sungem_phy.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872
  1. /*
  2. * PHY drivers for the sungem ethernet driver.
  3. *
  4. * This file could be shared with other drivers.
  5. *
  6. * (c) 2002, Benjamin Herrenscmidt (benh@kernel.crashing.org)
  7. *
  8. * TODO:
  9. * - Implement WOL
  10. * - Add support for PHYs that provide an IRQ line
  11. * - Eventually moved the entire polling state machine in
  12. * there (out of the eth driver), so that it can easily be
  13. * skipped on PHYs that implement it in hardware.
  14. * - On LXT971 & BCM5201, Apple uses some chip specific regs
  15. * to read the link status. Figure out why and if it makes
  16. * sense to do the same (magic aneg ?)
  17. * - Apple has some additional power management code for some
  18. * Broadcom PHYs that they "hide" from the OpenSource version
  19. * of darwin, still need to reverse engineer that
  20. */
  21. #include <linux/config.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/sched.h>
  25. #include <linux/types.h>
  26. #include <linux/netdevice.h>
  27. #include <linux/etherdevice.h>
  28. #include <linux/mii.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/delay.h>
  31. #include "sungem_phy.h"
  32. /* Link modes of the BCM5400 PHY */
  33. static int phy_BCM5400_link_table[8][3] = {
  34. { 0, 0, 0 }, /* No link */
  35. { 0, 0, 0 }, /* 10BT Half Duplex */
  36. { 1, 0, 0 }, /* 10BT Full Duplex */
  37. { 0, 1, 0 }, /* 100BT Half Duplex */
  38. { 0, 1, 0 }, /* 100BT Half Duplex */
  39. { 1, 1, 0 }, /* 100BT Full Duplex*/
  40. { 1, 0, 1 }, /* 1000BT */
  41. { 1, 0, 1 }, /* 1000BT */
  42. };
  43. static inline int __phy_read(struct mii_phy* phy, int id, int reg)
  44. {
  45. return phy->mdio_read(phy->dev, id, reg);
  46. }
  47. static inline void __phy_write(struct mii_phy* phy, int id, int reg, int val)
  48. {
  49. phy->mdio_write(phy->dev, id, reg, val);
  50. }
  51. static inline int phy_read(struct mii_phy* phy, int reg)
  52. {
  53. return phy->mdio_read(phy->dev, phy->mii_id, reg);
  54. }
  55. static inline void phy_write(struct mii_phy* phy, int reg, int val)
  56. {
  57. phy->mdio_write(phy->dev, phy->mii_id, reg, val);
  58. }
  59. static int reset_one_mii_phy(struct mii_phy* phy, int phy_id)
  60. {
  61. u16 val;
  62. int limit = 10000;
  63. val = __phy_read(phy, phy_id, MII_BMCR);
  64. val &= ~(BMCR_ISOLATE | BMCR_PDOWN);
  65. val |= BMCR_RESET;
  66. __phy_write(phy, phy_id, MII_BMCR, val);
  67. udelay(100);
  68. while (limit--) {
  69. val = __phy_read(phy, phy_id, MII_BMCR);
  70. if ((val & BMCR_RESET) == 0)
  71. break;
  72. udelay(10);
  73. }
  74. if ((val & BMCR_ISOLATE) && limit > 0)
  75. __phy_write(phy, phy_id, MII_BMCR, val & ~BMCR_ISOLATE);
  76. return (limit <= 0);
  77. }
  78. static int bcm5201_init(struct mii_phy* phy)
  79. {
  80. u16 data;
  81. data = phy_read(phy, MII_BCM5201_MULTIPHY);
  82. data &= ~MII_BCM5201_MULTIPHY_SUPERISOLATE;
  83. phy_write(phy, MII_BCM5201_MULTIPHY, data);
  84. phy_write(phy, MII_BCM5201_INTERRUPT, 0);
  85. return 0;
  86. }
  87. static int bcm5201_suspend(struct mii_phy* phy)
  88. {
  89. phy_write(phy, MII_BCM5201_INTERRUPT, 0);
  90. phy_write(phy, MII_BCM5201_MULTIPHY, MII_BCM5201_MULTIPHY_SUPERISOLATE);
  91. return 0;
  92. }
  93. static int bcm5221_init(struct mii_phy* phy)
  94. {
  95. u16 data;
  96. data = phy_read(phy, MII_BCM5221_TEST);
  97. phy_write(phy, MII_BCM5221_TEST,
  98. data | MII_BCM5221_TEST_ENABLE_SHADOWS);
  99. data = phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
  100. phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
  101. data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
  102. data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
