pgtable.h 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545
  1. #ifndef _PPC64_PGTABLE_H
  2. #define _PPC64_PGTABLE_H
  3. /*
  4. * This file contains the functions and defines necessary to modify and use
  5. * the ppc64 hashed page table.
  6. */
  7. #ifndef __ASSEMBLY__
  8. #include <linux/config.h>
  9. #include <linux/stddef.h>
  10. #include <asm/processor.h> /* For TASK_SIZE */
  11. #include <asm/mmu.h>
  12. #include <asm/page.h>
  13. #include <asm/tlbflush.h>
  14. #endif /* __ASSEMBLY__ */
  15. #include <asm-generic/pgtable-nopud.h>
  16. /*
  17. * Entries per page directory level. The PTE level must use a 64b record
  18. * for each page table entry. The PMD and PGD level use a 32b record for
  19. * each entry by assuming that each entry is page aligned.
  20. */
  21. #define PTE_INDEX_SIZE 9
  22. #define PMD_INDEX_SIZE 10
  23. #define PGD_INDEX_SIZE 10
  24. #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
  25. #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
  26. #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
  27. /* PMD_SHIFT determines what a second-level page table entry can map */
  28. #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
  29. #define PMD_SIZE (1UL << PMD_SHIFT)
  30. #define PMD_MASK (~(PMD_SIZE-1))
  31. /* PGDIR_SHIFT determines what a third-level page table entry can map */
  32. #define PGDIR_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
  33. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  34. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  35. #define FIRST_USER_ADDRESS 0
  36. /*
  37. * Size of EA range mapped by our pagetables.
  38. */
  39. #define EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
  40. PGD_INDEX_SIZE + PAGE_SHIFT)
  41. #define EADDR_MASK ((1UL << EADDR_SIZE) - 1)
  42. /*
  43. * Define the address range of the vmalloc VM area.
  44. */
  45. #define VMALLOC_START (0xD000000000000000ul)
  46. #define VMALLOC_SIZE (0x10000000000UL)
  47. #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
  48. /*
  49. * Bits in a linux-style PTE. These match the bits in the
  50. * (hardware-defined) PowerPC PTE as closely as possible.
  51. */
  52. #define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
  53. #define _PAGE_USER 0x0002 /* matches one of the PP bits */
  54. #define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
  55. #define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
  56. #define _PAGE_GUARDED 0x0008
  57. #define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */
  58. #define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */
  59. #define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */
  60. #define _PAGE_DIRTY 0x0080 /* C: page changed */
  61. #define _PAGE_ACCESSED 0x0100 /* R: page referenced */
  62. #define _PAGE_RW 0x0200 /* software: user write access allowed */
  63. #define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */
  64. #define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */
  65. #define _PAGE_SECONDARY 0x8000 /* software: HPTE is in secondary group */
  66. #define _PAGE_GROUP_IX 0x7000 /* software: HPTE index within group */
  67. #define _PAGE_HUGE 0x10000 /* 16MB page */
  68. /* Bits 0x7000 identify the index within an HPT Group */
  69. #define _PAGE_HPTEFLAGS (_PAGE_BUSY | _PAGE_HASHPTE | _PAGE_SECONDARY | _PAGE_GROUP_IX)
  70. /* PAGE_MASK gives the right answer below, but only by accident */
  71. /* It should be preserving the high 48 bits and then specifically */
  72. /* preserving _PAGE_SECONDARY | _PAGE_GROUP_IX */
  73. #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_HPTEFLAGS)
  74. #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
  75. #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
  76. /* __pgprot defined in asm-ppc64/page.h */
  77. #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
  78. #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
  79. #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
  80. #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
  81. #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
  82. #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
  83. #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
  84. #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
  85. #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
  86. _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
  87. #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
  88. #define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
  89. #define HAVE_PAGE_AGP
  90. /*
  91. * This bit in a hardware PTE indicates that the page is *not* executable.
  92. */
  93. #define HW_NO_EXEC _PAGE_EXEC
  94. /*
  95. * POWER4 and newer have per page execute protection, older chips can only
  96. * do this on a segment (256MB) basis.
  97. *
  98. * Also, write permissions imply read permissions.
  99. * This is the closest we can get..
