pgtable-64.h 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 2003 Ralf Baechle
  7. * Copyright (C) 1999, 2000, 2001 Silicon Graphics, Inc.
  8. */
  9. #ifndef _ASM_PGTABLE_64_H
  10. #define _ASM_PGTABLE_64_H
  11. #include <linux/config.h>
  12. #include <linux/linkage.h>
  13. #include <asm/addrspace.h>
  14. #include <asm/page.h>
  15. #include <asm/cachectl.h>
  16. /*
  17. * Each address space has 2 4K pages as its page directory, giving 1024
  18. * (== PTRS_PER_PGD) 8 byte pointers to pmd tables. Each pmd table is a
  19. * pair of 4K pages, giving 1024 (== PTRS_PER_PMD) 8 byte pointers to
  20. * page tables. Each page table is a single 4K page, giving 512 (==
  21. * PTRS_PER_PTE) 8 byte ptes. Each pgde is initialized to point to
  22. * invalid_pmd_table, each pmde is initialized to point to
  23. * invalid_pte_table, each pte is initialized to 0. When memory is low,
  24. * and a pmd table or a page table allocation fails, empty_bad_pmd_table
  25. * and empty_bad_page_table is returned back to higher layer code, so
  26. * that the failure is recognized later on. Linux does not seem to
  27. * handle these failures very well though. The empty_bad_page_table has
  28. * invalid pte entries in it, to force page faults.
  29. *
  30. * Kernel mappings: kernel mappings are held in the swapper_pg_table.
  31. * The layout is identical to userspace except it's indexed with the
  32. * fault address - VMALLOC_START.
  33. */
  34. /* PMD_SHIFT determines the size of the area a second-level page table can map */
  35. #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT - 3))
  36. #define PMD_SIZE (1UL << PMD_SHIFT)
  37. #define PMD_MASK (~(PMD_SIZE-1))
  38. /* PGDIR_SHIFT determines what a third-level page table entry can map */
  39. #define PGDIR_SHIFT (PMD_SHIFT + (PAGE_SHIFT + 1 - 3))
  40. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  41. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  42. /*
  43. * For 4kB page size we use a 3 level page tree and a 8kB pmd and pgds which
  44. * permits us mapping 40 bits of virtual address space.
  45. *
  46. * We used to implement 41 bits by having an order 1 pmd level but that seemed
  47. * rather pointless.
  48. *
  49. * For 8kB page size we use a 3 level page tree which permits a total of
  50. * 8TB of address space. Alternatively a 33-bit / 8GB organization using
  51. * two levels would be easy to implement.
  52. *
  53. * For 16kB page size we use a 2 level page tree which permits a total of
  54. * 36 bits of virtual address space. We could add a third leve. but it seems
  55. * like at the moment there's no need for this.
  56. *
  57. * For 64kB page size we use a 2 level page table tree for a total of 42 bits
  58. * of virtual address space.
  59. */
  60. #ifdef CONFIG_PAGE_SIZE_4KB
  61. #define PGD_ORDER 1
  62. #define PMD_ORDER 0
  63. #define PTE_ORDER 0
  64. #endif
  65. #ifdef CONFIG_PAGE_SIZE_8KB
  66. #define PGD_ORDER 0
  67. #define PMD_ORDER 0
  68. #define PTE_ORDER 0
  69. #endif
  70. #ifdef CONFIG_PAGE_SIZE_16KB
  71. #define PGD_ORDER 0
  72. #define PMD_ORDER 0
  73. #define PTE_ORDER 0
  74. #endif
  75. #ifdef CONFIG_PAGE_SIZE_64KB
  76. #define PGD_ORDER 0
  77. #define PMD_ORDER 0
  78. #define PTE_ORDER 0
  79. #endif
  80. #define PTRS_PER_PGD ((PAGE_SIZE << PGD_ORDER) / sizeof(pgd_t))
  81. #define PTRS_PER_PMD ((PAGE_SIZE << PMD_ORDER) / sizeof(pmd_t))
  82. #define PTRS_PER_PTE ((PAGE_SIZE << PTE_ORDER) / sizeof(pte_t))
  83. #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
  84. #define FIRST_USER_ADDRESS 0
  85. #define VMALLOC_START XKSEG
  86. #define VMALLOC_END \
  87. (VMALLOC_START + PTRS_PER_PGD * PTRS_PER_PMD * PTRS_PER_PTE * PAGE_SIZE)
  88. #define pte_ERROR(e) \
  89. printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
  90. #define pmd_ERROR(e) \
  91. printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
  92. #define pgd_ERROR(e) \
  93. printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
  94. extern pte_t invalid_pte_table[PAGE_SIZE/sizeof(pte_t)];
  95. extern pte_t empty_bad_page_table[PAGE_SIZE/sizeof(pte_t)];
  96. extern pmd_t invalid_pmd_table[2*PAGE_SIZE/sizeof(pmd_t)];
  97. extern pmd_t empty_bad_pmd_table[2*PAGE_SIZE/sizeof(pmd_t)];
  98. /*
  99. * Empty pmd entries point to the invalid_pte_table.
