jiffies.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450
  1. #ifndef _LINUX_JIFFIES_H
  2. #define _LINUX_JIFFIES_H
  3. #include <linux/kernel.h>
  4. #include <linux/types.h>
  5. #include <linux/time.h>
  6. #include <linux/timex.h>
  7. #include <asm/param.h> /* for HZ */
  8. #include <asm/div64.h>
  9. #ifndef div_long_long_rem
  10. #define div_long_long_rem(dividend,divisor,remainder) \
  11. ({ \
  12. u64 result = dividend; \
  13. *remainder = do_div(result,divisor); \
  14. result; \
  15. })
  16. #endif
  17. /*
  18. * The following defines establish the engineering parameters of the PLL
  19. * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
  20. * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
  21. * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
  22. * nearest power of two in order to avoid hardware multiply operations.
  23. */
  24. #if HZ >= 12 && HZ < 24
  25. # define SHIFT_HZ 4
  26. #elif HZ >= 24 && HZ < 48
  27. # define SHIFT_HZ 5
  28. #elif HZ >= 48 && HZ < 96
  29. # define SHIFT_HZ 6
  30. #elif HZ >= 96 && HZ < 192
  31. # define SHIFT_HZ 7
  32. #elif HZ >= 192 && HZ < 384
  33. # define SHIFT_HZ 8
  34. #elif HZ >= 384 && HZ < 768
  35. # define SHIFT_HZ 9
  36. #elif HZ >= 768 && HZ < 1536
  37. # define SHIFT_HZ 10
  38. #else
  39. # error You lose.
  40. #endif
  41. /* LATCH is used in the interval timer and ftape setup. */
  42. #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
  43. /* Suppose we want to devide two numbers NOM and DEN: NOM/DEN, the we can
  44. * improve accuracy by shifting LSH bits, hence calculating:
  45. * (NOM << LSH) / DEN
  46. * This however means trouble for large NOM, because (NOM << LSH) may no
  47. * longer fit in 32 bits. The following way of calculating this gives us
  48. * some slack, under the following conditions:
  49. * - (NOM / DEN) fits in (32 - LSH) bits.
  50. * - (NOM % DEN) fits in (32 - LSH) bits.
  51. */
  52. #define SH_DIV(NOM,DEN,LSH) ( ((NOM / DEN) << LSH) \
  53. + (((NOM % DEN) << LSH) + DEN / 2) / DEN)
  54. /* HZ is the requested value. ACTHZ is actual HZ ("<< 8" is for accuracy) */
  55. #define ACTHZ (SH_DIV (CLOCK_TICK_RATE, LATCH, 8))
  56. /* TICK_NSEC is the time between ticks in nsec assuming real ACTHZ */
  57. #define TICK_NSEC (SH_DIV (1000000UL * 1000, ACTHZ, 8))
  58. /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
  59. #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
  60. /* TICK_USEC_TO_NSEC is the time between ticks in nsec assuming real ACTHZ and */
  61. /* a value TUSEC for TICK_USEC (can be set bij adjtimex) */
  62. #define TICK_USEC_TO_NSEC(TUSEC) (SH_DIV (TUSEC * USER_HZ * 1000, ACTHZ, 8))
  63. /* some arch's have a small-data section that can be accessed register-relative
  64. * but that can only take up to, say, 4-byte variables. jiffies being part of
  65. * an 8-byte variable may not be correctly accessed unless we force the issue
  66. */
  67. #define __jiffy_data __attribute__((section(".data")))
  68. /*
  69. * The 64-bit value is not volatile - you MUST NOT read it
  70. * without sampling the sequence number in xtime_lock.
  71. * get_jiffies_64() will do this for you as appropriate.
  72. */
  73. extern u64 __jiffy_data jiffies_64;
  74. extern unsigned long volatile __jiffy_data jiffies;
  75. #if (BITS_PER_LONG < 64)
  76. u64 get_jiffies_64(void);
  77. #else
  78. static inline u64 get_jiffies_64(void)
  79. {
  80. return (u64)jiffies;
  81. }
  82. #endif
  83. /*
  84. * These inlines deal with timer wrapping correctly. You are
  85. * strongly encouraged to use them
  86. * 1. Because people otherwise forget
  87. * 2. Because if the timer wrap changes in future you won't have to
  88. * alter your driver code.
