_CPUS; i++) {
- if (!cpu_possible(i))
- continue;
- pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL,
- cpu_to_node(i));
- if (!pdata->ptrs[i])
- goto unwind_oom;
- memset(pdata->ptrs[i], 0, size);
- }
- /* Catch derefs w/o wrappers */
- return (void *) (~(unsigned long) pdata);
- unwind_oom:
- while (--i >= 0) {
- if (!cpu_possible(i))
- continue;
- kfree(pdata->ptrs[i]);
- }
- kfree(pdata);
- return NULL;
- }
- EXPORT_SYMBOL(__alloc_percpu);
- #endif
- /**
- * kmem_cache_free - Deallocate an object
- * @cachep: The cache the allocation was from.
- * @objp: The previously allocated object.
- *
- * Free an object which was previously allocated from this
- * cache.
- */
- void kmem_cache_free(kmem_cache_t *cachep, void *objp)
- {
- unsigned long flags;
- local_irq_save(flags);
- __cache_free(cachep, objp);
- local_irq_restore(flags);
- }
- EXPORT_SYMBOL(kmem_cache_free);
- /**
- * kcalloc - allocate memory for an array. The memory is set to zero.
- * @n: number of elements.
- * @size: element size.
- * @flags: the type of memory to allocate.
- */
- void *kcalloc(size_t n, size_t size, unsigned int __nocast flags)
- {
- void *ret = NULL;
- if (n != 0 && size > INT_MAX / n)
- return ret;
- ret = kmalloc(n * size, flags);
- if (ret)
- memset(ret, 0, n * size);
- return ret;
- }
- EXPORT_SYMBOL(kcalloc);
- /**
- * kfree - free previously allocated memory
- * @objp: pointer returned by kmalloc.
- *
- * Don't free memory not originally allocated by kmalloc()
- * or you will run into trouble.
- */
- void kfree(const void *objp)
- {
- kmem_cache_t *c;
- unsigned long flags;
- if (unlikely(!objp))
- return;
- local_irq_save(flags);
- kfree_debugcheck(objp);
- c = GET_PAGE_CACHE(virt_to_page(objp));
- __cache_free(c, (void*)objp);
- local_irq_restore(flags);
- }
- EXPORT_SYMBOL(kfree);
- #ifdef CONFIG_SMP
- /**
- * free_percpu - free previously allocated percpu memory
- * @objp: pointer returned by alloc_percpu.
- *
- * Don't free memory not originally allocated by alloc_percpu()
- * The complemented objp is to check for that.
- */
- void
- free_percpu(const void *objp)
- {
- int i;
- struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp);
- for (i = 0; i < NR_CPUS; i++) {
- if (!cpu_possible(i))
- continue;
- kfree(p->ptrs[i]);
- }
- kfree(p);
- }
- EXPORT_SYMBOL(free_percpu);
- #endif
- unsigned int kmem_cache_size(kmem_cache_t *cachep)
- {
- return obj_reallen(cachep);
- }
- EXPORT_SYMBOL(kmem_cache_size);
- const char *kmem_cache_name(kmem_cache_t *cachep)
- {
- return cachep->name;
- }
- EXPORT_SYMBOL_GPL(kmem_cache_name);
- struct ccupdate_struct {
- kmem_cache_t *cachep;
- struct array_cache *new[NR_CPUS];
- };
- static void do_ccupdate_local(void *info)
- {
- struct ccupdate_struct *new = (struct ccupdate_struct *)info;
- struct array_cache *old;
- check_irq_off();
- old = ac_data(new->cachep);
-
- new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
- new->new[smp_processor_id()] = old;
- }
- static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
- int shared)
- {
- struct ccupdate_struct new;
- struct array_cache *new_shared;
- int i;
- memset(&new.new,0,sizeof(new.new));
- for (i = 0; i < NR_CPUS; i++) {
- if (cpu_online(i)) {
- new.new[i] = alloc_arraycache(i, limit, batchcount);
- if (!new.new[i]) {
- for (i--; i >= 0; i--) kfree(new.new[i]);
- return -ENOMEM;