  100. *
  101. * Note due to the way vm flags are laid out, the bits are XWR
  102. */
  103. #define __P000 PAGE_NONE
  104. #define __P001 PAGE_READONLY
  105. #define __P010 PAGE_COPY
  106. #define __P011 PAGE_COPY
  107. #define __P100 PAGE_READONLY_X
  108. #define __P101 PAGE_READONLY_X
  109. #define __P110 PAGE_COPY_X
  110. #define __P111 PAGE_COPY_X
  111. #define __S000 PAGE_NONE
  112. #define __S001 PAGE_READONLY
  113. #define __S010 PAGE_SHARED
  114. #define __S011 PAGE_SHARED
  115. #define __S100 PAGE_READONLY_X
  116. #define __S101 PAGE_READONLY_X
  117. #define __S110 PAGE_SHARED_X
  118. #define __S111 PAGE_SHARED_X
  119. #ifndef __ASSEMBLY__
  120. /*
  121. * ZERO_PAGE is a global shared page that is always zero: used
  122. * for zero-mapped memory areas etc..
  123. */
  124. extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
  125. #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
  126. #endif /* __ASSEMBLY__ */
  127. /* shift to put page number into pte */
  128. #define PTE_SHIFT (17)
  129. #ifdef CONFIG_HUGETLB_PAGE
  130. #ifndef __ASSEMBLY__
  131. int hash_huge_page(struct mm_struct *mm, unsigned long access,
  132. unsigned long ea, unsigned long vsid, int local);
  133. void hugetlb_mm_free_pgd(struct mm_struct *mm);
  134. #endif /* __ASSEMBLY__ */
  135. #define HAVE_ARCH_UNMAPPED_AREA
  136. #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
  137. #else
  138. #define hash_huge_page(mm,a,ea,vsid,local) -1
  139. #define hugetlb_mm_free_pgd(mm) do {} while (0)
  140. #endif
  141. #ifndef __ASSEMBLY__
  142. /*
  143. * Conversion functions: convert a page and protection to a page entry,
  144. * and a page entry and page directory to the page they refer to.
  145. *
  146. * mk_pte takes a (struct page *) as input
  147. */
  148. #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
  149. static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
  150. {
  151. pte_t pte;
  152. pte_val(pte) = (pfn << PTE_SHIFT) | pgprot_val(pgprot);
  153. return pte;
  154. }
  155. #define pte_modify(_pte, newprot) \
  156. (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
  157. #define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
  158. #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
  159. /* pte_clear moved to later in this file */
  160. #define pte_pfn(x) ((unsigned long)((pte_val(x) >> PTE_SHIFT)))
  161. #define pte_page(x) pfn_to_page(pte_pfn(x))
  162. #define pmd_set(pmdp, ptep) \
  163. (pmd_val(*(pmdp)) = __ba_to_bpn(ptep))
  164. #define pmd_none(pmd) (!pmd_val(pmd))
  165. #define pmd_bad(pmd) (pmd_val(pmd) == 0)
  166. #define pmd_present(pmd) (pmd_val(pmd) != 0)
  167. #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
  168. #define pmd_page_kernel(pmd) (__bpn_to_ba(pmd_val(pmd)))
  169. #define pmd_page(pmd) virt_to_page(pmd_page_kernel(pmd))
  170. #define pud_set(pudp, pmdp) (pud_val(*(pudp)) = (__ba_to_bpn(pmdp)))
  171. #define pud_none(pud) (!pud_val(pud))
  172. #define pud_bad(pud) ((pud_val(pud)) == 0UL)
  173. #define pud_present(pud) (pud_val(pud) != 0UL)
  174. #define pud_clear(pudp) (pud_val(*(pudp)) = 0UL)
  175. #define pud_page(pud) (__bpn_to_ba(pud_val(pud)))
  176. /*
  177. * Find an entry in a page-table-directory. We combine the address region
  178. * (the high order N bits) and the pgd portion of the address.
  179. */
  180. /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
  181. #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x7ff)
  182. #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
  183. /* Find an entry in the second-level page table.. */
  184. #define pmd_offset(pudp,addr) \
  185. ((pmd_t *) pud_page(*(pudp)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
  186. /* Find an entry in the third-level page table.. */
  187. #define pte_offset_kernel(dir,addr) \
  188. ((pte_t *) pmd_page_kernel(*(dir)) \
  189. + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
  190. #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
  191. #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
  192. #define pte_unmap(pte) do { } while(0)
  193. #define pte_unmap_nested(pte) do { } while(0)
  194. /* to find an entry in a kernel page-table-directory */
  195. /* This now only contains the vmalloc pages */
  196. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  197. /*
  198. * The following only work if pte_present() is true.
  199. * Undefined behaviour if not..
