page-writeback.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819
  1. /*
  2. * mm/page-writeback.c.
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. *
  6. * Contains functions related to writing back dirty pages at the
  7. * address_space level.
  8. *
  9. * 10Apr2002 akpm@zip.com.au
  10. * Initial version
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/spinlock.h>
  15. #include <linux/fs.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/slab.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/init.h>
  22. #include <linux/backing-dev.h>
  23. #include <linux/blkdev.h>
  24. #include <linux/mpage.h>
  25. #include <linux/percpu.h>
  26. #include <linux/notifier.h>
  27. #include <linux/smp.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/cpu.h>
  30. #include <linux/syscalls.h>
  31. /*
  32. * The maximum number of pages to writeout in a single bdflush/kupdate
  33. * operation. We do this so we don't hold I_LOCK against an inode for
  34. * enormous amounts of time, which would block a userspace task which has
  35. * been forced to throttle against that inode. Also, the code reevaluates
  36. * the dirty each time it has written this many pages.
  37. */
  38. #define MAX_WRITEBACK_PAGES 1024
  39. /*
  40. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  41. * will look to see if it needs to force writeback or throttling.
  42. */
  43. static long ratelimit_pages = 32;
  44. static long total_pages; /* The total number of pages in the machine. */
  45. static int dirty_exceeded; /* Dirty mem may be over limit */
  46. /*
  47. * When balance_dirty_pages decides that the caller needs to perform some
  48. * non-background writeback, this is how many pages it will attempt to write.
  49. * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
  50. * large amounts of I/O are submitted.
  51. */
  52. static inline long sync_writeback_pages(void)
  53. {
  54. return ratelimit_pages + ratelimit_pages / 2;
  55. }
  56. /* The following parameters are exported via /proc/sys/vm */
  57. /*
  58. * Start background writeback (via pdflush) at this percentage
  59. */
  60. int dirty_background_ratio = 10;
  61. /*
  62. * The generator of dirty data starts writeback at this percentage
  63. */
  64. int vm_dirty_ratio = 40;
  65. /*
  66. * The interval between `kupdate'-style writebacks, in centiseconds
  67. * (hundredths of a second)
  68. */
  69. int dirty_writeback_centisecs = 5 * 100;
  70. /*
  71. * The longest number of centiseconds for which data is allowed to remain dirty
  72. */
  73. int dirty_expire_centisecs = 30 * 100;
  74. /*
  75. * Flag that makes the machine dump writes/reads and block dirtyings.
  76. */
  77. int block_dump;
  78. /*
  79. * Flag that puts the machine in "laptop mode".
  80. */
  81. int laptop_mode;
  82. EXPORT_SYMBOL(laptop_mode);
  83. /* End of sysctl-exported parameters */
  84. static void background_writeout(unsigned long _min_pages);
  85. struct writeback_state
  86. {
  87. unsigned long nr_dirty;
  88. unsigned long nr_unstable;
  89. unsigned long nr_mapped;
  90. unsigned long nr_writeback;
  91. };
  92. static void get_writeback_state(struct writeback_state *wbs)
  93. {
  94. wbs->nr_dirty = read_page_state(nr_dirty);
  95. wbs->nr_unstable = read_page_state(nr_unstable);
  96. wbs->nr_mapped = read_page_state(nr_mapped);
  97. wbs->nr_writeback = read_page_state(nr_writeback);
  98. }
  99. /*
  100. * Work out the current dirty-memory clamping and background writeout
  101. * thresholds.
  102. *
  103. * The main aim here is to lower them aggressively if there is a lot of mapped
  104. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  105. * pages. It is better to clamp down on writers than to start swapping, and
  106. * performing lots of scanning.
  107. *
  108. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  109. *
  110. * We don't permit the clamping level to fall below 5% - that is getting rather
  111. * excessive.
  112. *
  113. * We make sure that the background writeout level is below the adjusted
  114. * clamping level.
