123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- /*
- * This file is subject to the terms and conditions of the GNU General Public
- * License. See the file "COPYING" in the main directory of this archive
- * for more details.
- *
- * Copyright (C) 2003, 2004 Ralf Baechle
- */
- #ifndef _ASM_HAZARDS_H
- #define _ASM_HAZARDS_H
- #include <linux/config.h>
- #ifdef __ASSEMBLY__
- .macro _ssnop
- sll $0, $0, 1
- .endm
- .macro _ehb
- sll $0, $0, 3
- .endm
- /*
- * RM9000 hazards. When the JTLB is updated by tlbwi or tlbwr, a subsequent
- * use of the JTLB for instructions should not occur for 4 cpu cycles and use
- * for data translations should not occur for 3 cpu cycles.
- */
- #ifdef CONFIG_CPU_RM9000
- .macro mtc0_tlbw_hazard
- .set push
- .set mips32
- _ssnop; _ssnop; _ssnop; _ssnop
- .set pop
- .endm
- .macro tlbw_eret_hazard
- .set push
- .set mips32
- _ssnop; _ssnop; _ssnop; _ssnop
- .set pop
- .endm
- #else
- /*
- * The taken branch will result in a two cycle penalty for the two killed
- * instructions on R4000 / R4400. Other processors only have a single cycle
- * hazard so this is nice trick to have an optimal code for a range of
- * processors.
- */
- .macro mtc0_tlbw_hazard
- b . + 8
- .endm
- .macro tlbw_eret_hazard
- .endm
- #endif
- /*
- * mtc0->mfc0 hazard
- * The 24K has a 2 cycle mtc0/mfc0 execution hazard.
- * It is a MIPS32R2 processor so ehb will clear the hazard.
- */
- #ifdef CONFIG_CPU_MIPSR2
- /*
- * Use a macro for ehb unless explicit support for MIPSR2 is enabled
- */
- #define irq_enable_hazard
- _ehb
- #define irq_disable_hazard
- _ehb
- #elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000)
- /*
- * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
- */
- #define irq_enable_hazard
- #define irq_disable_hazard
- #else
- /*
- * Classic MIPS needs 1 - 3 nops or ssnops
- */
- #define irq_enable_hazard
- #define irq_disable_hazard \
- _ssnop; _ssnop; _ssnop
- #endif
- #else /* __ASSEMBLY__ */
- __asm__(
- " .macro _ssnop \n\t"
- " sll $0, $2, 1 \n\t"
- " .endm \n\t"
- " \n\t"
- " .macro _ehb \n\t"
- " sll $0, $0, 3 \n\t"
- " .endm \n\t");
- #ifdef CONFIG_CPU_RM9000
- /*
- * RM9000 hazards. When the JTLB is updated by tlbwi or tlbwr, a subsequent
- * use of the JTLB for instructions should not occur for 4 cpu cycles and use
- * for data translations should not occur for 3 cpu cycles.
- */
- #define mtc0_tlbw_hazard() \
- __asm__ __volatile__( \
- ".set\tmips32\n\t" \
- "_ssnop; _ssnop; _ssnop; _ssnop\n\t" \
- ".set\tmips0")
- #define tlbw_use_hazard() \
- __asm__ __volatile__( \
- ".set\tmips32\n\t" \
- "_ssnop; _ssnop; _ssnop; _ssnop\n\t" \
- ".set\tmips0")
- #else
- /*
- * Overkill warning ...
- */
- #define mtc0_tlbw_hazard() \
- __asm__ __volatile__( \
- ".set noreorder\n\t" \
- "nop; nop; nop; nop; nop; nop;\n\t" \
- ".set reorder\n\t")
- #define tlbw_use_hazard() \
- __asm__ __volatile__( \
- ".set noreorder\n\t" \
- "nop; nop; nop; nop; nop; nop;\n\t" \
- ".set reorder\n\t")
- #endif
- /*
- * mtc0->mfc0 hazard
- * The 24K has a 2 cycle mtc0/mfc0 execution hazard.
- * It is a MIPS32R2 processor so ehb will clear the hazard.
- */
- #ifdef CONFIG_CPU_MIPSR2
- /*
- * Use a macro for ehb unless explicit support for MIPSR2 is enabled
- */
- __asm__(
- " .macro\tirq_enable_hazard \n\t"
- " _ehb \n\t"
- " .endm \n\t"
- " \n\t"
- " .macro\tirq_disable_hazard \n\t"
- " _ehb \n\t"
- " .endm");
- #define irq_enable_hazard() \
- __asm__ __volatile__( \
- "_ehb\t\t\t\t# irq_enable_hazard")
- #define irq_disable_hazard() \
- __asm__ __volatile__( \
- "_ehb\t\t\t\t# irq_disable_hazard")
- #elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000)
- /*
- * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
- */
- __asm__(
- " .macro\tirq_enable_hazard \n\t"
- " .endm \n\t"
- " \n\t"
- " .macro\tirq_disable_hazard \n\t"
- " .endm");
- #define irq_enable_hazard() do { } while (0)
- #define irq_disable_hazard() do { } while (0)
- #else
- /*
- * Default for classic MIPS processors. Assume worst case hazards but don't
- * care about the irq_enable_hazard - sooner or later the hardware will
- * enable it and we don't care when exactly.
- */
- __asm__(
- " # \n\t"
- " # There is a hazard but we do not care \n\t"
- " # \n\t"
- " .macro\tirq_enable_hazard \n\t"
- " .endm \n\t"
- " \n\t"
- " .macro\tirq_disable_hazard \n\t"
- " _ssnop; _ssnop; _ssnop \n\t"
- " .endm");
- #define irq_enable_hazard() do { } while (0)
- #define irq_disable_hazard() \
- __asm__ __volatile__( \
- "_ssnop; _ssnop; _ssnop;\t\t# irq_disable_hazard")
- #endif
- #endif /* __ASSEMBLY__ */
- #endif /* _ASM_HAZARDS_H */
|