bootmem.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413
  1. /*
  2. * linux/mm/bootmem.c
  3. *
  4. * Copyright (C) 1999 Ingo Molnar
  5. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  6. *
  7. * simple boot-time physical memory area allocator and
  8. * free memory collector. It's used to deal with reserved
  9. * system memory and memory holes as well.
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/kernel_stat.h>
  13. #include <linux/swap.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/init.h>
  16. #include <linux/bootmem.h>
  17. #include <linux/mmzone.h>
  18. #include <linux/module.h>
  19. #include <asm/dma.h>
  20. #include <asm/io.h>
  21. #include "internal.h"
  22. /*
  23. * Access to this subsystem has to be serialized externally. (this is
  24. * true for the boot process anyway)
  25. */
  26. unsigned long max_low_pfn;
  27. unsigned long min_low_pfn;
  28. unsigned long max_pfn;
  29. EXPORT_SYMBOL(max_pfn); /* This is exported so
  30. * dma_get_required_mask(), which uses
  31. * it, can be an inline function */
  32. #ifdef CONFIG_CRASH_DUMP
  33. /*
  34. * If we have booted due to a crash, max_pfn will be a very low value. We need
  35. * to know the amount of memory that the previous kernel used.
  36. */
  37. unsigned long saved_max_pfn;
  38. #endif
  39. /* return the number of _pages_ that will be allocated for the boot bitmap */
  40. unsigned long __init bootmem_bootmap_pages (unsigned long pages)
  41. {
  42. unsigned long mapsize;
  43. mapsize = (pages+7)/8;
  44. mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK;
  45. mapsize >>= PAGE_SHIFT;
  46. return mapsize;
  47. }
  48. /*
  49. * Called once to set up the allocator itself.
  50. */
  51. static unsigned long __init init_bootmem_core (pg_data_t *pgdat,
  52. unsigned long mapstart, unsigned long start, unsigned long end)
  53. {
  54. bootmem_data_t *bdata = pgdat->bdata;
  55. unsigned long mapsize = ((end - start)+7)/8;
  56. pgdat->pgdat_next = pgdat_list;
  57. pgdat_list = pgdat;
  58. mapsize = ALIGN(mapsize, sizeof(long));
  59. bdata->node_bootmem_map = phys_to_virt(mapstart << PAGE_SHIFT);
  60. bdata->node_boot_start = (start << PAGE_SHIFT);
  61. bdata->node_low_pfn = end;
  62. /*
  63. * Initially all pages are reserved - setup_arch() has to
  64. * register free RAM areas explicitly.
  65. */
  66. memset(bdata->node_bootmem_map, 0xff, mapsize);
  67. return mapsize;
  68. }
  69. /*
  70. * Marks a particular physical memory range as unallocatable. Usable RAM
  71. * might be used for boot-time allocations - or it might get added
  72. * to the free page pool later on.
  73. */
  74. static void __init reserve_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size)
  75. {
  76. unsigned long i;
  77. /*
  78. * round up, partially reserved pages are considered
  79. * fully reserved.
  80. */
  81. unsigned long sidx = (addr - bdata->node_boot_start)/PAGE_SIZE;
  82. unsigned long eidx = (addr + size - bdata->node_boot_start +
  83. PAGE_SIZE-1)/PAGE_SIZE;
  84. unsigned long end = (addr + size + PAGE_SIZE-1)/PAGE_SIZE;
  85. BUG_ON(!size);
  86. BUG_ON(sidx >= eidx);
  87. BUG_ON((addr >> PAGE_SHIFT) >= bdata->node_low_pfn);
  88. BUG_ON(end > bdata->node_low_pfn);
  89. for (i = sidx; i < eidx; i++)
  90. if (test_and_set_bit(i, bdata->node_bootmem_map)) {
  91. #ifdef CONFIG_DEBUG_BOOTMEM
  92. printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE);
  93. #endif
  94. }
  95. }
  96. static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size)
  97. {
  98. unsigned long i;
  99. unsigned long start;
  100. /*
  101. * round down end of usable mem, partially free pages are
  102. * considered reserved.
  103. */
  104. unsigned long sidx;
  105. unsigned long eidx = (addr + size - bdata->node_boot_start)/PAGE_SIZE;
  106. unsigned long end = (addr + size)/PAGE_SIZE;
  107. BUG_ON(!size);
  108. BUG_ON(end > bdata->node_low_pfn);
  109. if (addr < bdata->last_success)
  110. bdata->last_success = addr;
  111. /*
  112. * Round up the beginning of the address.
