bitops.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416
  1. /*
  2. * Copyright 1995, Russell King.
  3. * Various bits and pieces copyrights include:
  4. * Linus Torvalds (test_bit).
  5. * Big endian support: Copyright 2001, Nicolas Pitre
  6. * reworked by rmk.
  7. *
  8. * bit 0 is the LSB of an "unsigned long" quantity.
  9. *
  10. * Please note that the code in this file should never be included
  11. * from user space. Many of these are not implemented in assembler
  12. * since they would be too costly. Also, they require privileged
  13. * instructions (which are not available from user mode) to ensure
  14. * that they are atomic.
  15. */
  16. #ifndef __ASM_ARM_BITOPS_H
  17. #define __ASM_ARM_BITOPS_H
  18. #ifdef __KERNEL__
  19. #include <asm/system.h>
  20. #define smp_mb__before_clear_bit() do { } while (0)
  21. #define smp_mb__after_clear_bit() do { } while (0)
  22. /*
  23. * These functions are the basis of our bit ops.
  24. *
  25. * First, the atomic bitops. These use native endian.
  26. */
  27. static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
  28. {
  29. unsigned long flags;
  30. unsigned long mask = 1UL << (bit & 31);
  31. p += bit >> 5;
  32. local_irq_save(flags);
  33. *p |= mask;
  34. local_irq_restore(flags);
  35. }
  36. static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
  37. {
  38. unsigned long flags;
  39. unsigned long mask = 1UL << (bit & 31);
  40. p += bit >> 5;
  41. local_irq_save(flags);
  42. *p &= ~mask;
  43. local_irq_restore(flags);
  44. }
  45. static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
  46. {
  47. unsigned long flags;
  48. unsigned long mask = 1UL << (bit & 31);
  49. p += bit >> 5;
  50. local_irq_save(flags);
  51. *p ^= mask;
  52. local_irq_restore(flags);
  53. }
  54. static inline int
  55. ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
  56. {
  57. unsigned long flags;
  58. unsigned int res;
  59. unsigned long mask = 1UL << (bit & 31);
  60. p += bit >> 5;
  61. local_irq_save(flags);
  62. res = *p;
  63. *p = res | mask;
  64. local_irq_restore(flags);
  65. return res & mask;
  66. }
  67. static inline int
  68. ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
  69. {
  70. unsigned long flags;
  71. unsigned int res;
  72. unsigned long mask = 1UL << (bit & 31);
  73. p += bit >> 5;
  74. local_irq_save(flags);
  75. res = *p;
  76. *p = res & ~mask;
  77. local_irq_restore(flags);
  78. return res & mask;
  79. }
  80. static inline int
  81. ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
  82. {
  83. unsigned long flags;
  84. unsigned int res;
  85. unsigned long mask = 1UL << (bit & 31);
  86. p += bit >> 5;
  87. local_irq_save(flags);
  88. res = *p;
  89. *p = res ^ mask;
  90. local_irq_restore(flags);
  91. return res & mask;
  92. }
  93. /*
  94. * Now the non-atomic variants. We let the compiler handle all
  95. * optimisations for these. These are all _native_ endian.
  96. */
  97. static inline void __set_bit(int nr, volatile unsigned long *p)
  98. {
  99. p[nr >> 5] |= (1UL << (nr & 31));
  100. }
  101. static inline void __clear_bit(int nr, volatile unsigned long *p)
  102. {
  103. p[nr >> 5] &= ~(1UL << (nr & 31));
  104. }
  105. static inline void __change_bit(int nr, volatile unsigned long *p)
  106. {
  107. p[nr >> 5] ^= (1UL << (nr & 31));
  108. }
  109. static inline int __test_and_set_bit(int nr, volatile unsigned long *p)
  110. {
  111. unsigned long oldval, mask = 1UL << (nr & 31);
  112. p += nr >> 5;
  113. oldval = *p;
  114. *p = oldval | mask;
  115. return oldval & mask;
  116. }
  117. static inline int __test_and_clear_bit(int nr, volatile unsigned long *p)
  118. {
  119. unsigned long oldval, mask = 1UL << (nr & 31);
  120. p += nr >> 5;
  121. oldval = *p;
  122. *p = oldval & ~mask;
  123. return oldval & mask;
  124. }
  125. static inline int __test_and_change_bit(int nr, volatile unsigned long *p)
  126. {
  127. unsigned long oldval, mask = 1UL << (nr & 31);
  128. p += nr >> 5;
  129. oldval = *p;
  130. *p = oldval ^ mask;
  131. return oldval & mask;
  132. }
  133. /*
  134. * This routine doesn't need to be atomic.
  135. */
  136. static inline int __test_bit(int nr, const volatile unsigned long * p)
  137. {
  138. return (p[nr >> 5] >> (nr & 31)) & 1UL;
  139. }
  140. /*
  141. * A note about Endian-ness.