- }
- } else {
- new.new[i] = NULL;
- }
- }
- new.cachep = cachep;
- smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
-
- check_irq_on();
- spin_lock_irq(&cachep->spinlock);
- cachep->batchcount = batchcount;
- cachep->limit = limit;
- cachep->free_limit = (1+num_online_cpus())*cachep->batchcount + cachep->num;
- spin_unlock_irq(&cachep->spinlock);
- for (i = 0; i < NR_CPUS; i++) {
- struct array_cache *ccold = new.new[i];
- if (!ccold)
- continue;
- spin_lock_irq(&cachep->spinlock);
- free_block(cachep, ac_entry(ccold), ccold->avail);
- spin_unlock_irq(&cachep->spinlock);
- kfree(ccold);
- }
- new_shared = alloc_arraycache(-1, batchcount*shared, 0xbaadf00d);
- if (new_shared) {
- struct array_cache *old;
- spin_lock_irq(&cachep->spinlock);
- old = cachep->lists.shared;
- cachep->lists.shared = new_shared;
- if (old)
- free_block(cachep, ac_entry(old), old->avail);
- spin_unlock_irq(&cachep->spinlock);
- kfree(old);
- }
- return 0;
- }
- static void enable_cpucache(kmem_cache_t *cachep)
- {
- int err;
- int limit, shared;
- /* The head array serves three purposes:
- * - create a LIFO ordering, i.e. return objects that are cache-warm
- * - reduce the number of spinlock operations.
- * - reduce the number of linked list operations on the slab and
- * bufctl chains: array operations are cheaper.
- * The numbers are guessed, we should auto-tune as described by
- * Bonwick.
- */
- if (cachep->objsize > 131072)
- limit = 1;
- else if (cachep->objsize > PAGE_SIZE)
- limit = 8;
- else if (cachep->objsize > 1024)
- limit = 24;
- else if (cachep->objsize > 256)
- limit = 54;
- else
- limit = 120;
- /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
- * allocation behaviour: Most allocs on one cpu, most free operations
- * on another cpu. For these cases, an efficient object passing between
- * cpus is necessary. This is provided by a shared array. The array
- * replaces Bonwick's magazine layer.
- * On uniprocessor, it's functionally equivalent (but less efficient)
- * to a larger limit. Thus disabled by default.
- */
- shared = 0;
- #ifdef CONFIG_SMP
- if (cachep->objsize <= PAGE_SIZE)
- shared = 8;
- #endif
- #if DEBUG
- /* With debugging enabled, large batchcount lead to excessively
- * long periods with disabled local interrupts. Limit the
- * batchcount
- */
- if (limit > 32)
- limit = 32;
- #endif
- err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared);
- if (err)
- printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
- cachep->name, -err);
- }
- static void drain_array_locked(kmem_cache_t *cachep,
- struct array_cache *ac, int force)
- {
- int tofree;
- check_spinlock_acquired(cachep);
- if (ac->touched && !force) {
- ac->touched = 0;
- } else if (ac->avail) {
- tofree = force ? ac->avail : (ac->limit+4)/5;
- if (tofree > ac->avail) {
- tofree = (ac->avail+1)/2;
- }
- free_block(cachep, ac_entry(ac), tofree);
- ac->avail -= tofree;
- memmove(&ac_entry(ac)[0], &ac_entry(ac)[tofree],
- sizeof(void*)*ac->avail);
- }
- }
- /**
- * cache_reap - Reclaim memory from caches.
- *
- * Called from workqueue/eventd every few seconds.
- * Purpose:
- * - clear the per-cpu caches for this CPU.
- * - return freeable pages to the main free memory pool.
- *
- * If we cannot acquire the cache chain semaphore then just give up - we'll
- * try again on the next iteration.
