mmu.h 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366
  1. /*
  2. * PowerPC memory management structures
  3. *
  4. * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
  5. * PPC64 rework.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #ifndef _PPC64_MMU_H_
  13. #define _PPC64_MMU_H_
  14. #include <linux/config.h>
  15. #include <asm/page.h>
  16. /*
  17. * Segment table
  18. */
  19. #define STE_ESID_V 0x80
  20. #define STE_ESID_KS 0x20
  21. #define STE_ESID_KP 0x10
  22. #define STE_ESID_N 0x08
  23. #define STE_VSID_SHIFT 12
  24. /* Location of cpu0's segment table */
  25. #define STAB0_PAGE 0x9
  26. #define STAB0_PHYS_ADDR (STAB0_PAGE<<PAGE_SHIFT)
  27. #define STAB0_VIRT_ADDR (KERNELBASE+STAB0_PHYS_ADDR)
  28. /*
  29. * SLB
  30. */
  31. #define SLB_NUM_BOLTED 3
  32. #define SLB_CACHE_ENTRIES 8
  33. /* Bits in the SLB ESID word */
  34. #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
  35. /* Bits in the SLB VSID word */
  36. #define SLB_VSID_SHIFT 12
  37. #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
  38. #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
  39. #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
  40. #define SLB_VSID_L ASM_CONST(0x0000000000000100) /* largepage */
  41. #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
  42. #define SLB_VSID_LS ASM_CONST(0x0000000000000070) /* size of largepage */
  43. #define SLB_VSID_KERNEL (SLB_VSID_KP|SLB_VSID_C)
  44. #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS)
  45. /*
  46. * Hash table
  47. */
  48. #define HPTES_PER_GROUP 8
  49. /* Values for PP (assumes Ks=0, Kp=1) */
  50. /* pp0 will always be 0 for linux */
  51. #define PP_RWXX 0 /* Supervisor read/write, User none */
  52. #define PP_RWRX 1 /* Supervisor read/write, User read */
  53. #define PP_RWRW 2 /* Supervisor read/write, User read/write */
  54. #define PP_RXRX 3 /* Supervisor read, User read */
  55. #ifndef __ASSEMBLY__
  56. /* Hardware Page Table Entry */
  57. typedef struct {
  58. unsigned long avpn:57; /* vsid | api == avpn */
  59. unsigned long : 2; /* Software use */
  60. unsigned long bolted: 1; /* HPTE is "bolted" */
  61. unsigned long lock: 1; /* lock on pSeries SMP */
  62. unsigned long l: 1; /* Virtual page is large (L=1) or 4 KB (L=0) */
  63. unsigned long h: 1; /* Hash function identifier */
  64. unsigned long v: 1; /* Valid (v=1) or invalid (v=0) */
  65. } Hpte_dword0;
  66. typedef struct {
  67. unsigned long pp0: 1; /* Page protection bit 0 */
  68. unsigned long ts: 1; /* Tag set bit */
  69. unsigned long rpn: 50; /* Real page number */
  70. unsigned long : 2; /* Reserved */
  71. unsigned long ac: 1; /* Address compare */
  72. unsigned long r: 1; /* Referenced */
  73. unsigned long c: 1; /* Changed */
  74. unsigned long w: 1; /* Write-thru cache mode */
  75. unsigned long i: 1; /* Cache inhibited */
  76. unsigned long m: 1; /* Memory coherence required */
  77. unsigned long g: 1; /* Guarded */
  78. unsigned long n: 1; /* No-execute */
  79. unsigned long pp: 2; /* Page protection bits 1:2 */
  80. } Hpte_dword1;
  81. typedef struct {
  82. char padding[6]; /* padding */
  83. unsigned long : 6; /* padding */
  84. unsigned long flags: 10; /* HPTE flags */
  85. } Hpte_dword1_flags;
  86. typedef struct {
  87. union {
  88. unsigned long dword0;
  89. Hpte_dword0 dw0;
  90. } dw0;
  91. union {
  92. unsigned long dword1;
  93. Hpte_dword1 dw1;
  94. Hpte_dword1_flags flags;
  95. } dw1;
  96. } HPTE;
  97. extern HPTE * htab_address;
  98. extern unsigned long htab_hash_mask;
  99. static inline unsigned long hpt_hash(unsigned long vpn, int large)
  100. {
  101. unsigned long vsid;
  102. unsigned long page;
  103. if (large) {
  104. vsid = vpn >> 4;
  105. page = vpn & 0xf;
  106. } else {
  107. vsid = vpn >> 16;
  108. page = vpn & 0xffff;
  109. }
  110. return (vsid & 0x7fffffffffUL) ^ page;