  100. */
  101. static inline int pmd_none(pmd_t pmd)
  102. {
  103. return pmd_val(pmd) == (unsigned long) invalid_pte_table;
  104. }
  105. #define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK)
  106. static inline int pmd_present(pmd_t pmd)
  107. {
  108. return pmd_val(pmd) != (unsigned long) invalid_pte_table;
  109. }
  110. static inline void pmd_clear(pmd_t *pmdp)
  111. {
  112. pmd_val(*pmdp) = ((unsigned long) invalid_pte_table);
  113. }
  114. /*
  115. * Empty pgd entries point to the invalid_pmd_table.
  116. */
  117. static inline int pgd_none(pgd_t pgd)
  118. {
  119. return pgd_val(pgd) == (unsigned long) invalid_pmd_table;
  120. }
  121. #define pgd_bad(pgd) (pgd_val(pgd) &~ PAGE_MASK)
  122. static inline int pgd_present(pgd_t pgd)
  123. {
  124. return pgd_val(pgd) != (unsigned long) invalid_pmd_table;
  125. }
  126. static inline void pgd_clear(pgd_t *pgdp)
  127. {
  128. pgd_val(*pgdp) = ((unsigned long) invalid_pmd_table);
  129. }
  130. #define pte_page(x) pfn_to_page((unsigned long)((pte_val(x) >> PAGE_SHIFT)))
  131. #ifdef CONFIG_CPU_VR41XX
  132. #define pte_pfn(x) ((unsigned long)((x).pte >> (PAGE_SHIFT + 2)))
  133. #define pfn_pte(pfn, prot) __pte(((pfn) << (PAGE_SHIFT + 2)) | pgprot_val(prot))
  134. #else
  135. #define pte_pfn(x) ((unsigned long)((x).pte >> PAGE_SHIFT))
  136. #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
  137. #endif
  138. #define __pgd_offset(address) pgd_index(address)
  139. #define page_pte(page) page_pte_prot(page, __pgprot(0))
  140. /* to find an entry in a kernel page-table-directory */
  141. #define pgd_offset_k(address) pgd_offset(&init_mm, 0)
  142. #define pgd_index(address) ((address) >> PGDIR_SHIFT)
  143. /* to find an entry in a page-table-directory */
  144. #define pgd_offset(mm,addr) ((mm)->pgd + pgd_index(addr))
  145. static inline unsigned long pgd_page(pgd_t pgd)
  146. {
  147. return pgd_val(pgd);
  148. }
  149. /* Find an entry in the second-level page table.. */
  150. static inline pmd_t *pmd_offset(pgd_t * dir, unsigned long address)
  151. {
  152. return (pmd_t *) pgd_page(*dir) +
  153. ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
  154. }
  155. /* Find an entry in the third-level page table.. */
  156. #define __pte_offset(address) \
  157. (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
  158. #define pte_offset(dir, address) \
  159. ((pte_t *) (pmd_page_kernel(*dir)) + __pte_offset(address))
  160. #define pte_offset_kernel(dir, address) \
  161. ((pte_t *) pmd_page_kernel(*(dir)) + __pte_offset(address))
  162. #define pte_offset_map(dir, address) \
  163. ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
  164. #define pte_offset_map_nested(dir, address) \
  165. ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
  166. #define pte_unmap(pte) ((void)(pte))
  167. #define pte_unmap_nested(pte) ((void)(pte))
  168. /*
  169. * Initialize a new pgd / pmd table with invalid pointers.
  170. */
  171. extern void pgd_init(unsigned long page);
  172. extern void pmd_init(unsigned long page, unsigned long pagetable);
  173. /*
  174. * Non-present pages: high 24 bits are offset, next 8 bits type,
  175. * low 32 bits zero.
  176. */
  177. static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
  178. { pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; }
  179. #define __swp_type(x) (((x).val >> 32) & 0xff)
  180. #define __swp_offset(x) ((x).val >> 40)
  181. #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
  182. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  183. #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
  184. /*
  185. * Bits 0, 1, 2, 7 and 8 are taken, split up the 32 bits of offset
  186. * into this range:
  187. */
  188. #define PTE_FILE_MAX_BITS 32
  189. #define pte_to_pgoff(_pte) \
  190. ((((_pte).pte >> 3) & 0x1f ) + (((_pte).pte >> 9) << 6 ))
  191. #define pgoff_to_pte(off) \
  192. ((pte_t) { (((off) & 0x1f) << 3) + (((off) >> 6) << 9) + _PAGE_FILE })
  193. #endif /* _ASM_PGTABLE_64_H */