- */
- static void cache_reap(void *unused)
- {
- struct list_head *walk;
- if (down_trylock(&cache_chain_sem)) {
- /* Give up. Setup the next iteration. */
- schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id());
- return;
- }
- list_for_each(walk, &cache_chain) {
- kmem_cache_t *searchp;
- struct list_head* p;
- int tofree;
- struct slab *slabp;
- searchp = list_entry(walk, kmem_cache_t, next);
- if (searchp->flags & SLAB_NO_REAP)
- goto next;
- check_irq_on();
- spin_lock_irq(&searchp->spinlock);
- drain_array_locked(searchp, ac_data(searchp), 0);
- if(time_after(searchp->lists.next_reap, jiffies))
- goto next_unlock;
- searchp->lists.next_reap = jiffies + REAPTIMEOUT_LIST3;
- if (searchp->lists.shared)
- drain_array_locked(searchp, searchp->lists.shared, 0);
- if (searchp->lists.free_touched) {
- searchp->lists.free_touched = 0;
- goto next_unlock;
- }
- tofree = (searchp->free_limit+5*searchp->num-1)/(5*searchp->num);
- do {
- p = list3_data(searchp)->slabs_free.next;
- if (p == &(list3_data(searchp)->slabs_free))
- break;
- slabp = list_entry(p, struct slab, list);
- BUG_ON(slabp->inuse);
- list_del(&slabp->list);
- STATS_INC_REAPED(searchp);
- /* Safe to drop the lock. The slab is no longer
- * linked to the cache.
- * searchp cannot disappear, we hold
- * cache_chain_lock
- */
- searchp->lists.free_objects -= searchp->num;
- spin_unlock_irq(&searchp->spinlock);
- slab_destroy(searchp, slabp);
- spin_lock_irq(&searchp->spinlock);
- } while(--tofree > 0);
- next_unlock:
- spin_unlock_irq(&searchp->spinlock);
- next:
- cond_resched();
- }
- check_irq_on();
- up(&cache_chain_sem);
- drain_remote_pages();
- /* Setup the next iteration */
- schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id());
- }
- #ifdef CONFIG_PROC_FS
- static void *s_start(struct seq_file *m, loff_t *pos)
- {
- loff_t n = *pos;
- struct list_head *p;
- down(&cache_chain_sem);
- if (!n) {
- /*
- * Output format version, so at least we can change it
- * without _too_ many complaints.
- */
- #if STATS
- seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
- #else
- seq_puts(m, "slabinfo - version: 2.1\n");
- #endif
- seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
- seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
- seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
- #if STATS
- seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped>"
- " <error> <maxfreeable> <freelimit> <nodeallocs>");
- seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
- #endif
- seq_putc(m, '\n');
- }
- p = cache_chain.next;
- while (n--) {
- p = p->next;
- if (p == &cache_chain)
- return NULL;
- }
- return list_entry(p, kmem_cache_t, next);
- }
- static void *s_next(struct seq_file *m, void *p, loff_t *pos)
- {
- kmem_cache_t *cachep = p;
- ++*pos;
- return cachep->next.next == &cache_chain ? NULL
- : list_entry(cachep->next.next, kmem_cache_t, next);
- }
- static void s_stop(struct seq_file *m, void *p)
- {
- up(&cache_chain_sem);
- }
- static int s_show(struct seq_file *m, void *p)
- {
- kmem_cache_t *cachep = p;
- struct list_head *q;
- struct slab *slabp;
- unsigned long active_objs;
- unsigned long num_objs;
- unsigned long active_slabs = 0;
- unsigned long num_slabs;
- const char *name;
- char *error = NULL;
- check_irq_on();
- spin_lock_irq(&cachep->spinlock);
- active_objs = 0;
- num_slabs = 0;
- list_for_each(q,&cachep->lists.slabs_full) {
- slabp = list_entry(q, struct slab, list);
- if (slabp->inuse != cachep->num && !error)
- error = "slabs_full accounting error";
- active_objs += cachep->num;
- active_slabs++;
- }
- list_for_each(q,&cachep->lists.slabs_partial) {
- slabp = list_entry(q, struct slab, list);
- if (slabp->inuse == cachep->num && !error)
- error = "slabs_partial inuse accounting error";
- if (!slabp->inuse && !error)
- error = "slabs_partial/inuse accounting error";
- active_objs += slabp->inuse;
- active_slabs++;
- }
- list_for_each(q,&cachep->lists.slabs_free) {
- slabp = list_entry(q, struct slab, list);