  111. }
  112. static inline void __tlbie(unsigned long va, int large)
  113. {
  114. /* clear top 16 bits, non SLS segment */
  115. va &= ~(0xffffULL << 48);
  116. if (large) {
  117. va &= HPAGE_MASK;
  118. asm volatile("tlbie %0,1" : : "r"(va) : "memory");
  119. } else {
  120. va &= PAGE_MASK;
  121. asm volatile("tlbie %0,0" : : "r"(va) : "memory");
  122. }
  123. }
  124. static inline void tlbie(unsigned long va, int large)
  125. {
  126. asm volatile("ptesync": : :"memory");
  127. __tlbie(va, large);
  128. asm volatile("eieio; tlbsync; ptesync": : :"memory");
  129. }
  130. static inline void __tlbiel(unsigned long va)
  131. {
  132. /* clear top 16 bits, non SLS segment */
  133. va &= ~(0xffffULL << 48);
  134. va &= PAGE_MASK;
  135. /*
  136. * Thanks to Alan Modra we are now able to use machine specific
  137. * assembly instructions (like tlbiel) by using the gas -many flag.
  138. * However we have to support older toolchains so for the moment
  139. * we hardwire it.
  140. */
  141. #if 0
  142. asm volatile("tlbiel %0" : : "r"(va) : "memory");
  143. #else
  144. asm volatile(".long 0x7c000224 | (%0 << 11)" : : "r"(va) : "memory");
  145. #endif
  146. }
  147. static inline void tlbiel(unsigned long va)
  148. {
  149. asm volatile("ptesync": : :"memory");
  150. __tlbiel(va);
  151. asm volatile("ptesync": : :"memory");
  152. }
  153. static inline unsigned long slot2va(unsigned long avpn, unsigned long large,
  154. unsigned long secondary, unsigned long slot)
  155. {
  156. unsigned long va;
  157. va = avpn << 23;
  158. if (!large) {
  159. unsigned long vpi, pteg;
  160. pteg = slot / HPTES_PER_GROUP;
  161. if (secondary)
  162. pteg = ~pteg;
  163. vpi = ((va >> 28) ^ pteg) & htab_hash_mask;
  164. va |= vpi << PAGE_SHIFT;
  165. }
  166. return va;
  167. }
  168. /*
  169. * Handle a fault by adding an HPTE. If the address can't be determined
  170. * to be valid via Linux page tables, return 1. If handled return 0
  171. */
  172. extern int __hash_page(unsigned long ea, unsigned long access,
  173. unsigned long vsid, pte_t *ptep, unsigned long trap,
  174. int local);
  175. extern void htab_finish_init(void);
  176. extern void hpte_init_native(void);
  177. extern void hpte_init_lpar(void);
  178. extern void hpte_init_iSeries(void);
  179. extern long pSeries_lpar_hpte_insert(unsigned long hpte_group,
  180. unsigned long va, unsigned long prpn,
  181. int secondary, unsigned long hpteflags,
  182. int bolted, int large);
  183. extern long native_hpte_insert(unsigned long hpte_group, unsigned long va,
  184. unsigned long prpn, int secondary,
  185. unsigned long hpteflags, int bolted, int large);
  186. #endif /* __ASSEMBLY__ */
  187. /*
  188. * VSID allocation
  189. *
  190. * We first generate a 36-bit "proto-VSID". For kernel addresses this
  191. * is equal to the ESID, for user addresses it is:
  192. * (context << 15) | (esid & 0x7fff)
  193. *
  194. * The two forms are distinguishable because the top bit is 0 for user
  195. * addresses, whereas the top two bits are 1 for kernel addresses.
  196. * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
  197. * now.
  198. *
  199. * The proto-VSIDs are then scrambled into real VSIDs with the
  200. * multiplicative hash:
  201. *
  202. * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
  203. * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
  204. * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
  205. *
  206. * This scramble is only well defined for proto-VSIDs below
  207. * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
  208. * reserved. VSID_MULTIPLIER is prime, so in particular it is
  209. * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
  210. * Because the modulus is 2^n-1 we can compute it efficiently without
  211. * a divide or extra multiply (see below).