  115. */
  116. static void
  117. get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty,
  118. struct address_space *mapping)
  119. {
  120. int background_ratio; /* Percentages */
  121. int dirty_ratio;
  122. int unmapped_ratio;
  123. long background;
  124. long dirty;
  125. unsigned long available_memory = total_pages;
  126. struct task_struct *tsk;
  127. get_writeback_state(wbs);
  128. #ifdef CONFIG_HIGHMEM
  129. /*
  130. * If this mapping can only allocate from low memory,
  131. * we exclude high memory from our count.
  132. */
  133. if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM))
  134. available_memory -= totalhigh_pages;
  135. #endif
  136. unmapped_ratio = 100 - (wbs->nr_mapped * 100) / total_pages;
  137. dirty_ratio = vm_dirty_ratio;
  138. if (dirty_ratio > unmapped_ratio / 2)
  139. dirty_ratio = unmapped_ratio / 2;
  140. if (dirty_ratio < 5)
  141. dirty_ratio = 5;
  142. background_ratio = dirty_background_ratio;
  143. if (background_ratio >= dirty_ratio)
  144. background_ratio = dirty_ratio / 2;
  145. background = (background_ratio * available_memory) / 100;
  146. dirty = (dirty_ratio * available_memory) / 100;
  147. tsk = current;
  148. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  149. background += background / 4;
  150. dirty += dirty / 4;
  151. }
  152. *pbackground = background;
  153. *pdirty = dirty;
  154. }
  155. /*
  156. * balance_dirty_pages() must be called by processes which are generating dirty
  157. * data. It looks at the number of dirty pages in the machine and will force
  158. * the caller to perform writeback if the system is over `vm_dirty_ratio'.
  159. * If we're over `background_thresh' then pdflush is woken to perform some
  160. * writeout.
  161. */
  162. static void balance_dirty_pages(struct address_space *mapping)
  163. {
  164. struct writeback_state wbs;
  165. long nr_reclaimable;
  166. long background_thresh;
  167. long dirty_thresh;
  168. unsigned long pages_written = 0;
  169. unsigned long write_chunk = sync_writeback_pages();
  170. struct backing_dev_info *bdi = mapping->backing_dev_info;
  171. for (;;) {
  172. struct writeback_control wbc = {
  173. .bdi = bdi,
  174. .sync_mode = WB_SYNC_NONE,
  175. .older_than_this = NULL,
  176. .nr_to_write = write_chunk,
  177. };
  178. get_dirty_limits(&wbs, &background_thresh,
  179. &dirty_thresh, mapping);
  180. nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
  181. if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
  182. break;
  183. dirty_exceeded = 1;
  184. /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
  185. * Unstable writes are a feature of certain networked
  186. * filesystems (i.e. NFS) in which data may have been
  187. * written to the server's write cache, but has not yet
  188. * been flushed to permanent storage.
  189. */
  190. if (nr_reclaimable) {
  191. writeback_inodes(&wbc);
  192. get_dirty_limits(&wbs, &background_thresh,
  193. &dirty_thresh, mapping);
  194. nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
  195. if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
  196. break;
  197. pages_written += write_chunk - wbc.nr_to_write;
  198. if (pages_written >= write_chunk)
  199. break; /* We've done our duty */
  200. }
  201. blk_congestion_wait(WRITE, HZ/10);
  202. }
  203. if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
  204. dirty_exceeded = 0;
  205. if (writeback_in_progress(bdi))
  206. return; /* pdflush is already working this queue */
  207. /*
  208. * In laptop mode, we wait until hitting the higher threshold before
  209. * starting background writeout, and then write out all the way down
  210. * to the lower threshold. So slow writers cause minimal disk activity.
  211. *
  212. * In normal mode, we start background writeout at the lower
  213. * background_thresh, to keep the amount of dirty memory low.