  142. * -------------------------
  143. *
  144. * When the ARM is put into big endian mode via CR15, the processor
  145. * merely swaps the order of bytes within words, thus:
  146. *
  147. * ------------ physical data bus bits -----------
  148. * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0
  149. * little byte 3 byte 2 byte 1 byte 0
  150. * big byte 0 byte 1 byte 2 byte 3
  151. *
  152. * This means that reading a 32-bit word at address 0 returns the same
  153. * value irrespective of the endian mode bit.
  154. *
  155. * Peripheral devices should be connected with the data bus reversed in
  156. * "Big Endian" mode. ARM Application Note 61 is applicable, and is
  157. * available from http://www.arm.com/.
  158. *
  159. * The following assumes that the data bus connectivity for big endian
  160. * mode has been followed.
  161. *
  162. * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
  163. */
  164. /*
  165. * Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
  166. */
  167. extern void _set_bit_le(int nr, volatile unsigned long * p);
  168. extern void _clear_bit_le(int nr, volatile unsigned long * p);
  169. extern void _change_bit_le(int nr, volatile unsigned long * p);
  170. extern int _test_and_set_bit_le(int nr, volatile unsigned long * p);
  171. extern int _test_and_clear_bit_le(int nr, volatile unsigned long * p);
  172. extern int _test_and_change_bit_le(int nr, volatile unsigned long * p);
  173. extern int _find_first_zero_bit_le(const void * p, unsigned size);
  174. extern int _find_next_zero_bit_le(const void * p, int size, int offset);
  175. extern int _find_first_bit_le(const unsigned long *p, unsigned size);
  176. extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
  177. /*
  178. * Big endian assembly bitops. nr = 0 -> byte 3 bit 0.
  179. */
  180. extern void _set_bit_be(int nr, volatile unsigned long * p);
  181. extern void _clear_bit_be(int nr, volatile unsigned long * p);
  182. extern void _change_bit_be(int nr, volatile unsigned long * p);
  183. extern int _test_and_set_bit_be(int nr, volatile unsigned long * p);
  184. extern int _test_and_clear_bit_be(int nr, volatile unsigned long * p);
  185. extern int _test_and_change_bit_be(int nr, volatile unsigned long * p);
  186. extern int _find_first_zero_bit_be(const void * p, unsigned size);
  187. extern int _find_next_zero_bit_be(const void * p, int size, int offset);
  188. extern int _find_first_bit_be(const unsigned long *p, unsigned size);
  189. extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
  190. /*
  191. * The __* form of bitops are non-atomic and may be reordered.
  192. */
  193. #define ATOMIC_BITOP_LE(name,nr,p) \
  194. (__builtin_constant_p(nr) ? \
  195. ____atomic_##name(nr, p) : \
  196. _##name##_le(nr,p))
  197. #define ATOMIC_BITOP_BE(name,nr,p) \
  198. (__builtin_constant_p(nr) ? \
  199. ____atomic_##name(nr, p) : \
  200. _##name##_be(nr,p))
  201. #define NONATOMIC_BITOP(name,nr,p) \
  202. (____nonatomic_##name(nr, p))
  203. #ifndef __ARMEB__
  204. /*
  205. * These are the little endian, atomic definitions.
  206. */
  207. #define set_bit(nr,p) ATOMIC_BITOP_LE(set_bit,nr,p)
  208. #define clear_bit(nr,p) ATOMIC_BITOP_LE(clear_bit,nr,p)
  209. #define change_bit(nr,p) ATOMIC_BITOP_LE(change_bit,nr,p)
  210. #define test_and_set_bit(nr,p) ATOMIC_BITOP_LE(test_and_set_bit,nr,p)
  211. #define test_and_clear_bit(nr,p) ATOMIC_BITOP_LE(test_and_clear_bit,nr,p)
  212. #define test_and_change_bit(nr,p) ATOMIC_BITOP_LE(test_and_change_bit,nr,p)
  213. #define test_bit(nr,p) __test_bit(nr,p)
  214. #define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
  215. #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
  216. #define find_first_bit(p,sz) _find_first_bit_le(p,sz)
  217. #define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
  218. #define WORD_BITOFF_TO_LE(x) ((x))
  219. #else
  220. /*
  221. * These are the big endian, atomic definitions.
  222. */
  223. #define set_bit(nr,p) ATOMIC_BITOP_BE(set_bit,nr,p)
  224. #define clear_bit(nr,p) ATOMIC_BITOP_BE(clear_bit,nr,p)
  225. #define change_bit(nr,p) ATOMIC_BITOP_BE(change_bit,nr,p)
  226. #define test_and_set_bit(nr,p) ATOMIC_BITOP_BE(test_and_set_bit,nr,p)
  227. #define test_and_clear_bit(nr,p) ATOMIC_BITOP_BE(test_and_clear_bit,nr,p)
  228. #define test_and_change_bit(nr,p) ATOMIC_BITOP_BE(test_and_change_bit,nr,p)
  229. #define test_bit(nr,p) __test_bit(nr,p)
  230. #define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz)
  231. #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off)
  232. #define find_first_bit(p,sz) _find_first_bit_be(p,sz)
  233. #define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off)
  234. #define WORD_BITOFF_TO_LE(x) ((x) ^ 0x18)
  235. #endif
  236. #if __LINUX_ARM_ARCH__ < 5
  237. /*
  238. * ffz = Find First Zero in word. Undefined if no zero exists,
  239. * so code should check against ~0UL first..
