bnode.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662
  1. /*
  2. * linux/fs/hfsplus/bnode.c
  3. *
  4. * Copyright (C) 2001
  5. * Brad Boyer (flar@allandria.com)
  6. * (C) 2003 Ardis Technologies <roman@ardistech.com>
  7. *
  8. * Handle basic btree node operations
  9. */
  10. #include <linux/string.h>
  11. #include <linux/slab.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/fs.h>
  14. #include <linux/swap.h>
  15. #include <linux/version.h>
  16. #include "hfsplus_fs.h"
  17. #include "hfsplus_raw.h"
  18. #define REF_PAGES 0
  19. /* Copy a specified range of bytes from the raw data of a node */
  20. void hfs_bnode_read(struct hfs_bnode *node, void *buf, int off, int len)
  21. {
  22. struct page **pagep;
  23. int l;
  24. off += node->page_offset;
  25. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  26. off &= ~PAGE_CACHE_MASK;
  27. l = min(len, (int)PAGE_CACHE_SIZE - off);
  28. memcpy(buf, kmap(*pagep) + off, l);
  29. kunmap(*pagep);
  30. while ((len -= l) != 0) {
  31. buf += l;
  32. l = min(len, (int)PAGE_CACHE_SIZE);
  33. memcpy(buf, kmap(*++pagep), l);
  34. kunmap(*pagep);
  35. }
  36. }
  37. u16 hfs_bnode_read_u16(struct hfs_bnode *node, int off)
  38. {
  39. __be16 data;
  40. // optimize later...
  41. hfs_bnode_read(node, &data, off, 2);
  42. return be16_to_cpu(data);
  43. }
  44. u8 hfs_bnode_read_u8(struct hfs_bnode *node, int off)
  45. {
  46. u8 data;
  47. // optimize later...
  48. hfs_bnode_read(node, &data, off, 1);
  49. return data;
  50. }
  51. void hfs_bnode_read_key(struct hfs_bnode *node, void *key, int off)
  52. {
  53. struct hfs_btree *tree;
  54. int key_len;
  55. tree = node->tree;
  56. if (node->type == HFS_NODE_LEAF ||
  57. tree->attributes & HFS_TREE_VARIDXKEYS)
  58. key_len = hfs_bnode_read_u16(node, off) + 2;
  59. else
  60. key_len = tree->max_key_len + 2;
  61. hfs_bnode_read(node, key, off, key_len);
  62. }
  63. void hfs_bnode_write(struct hfs_bnode *node, void *buf, int off, int len)
  64. {
  65. struct page **pagep;
  66. int l;
  67. off += node->page_offset;
  68. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  69. off &= ~PAGE_CACHE_MASK;
  70. l = min(len, (int)PAGE_CACHE_SIZE - off);
  71. memcpy(kmap(*pagep) + off, buf, l);
  72. set_page_dirty(*pagep);
  73. kunmap(*pagep);
  74. while ((len -= l) != 0) {
  75. buf += l;
  76. l = min(len, (int)PAGE_CACHE_SIZE);
  77. memcpy(kmap(*++pagep), buf, l);
  78. set_page_dirty(*pagep);
  79. kunmap(*pagep);
  80. }
  81. }
  82. void hfs_bnode_write_u16(struct hfs_bnode *node, int off, u16 data)
  83. {
  84. __be16 v = cpu_to_be16(data);
  85. // optimize later...