  214. */
  215. if ((laptop_mode && pages_written) ||
  216. (!laptop_mode && (nr_reclaimable > background_thresh)))
  217. pdflush_operation(background_writeout, 0);
  218. }
  219. /**
  220. * balance_dirty_pages_ratelimited - balance dirty memory state
  221. * @mapping: address_space which was dirtied
  222. *
  223. * Processes which are dirtying memory should call in here once for each page
  224. * which was newly dirtied. The function will periodically check the system's
  225. * dirty state and will initiate writeback if needed.
  226. *
  227. * On really big machines, get_writeback_state is expensive, so try to avoid
  228. * calling it too often (ratelimiting). But once we're over the dirty memory
  229. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  230. * from overshooting the limit by (ratelimit_pages) each.
  231. */
  232. void balance_dirty_pages_ratelimited(struct address_space *mapping)
  233. {
  234. static DEFINE_PER_CPU(int, ratelimits) = 0;
  235. long ratelimit;
  236. ratelimit = ratelimit_pages;
  237. if (dirty_exceeded)
  238. ratelimit = 8;
  239. /*
  240. * Check the rate limiting. Also, we do not want to throttle real-time
  241. * tasks in balance_dirty_pages(). Period.
  242. */
  243. if (get_cpu_var(ratelimits)++ >= ratelimit) {
  244. __get_cpu_var(ratelimits) = 0;
  245. put_cpu_var(ratelimits);
  246. balance_dirty_pages(mapping);
  247. return;
  248. }
  249. put_cpu_var(ratelimits);
  250. }
  251. EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
  252. void throttle_vm_writeout(void)
  253. {
  254. struct writeback_state wbs;
  255. long background_thresh;
  256. long dirty_thresh;
  257. for ( ; ; ) {
  258. get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
  259. /*
  260. * Boost the allowable dirty threshold a bit for page
  261. * allocators so they don't get DoS'ed by heavy writers
  262. */
  263. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  264. if (wbs.nr_unstable + wbs.nr_writeback <= dirty_thresh)
  265. break;
  266. blk_congestion_wait(WRITE, HZ/10);
  267. }
  268. }
  269. /*
  270. * writeback at least _min_pages, and keep writing until the amount of dirty
  271. * memory is less than the background threshold, or until we're all clean.
  272. */
  273. static void background_writeout(unsigned long _min_pages)
  274. {
  275. long min_pages = _min_pages;
  276. struct writeback_control wbc = {
  277. .bdi = NULL,
  278. .sync_mode = WB_SYNC_NONE,
  279. .older_than_this = NULL,
  280. .nr_to_write = 0,
  281. .nonblocking = 1,
  282. };
  283. for ( ; ; ) {
  284. struct writeback_state wbs;
  285. long background_thresh;
  286. long dirty_thresh;
  287. get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
  288. if (wbs.nr_dirty + wbs.nr_unstable < background_thresh
  289. && min_pages <= 0)
  290. break;
  291. wbc.encountered_congestion = 0;
  292. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  293. wbc.pages_skipped = 0;
  294. writeback_inodes(&wbc);
  295. min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  296. if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
  297. /* Wrote less than expected */
  298. blk_congestion_wait(WRITE, HZ/10);
  299. if (!wbc.encountered_congestion)
  300. break;
  301. }
  302. }
  303. }
  304. /*
  305. * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
  306. * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
  307. * -1 if all pdflush threads were busy.
  308. */
  309. int wakeup_pdflush(long nr_pages)
  310. {
  311. if (nr_pages == 0) {
  312. struct writeback_state wbs;
  313. get_writeback_state(&wbs);
  314. nr_pages = wbs.nr_dirty + wbs.nr_unstable;
  315. }
  316. return pdflush_operation(background_writeout, nr_pages);
  317. }
  318. static void wb_timer_fn(unsigned long unused);
  319. static void laptop_timer_fn(unsigned long unused);
  320. static struct timer_list wb_timer =
  321. TIMER_INITIALIZER(wb_timer_fn, 0, 0);
  322. static struct timer_list laptop_mode_wb_timer =
  323. TIMER_INITIALIZER(laptop_timer_fn, 0, 0);
  324. /*
  325. * Periodic writeback of "old" data.