  89. *
  90. * time_after(a,b) returns true if the time a is after time b.
  91. *
  92. * Do this with "<0" and ">=0" to only test the sign of the result. A
  93. * good compiler would generate better code (and a really good compiler
  94. * wouldn't care). Gcc is currently neither.
  95. */
  96. #define time_after(a,b) \
  97. (typecheck(unsigned long, a) && \
  98. typecheck(unsigned long, b) && \
  99. ((long)(b) - (long)(a) < 0))
  100. #define time_before(a,b) time_after(b,a)
  101. #define time_after_eq(a,b) \
  102. (typecheck(unsigned long, a) && \
  103. typecheck(unsigned long, b) && \
  104. ((long)(a) - (long)(b) >= 0))
  105. #define time_before_eq(a,b) time_after_eq(b,a)
  106. /*
  107. * Have the 32 bit jiffies value wrap 5 minutes after boot
  108. * so jiffies wrap bugs show up earlier.
  109. */
  110. #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
  111. /*
  112. * Change timeval to jiffies, trying to avoid the
  113. * most obvious overflows..
  114. *
  115. * And some not so obvious.
  116. *
  117. * Note that we don't want to return MAX_LONG, because
  118. * for various timeout reasons we often end up having
  119. * to wait "jiffies+1" in order to guarantee that we wait
  120. * at _least_ "jiffies" - so "jiffies+1" had better still
  121. * be positive.
  122. */
  123. #define MAX_JIFFY_OFFSET ((~0UL >> 1)-1)
  124. /*
  125. * We want to do realistic conversions of time so we need to use the same
  126. * values the update wall clock code uses as the jiffies size. This value
  127. * is: TICK_NSEC (which is defined in timex.h). This
  128. * is a constant and is in nanoseconds. We will used scaled math
  129. * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and
  130. * NSEC_JIFFIE_SC. Note that these defines contain nothing but
  131. * constants and so are computed at compile time. SHIFT_HZ (computed in
  132. * timex.h) adjusts the scaling for different HZ values.
  133. * Scaled math??? What is that?
  134. *
  135. * Scaled math is a way to do integer math on values that would,
  136. * otherwise, either overflow, underflow, or cause undesired div
  137. * instructions to appear in the execution path. In short, we "scale"
  138. * up the operands so they take more bits (more precision, less
  139. * underflow), do the desired operation and then "scale" the result back
  140. * by the same amount. If we do the scaling by shifting we avoid the
  141. * costly mpy and the dastardly div instructions.
  142. * Suppose, for example, we want to convert from seconds to jiffies
  143. * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The
  144. * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
  145. * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
  146. * might calculate at compile time, however, the result will only have
  147. * about 3-4 bits of precision (less for smaller values of HZ).
  148. *
  149. * So, we scale as follows:
  150. * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
  151. * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
  152. * Then we make SCALE a power of two so:
  153. * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
  154. * Now we define:
  155. * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
  156. * jiff = (sec * SEC_CONV) >> SCALE;
  157. *
  158. * Often the math we use will expand beyond 32-bits so we tell C how to
  159. * do this and pass the 64-bit result of the mpy through the ">> SCALE"
  160. * which should take the result back to 32-bits. We want this expansion
  161. * to capture as much precision as possible. At the same time we don't
  162. * want to overflow so we pick the SCALE to avoid this. In this file,
  163. * that means using a different scale for each range of HZ values (as
  164. * defined in timex.h).
  165. *
  166. * For those who want to know, gcc will give a 64-bit result from a "*"
  167. * operator if the result is a long long AND at least one of the
  168. * operands is cast to long long (usually just prior to the "*" so as
  169. * not to confuse it into thinking it really has a 64-bit operand,
  170. * which, buy the way, it can do, but it take more code and at least 2
  171. * mpys).
  172. * We also need to be aware that one second in nanoseconds is only a
  173. * couple of bits away from overflowing a 32-bit word, so we MUST use
  174. * 64-bits to get the full range time in nanoseconds.
  175. */
  176. /*
  177. * Here are the scales we will use. One for seconds, nanoseconds and
  178. * microseconds.