  103. phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
  104. data | MII_BCM5221_SHDOW_AUX_MODE4_CLKLOPWR);
  105. data = phy_read(phy, MII_BCM5221_TEST);
  106. phy_write(phy, MII_BCM5221_TEST,
  107. data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
  108. return 0;
  109. }
  110. static int bcm5221_suspend(struct mii_phy* phy)
  111. {
  112. u16 data;
  113. data = phy_read(phy, MII_BCM5221_TEST);
  114. phy_write(phy, MII_BCM5221_TEST,
  115. data | MII_BCM5221_TEST_ENABLE_SHADOWS);
  116. data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
  117. phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
  118. data | MII_BCM5221_SHDOW_AUX_MODE4_IDDQMODE);
  119. return 0;
  120. }
  121. static int bcm5400_init(struct mii_phy* phy)
  122. {
  123. u16 data;
  124. /* Configure for gigabit full duplex */
  125. data = phy_read(phy, MII_BCM5400_AUXCONTROL);
  126. data |= MII_BCM5400_AUXCONTROL_PWR10BASET;
  127. phy_write(phy, MII_BCM5400_AUXCONTROL, data);
  128. data = phy_read(phy, MII_BCM5400_GB_CONTROL);
  129. data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
  130. phy_write(phy, MII_BCM5400_GB_CONTROL, data);
  131. udelay(100);
  132. /* Reset and configure cascaded 10/100 PHY */
  133. (void)reset_one_mii_phy(phy, 0x1f);
  134. data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
  135. data |= MII_BCM5201_MULTIPHY_SERIALMODE;
  136. __phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
  137. data = phy_read(phy, MII_BCM5400_AUXCONTROL);
  138. data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET;
  139. phy_write(phy, MII_BCM5400_AUXCONTROL, data);
  140. return 0;
  141. }
  142. static int bcm5400_suspend(struct mii_phy* phy)
  143. {
  144. #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
  145. phy_write(phy, MII_BMCR, BMCR_PDOWN);
  146. #endif
  147. return 0;
  148. }
  149. static int bcm5401_init(struct mii_phy* phy)
  150. {
  151. u16 data;
  152. int rev;
  153. rev = phy_read(phy, MII_PHYSID2) & 0x000f;
  154. if (rev == 0 || rev == 3) {
  155. /* Some revisions of 5401 appear to need this
  156. * initialisation sequence to disable, according
  157. * to OF, "tap power management"
  158. *
  159. * WARNING ! OF and Darwin don't agree on the
  160. * register addresses. OF seem to interpret the
  161. * register numbers below as decimal
  162. *
  163. * Note: This should (and does) match tg3_init_5401phy_dsp
  164. * in the tg3.c driver. -DaveM
  165. */
  166. phy_write(phy, 0x18, 0x0c20);
  167. phy_write(phy, 0x17, 0x0012);
  168. phy_write(phy, 0x15, 0x1804);
  169. phy_write(phy, 0x17, 0x0013);
  170. phy_write(phy, 0x15, 0x1204);
  171. phy_write(phy, 0x17, 0x8006);
  172. phy_write(phy, 0x15, 0x0132);
  173. phy_write(phy, 0x17, 0x8006);
  174. phy_write(phy, 0x15, 0x0232);
  175. phy_write(phy, 0x17, 0x201f);
  176. phy_write(phy, 0x15, 0x0a20);
  177. }
  178. /* Configure for gigabit full duplex */
  179. data = phy_read(phy, MII_BCM5400_GB_CONTROL);
  180. data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
  181. phy_write(phy, MII_BCM5400_GB_CONTROL, data);
  182. udelay(10);
  183. /* Reset and configure cascaded 10/100 PHY */
  184. (void)reset_one_mii_phy(phy, 0x1f);
  185. data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
  186. data |= MII_BCM5201_MULTIPHY_SERIALMODE;
  187. __phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
  188. return 0;
  189. }
  190. static int bcm5401_suspend(struct mii_phy* phy)
  191. {
  192. #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
  193. phy_write(phy, MII_BMCR, BMCR_PDOWN);
  194. #endif
  195. return 0;
  196. }
  197. static int bcm5411_init(struct mii_phy* phy)
  198. {
  199. u16 data;
  200. /* Here's some more Apple black magic to setup
  201. * some voltage stuffs.