  200. */
  201. static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;}
  202. static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
  203. static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;}
  204. static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
  205. static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
  206. static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
  207. static inline int pte_huge(pte_t pte) { return pte_val(pte) & _PAGE_HUGE;}
  208. static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
  209. static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
  210. static inline pte_t pte_rdprotect(pte_t pte) {
  211. pte_val(pte) &= ~_PAGE_USER; return pte; }
  212. static inline pte_t pte_exprotect(pte_t pte) {
  213. pte_val(pte) &= ~_PAGE_EXEC; return pte; }
  214. static inline pte_t pte_wrprotect(pte_t pte) {
  215. pte_val(pte) &= ~(_PAGE_RW); return pte; }
  216. static inline pte_t pte_mkclean(pte_t pte) {
  217. pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
  218. static inline pte_t pte_mkold(pte_t pte) {
  219. pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
  220. static inline pte_t pte_mkread(pte_t pte) {
  221. pte_val(pte) |= _PAGE_USER; return pte; }
  222. static inline pte_t pte_mkexec(pte_t pte) {
  223. pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
  224. static inline pte_t pte_mkwrite(pte_t pte) {
  225. pte_val(pte) |= _PAGE_RW; return pte; }
  226. static inline pte_t pte_mkdirty(pte_t pte) {
  227. pte_val(pte) |= _PAGE_DIRTY; return pte; }
  228. static inline pte_t pte_mkyoung(pte_t pte) {
  229. pte_val(pte) |= _PAGE_ACCESSED; return pte; }
  230. static inline pte_t pte_mkhuge(pte_t pte) {
  231. pte_val(pte) |= _PAGE_HUGE; return pte; }
  232. /* Atomic PTE updates */
  233. static inline unsigned long pte_update(pte_t *p, unsigned long clr)
  234. {
  235. unsigned long old, tmp;
  236. __asm__ __volatile__(
  237. "1: ldarx %0,0,%3 # pte_update\n\
  238. andi. %1,%0,%6\n\
  239. bne- 1b \n\
  240. andc %1,%0,%4 \n\
  241. stdcx. %1,0,%3 \n\
  242. bne- 1b"
  243. : "=&r" (old), "=&r" (tmp), "=m" (*p)
  244. : "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY)
  245. : "cc" );
  246. return old;
  247. }
  248. /* PTE updating functions, this function puts the PTE in the
  249. * batch, doesn't actually triggers the hash flush immediately,
  250. * you need to call flush_tlb_pending() to do that.
  251. */
  252. extern void hpte_update(struct mm_struct *mm, unsigned long addr, unsigned long pte,
  253. int wrprot);
  254. static inline int __ptep_test_and_clear_young(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  255. {
  256. unsigned long old;
  257. if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
  258. return 0;
  259. old = pte_update(ptep, _PAGE_ACCESSED);
  260. if (old & _PAGE_HASHPTE) {
  261. hpte_update(mm, addr, old, 0);
  262. flush_tlb_pending();
  263. }
  264. return (old & _PAGE_ACCESSED) != 0;
  265. }
  266. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  267. #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
  268. ({ \
  269. int __r; \
  270. __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
  271. __r; \
  272. })
  273. /*
  274. * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the
  275. * moment we always flush but we need to fix hpte_update and test if the
  276. * optimisation is worth it.
  277. */
  278. static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  279. {
  280. unsigned long old;
  281. if ((pte_val(*ptep) & _PAGE_DIRTY) == 0)
  282. return 0;
  283. old = pte_update(ptep, _PAGE_DIRTY);
  284. if (old & _PAGE_HASHPTE)
  285. hpte_update(mm, addr, old, 0);
  286. return (old & _PAGE_DIRTY) != 0;
  287. }
  288. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
  289. #define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \
  290. ({ \
  291. int __r; \
  292. __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \
  293. __r; \
  294. })
  295. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  296. static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  297. {
  298. unsigned long old;
  299. if ((pte_val(*ptep) & _PAGE_RW) == 0)
  300. return;
  301. old = pte_update(ptep, _PAGE_RW);
  302. if (old & _PAGE_HASHPTE)
  303. hpte_update(mm, addr, old, 0);
  304. }
  305. /*
  306. * We currently remove entries from the hashtable regardless of whether
  307. * the entry was young or dirty. The generic routines only flush if the
  308. * entry was young or dirty which is not good enough.
  309. *
  310. * We should be more intelligent about this but for the moment we override
  311. * these functions and force a tlb flush unconditionally
  312. */
  313. #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  314. #define ptep_clear_flush_young(__vma, __address, __ptep) \
  315. ({ \
  316. int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
  317. __ptep); \
  318. __young; \
  319. })
  320. #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
  321. #define ptep_clear_flush_dirty(__vma, __address, __ptep) \
  322. ({ \
  323. int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \
  324. __ptep); \
  325. flush_tlb_page(__vma, __address); \
  326. __dirty; \
  327. })
  328. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  329. static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  330. {
  331. unsigned long old = pte_update(ptep, ~0UL);
  332. if (old & _PAGE_HASHPTE)
  333. hpte_update(mm, addr, old, 0);
  334. return __pte(old);
  335. }
  336. static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t * ptep)
  337. {
  338. unsigned long old = pte_update(ptep, ~0UL);
  339. if (old & _PAGE_HASHPTE)
  340. hpte_update(mm, addr, old, 0);
  341. }
  342. /*
  343. * set_pte stores a linux PTE into the linux page table.