  86. hfs_bnode_write(node, &v, off, 2);
  87. }
  88. void hfs_bnode_clear(struct hfs_bnode *node, int off, int len)
  89. {
  90. struct page **pagep;
  91. int l;
  92. off += node->page_offset;
  93. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  94. off &= ~PAGE_CACHE_MASK;
  95. l = min(len, (int)PAGE_CACHE_SIZE - off);
  96. memset(kmap(*pagep) + off, 0, l);
  97. set_page_dirty(*pagep);
  98. kunmap(*pagep);
  99. while ((len -= l) != 0) {
  100. l = min(len, (int)PAGE_CACHE_SIZE);
  101. memset(kmap(*++pagep), 0, l);
  102. set_page_dirty(*pagep);
  103. kunmap(*pagep);
  104. }
  105. }
  106. void hfs_bnode_copy(struct hfs_bnode *dst_node, int dst,
  107. struct hfs_bnode *src_node, int src, int len)
  108. {
  109. struct hfs_btree *tree;
  110. struct page **src_page, **dst_page;
  111. int l;
  112. dprint(DBG_BNODE_MOD, "copybytes: %u,%u,%u\n", dst, src, len);
  113. if (!len)
  114. return;
  115. tree = src_node->tree;
  116. src += src_node->page_offset;
  117. dst += dst_node->page_offset;
  118. src_page = src_node->page + (src >> PAGE_CACHE_SHIFT);
  119. src &= ~PAGE_CACHE_MASK;
  120. dst_page = dst_node->page + (dst >> PAGE_CACHE_SHIFT);
  121. dst &= ~PAGE_CACHE_MASK;
  122. if (src == dst) {
  123. l = min(len, (int)PAGE_CACHE_SIZE - src);
  124. memcpy(kmap(*dst_page) + src, kmap(*src_page) + src, l);
  125. kunmap(*src_page);
  126. set_page_dirty(*dst_page);
  127. kunmap(*dst_page);
  128. while ((len -= l) != 0) {
  129. l = min(len, (int)PAGE_CACHE_SIZE);
  130. memcpy(kmap(*++dst_page), kmap(*++src_page), l);
  131. kunmap(*src_page);
  132. set_page_dirty(*dst_page);
  133. kunmap(*dst_page);
  134. }
  135. } else {
  136. void *src_ptr, *dst_ptr;
  137. do {
  138. src_ptr = kmap(*src_page) + src;
  139. dst_ptr = kmap(*dst_page) + dst;
  140. if (PAGE_CACHE_SIZE - src < PAGE_CACHE_SIZE - dst) {
  141. l = PAGE_CACHE_SIZE - src;
  142. src = 0;
  143. dst += l;
  144. } else {
  145. l = PAGE_CACHE_SIZE - dst;
  146. src += l;
  147. dst = 0;
  148. }
  149. l = min(len, l);
  150. memcpy(dst_ptr, src_ptr, l);
  151. kunmap(*src_page);
  152. set_page_dirty(*dst_page);
  153. kunmap(*dst_page);
  154. if (!dst)
  155. dst_page++;
  156. else
  157. src_page++;
  158. } while ((len -= l));
  159. }
  160. }
  161. void hfs_bnode_move(struct hfs_bnode *node, int dst, int src, int len)
  162. {
  163. struct page **src_page, **dst_page;
  164. int l;
  165. dprint(DBG_BNODE_MOD, "movebytes: %u,%u,%u\n", dst, src, len);
  166. if (!len)
  167. return;
  168. src += node->page_offset;
  169. dst += node->page_offset;
  170. if (dst > src) {
  171. src += len - 1;
  172. src_page = node->page + (src >> PAGE_CACHE_SHIFT);
  173. src = (src & ~PAGE_CACHE_MASK) + 1;
  174. dst += len - 1;
  175. dst_page = node->page + (dst >> PAGE_CACHE_SHIFT);
  176. dst = (dst & ~PAGE_CACHE_MASK) + 1;
  177. if (src == dst) {
  178. while (src < len) {
  179. memmove(kmap(*dst_page), kmap(*src_page), src);
  180. kunmap(*src_page);
  181. set_page_dirty(*dst_page);
  182. kunmap(*dst_page);
  183. len -= src;
  184. src = PAGE_CACHE_SIZE;
  185. src_page--;
  186. dst_page--;
  187. }
  188. src -= len;
  189. memmove(kmap(*dst_page) + src, kmap(*src_page) + src, len);
  190. kunmap(*src_page);
  191. set_page_dirty(*dst_page);
  192. kunmap(*dst_page);
  193. } else {
  194. void *src_ptr, *dst_ptr;
  195. do {
  196. src_ptr = kmap(*src_page) + src;
  197. dst_ptr = kmap(*dst_page) + dst;
  198. if (src < dst) {
  199. l = src;
  200. src = PAGE_CACHE_SIZE;
  201. dst -= l;
  202. } else {
  203. l = dst;
  204. src -= l;
  205. dst = PAGE_CACHE_SIZE;
  206. }
  207. l = min(len, l);