  202. */
  203. phy_write(phy, 0x1c, 0x8c23);
  204. phy_write(phy, 0x1c, 0x8ca3);
  205. phy_write(phy, 0x1c, 0x8c23);
  206. /* Here, Apple seems to want to reset it, do
  207. * it as well
  208. */
  209. phy_write(phy, MII_BMCR, BMCR_RESET);
  210. phy_write(phy, MII_BMCR, 0x1340);
  211. data = phy_read(phy, MII_BCM5400_GB_CONTROL);
  212. data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
  213. phy_write(phy, MII_BCM5400_GB_CONTROL, data);
  214. udelay(10);
  215. /* Reset and configure cascaded 10/100 PHY */
  216. (void)reset_one_mii_phy(phy, 0x1f);
  217. return 0;
  218. }
  219. static int bcm5411_suspend(struct mii_phy* phy)
  220. {
  221. phy_write(phy, MII_BMCR, BMCR_PDOWN);
  222. return 0;
  223. }
  224. static int bcm5421_init(struct mii_phy* phy)
  225. {
  226. u16 data;
  227. int rev;
  228. rev = phy_read(phy, MII_PHYSID2) & 0x000f;
  229. if (rev == 0) {
  230. /* This is borrowed from MacOS
  231. */
  232. phy_write(phy, 0x18, 0x1007);
  233. data = phy_read(phy, 0x18);
  234. phy_write(phy, 0x18, data | 0x0400);
  235. phy_write(phy, 0x18, 0x0007);
  236. data = phy_read(phy, 0x18);
  237. phy_write(phy, 0x18, data | 0x0800);
  238. phy_write(phy, 0x17, 0x000a);
  239. data = phy_read(phy, 0x15);
  240. phy_write(phy, 0x15, data | 0x0200);
  241. }
  242. #if 0
  243. /* This has to be verified before I enable it */
  244. /* Enable automatic low-power */
  245. phy_write(phy, 0x1c, 0x9002);
  246. phy_write(phy, 0x1c, 0xa821);
  247. phy_write(phy, 0x1c, 0x941d);
  248. #endif
  249. return 0;
  250. }
  251. static int bcm5421k2_init(struct mii_phy* phy)
  252. {
  253. /* Init code borrowed from OF */
  254. phy_write(phy, 4, 0x01e1);
  255. phy_write(phy, 9, 0x0300);
  256. return 0;
  257. }
  258. static int bcm54xx_setup_aneg(struct mii_phy *phy, u32 advertise)
  259. {
  260. u16 ctl, adv;
  261. phy->autoneg = 1;
  262. phy->speed = SPEED_10;
  263. phy->duplex = DUPLEX_HALF;
  264. phy->pause = 0;
  265. phy->advertising = advertise;
  266. /* Setup standard advertise */
  267. adv = phy_read(phy, MII_ADVERTISE);
  268. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  269. if (advertise & ADVERTISED_10baseT_Half)
  270. adv |= ADVERTISE_10HALF;
  271. if (advertise & ADVERTISED_10baseT_Full)
  272. adv |= ADVERTISE_10FULL;
  273. if (advertise & ADVERTISED_100baseT_Half)
  274. adv |= ADVERTISE_100HALF;
  275. if (advertise & ADVERTISED_100baseT_Full)
  276. adv |= ADVERTISE_100FULL;
  277. phy_write(phy, MII_ADVERTISE, adv);
  278. /* Setup 1000BT advertise */
  279. adv = phy_read(phy, MII_1000BASETCONTROL);
  280. adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP|MII_1000BASETCONTROL_HALFDUPLEXCAP);
  281. if (advertise & SUPPORTED_1000baseT_Half)
  282. adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
  283. if (advertise & SUPPORTED_1000baseT_Full)
  284. adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