  344. */
  345. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  346. pte_t *ptep, pte_t pte)
  347. {
  348. if (pte_present(*ptep)) {
  349. pte_clear(mm, addr, ptep);
  350. flush_tlb_pending();
  351. }
  352. *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
  353. }
  354. /* Set the dirty and/or accessed bits atomically in a linux PTE, this
  355. * function doesn't need to flush the hash entry
  356. */
  357. #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  358. static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
  359. {
  360. unsigned long bits = pte_val(entry) &
  361. (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
  362. unsigned long old, tmp;
  363. __asm__ __volatile__(
  364. "1: ldarx %0,0,%4\n\
  365. andi. %1,%0,%6\n\
  366. bne- 1b \n\
  367. or %0,%3,%0\n\
  368. stdcx. %0,0,%4\n\
  369. bne- 1b"
  370. :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
  371. :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
  372. :"cc");
  373. }
  374. #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
  375. do { \
  376. __ptep_set_access_flags(__ptep, __entry, __dirty); \
  377. flush_tlb_page_nohash(__vma, __address); \
  378. } while(0)
  379. /*
  380. * Macro to mark a page protection value as "uncacheable".
  381. */
  382. #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
  383. struct file;
  384. extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
  385. unsigned long size, pgprot_t vma_prot);
  386. #define __HAVE_PHYS_MEM_ACCESS_PROT
  387. #define __HAVE_ARCH_PTE_SAME
  388. #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
  389. #define pmd_ERROR(e) \
  390. printk("%s:%d: bad pmd %08x.\n", __FILE__, __LINE__, pmd_val(e))
  391. #define pgd_ERROR(e) \
  392. printk("%s:%d: bad pgd %08x.\n", __FILE__, __LINE__, pgd_val(e))
  393. extern pgd_t swapper_pg_dir[];
  394. extern void paging_init(void);
  395. /*
  396. * Because the huge pgtables are only 2 level, they can take
  397. * at most around 4M, much less than one hugepage which the
  398. * process is presumably entitled to use. So we don't bother
  399. * freeing up the pagetables on unmap, and wait until
  400. * destroy_context() to clean up the lot.
  401. */
  402. #define hugetlb_free_pgd_range(tlb, addr, end, floor, ceiling) \
  403. do { } while (0)
  404. /*
  405. * This gets called at the end of handling a page fault, when
  406. * the kernel has put a new PTE into the page table for the process.
  407. * We use it to put a corresponding HPTE into the hash table
  408. * ahead of time, instead of waiting for the inevitable extra
  409. * hash-table miss exception.
  410. */
  411. struct vm_area_struct;
  412. extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
  413. /* Encode and de-code a swap entry */
  414. #define __swp_type(entry) (((entry).val >> 1) & 0x3f)
  415. #define __swp_offset(entry) ((entry).val >> 8)
  416. #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) })
  417. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> PTE_SHIFT })
  418. #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_SHIFT })
  419. #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT)
  420. #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_SHIFT)|_PAGE_FILE})
  421. #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_SHIFT)
  422. /*
  423. * kern_addr_valid is intended to indicate whether an address is a valid
  424. * kernel address. Most 32-bit archs define it as always true (like this)
  425. * but most 64-bit archs actually perform a test. What should we do here?
  426. * The only use is in fs/ncpfs/dir.c
  427. */
  428. #define kern_addr_valid(addr) (1)
  429. #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
  430. remap_pfn_range(vma, vaddr, pfn, size, prot)
  431. void pgtable_cache_init(void);
  432. /*
  433. * find_linux_pte returns the address of a linux pte for a given
  434. * effective address and directory. If not found, it returns zero.
  435. */
  436. static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
  437. {
  438. pgd_t *pg;
  439. pud_t *pu;
  440. pmd_t *pm;
  441. pte_t *pt = NULL;
  442. pte_t pte;
  443. pg = pgdir + pgd_index(ea);
  444. if (!pgd_none(*pg)) {
  445. pu = pud_offset(pg, ea);
  446. if (!pud_none(*pu)) {
  447. pm = pmd_offset(pu, ea);
  448. if (pmd_present(*pm)) {
  449. pt = pte_offset_kernel(pm, ea);
  450. pte = *pt;
  451. if (!pte_present(pte))
  452. pt = NULL;
  453. }
  454. }
  455. }
  456. return pt;
  457. }
  458. #include <asm-generic/pgtable.h>
  459. #endif /* __ASSEMBLY__ */
  460. #endif /* _PPC64_PGTABLE_H */