  240. */
  241. static inline unsigned long ffz(unsigned long word)
  242. {
  243. int k;
  244. word = ~word;
  245. k = 31;
  246. if (word & 0x0000ffff) { k -= 16; word <<= 16; }
  247. if (word & 0x00ff0000) { k -= 8; word <<= 8; }
  248. if (word & 0x0f000000) { k -= 4; word <<= 4; }
  249. if (word & 0x30000000) { k -= 2; word <<= 2; }
  250. if (word & 0x40000000) { k -= 1; }
  251. return k;
  252. }
  253. /*
  254. * ffz = Find First Zero in word. Undefined if no zero exists,
  255. * so code should check against ~0UL first..
  256. */
  257. static inline unsigned long __ffs(unsigned long word)
  258. {
  259. int k;
  260. k = 31;
  261. if (word & 0x0000ffff) { k -= 16; word <<= 16; }
  262. if (word & 0x00ff0000) { k -= 8; word <<= 8; }
  263. if (word & 0x0f000000) { k -= 4; word <<= 4; }
  264. if (word & 0x30000000) { k -= 2; word <<= 2; }
  265. if (word & 0x40000000) { k -= 1; }
  266. return k;
  267. }
  268. /*
  269. * fls: find last bit set.
  270. */
  271. #define fls(x) generic_fls(x)
  272. /*
  273. * ffs: find first bit set. This is defined the same way as
  274. * the libc and compiler builtin ffs routines, therefore
  275. * differs in spirit from the above ffz (man ffs).
  276. */
  277. #define ffs(x) generic_ffs(x)
  278. #else
  279. /*
  280. * On ARMv5 and above those functions can be implemented around
  281. * the clz instruction for much better code efficiency.
  282. */
  283. static __inline__ int generic_fls(int x);
  284. #define fls(x) \
  285. ( __builtin_constant_p(x) ? generic_fls(x) : \
  286. ({ int __r; asm("clz\t%0, %1" : "=r"(__r) : "r"(x) : "cc"); 32-__r; }) )
  287. #define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); })
  288. #define __ffs(x) (ffs(x) - 1)
  289. #define ffz(x) __ffs( ~(x) )
  290. #endif
  291. /*
  292. * Find first bit set in a 168-bit bitmap, where the first
  293. * 128 bits are unlikely to be set.
  294. */
  295. static inline int sched_find_first_bit(const unsigned long *b)
  296. {
  297. unsigned long v;
  298. unsigned int off;
  299. for (off = 0; v = b[off], off < 4; off++) {
  300. if (unlikely(v))
  301. break;
  302. }
  303. return __ffs(v) + off * 32;
  304. }
  305. /*
  306. * hweightN: returns the hamming weight (i.e. the number
  307. * of bits set) of a N-bit word
  308. */
  309. #define hweight32(x) generic_hweight32(x)
  310. #define hweight16(x) generic_hweight16(x)
  311. #define hweight8(x) generic_hweight8(x)
  312. /*
  313. * Ext2 is defined to use little-endian byte ordering.
  314. * These do not need to be atomic.
  315. */
  316. #define ext2_set_bit(nr,p) \
  317. __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
  318. #define ext2_set_bit_atomic(lock,nr,p) \
  319. test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
  320. #define ext2_clear_bit(nr,p) \
  321. __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
  322. #define ext2_clear_bit_atomic(lock,nr,p) \
  323. test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
  324. #define ext2_test_bit(nr,p) \
  325. __test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
  326. #define ext2_find_first_zero_bit(p,sz) \
  327. _find_first_zero_bit_le(p,sz)
  328. #define ext2_find_next_zero_bit(p,sz,off) \
  329. _find_next_zero_bit_le(p,sz,off)
  330. /*
  331. * Minix is defined to use little-endian byte ordering.
  332. * These do not need to be atomic.
  333. */
  334. #define minix_set_bit(nr,p) \
  335. __set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
  336. #define minix_test_bit(nr,p) \
  337. __test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
  338. #define minix_test_and_set_bit(nr,p) \
  339. __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
  340. #define minix_test_and_clear_bit(nr,p) \
  341. __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
  342. #define minix_find_first_zero_bit(p,sz) \
  343. _find_first_zero_bit_le(p,sz)
  344. #endif /* __KERNEL__ */
  345. #endif /* _ARM_BITOPS_H */