  208. memmove(dst_ptr - l, src_ptr - l, l);
  209. kunmap(*src_page);
  210. set_page_dirty(*dst_page);
  211. kunmap(*dst_page);
  212. if (dst == PAGE_CACHE_SIZE)
  213. dst_page--;
  214. else
  215. src_page--;
  216. } while ((len -= l));
  217. }
  218. } else {
  219. src_page = node->page + (src >> PAGE_CACHE_SHIFT);
  220. src &= ~PAGE_CACHE_MASK;
  221. dst_page = node->page + (dst >> PAGE_CACHE_SHIFT);
  222. dst &= ~PAGE_CACHE_MASK;
  223. if (src == dst) {
  224. l = min(len, (int)PAGE_CACHE_SIZE - src);
  225. memmove(kmap(*dst_page) + src, kmap(*src_page) + src, l);
  226. kunmap(*src_page);
  227. set_page_dirty(*dst_page);
  228. kunmap(*dst_page);
  229. while ((len -= l) != 0) {
  230. l = min(len, (int)PAGE_CACHE_SIZE);
  231. memmove(kmap(*++dst_page), kmap(*++src_page), l);
  232. kunmap(*src_page);
  233. set_page_dirty(*dst_page);
  234. kunmap(*dst_page);
  235. }
  236. } else {
  237. void *src_ptr, *dst_ptr;
  238. do {
  239. src_ptr = kmap(*src_page) + src;
  240. dst_ptr = kmap(*dst_page) + dst;
  241. if (PAGE_CACHE_SIZE - src < PAGE_CACHE_SIZE - dst) {
  242. l = PAGE_CACHE_SIZE - src;
  243. src = 0;
  244. dst += l;
  245. } else {
  246. l = PAGE_CACHE_SIZE - dst;
  247. src += l;
  248. dst = 0;
  249. }
  250. l = min(len, l);
  251. memmove(dst_ptr, src_ptr, l);
  252. kunmap(*src_page);
  253. set_page_dirty(*dst_page);
  254. kunmap(*dst_page);
  255. if (!dst)
  256. dst_page++;
  257. else
  258. src_page++;
  259. } while ((len -= l));
  260. }
  261. }
  262. }
  263. void hfs_bnode_dump(struct hfs_bnode *node)
  264. {
  265. struct hfs_bnode_desc desc;
  266. __be32 cnid;
  267. int i, off, key_off;
  268. dprint(DBG_BNODE_MOD, "bnode: %d\n", node->this);
  269. hfs_bnode_read(node, &desc, 0, sizeof(desc));
  270. dprint(DBG_BNODE_MOD, "%d, %d, %d, %d, %d\n",
  271. be32_to_cpu(desc.next), be32_to_cpu(desc.prev),
  272. desc.type, desc.height, be16_to_cpu(desc.num_recs));
  273. off = node->tree->node_size - 2;
  274. for (i = be16_to_cpu(desc.num_recs); i >= 0; off -= 2, i--) {
  275. key_off = hfs_bnode_read_u16(node, off);
  276. dprint(DBG_BNODE_MOD, " %d", key_off);
  277. if (i && node->type == HFS_NODE_INDEX) {
  278. int tmp;
  279. if (node->tree->attributes & HFS_TREE_VARIDXKEYS)
  280. tmp = hfs_bnode_read_u16(node, key_off) + 2;
  281. else
  282. tmp = node->tree->max_key_len + 2;
  283. dprint(DBG_BNODE_MOD, " (%d", tmp);
  284. hfs_bnode_read(node, &cnid, key_off + tmp, 4);
  285. dprint(DBG_BNODE_MOD, ",%d)", be32_to_cpu(cnid));
  286. } else if (i && node->type == HFS_NODE_LEAF) {
  287. int tmp;
  288. tmp = hfs_bnode_read_u16(node, key_off);
  289. dprint(DBG_BNODE_MOD, " (%d)", tmp);
  290. }
  291. }
  292. dprint(DBG_BNODE_MOD, "\n");
  293. }
  294. void hfs_bnode_unlink(struct hfs_bnode *node)
  295. {
  296. struct hfs_btree *tree;
  297. struct hfs_bnode *tmp;
  298. __be32 cnid;
  299. tree = node->tree;
  300. if (node->prev) {
  301. tmp = hfs_bnode_find(tree, node->prev);
  302. if (IS_ERR(tmp))
  303. return;
  304. tmp->next = node->next;
  305. cnid = cpu_to_be32(tmp->next);
  306. hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
  307. hfs_bnode_put(tmp);
  308. } else if (node->type == HFS_NODE_LEAF)
  309. tree->leaf_head = node->next;
  310. if (node->next) {
  311. tmp = hfs_bnode_find(tree, node->next);
  312. if (IS_ERR(tmp))
  313. return;
  314. tmp->prev = node->prev;
  315. cnid = cpu_to_be32(tmp->prev);
  316. hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, prev), 4);
  317. hfs_bnode_put(tmp);
  318. } else if (node->type == HFS_NODE_LEAF)
  319. tree->leaf_tail = node->prev;
  320. // move down?