  179. *
  180. * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
  181. * check if the sign bit is set. If not, we bump the shift count by 1.
  182. * (Gets an extra bit of precision where we can use it.)
  183. * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
  184. * Haven't tested others.
  185. * Limits of cpp (for #if expressions) only long (no long long), but
  186. * then we only need the most signicant bit.
  187. */
  188. #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
  189. #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
  190. #undef SEC_JIFFIE_SC
  191. #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
  192. #endif
  193. #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
  194. #define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19)
  195. #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
  196. TICK_NSEC -1) / (u64)TICK_NSEC))
  197. #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
  198. TICK_NSEC -1) / (u64)TICK_NSEC))
  199. #define USEC_CONVERSION \
  200. ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\
  201. TICK_NSEC -1) / (u64)TICK_NSEC))
  202. /*
  203. * USEC_ROUND is used in the timeval to jiffie conversion. See there
  204. * for more details. It is the scaled resolution rounding value. Note
  205. * that it is a 64-bit value. Since, when it is applied, we are already
  206. * in jiffies (albit scaled), it is nothing but the bits we will shift
  207. * off.
  208. */
  209. #define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1)
  210. /*
  211. * The maximum jiffie value is (MAX_INT >> 1). Here we translate that
  212. * into seconds. The 64-bit case will overflow if we are not careful,
  213. * so use the messy SH_DIV macro to do it. Still all constants.
  214. */
  215. #if BITS_PER_LONG < 64
  216. # define MAX_SEC_IN_JIFFIES \
  217. (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
  218. #else /* take care of overflow on 64 bits machines */
  219. # define MAX_SEC_IN_JIFFIES \
  220. (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
  221. #endif
  222. /*
  223. * Convert jiffies to milliseconds and back.
  224. *
  225. * Avoid unnecessary multiplications/divisions in the
  226. * two most common HZ cases:
  227. */
  228. static inline unsigned int jiffies_to_msecs(const unsigned long j)
  229. {
  230. #if HZ <= 1000 && !(1000 % HZ)
  231. return (1000 / HZ) * j;
  232. #elif HZ > 1000 && !(HZ % 1000)
  233. return (j + (HZ / 1000) - 1)/(HZ / 1000);
  234. #else
  235. return (j * 1000) / HZ;
  236. #endif
  237. }
  238. static inline unsigned int jiffies_to_usecs(const unsigned long j)
  239. {
  240. #if HZ <= 1000000 && !(1000000 % HZ)
  241. return (1000000 / HZ) * j;
  242. #elif HZ > 1000000 && !(HZ % 1000000)
  243. return (j + (HZ / 1000000) - 1)/(HZ / 1000000);
  244. #else
  245. return (j * 1000000) / HZ;
  246. #endif
  247. }
  248. static inline unsigned long msecs_to_jiffies(const unsigned int m)
  249. {
  250. if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  251. return MAX_JIFFY_OFFSET;
  252. #if HZ <= 1000 && !(1000 % HZ)
  253. return (m + (1000 / HZ) - 1) / (1000 / HZ);
  254. #elif HZ > 1000 && !(HZ % 1000)
  255. return m * (HZ / 1000);
  256. #else
  257. return (m * HZ + 999) / 1000;
  258. #endif
  259. }
  260. static inline unsigned long usecs_to_jiffies(const unsigned int u)
  261. {
  262. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  263. return MAX_JIFFY_OFFSET;
  264. #if HZ <= 1000000 && !(1000000 % HZ)
  265. return (u + (1000000 / HZ) - 1) / (1000000 / HZ);
  266. #elif HZ > 1000000 && !(HZ % 1000000)
  267. return u * (HZ / 1000000);
  268. #else
  269. return (u * HZ + 999999) / 1000000;
  270. #endif
  271. }
  272. /*
  273. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  274. * that a remainder subtract here would not do the right thing as the
  275. * resolution values don't fall on second boundries. I.e. the line:
  276. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  277. *
  278. * Rather, we just shift the bits off the right.
  279. *
  280. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  281. * value to a scaled second value.