  326. *
  327. * Define "old": the first time one of an inode's pages is dirtied, we mark the
  328. * dirtying-time in the inode's address_space. So this periodic writeback code
  329. * just walks the superblock inode list, writing back any inodes which are
  330. * older than a specific point in time.
  331. *
  332. * Try to run once per dirty_writeback_centisecs. But if a writeback event
  333. * takes longer than a dirty_writeback_centisecs interval, then leave a
  334. * one-second gap.
  335. *
  336. * older_than_this takes precedence over nr_to_write. So we'll only write back
  337. * all dirty pages if they are all attached to "old" mappings.
  338. */
  339. static void wb_kupdate(unsigned long arg)
  340. {
  341. unsigned long oldest_jif;
  342. unsigned long start_jif;
  343. unsigned long next_jif;
  344. long nr_to_write;
  345. struct writeback_state wbs;
  346. struct writeback_control wbc = {
  347. .bdi = NULL,
  348. .sync_mode = WB_SYNC_NONE,
  349. .older_than_this = &oldest_jif,
  350. .nr_to_write = 0,
  351. .nonblocking = 1,
  352. .for_kupdate = 1,
  353. };
  354. sync_supers();
  355. get_writeback_state(&wbs);
  356. oldest_jif = jiffies - (dirty_expire_centisecs * HZ) / 100;
  357. start_jif = jiffies;
  358. next_jif = start_jif + (dirty_writeback_centisecs * HZ) / 100;
  359. nr_to_write = wbs.nr_dirty + wbs.nr_unstable +
  360. (inodes_stat.nr_inodes - inodes_stat.nr_unused);
  361. while (nr_to_write > 0) {
  362. wbc.encountered_congestion = 0;
  363. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  364. writeback_inodes(&wbc);
  365. if (wbc.nr_to_write > 0) {
  366. if (wbc.encountered_congestion)
  367. blk_congestion_wait(WRITE, HZ/10);
  368. else
  369. break; /* All the old data is written */
  370. }
  371. nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  372. }
  373. if (time_before(next_jif, jiffies + HZ))
  374. next_jif = jiffies + HZ;
  375. if (dirty_writeback_centisecs)
  376. mod_timer(&wb_timer, next_jif);
  377. }
  378. /*
  379. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  380. */
  381. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  382. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  383. {
  384. proc_dointvec(table, write, file, buffer, length, ppos);
  385. if (dirty_writeback_centisecs) {
  386. mod_timer(&wb_timer,
  387. jiffies + (dirty_writeback_centisecs * HZ) / 100);
  388. } else {
  389. del_timer(&wb_timer);
  390. }
  391. return 0;
  392. }
  393. static void wb_timer_fn(unsigned long unused)
  394. {
  395. if (pdflush_operation(wb_kupdate, 0) < 0)
  396. mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
  397. }
  398. static void laptop_flush(unsigned long unused)
  399. {
  400. sys_sync();
  401. }
  402. static void laptop_timer_fn(unsigned long unused)
  403. {
  404. pdflush_operation(laptop_flush, 0);
  405. }
  406. /*
  407. * We've spun up the disk and we're in laptop mode: schedule writeback
  408. * of all dirty data a few seconds from now. If the flush is already scheduled
  409. * then push it back - the user is still using the disk.
  410. */
  411. void laptop_io_completion(void)
  412. {
  413. mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode * HZ);
  414. }
  415. /*
  416. * We're in laptop mode and we've just synced. The sync's writes will have
  417. * caused another writeback to be scheduled by laptop_io_completion.