  321. if (!node->prev && !node->next) {
  322. printk("hfs_btree_del_level\n");
  323. }
  324. if (!node->parent) {
  325. tree->root = 0;
  326. tree->depth = 0;
  327. }
  328. set_bit(HFS_BNODE_DELETED, &node->flags);
  329. }
  330. static inline int hfs_bnode_hash(u32 num)
  331. {
  332. num = (num >> 16) + num;
  333. num += num >> 8;
  334. return num & (NODE_HASH_SIZE - 1);
  335. }
  336. struct hfs_bnode *hfs_bnode_findhash(struct hfs_btree *tree, u32 cnid)
  337. {
  338. struct hfs_bnode *node;
  339. if (cnid >= tree->node_count) {
  340. printk("HFS+-fs: request for non-existent node %d in B*Tree\n", cnid);
  341. return NULL;
  342. }
  343. for (node = tree->node_hash[hfs_bnode_hash(cnid)];
  344. node; node = node->next_hash) {
  345. if (node->this == cnid) {
  346. return node;
  347. }
  348. }
  349. return NULL;
  350. }
  351. static struct hfs_bnode *__hfs_bnode_create(struct hfs_btree *tree, u32 cnid)
  352. {
  353. struct super_block *sb;
  354. struct hfs_bnode *node, *node2;
  355. struct address_space *mapping;
  356. struct page *page;
  357. int size, block, i, hash;
  358. loff_t off;
  359. if (cnid >= tree->node_count) {
  360. printk("HFS+-fs: request for non-existent node %d in B*Tree\n", cnid);
  361. return NULL;
  362. }
  363. sb = tree->inode->i_sb;
  364. size = sizeof(struct hfs_bnode) + tree->pages_per_bnode *
  365. sizeof(struct page *);
  366. node = kmalloc(size, GFP_KERNEL);
  367. if (!node)
  368. return NULL;
  369. memset(node, 0, size);
  370. node->tree = tree;
  371. node->this = cnid;
  372. set_bit(HFS_BNODE_NEW, &node->flags);
  373. atomic_set(&node->refcnt, 1);
  374. dprint(DBG_BNODE_REFS, "new_node(%d:%d): 1\n",
  375. node->tree->cnid, node->this);
  376. init_waitqueue_head(&node->lock_wq);
  377. spin_lock(&tree->hash_lock);
  378. node2 = hfs_bnode_findhash(tree, cnid);
  379. if (!node2) {
  380. hash = hfs_bnode_hash(cnid);
  381. node->next_hash = tree->node_hash[hash];
  382. tree->node_hash[hash] = node;
  383. tree->node_hash_cnt++;
  384. } else {
  385. spin_unlock(&tree->hash_lock);
  386. kfree(node);
  387. wait_event(node2->lock_wq, !test_bit(HFS_BNODE_NEW, &node2->flags));
  388. return node2;
  389. }
  390. spin_unlock(&tree->hash_lock);
  391. mapping = tree->inode->i_mapping;
  392. off = (loff_t)cnid << tree->node_size_shift;
  393. block = off >> PAGE_CACHE_SHIFT;
  394. node->page_offset = off & ~PAGE_CACHE_MASK;
  395. for (i = 0; i < tree->pages_per_bnode; block++, i++) {
  396. page = read_cache_page(mapping, block, (filler_t *)mapping->a_ops->readpage, NULL);
  397. if (IS_ERR(page))
  398. goto fail;
  399. if (PageError(page)) {
  400. page_cache_release(page);
  401. goto fail;
  402. }
  403. #if !REF_PAGES
  404. page_cache_release(page);
  405. #endif
  406. node->page[i] = page;
  407. }
  408. return node;
  409. fail:
  410. set_bit(HFS_BNODE_ERROR, &node->flags);