  285. phy_write(phy, MII_1000BASETCONTROL, adv);
  286. /* Start/Restart aneg */
  287. ctl = phy_read(phy, MII_BMCR);
  288. ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
  289. phy_write(phy, MII_BMCR, ctl);
  290. return 0;
  291. }
  292. static int bcm54xx_setup_forced(struct mii_phy *phy, int speed, int fd)
  293. {
  294. u16 ctl;
  295. phy->autoneg = 0;
  296. phy->speed = speed;
  297. phy->duplex = fd;
  298. phy->pause = 0;
  299. ctl = phy_read(phy, MII_BMCR);
  300. ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
  301. /* First reset the PHY */
  302. phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
  303. /* Select speed & duplex */
  304. switch(speed) {
  305. case SPEED_10:
  306. break;
  307. case SPEED_100:
  308. ctl |= BMCR_SPEED100;
  309. break;
  310. case SPEED_1000:
  311. ctl |= BMCR_SPD2;
  312. }
  313. if (fd == DUPLEX_FULL)
  314. ctl |= BMCR_FULLDPLX;
  315. // XXX Should we set the sungem to GII now on 1000BT ?
  316. phy_write(phy, MII_BMCR, ctl);
  317. return 0;
  318. }
  319. static int bcm54xx_read_link(struct mii_phy *phy)
  320. {
  321. int link_mode;
  322. u16 val;
  323. if (phy->autoneg) {
  324. val = phy_read(phy, MII_BCM5400_AUXSTATUS);
  325. link_mode = ((val & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
  326. MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT);
  327. phy->duplex = phy_BCM5400_link_table[link_mode][0] ? DUPLEX_FULL : DUPLEX_HALF;
  328. phy->speed = phy_BCM5400_link_table[link_mode][2] ?
  329. SPEED_1000 :
  330. (phy_BCM5400_link_table[link_mode][1] ? SPEED_100 : SPEED_10);
  331. val = phy_read(phy, MII_LPA);
  332. phy->pause = ((val & LPA_PAUSE) != 0);
  333. }
  334. /* On non-aneg, we assume what we put in BMCR is the speed,
  335. * though magic-aneg shouldn't prevent this case from occurring
  336. */
  337. return 0;
  338. }
  339. static int marvell_setup_aneg(struct mii_phy *phy, u32 advertise)
  340. {
  341. u16 ctl, adv;
  342. phy->autoneg = 1;
  343. phy->speed = SPEED_10;
  344. phy->duplex = DUPLEX_HALF;
  345. phy->pause = 0;
  346. phy->advertising = advertise;
  347. /* Setup standard advertise */
  348. adv = phy_read(phy, MII_ADVERTISE);
  349. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  350. if (advertise & ADVERTISED_10baseT_Half)
  351. adv |= ADVERTISE_10HALF;
  352. if (advertise & ADVERTISED_10baseT_Full)
  353. adv |= ADVERTISE_10FULL;
  354. if (advertise & ADVERTISED_100baseT_Half)
  355. adv |= ADVERTISE_100HALF;
  356. if (advertise & ADVERTISED_100baseT_Full)
  357. adv |= ADVERTISE_100FULL;
  358. phy_write(phy, MII_ADVERTISE, adv);
  359. /* Setup 1000BT advertise & enable crossover detect
  360. * XXX How do we advertise 1000BT ? Darwin source is
  361. * confusing here, they read from specific control and
  362. * write to control... Someone has specs for those
  363. * beasts ?