- if (slabp->inuse && !error)
- error = "slabs_free/inuse accounting error";
- num_slabs++;
- }
- num_slabs+=active_slabs;
- num_objs = num_slabs*cachep->num;
- if (num_objs - active_objs != cachep->lists.free_objects && !error)
- error = "free_objects accounting error";
- name = cachep->name;
- if (error)
- printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
- seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
- name, active_objs, num_objs, cachep->objsize,
- cachep->num, (1<<cachep->gfporder));
- seq_printf(m, " : tunables %4u %4u %4u",
- cachep->limit, cachep->batchcount,
- cachep->lists.shared->limit/cachep->batchcount);
- seq_printf(m, " : slabdata %6lu %6lu %6u",
- active_slabs, num_slabs, cachep->lists.shared->avail);
- #if STATS
- { /* list3 stats */
- unsigned long high = cachep->high_mark;
- unsigned long allocs = cachep->num_allocations;
- unsigned long grown = cachep->grown;
- unsigned long reaped = cachep->reaped;
- unsigned long errors = cachep->errors;
- unsigned long max_freeable = cachep->max_freeable;
- unsigned long free_limit = cachep->free_limit;
- unsigned long node_allocs = cachep->node_allocs;
- seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu",
- allocs, high, grown, reaped, errors,
- max_freeable, free_limit, node_allocs);
- }
- /* cpu stats */
- {
- unsigned long allochit = atomic_read(&cachep->allochit);
- unsigned long allocmiss = atomic_read(&cachep->allocmiss);
- unsigned long freehit = atomic_read(&cachep->freehit);
- unsigned long freemiss = atomic_read(&cachep->freemiss);
- seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
- allochit, allocmiss, freehit, freemiss);
- }
- #endif
- seq_putc(m, '\n');
- spin_unlock_irq(&cachep->spinlock);
- return 0;
- }
- /*
- * slabinfo_op - iterator that generates /proc/slabinfo
- *
- * Output layout:
- * cache-name
- * num-active-objs
- * total-objs
- * object size
- * num-active-slabs
- * total-slabs
- * num-pages-per-slab
- * + further values on SMP and with statistics enabled
- */
- struct seq_operations slabinfo_op = {
- .start = s_start,
- .next = s_next,
- .stop = s_stop,
- .show = s_show,
- };
- #define MAX_SLABINFO_WRITE 128
- /**
- * slabinfo_write - Tuning for the slab allocator
- * @file: unused
- * @buffer: user buffer
- * @count: data length
- * @ppos: unused
- */
- ssize_t slabinfo_write(struct file *file, const char __user *buffer,
- size_t count, loff_t *ppos)
- {
- char kbuf[MAX_SLABINFO_WRITE+1], *tmp;
- int limit, batchcount, shared, res;
- struct list_head *p;
-
- if (count > MAX_SLABINFO_WRITE)
- return -EINVAL;
- if (copy_from_user(&kbuf, buffer, count))
- return -EFAULT;
- kbuf[MAX_SLABINFO_WRITE] = '\0';
- tmp = strchr(kbuf, ' ');
- if (!tmp)
- return -EINVAL;
- *tmp = '\0';
- tmp++;
- if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
- return -EINVAL;
- /* Find the cache in the chain of caches. */
- down(&cache_chain_sem);
- res = -EINVAL;
- list_for_each(p,&cache_chain) {
- kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
- if (!strcmp(cachep->name, kbuf)) {
- if (limit < 1 ||
- batchcount < 1 ||
- batchcount > limit ||
- shared < 0) {
- res = -EINVAL;
- } else {
- res = do_tune_cpucache(cachep, limit, batchcount, shared);
- }
- break;
- }
- }
- up(&cache_chain_sem);
- if (res >= 0)
- res = count;
- return res;
- }
- #endif
- unsigned int ksize(const void *objp)
- {
- kmem_cache_t *c;
- unsigned long flags;
- unsigned int size = 0;
- if (likely(objp != NULL)) {
- local_irq_save(flags);
- c = GET_PAGE_CACHE(virt_to_page(objp));
- size = kmem_cache_size(c);
- local_irq_restore(flags);
- }
- return size;
- }
- /*
- * kstrdup - allocate space for and copy an existing string
- *
- * @s: the string to duplicate
- * @gfp: the GFP mask used in the kmalloc() call when allocating memory
- */
- char *kstrdup(const char *s, int gfp)
- {
- size_t len;
- char *buf;
- if (!s)
- return NULL;
- len = strlen(s) + 1;
- buf = kmalloc(len, gfp);
- if (buf)
- memcpy(buf, s, len);
- return buf;
- }
- EXPORT_SYMBOL(kstrdup);
|