  282. */
  283. static __inline__ unsigned long
  284. timespec_to_jiffies(const struct timespec *value)
  285. {
  286. unsigned long sec = value->tv_sec;
  287. long nsec = value->tv_nsec + TICK_NSEC - 1;
  288. if (sec >= MAX_SEC_IN_JIFFIES){
  289. sec = MAX_SEC_IN_JIFFIES;
  290. nsec = 0;
  291. }
  292. return (((u64)sec * SEC_CONVERSION) +
  293. (((u64)nsec * NSEC_CONVERSION) >>
  294. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  295. }
  296. static __inline__ void
  297. jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
  298. {
  299. /*
  300. * Convert jiffies to nanoseconds and separate with
  301. * one divide.
  302. */
  303. u64 nsec = (u64)jiffies * TICK_NSEC;
  304. value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
  305. }
  306. /* Same for "timeval"
  307. *
  308. * Well, almost. The problem here is that the real system resolution is
  309. * in nanoseconds and the value being converted is in micro seconds.
  310. * Also for some machines (those that use HZ = 1024, in-particular),
  311. * there is a LARGE error in the tick size in microseconds.
  312. * The solution we use is to do the rounding AFTER we convert the
  313. * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
  314. * Instruction wise, this should cost only an additional add with carry
  315. * instruction above the way it was done above.
  316. */
  317. static __inline__ unsigned long
  318. timeval_to_jiffies(const struct timeval *value)
  319. {
  320. unsigned long sec = value->tv_sec;
  321. long usec = value->tv_usec;
  322. if (sec >= MAX_SEC_IN_JIFFIES){
  323. sec = MAX_SEC_IN_JIFFIES;
  324. usec = 0;
  325. }
  326. return (((u64)sec * SEC_CONVERSION) +
  327. (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
  328. (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  329. }
  330. static __inline__ void
  331. jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  332. {
  333. /*
  334. * Convert jiffies to nanoseconds and separate with
  335. * one divide.
  336. */
  337. u64 nsec = (u64)jiffies * TICK_NSEC;
  338. value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_usec);
  339. value->tv_usec /= NSEC_PER_USEC;
  340. }
  341. /*
  342. * Convert jiffies/jiffies_64 to clock_t and back.
  343. */
  344. static inline clock_t jiffies_to_clock_t(long x)
  345. {
  346. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  347. return x / (HZ / USER_HZ);
  348. #else
  349. u64 tmp = (u64)x * TICK_NSEC;
  350. do_div(tmp, (NSEC_PER_SEC / USER_HZ));
  351. return (long)tmp;
  352. #endif
  353. }
  354. static inline unsigned long clock_t_to_jiffies(unsigned long x)
  355. {
  356. #if (HZ % USER_HZ)==0
  357. if (x >= ~0UL / (HZ / USER_HZ))
  358. return ~0UL;
  359. return x * (HZ / USER_HZ);
  360. #else
  361. u64 jif;
  362. /* Don't worry about loss of precision here .. */
  363. if (x >= ~0UL / HZ * USER_HZ)
  364. return ~0UL;
  365. /* .. but do try to contain it here */
  366. jif = x * (u64) HZ;
  367. do_div(jif, USER_HZ);
  368. return jif;
  369. #endif
  370. }
  371. static inline u64 jiffies_64_to_clock_t(u64 x)
  372. {
  373. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  374. do_div(x, HZ / USER_HZ);
  375. #else
  376. /*
  377. * There are better ways that don't overflow early,
  378. * but even this doesn't overflow in hundreds of years
  379. * in 64 bits, so..
  380. */
  381. x *= TICK_NSEC;
  382. do_div(x, (NSEC_PER_SEC / USER_HZ));
  383. #endif
  384. return x;
  385. }
  386. static inline u64 nsec_to_clock_t(u64 x)
  387. {
  388. #if (NSEC_PER_SEC % USER_HZ) == 0
  389. do_div(x, (NSEC_PER_SEC / USER_HZ));
  390. #elif (USER_HZ % 512) == 0
  391. x *= USER_HZ/512;
  392. do_div(x, (NSEC_PER_SEC / 512));
  393. #else
  394. /*
  395. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  396. * overflow after 64.99 years.
  397. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  398. */
  399. x *= 9;
  400. do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2))
  401. / USER_HZ));
  402. #endif
  403. return x;
  404. }
  405. #endif