  418. * Nothing needs to be written back anymore, so we unschedule the writeback.
  419. */
  420. void laptop_sync_completion(void)
  421. {
  422. del_timer(&laptop_mode_wb_timer);
  423. }
  424. /*
  425. * If ratelimit_pages is too high then we can get into dirty-data overload
  426. * if a large number of processes all perform writes at the same time.
  427. * If it is too low then SMP machines will call the (expensive)
  428. * get_writeback_state too often.
  429. *
  430. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  431. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  432. * thresholds before writeback cuts in.
  433. *
  434. * But the limit should not be set too high. Because it also controls the
  435. * amount of memory which the balance_dirty_pages() caller has to write back.
  436. * If this is too large then the caller will block on the IO queue all the
  437. * time. So limit it to four megabytes - the balance_dirty_pages() caller
  438. * will write six megabyte chunks, max.
  439. */
  440. static void set_ratelimit(void)
  441. {
  442. ratelimit_pages = total_pages / (num_online_cpus() * 32);
  443. if (ratelimit_pages < 16)
  444. ratelimit_pages = 16;
  445. if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
  446. ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
  447. }
  448. static int
  449. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  450. {
  451. set_ratelimit();
  452. return 0;
  453. }
  454. static struct notifier_block ratelimit_nb = {
  455. .notifier_call = ratelimit_handler,
  456. .next = NULL,
  457. };
  458. /*
  459. * If the machine has a large highmem:lowmem ratio then scale back the default
  460. * dirty memory thresholds: allowing too much dirty highmem pins an excessive
  461. * number of buffer_heads.
  462. */
  463. void __init page_writeback_init(void)
  464. {
  465. long buffer_pages = nr_free_buffer_pages();
  466. long correction;
  467. total_pages = nr_free_pagecache_pages();
  468. correction = (100 * 4 * buffer_pages) / total_pages;
  469. if (correction < 100) {
  470. dirty_background_ratio *= correction;
  471. dirty_background_ratio /= 100;
  472. vm_dirty_ratio *= correction;
  473. vm_dirty_ratio /= 100;
  474. if (dirty_background_ratio <= 0)
  475. dirty_background_ratio = 1;
  476. if (vm_dirty_ratio <= 0)
  477. vm_dirty_ratio = 1;
  478. }
  479. mod_timer(&wb_timer, jiffies + (dirty_writeback_centisecs * HZ) / 100);
  480. set_ratelimit();
  481. register_cpu_notifier(&ratelimit_nb);
  482. }
  483. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  484. {
  485. if (wbc->nr_to_write <= 0)
  486. return 0;
  487. if (mapping->a_ops->writepages)
  488. return mapping->a_ops->writepages(mapping, wbc);
  489. return generic_writepages(mapping, wbc);
  490. }
  491. /**
  492. * write_one_page - write out a single page and optionally wait on I/O
  493. *
  494. * @page: the page to write
  495. * @wait: if true, wait on writeout
  496. *
  497. * The page must be locked by the caller and will be unlocked upon return.
  498. *
  499. * write_one_page() returns a negative error code if I/O failed.
  500. */
  501. int write_one_page(struct page *page, int wait)
  502. {
  503. struct address_space *mapping = page->mapping;
  504. int ret = 0;
  505. struct writeback_control wbc = {
  506. .sync_mode = WB_SYNC_ALL,
  507. .nr_to_write = 1,
  508. };
  509. BUG_ON(!PageLocked(page));
  510. if (wait)
  511. wait_on_page_writeback(page);
  512. if (clear_page_dirty_for_io(page)) {
  513. page_cache_get(page);
  514. ret = mapping->a_ops->writepage(page, &wbc);
  515. if (ret == 0 && wait) {
  516. wait_on_page_writeback(page);
  517. if (PageError(page))
  518. ret = -EIO;
  519. }
  520. page_cache_release(page);
  521. } else {
  522. unlock_page(page);
  523. }
  524. return ret;
  525. }
  526. EXPORT_SYMBOL(write_one_page);
  527. /*
  528. * For address_spaces which do not use buffers. Just tag the page as dirty in
  529. * its radix tree.