  364. */
  365. adv = phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
  366. adv |= MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX;
  367. adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP |
  368. MII_1000BASETCONTROL_HALFDUPLEXCAP);
  369. if (advertise & SUPPORTED_1000baseT_Half)
  370. adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
  371. if (advertise & SUPPORTED_1000baseT_Full)
  372. adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
  373. phy_write(phy, MII_1000BASETCONTROL, adv);
  374. /* Start/Restart aneg */
  375. ctl = phy_read(phy, MII_BMCR);
  376. ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
  377. phy_write(phy, MII_BMCR, ctl);
  378. return 0;
  379. }
  380. static int marvell_setup_forced(struct mii_phy *phy, int speed, int fd)
  381. {
  382. u16 ctl, ctl2;
  383. phy->autoneg = 0;
  384. phy->speed = speed;
  385. phy->duplex = fd;
  386. phy->pause = 0;
  387. ctl = phy_read(phy, MII_BMCR);
  388. ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
  389. ctl |= BMCR_RESET;
  390. /* Select speed & duplex */
  391. switch(speed) {
  392. case SPEED_10:
  393. break;
  394. case SPEED_100:
  395. ctl |= BMCR_SPEED100;
  396. break;
  397. /* I'm not sure about the one below, again, Darwin source is
  398. * quite confusing and I lack chip specs
  399. */
  400. case SPEED_1000:
  401. ctl |= BMCR_SPD2;
  402. }
  403. if (fd == DUPLEX_FULL)
  404. ctl |= BMCR_FULLDPLX;
  405. /* Disable crossover. Again, the way Apple does it is strange,
  406. * though I don't assume they are wrong ;)
  407. */
  408. ctl2 = phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
  409. ctl2 &= ~(MII_M1011_PHY_SPEC_CONTROL_MANUAL_MDIX |
  410. MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX |
  411. MII_1000BASETCONTROL_FULLDUPLEXCAP |
  412. MII_1000BASETCONTROL_HALFDUPLEXCAP);
  413. if (speed == SPEED_1000)
  414. ctl2 |= (fd == DUPLEX_FULL) ?
  415. MII_1000BASETCONTROL_FULLDUPLEXCAP :
  416. MII_1000BASETCONTROL_HALFDUPLEXCAP;
  417. phy_write(phy, MII_1000BASETCONTROL, ctl2);
  418. // XXX Should we set the sungem to GII now on 1000BT ?
  419. phy_write(phy, MII_BMCR, ctl);
  420. return 0;
  421. }
  422. static int marvell_read_link(struct mii_phy *phy)
  423. {
  424. u16 status;
  425. if (phy->autoneg) {
  426. status = phy_read(phy, MII_M1011_PHY_SPEC_STATUS);
  427. if ((status & MII_M1011_PHY_SPEC_STATUS_RESOLVED) == 0)
  428. return -EAGAIN;
  429. if (status & MII_M1011_PHY_SPEC_STATUS_1000)
  430. phy->speed = SPEED_1000;
  431. else if (status & MII_M1011_PHY_SPEC_STATUS_100)
  432. phy->speed = SPEED_100;
  433. else
  434. phy->speed = SPEED_10;
  435. if (status & MII_M1011_PHY_SPEC_STATUS_FULLDUPLEX)
  436. phy->duplex = DUPLEX_FULL;
  437. else
  438. phy->duplex = DUPLEX_HALF;
  439. phy->pause = 0; /* XXX Check against spec ! */
  440. }
  441. /* On non-aneg, we assume what we put in BMCR is the speed,
  442. * though magic-aneg shouldn't prevent this case from occurring
  443. */
  444. return 0;
  445. }
  446. static int genmii_setup_aneg(struct mii_phy *phy, u32 advertise)
  447. {
  448. u16 ctl, adv;
  449. phy->autoneg = 1;
  450. phy->speed = SPEED_10;
  451. phy->duplex = DUPLEX_HALF;
  452. phy->pause = 0;
  453. phy->advertising = advertise;
  454. /* Setup standard advertise */
  455. adv = phy_read(phy, MII_ADVERTISE);