  212. *
  213. * This scheme has several advantages over older methods:
  214. *
  215. * - We have VSIDs allocated for every kernel address
  216. * (i.e. everything above 0xC000000000000000), except the very top
  217. * segment, which simplifies several things.
  218. *
  219. * - We allow for 15 significant bits of ESID and 20 bits of
  220. * context for user addresses. i.e. 8T (43 bits) of address space for
  221. * up to 1M contexts (although the page table structure and context
  222. * allocation will need changes to take advantage of this).
  223. *
  224. * - The scramble function gives robust scattering in the hash
  225. * table (at least based on some initial results). The previous
  226. * method was more susceptible to pathological cases giving excessive
  227. * hash collisions.
  228. */
  229. /*
  230. * WARNING - If you change these you must make sure the asm
  231. * implementations in slb_allocate (slb_low.S), do_stab_bolted
  232. * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
  233. *
  234. * You'll also need to change the precomputed VSID values in head.S
  235. * which are used by the iSeries firmware.
  236. */
  237. #define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */
  238. #define VSID_BITS 36
  239. #define VSID_MODULUS ((1UL<<VSID_BITS)-1)
  240. #define CONTEXT_BITS 20
  241. #define USER_ESID_BITS 15
  242. /*
  243. * This macro generates asm code to compute the VSID scramble
  244. * function. Used in slb_allocate() and do_stab_bolted. The function
  245. * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
  246. *
  247. * rt = register continaing the proto-VSID and into which the
  248. * VSID will be stored
  249. * rx = scratch register (clobbered)
  250. *
  251. * - rt and rx must be different registers
  252. * - The answer will end up in the low 36 bits of rt. The higher
  253. * bits may contain other garbage, so you may need to mask the
  254. * result.
  255. */
  256. #define ASM_VSID_SCRAMBLE(rt, rx) \
  257. lis rx,VSID_MULTIPLIER@h; \
  258. ori rx,rx,VSID_MULTIPLIER@l; \
  259. mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
  260. \
  261. srdi rx,rt,VSID_BITS; \
  262. clrldi rt,rt,(64-VSID_BITS); \
  263. add rt,rt,rx; /* add high and low bits */ \
  264. /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
  265. * 2^36-1+2^28-1. That in particular means that if r3 >= \
  266. * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
  267. * the bit clear, r3 already has the answer we want, if it \
  268. * doesn't, the answer is the low 36 bits of r3+1. So in all \
  269. * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
  270. addi rx,rt,1; \
  271. srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \
  272. add rt,rt,rx
  273. #ifndef __ASSEMBLY__
  274. typedef unsigned long mm_context_id_t;
  275. typedef struct {
  276. mm_context_id_t id;
  277. #ifdef CONFIG_HUGETLB_PAGE
  278. pgd_t *huge_pgdir;
  279. u16 htlb_segs; /* bitmask */
  280. #endif
  281. } mm_context_t;
  282. static inline unsigned long vsid_scramble(unsigned long protovsid)
  283. {
  284. #if 0
  285. /* The code below is equivalent to this function for arguments
  286. * < 2^VSID_BITS, which is all this should ever be called
  287. * with. However gcc is not clever enough to compute the
  288. * modulus (2^n-1) without a second multiply. */
  289. return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS);
  290. #else /* 1 */
  291. unsigned long x;
  292. x = protovsid * VSID_MULTIPLIER;
  293. x = (x >> VSID_BITS) + (x & VSID_MODULUS);
  294. return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS;
  295. #endif /* 1 */
  296. }
  297. /* This is only valid for addresses >= KERNELBASE */
  298. static inline unsigned long get_kernel_vsid(unsigned long ea)
  299. {
  300. return vsid_scramble(ea >> SID_SHIFT);
  301. }
  302. /* This is only valid for user addresses (which are below 2^41) */
  303. static inline unsigned long get_vsid(unsigned long context, unsigned long ea)
  304. {
  305. return vsid_scramble((context << USER_ESID_BITS)
  306. | (ea >> SID_SHIFT));
  307. }
  308. #endif /* __ASSEMBLY */
  309. #endif /* _PPC64_MMU_H_ */