  530. *
  531. * This is also used when a single buffer is being dirtied: we want to set the
  532. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  533. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  534. *
  535. * Most callers have locked the page, which pins the address_space in memory.
  536. * But zap_pte_range() does not lock the page, however in that case the
  537. * mapping is pinned by the vma's ->vm_file reference.
  538. *
  539. * We take care to handle the case where the page was truncated from the
  540. * mapping by re-checking page_mapping() insode tree_lock.
  541. */
  542. int __set_page_dirty_nobuffers(struct page *page)
  543. {
  544. int ret = 0;
  545. if (!TestSetPageDirty(page)) {
  546. struct address_space *mapping = page_mapping(page);
  547. struct address_space *mapping2;
  548. if (mapping) {
  549. write_lock_irq(&mapping->tree_lock);
  550. mapping2 = page_mapping(page);
  551. if (mapping2) { /* Race with truncate? */
  552. BUG_ON(mapping2 != mapping);
  553. if (mapping_cap_account_dirty(mapping))
  554. inc_page_state(nr_dirty);
  555. radix_tree_tag_set(&mapping->page_tree,
  556. page_index(page), PAGECACHE_TAG_DIRTY);
  557. }
  558. write_unlock_irq(&mapping->tree_lock);
  559. if (mapping->host) {
  560. /* !PageAnon && !swapper_space */
  561. __mark_inode_dirty(mapping->host,
  562. I_DIRTY_PAGES);
  563. }
  564. }
  565. }
  566. return ret;
  567. }
  568. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  569. /*
  570. * When a writepage implementation decides that it doesn't want to write this
  571. * page for some reason, it should redirty the locked page via
  572. * redirty_page_for_writepage() and it should then unlock the page and return 0
  573. */
  574. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  575. {
  576. wbc->pages_skipped++;
  577. return __set_page_dirty_nobuffers(page);
  578. }
  579. EXPORT_SYMBOL(redirty_page_for_writepage);
  580. /*
  581. * If the mapping doesn't provide a set_page_dirty a_op, then
  582. * just fall through and assume that it wants buffer_heads.
  583. */
  584. int fastcall set_page_dirty(struct page *page)
  585. {
  586. struct address_space *mapping = page_mapping(page);
  587. if (likely(mapping)) {
  588. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  589. if (spd)
  590. return (*spd)(page);
  591. return __set_page_dirty_buffers(page);
  592. }
  593. if (!PageDirty(page))
  594. SetPageDirty(page);
  595. return 0;
  596. }
  597. EXPORT_SYMBOL(set_page_dirty);
  598. /*
  599. * set_page_dirty() is racy if the caller has no reference against
  600. * page->mapping->host, and if the page is unlocked. This is because another
  601. * CPU could truncate the page off the mapping and then free the mapping.
  602. *
  603. * Usually, the page _is_ locked, or the caller is a user-space process which
  604. * holds a reference on the inode by having an open file.
  605. *
  606. * In other cases, the page should be locked before running set_page_dirty().
  607. */
  608. int set_page_dirty_lock(struct page *page)
  609. {
  610. int ret;
  611. lock_page(page);
  612. ret = set_page_dirty(page);
  613. unlock_page(page);
  614. return ret;
  615. }
  616. EXPORT_SYMBOL(set_page_dirty_lock);
  617. /*
  618. * Clear a page's dirty flag, while caring for dirty memory accounting.
  619. * Returns true if the page was previously dirty.