  113. */
  114. start = (addr + PAGE_SIZE-1) / PAGE_SIZE;
  115. sidx = start - (bdata->node_boot_start/PAGE_SIZE);
  116. for (i = sidx; i < eidx; i++) {
  117. if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map)))
  118. BUG();
  119. }
  120. }
  121. /*
  122. * We 'merge' subsequent allocations to save space. We might 'lose'
  123. * some fraction of a page if allocations cannot be satisfied due to
  124. * size constraints on boxes where there is physical RAM space
  125. * fragmentation - in these cases (mostly large memory boxes) this
  126. * is not a problem.
  127. *
  128. * On low memory boxes we get it right in 100% of the cases.
  129. *
  130. * alignment has to be a power of 2 value.
  131. *
  132. * NOTE: This function is _not_ reentrant.
  133. */
  134. static void * __init
  135. __alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size,
  136. unsigned long align, unsigned long goal)
  137. {
  138. unsigned long offset, remaining_size, areasize, preferred;
  139. unsigned long i, start = 0, incr, eidx;
  140. void *ret;
  141. if(!size) {
  142. printk("__alloc_bootmem_core(): zero-sized request\n");
  143. BUG();
  144. }
  145. BUG_ON(align & (align-1));
  146. eidx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT);
  147. offset = 0;
  148. if (align &&
  149. (bdata->node_boot_start & (align - 1UL)) != 0)
  150. offset = (align - (bdata->node_boot_start & (align - 1UL)));
  151. offset >>= PAGE_SHIFT;
  152. /*
  153. * We try to allocate bootmem pages above 'goal'
  154. * first, then we try to allocate lower pages.
  155. */
  156. if (goal && (goal >= bdata->node_boot_start) &&
  157. ((goal >> PAGE_SHIFT) < bdata->node_low_pfn)) {
  158. preferred = goal - bdata->node_boot_start;
  159. if (bdata->last_success >= preferred)
  160. preferred = bdata->last_success;
  161. } else
  162. preferred = 0;
  163. preferred = ALIGN(preferred, align) >> PAGE_SHIFT;
  164. preferred += offset;
  165. areasize = (size+PAGE_SIZE-1)/PAGE_SIZE;
  166. incr = align >> PAGE_SHIFT ? : 1;
  167. restart_scan:
  168. for (i = preferred; i < eidx; i += incr) {
  169. unsigned long j;
  170. i = find_next_zero_bit(bdata->node_bootmem_map, eidx, i);
  171. i = ALIGN(i, incr);
  172. if (test_bit(i, bdata->node_bootmem_map))
  173. continue;
  174. for (j = i + 1; j < i + areasize; ++j) {
  175. if (j >= eidx)
  176. goto fail_block;
  177. if (test_bit (j, bdata->node_bootmem_map))
  178. goto fail_block;
  179. }
  180. start = i;
  181. goto found;
  182. fail_block:
  183. i = ALIGN(j, incr);
  184. }
  185. if (preferred > offset) {
  186. preferred = offset;
  187. goto restart_scan;
  188. }
  189. return NULL;
  190. found:
  191. bdata->last_success = start << PAGE_SHIFT;
  192. BUG_ON(start >= eidx);
  193. /*
  194. * Is the next page of the previous allocation-end the start
  195. * of this allocation's buffer? If yes then we can 'merge'
  196. * the previous partial page with this allocation.
  197. */
  198. if (align < PAGE_SIZE &&
  199. bdata->last_offset && bdata->last_pos+1 == start) {
  200. offset = ALIGN(bdata->last_offset, align);
  201. BUG_ON(offset > PAGE_SIZE);
  202. remaining_size = PAGE_SIZE-offset;
  203. if (size < remaining_size) {
  204. areasize = 0;
  205. /* last_pos unchanged */
  206. bdata->last_offset = offset+size;
  207. ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +
  208. bdata->node_boot_start);
  209. } else {
  210. remaining_size = size - remaining_size;
  211. areasize = (remaining_size+PAGE_SIZE-1)/PAGE_SIZE;
  212. ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +
  213. bdata->node_boot_start);
  214. bdata->last_pos = start+areasize-1;
  215. bdata->last_offset = remaining_size;
  216. }
  217. bdata->last_offset &= ~PAGE_MASK;
  218. } else {
  219. bdata->last_pos = start + areasize - 1;
  220. bdata->last_offset = size & ~PAGE_MASK;
  221. ret = phys_to_virt(start * PAGE_SIZE + bdata->node_boot_start);
  222. }
  223. /*
  224. * Reserve the area now:
  225. */
  226. for (i = start; i < start+areasize; i++)
  227. if (unlikely(test_and_set_bit(i, bdata->node_bootmem_map)))
  228. BUG();
  229. memset(ret, 0, size);
  230. return ret;
  231. }
  232. static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)
  233. {
  234. struct page *page;
  235. unsigned long pfn;