  411. return node;
  412. }
  413. void hfs_bnode_unhash(struct hfs_bnode *node)
  414. {
  415. struct hfs_bnode **p;
  416. dprint(DBG_BNODE_REFS, "remove_node(%d:%d): %d\n",
  417. node->tree->cnid, node->this, atomic_read(&node->refcnt));
  418. for (p = &node->tree->node_hash[hfs_bnode_hash(node->this)];
  419. *p && *p != node; p = &(*p)->next_hash)
  420. ;
  421. if (!*p)
  422. BUG();
  423. *p = node->next_hash;
  424. node->tree->node_hash_cnt--;
  425. }
  426. /* Load a particular node out of a tree */
  427. struct hfs_bnode *hfs_bnode_find(struct hfs_btree *tree, u32 num)
  428. {
  429. struct hfs_bnode *node;
  430. struct hfs_bnode_desc *desc;
  431. int i, rec_off, off, next_off;
  432. int entry_size, key_size;
  433. spin_lock(&tree->hash_lock);
  434. node = hfs_bnode_findhash(tree, num);
  435. if (node) {
  436. hfs_bnode_get(node);
  437. spin_unlock(&tree->hash_lock);
  438. wait_event(node->lock_wq, !test_bit(HFS_BNODE_NEW, &node->flags));
  439. if (test_bit(HFS_BNODE_ERROR, &node->flags))
  440. goto node_error;
  441. return node;
  442. }
  443. spin_unlock(&tree->hash_lock);
  444. node = __hfs_bnode_create(tree, num);
  445. if (!node)
  446. return ERR_PTR(-ENOMEM);
  447. if (test_bit(HFS_BNODE_ERROR, &node->flags))
  448. goto node_error;
  449. if (!test_bit(HFS_BNODE_NEW, &node->flags))
  450. return node;
  451. desc = (struct hfs_bnode_desc *)(kmap(node->page[0]) + node->page_offset);
  452. node->prev = be32_to_cpu(desc->prev);
  453. node->next = be32_to_cpu(desc->next);
  454. node->num_recs = be16_to_cpu(desc->num_recs);
  455. node->type = desc->type;
  456. node->height = desc->height;
  457. kunmap(node->page[0]);
  458. switch (node->type) {
  459. case HFS_NODE_HEADER:
  460. case HFS_NODE_MAP:
  461. if (node->height != 0)
  462. goto node_error;
  463. break;
  464. case HFS_NODE_LEAF:
  465. if (node->height != 1)
  466. goto node_error;
  467. break;
  468. case HFS_NODE_INDEX:
  469. if (node->height <= 1 || node->height > tree->depth)
  470. goto node_error;
  471. break;
  472. default:
  473. goto node_error;
  474. }
  475. rec_off = tree->node_size - 2;
  476. off = hfs_bnode_read_u16(node, rec_off);
  477. if (off != sizeof(struct hfs_bnode_desc))
  478. goto node_error;
  479. for (i = 1; i <= node->num_recs; off = next_off, i++) {
  480. rec_off -= 2;
  481. next_off = hfs_bnode_read_u16(node, rec_off);
  482. if (next_off <= off ||
  483. next_off > tree->node_size ||
  484. next_off & 1)
  485. goto node_error;
  486. entry_size = next_off - off;
  487. if (node->type != HFS_NODE_INDEX &&
  488. node->type != HFS_NODE_LEAF)
  489. continue;
  490. key_size = hfs_bnode_read_u16(node, off) + 2;
  491. if (key_size >= entry_size || key_size & 1)
  492. goto node_error;
  493. }
  494. clear_bit(HFS_BNODE_NEW, &node->flags);
  495. wake_up(&node->lock_wq);
  496. return node;