  456. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  457. if (advertise & ADVERTISED_10baseT_Half)
  458. adv |= ADVERTISE_10HALF;
  459. if (advertise & ADVERTISED_10baseT_Full)
  460. adv |= ADVERTISE_10FULL;
  461. if (advertise & ADVERTISED_100baseT_Half)
  462. adv |= ADVERTISE_100HALF;
  463. if (advertise & ADVERTISED_100baseT_Full)
  464. adv |= ADVERTISE_100FULL;
  465. phy_write(phy, MII_ADVERTISE, adv);
  466. /* Start/Restart aneg */
  467. ctl = phy_read(phy, MII_BMCR);
  468. ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
  469. phy_write(phy, MII_BMCR, ctl);
  470. return 0;
  471. }
  472. static int genmii_setup_forced(struct mii_phy *phy, int speed, int fd)
  473. {
  474. u16 ctl;
  475. phy->autoneg = 0;
  476. phy->speed = speed;
  477. phy->duplex = fd;
  478. phy->pause = 0;
  479. ctl = phy_read(phy, MII_BMCR);
  480. ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_ANENABLE);
  481. /* First reset the PHY */
  482. phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
  483. /* Select speed & duplex */
  484. switch(speed) {
  485. case SPEED_10:
  486. break;
  487. case SPEED_100:
  488. ctl |= BMCR_SPEED100;
  489. break;
  490. case SPEED_1000:
  491. default:
  492. return -EINVAL;
  493. }
  494. if (fd == DUPLEX_FULL)
  495. ctl |= BMCR_FULLDPLX;
  496. phy_write(phy, MII_BMCR, ctl);
  497. return 0;
  498. }
  499. static int genmii_poll_link(struct mii_phy *phy)
  500. {
  501. u16 status;
  502. (void)phy_read(phy, MII_BMSR);
  503. status = phy_read(phy, MII_BMSR);
  504. if ((status & BMSR_LSTATUS) == 0)
  505. return 0;
  506. if (phy->autoneg && !(status & BMSR_ANEGCOMPLETE))
  507. return 0;
  508. return 1;
  509. }
  510. static int genmii_read_link(struct mii_phy *phy)
  511. {
  512. u16 lpa;
  513. if (phy->autoneg) {
  514. lpa = phy_read(phy, MII_LPA);
  515. if (lpa & (LPA_10FULL | LPA_100FULL))
  516. phy->duplex = DUPLEX_FULL;
  517. else
  518. phy->duplex = DUPLEX_HALF;
  519. if (lpa & (LPA_100FULL | LPA_100HALF))
  520. phy->speed = SPEED_100;
  521. else
  522. phy->speed = SPEED_10;
  523. phy->pause = 0;
  524. }
  525. /* On non-aneg, we assume what we put in BMCR is the speed,
  526. * though magic-aneg shouldn't prevent this case from occurring
  527. */
  528. return 0;
  529. }
  530. #define MII_BASIC_FEATURES (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  531. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  532. SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII)
  533. #define MII_GBIT_FEATURES (MII_BASIC_FEATURES | \
  534. SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
  535. /* Broadcom BCM 5201 */
  536. static struct mii_phy_ops bcm5201_phy_ops = {
  537. .init = bcm5201_init,
  538. .suspend = bcm5201_suspend,
  539. .setup_aneg = genmii_setup_aneg,
  540. .setup_forced = genmii_setup_forced,
  541. .poll_link = genmii_poll_link,
  542. .read_link = genmii_read_link,
  543. };
  544. static struct mii_phy_def bcm5201_phy_def = {
  545. .phy_id = 0x00406210,
  546. .phy_id_mask = 0xfffffff0,
  547. .name = "BCM5201",
  548. .features = MII_BASIC_FEATURES,
  549. .magic_aneg = 1,
  550. .ops = &bcm5201_phy_ops
  551. };
  552. /* Broadcom BCM 5221 */
  553. static struct mii_phy_ops bcm5221_phy_ops = {
  554. .suspend = bcm5221_suspend,
  555. .init = bcm5221_init,
  556. .setup_aneg = genmii_setup_aneg,