  236. bootmem_data_t *bdata = pgdat->bdata;
  237. unsigned long i, count, total = 0;
  238. unsigned long idx;
  239. unsigned long *map;
  240. int gofast = 0;
  241. BUG_ON(!bdata->node_bootmem_map);
  242. count = 0;
  243. /* first extant page of the node */
  244. pfn = bdata->node_boot_start >> PAGE_SHIFT;
  245. idx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT);
  246. map = bdata->node_bootmem_map;
  247. /* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */
  248. if (bdata->node_boot_start == 0 ||
  249. ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG))
  250. gofast = 1;
  251. for (i = 0; i < idx; ) {
  252. unsigned long v = ~map[i / BITS_PER_LONG];
  253. if (gofast && v == ~0UL) {
  254. int j, order;
  255. page = pfn_to_page(pfn);
  256. count += BITS_PER_LONG;
  257. __ClearPageReserved(page);
  258. order = ffs(BITS_PER_LONG) - 1;
  259. set_page_refs(page, order);
  260. for (j = 1; j < BITS_PER_LONG; j++) {
  261. if (j + 16 < BITS_PER_LONG)
  262. prefetchw(page + j + 16);
  263. __ClearPageReserved(page + j);
  264. }
  265. __free_pages(page, order);
  266. i += BITS_PER_LONG;
  267. page += BITS_PER_LONG;
  268. } else if (v) {
  269. unsigned long m;
  270. page = pfn_to_page(pfn);
  271. for (m = 1; m && i < idx; m<<=1, page++, i++) {
  272. if (v & m) {
  273. count++;
  274. __ClearPageReserved(page);
  275. set_page_refs(page, 0);
  276. __free_page(page);
  277. }
  278. }
  279. } else {
  280. i+=BITS_PER_LONG;
  281. }
  282. pfn += BITS_PER_LONG;
  283. }
  284. total += count;
  285. /*
  286. * Now free the allocator bitmap itself, it's not
  287. * needed anymore:
  288. */
  289. page = virt_to_page(bdata->node_bootmem_map);
  290. count = 0;
  291. for (i = 0; i < ((bdata->node_low_pfn-(bdata->node_boot_start >> PAGE_SHIFT))/8 + PAGE_SIZE-1)/PAGE_SIZE; i++,page++) {
  292. count++;
  293. __ClearPageReserved(page);
  294. set_page_count(page, 1);
  295. __free_page(page);
  296. }
  297. total += count;
  298. bdata->node_bootmem_map = NULL;
  299. return total;
  300. }
  301. unsigned long __init init_bootmem_node (pg_data_t *pgdat, unsigned long freepfn, unsigned long startpfn, unsigned long endpfn)
  302. {
  303. return(init_bootmem_core(pgdat, freepfn, startpfn, endpfn));
  304. }
  305. void __init reserve_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size)
  306. {
  307. reserve_bootmem_core(pgdat->bdata, physaddr, size);
  308. }
  309. void __init free_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size)
  310. {
  311. free_bootmem_core(pgdat->bdata, physaddr, size);
  312. }
  313. unsigned long __init free_all_bootmem_node (pg_data_t *pgdat)
  314. {
  315. return(free_all_bootmem_core(pgdat));
  316. }
  317. unsigned long __init init_bootmem (unsigned long start, unsigned long pages)
  318. {
  319. max_low_pfn = pages;
  320. min_low_pfn = start;
  321. return(init_bootmem_core(NODE_DATA(0), start, 0, pages));
  322. }
  323. #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
  324. void __init reserve_bootmem (unsigned long addr, unsigned long size)
  325. {
  326. reserve_bootmem_core(NODE_DATA(0)->bdata, addr, size);
  327. }
  328. #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
  329. void __init free_bootmem (unsigned long addr, unsigned long size)
  330. {
  331. free_bootmem_core(NODE_DATA(0)->bdata, addr, size);
  332. }
  333. unsigned long __init free_all_bootmem (void)
  334. {
  335. return(free_all_bootmem_core(NODE_DATA(0)));
  336. }
  337. void * __init __alloc_bootmem (unsigned long size, unsigned long align, unsigned long goal)
  338. {
  339. pg_data_t *pgdat = pgdat_list;
  340. void *ptr;
  341. for_each_pgdat(pgdat)
  342. if ((ptr = __alloc_bootmem_core(pgdat->bdata, size,
  343. align, goal)))
  344. return(ptr);
  345. /*
  346. * Whoops, we cannot satisfy the allocation request.
  347. */
  348. printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
  349. panic("Out of memory");
  350. return NULL;
  351. }
  352. void * __init __alloc_bootmem_node (pg_data_t *pgdat, unsigned long size, unsigned long align, unsigned long goal)
  353. {
  354. void *ptr;
  355. ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal);
  356. if (ptr)
  357. return (ptr);
  358. return __alloc_bootmem(size, align, goal);
  359. }