  497. node_error:
  498. set_bit(HFS_BNODE_ERROR, &node->flags);
  499. clear_bit(HFS_BNODE_NEW, &node->flags);
  500. wake_up(&node->lock_wq);
  501. hfs_bnode_put(node);
  502. return ERR_PTR(-EIO);
  503. }
  504. void hfs_bnode_free(struct hfs_bnode *node)
  505. {
  506. //int i;
  507. //for (i = 0; i < node->tree->pages_per_bnode; i++)
  508. // if (node->page[i])
  509. // page_cache_release(node->page[i]);
  510. kfree(node);
  511. }
  512. struct hfs_bnode *hfs_bnode_create(struct hfs_btree *tree, u32 num)
  513. {
  514. struct hfs_bnode *node;
  515. struct page **pagep;
  516. int i;
  517. spin_lock(&tree->hash_lock);
  518. node = hfs_bnode_findhash(tree, num);
  519. spin_unlock(&tree->hash_lock);
  520. if (node) {
  521. printk("new node %u already hashed?\n", num);
  522. BUG();
  523. }
  524. node = __hfs_bnode_create(tree, num);
  525. if (!node)
  526. return ERR_PTR(-ENOMEM);
  527. if (test_bit(HFS_BNODE_ERROR, &node->flags)) {
  528. hfs_bnode_put(node);
  529. return ERR_PTR(-EIO);
  530. }
  531. pagep = node->page;
  532. memset(kmap(*pagep) + node->page_offset, 0,
  533. min((int)PAGE_CACHE_SIZE, (int)tree->node_size));
  534. set_page_dirty(*pagep);
  535. kunmap(*pagep);
  536. for (i = 1; i < tree->pages_per_bnode; i++) {
  537. memset(kmap(*++pagep), 0, PAGE_CACHE_SIZE);
  538. set_page_dirty(*pagep);
  539. kunmap(*pagep);
  540. }
  541. clear_bit(HFS_BNODE_NEW, &node->flags);
  542. wake_up(&node->lock_wq);
  543. return node;
  544. }
  545. void hfs_bnode_get(struct hfs_bnode *node)
  546. {
  547. if (node) {
  548. atomic_inc(&node->refcnt);
  549. #if REF_PAGES
  550. {
  551. int i;
  552. for (i = 0; i < node->tree->pages_per_bnode; i++)
  553. get_page(node->page[i]);
  554. }
  555. #endif
  556. dprint(DBG_BNODE_REFS, "get_node(%d:%d): %d\n",
  557. node->tree->cnid, node->this, atomic_read(&node->refcnt));
  558. }
  559. }
  560. /* Dispose of resources used by a node */
  561. void hfs_bnode_put(struct hfs_bnode *node)
  562. {
  563. if (node) {
  564. struct hfs_btree *tree = node->tree;
  565. int i;
  566. dprint(DBG_BNODE_REFS, "put_node(%d:%d): %d\n",
  567. node->tree->cnid, node->this, atomic_read(&node->refcnt));
  568. if (!atomic_read(&node->refcnt))
  569. BUG();
  570. if (!atomic_dec_and_lock(&node->refcnt, &tree->hash_lock)) {
  571. #if REF_PAGES
  572. for (i = 0; i < tree->pages_per_bnode; i++)
  573. put_page(node->page[i]);
  574. #endif
  575. return;
  576. }
  577. for (i = 0; i < tree->pages_per_bnode; i++) {
  578. mark_page_accessed(node->page[i]);
  579. #if REF_PAGES
  580. put_page(node->page[i]);
  581. #endif
  582. }
  583. if (test_bit(HFS_BNODE_DELETED, &node->flags)) {
  584. hfs_bnode_unhash(node);
  585. spin_unlock(&tree->hash_lock);
  586. hfs_bmap_free(node);
  587. hfs_bnode_free(node);
  588. return;
  589. }
  590. spin_unlock(&tree->hash_lock);
  591. }
  592. }