  557. .setup_forced = genmii_setup_forced,
  558. .poll_link = genmii_poll_link,
  559. .read_link = genmii_read_link,
  560. };
  561. static struct mii_phy_def bcm5221_phy_def = {
  562. .phy_id = 0x004061e0,
  563. .phy_id_mask = 0xfffffff0,
  564. .name = "BCM5221",
  565. .features = MII_BASIC_FEATURES,
  566. .magic_aneg = 1,
  567. .ops = &bcm5221_phy_ops
  568. };
  569. /* Broadcom BCM 5400 */
  570. static struct mii_phy_ops bcm5400_phy_ops = {
  571. .init = bcm5400_init,
  572. .suspend = bcm5400_suspend,
  573. .setup_aneg = bcm54xx_setup_aneg,
  574. .setup_forced = bcm54xx_setup_forced,
  575. .poll_link = genmii_poll_link,
  576. .read_link = bcm54xx_read_link,
  577. };
  578. static struct mii_phy_def bcm5400_phy_def = {
  579. .phy_id = 0x00206040,
  580. .phy_id_mask = 0xfffffff0,
  581. .name = "BCM5400",
  582. .features = MII_GBIT_FEATURES,
  583. .magic_aneg = 1,
  584. .ops = &bcm5400_phy_ops
  585. };
  586. /* Broadcom BCM 5401 */
  587. static struct mii_phy_ops bcm5401_phy_ops = {
  588. .init = bcm5401_init,
  589. .suspend = bcm5401_suspend,
  590. .setup_aneg = bcm54xx_setup_aneg,
  591. .setup_forced = bcm54xx_setup_forced,
  592. .poll_link = genmii_poll_link,
  593. .read_link = bcm54xx_read_link,
  594. };
  595. static struct mii_phy_def bcm5401_phy_def = {
  596. .phy_id = 0x00206050,
  597. .phy_id_mask = 0xfffffff0,
  598. .name = "BCM5401",
  599. .features = MII_GBIT_FEATURES,
  600. .magic_aneg = 1,
  601. .ops = &bcm5401_phy_ops
  602. };
  603. /* Broadcom BCM 5411 */
  604. static struct mii_phy_ops bcm5411_phy_ops = {
  605. .init = bcm5411_init,
  606. .suspend = bcm5411_suspend,
  607. .setup_aneg = bcm54xx_setup_aneg,
  608. .setup_forced = bcm54xx_setup_forced,
  609. .poll_link = genmii_poll_link,
  610. .read_link = bcm54xx_read_link,
  611. };
  612. static struct mii_phy_def bcm5411_phy_def = {
  613. .phy_id = 0x00206070,
  614. .phy_id_mask = 0xfffffff0,
  615. .name = "BCM5411",
  616. .features = MII_GBIT_FEATURES,
  617. .magic_aneg = 1,
  618. .ops = &bcm5411_phy_ops
  619. };
  620. /* Broadcom BCM 5421 */
  621. static struct mii_phy_ops bcm5421_phy_ops = {
  622. .init = bcm5421_init,
  623. .suspend = bcm5411_suspend,
  624. .setup_aneg = bcm54xx_setup_aneg,
  625. .setup_forced = bcm54xx_setup_forced,
  626. .poll_link = genmii_poll_link,
  627. .read_link = bcm54xx_read_link,
  628. };
  629. static struct mii_phy_def bcm5421_phy_def = {
  630. .phy_id = 0x002060e0,
  631. .phy_id_mask = 0xfffffff0,
  632. .name = "BCM5421",
  633. .features = MII_GBIT_FEATURES,
  634. .magic_aneg = 1,
  635. .ops = &bcm5421_phy_ops
  636. };
  637. /* Broadcom BCM 5421 built-in K2 */
  638. static struct mii_phy_ops bcm5421k2_phy_ops = {
  639. .init = bcm5421k2_init,
  640. .suspend = bcm5411_suspend,
  641. .setup_aneg = bcm54xx_setup_aneg,
  642. .setup_forced = bcm54xx_setup_forced,
  643. .poll_link = genmii_poll_link,
  644. .read_link = bcm54xx_read_link,
  645. };
  646. static struct mii_phy_def bcm5421k2_phy_def = {
  647. .phy_id = 0x002062e0,
  648. .phy_id_mask = 0xfffffff0,
  649. .name = "BCM5421-K2",
  650. .features = MII_GBIT_FEATURES,
  651. .magic_aneg = 1,
  652. .ops = &bcm5421k2_phy_ops
  653. };
  654. /* Marvell 88E1101 (Apple seem to deal with 2 different revs,
  655. * I masked out the 8 last bits to get both, but some specs
  656. * would be useful here) --BenH.