  620. */
  621. int test_clear_page_dirty(struct page *page)
  622. {
  623. struct address_space *mapping = page_mapping(page);
  624. unsigned long flags;
  625. if (mapping) {
  626. write_lock_irqsave(&mapping->tree_lock, flags);
  627. if (TestClearPageDirty(page)) {
  628. radix_tree_tag_clear(&mapping->page_tree,
  629. page_index(page),
  630. PAGECACHE_TAG_DIRTY);
  631. write_unlock_irqrestore(&mapping->tree_lock, flags);
  632. if (mapping_cap_account_dirty(mapping))
  633. dec_page_state(nr_dirty);
  634. return 1;
  635. }
  636. write_unlock_irqrestore(&mapping->tree_lock, flags);
  637. return 0;
  638. }
  639. return TestClearPageDirty(page);
  640. }
  641. EXPORT_SYMBOL(test_clear_page_dirty);
  642. /*
  643. * Clear a page's dirty flag, while caring for dirty memory accounting.
  644. * Returns true if the page was previously dirty.
  645. *
  646. * This is for preparing to put the page under writeout. We leave the page
  647. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  648. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  649. * implementation will run either set_page_writeback() or set_page_dirty(),
  650. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  651. * back into sync.
  652. *
  653. * This incoherency between the page's dirty flag and radix-tree tag is
  654. * unfortunate, but it only exists while the page is locked.
  655. */
  656. int clear_page_dirty_for_io(struct page *page)
  657. {
  658. struct address_space *mapping = page_mapping(page);
  659. if (mapping) {
  660. if (TestClearPageDirty(page)) {
  661. if (mapping_cap_account_dirty(mapping))
  662. dec_page_state(nr_dirty);
  663. return 1;
  664. }
  665. return 0;
  666. }
  667. return TestClearPageDirty(page);
  668. }
  669. EXPORT_SYMBOL(clear_page_dirty_for_io);
  670. int test_clear_page_writeback(struct page *page)
  671. {
  672. struct address_space *mapping = page_mapping(page);
  673. int ret;
  674. if (mapping) {
  675. unsigned long flags;
  676. write_lock_irqsave(&mapping->tree_lock, flags);
  677. ret = TestClearPageWriteback(page);
  678. if (ret)
  679. radix_tree_tag_clear(&mapping->page_tree,
  680. page_index(page),
  681. PAGECACHE_TAG_WRITEBACK);
  682. write_unlock_irqrestore(&mapping->tree_lock, flags);
  683. } else {
  684. ret = TestClearPageWriteback(page);
  685. }
  686. return ret;
  687. }
  688. int test_set_page_writeback(struct page *page)
  689. {
  690. struct address_space *mapping = page_mapping(page);
  691. int ret;
  692. if (mapping) {
  693. unsigned long flags;
  694. write_lock_irqsave(&mapping->tree_lock, flags);
  695. ret = TestSetPageWriteback(page);
  696. if (!ret)
  697. radix_tree_tag_set(&mapping->page_tree,
  698. page_index(page),
  699. PAGECACHE_TAG_WRITEBACK);
  700. if (!PageDirty(page))
  701. radix_tree_tag_clear(&mapping->page_tree,
  702. page_index(page),
  703. PAGECACHE_TAG_DIRTY);
  704. write_unlock_irqrestore(&mapping->tree_lock, flags);
  705. } else {
  706. ret = TestSetPageWriteback(page);
  707. }
  708. return ret;
  709. }
  710. EXPORT_SYMBOL(test_set_page_writeback);
  711. /*
  712. * Return true if any of the pages in the mapping are marged with the
  713. * passed tag.
  714. */
  715. int mapping_tagged(struct address_space *mapping, int tag)
  716. {
  717. unsigned long flags;
  718. int ret;
  719. read_lock_irqsave(&mapping->tree_lock, flags);
  720. ret = radix_tree_tagged(&mapping->page_tree, tag);
  721. read_unlock_irqrestore(&mapping->tree_lock, flags);
  722. return ret;
  723. }
  724. EXPORT_SYMBOL(mapping_tagged);