  657. */
  658. static struct mii_phy_ops marvell_phy_ops = {
  659. .setup_aneg = marvell_setup_aneg,
  660. .setup_forced = marvell_setup_forced,
  661. .poll_link = genmii_poll_link,
  662. .read_link = marvell_read_link
  663. };
  664. static struct mii_phy_def marvell_phy_def = {
  665. .phy_id = 0x01410c00,
  666. .phy_id_mask = 0xffffff00,
  667. .name = "Marvell 88E1101",
  668. .features = MII_GBIT_FEATURES,
  669. .magic_aneg = 1,
  670. .ops = &marvell_phy_ops
  671. };
  672. /* Generic implementation for most 10/100 PHYs */
  673. static struct mii_phy_ops generic_phy_ops = {
  674. .setup_aneg = genmii_setup_aneg,
  675. .setup_forced = genmii_setup_forced,
  676. .poll_link = genmii_poll_link,
  677. .read_link = genmii_read_link
  678. };
  679. static struct mii_phy_def genmii_phy_def = {
  680. .phy_id = 0x00000000,
  681. .phy_id_mask = 0x00000000,
  682. .name = "Generic MII",
  683. .features = MII_BASIC_FEATURES,
  684. .magic_aneg = 0,
  685. .ops = &generic_phy_ops
  686. };
  687. static struct mii_phy_def* mii_phy_table[] = {
  688. &bcm5201_phy_def,
  689. &bcm5221_phy_def,
  690. &bcm5400_phy_def,
  691. &bcm5401_phy_def,
  692. &bcm5411_phy_def,
  693. &bcm5421_phy_def,
  694. &bcm5421k2_phy_def,
  695. &marvell_phy_def,
  696. &genmii_phy_def,
  697. NULL
  698. };
  699. int mii_phy_probe(struct mii_phy *phy, int mii_id)
  700. {
  701. int rc;
  702. u32 id;
  703. struct mii_phy_def* def;
  704. int i;
  705. /* We do not reset the mii_phy structure as the driver
  706. * may re-probe the PHY regulary
  707. */
  708. phy->mii_id = mii_id;
  709. /* Take PHY out of isloate mode and reset it. */
  710. rc = reset_one_mii_phy(phy, mii_id);
  711. if (rc)
  712. goto fail;
  713. /* Read ID and find matching entry */
  714. id = (phy_read(phy, MII_PHYSID1) << 16 | phy_read(phy, MII_PHYSID2));
  715. printk(KERN_DEBUG "PHY ID: %x, addr: %x\n", id, mii_id);
  716. for (i=0; (def = mii_phy_table[i]) != NULL; i++)
  717. if ((id & def->phy_id_mask) == def->phy_id)
  718. break;
  719. /* Should never be NULL (we have a generic entry), but... */
  720. if (def == NULL)
  721. goto fail;
  722. phy->def = def;
  723. return 0;
  724. fail:
  725. phy->speed = 0;
  726. phy->duplex = 0;
  727. phy->pause = 0;
  728. phy->advertising = 0;
  729. return -ENODEV;
  730. }
  731. EXPORT_SYMBOL(mii_phy_probe);
  732. MODULE_LICENSE("GPL");