sungem.c 79 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205
  1. /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
  2. * sungem.c: Sun GEM ethernet driver.
  3. *
  4. * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
  5. *
  6. * Support for Apple GMAC and assorted PHYs, WOL, Power Management
  7. * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
  8. * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
  9. *
  10. * NAPI and NETPOLL support
  11. * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
  12. *
  13. * TODO:
  14. * - Now that the driver was significantly simplified, I need to rework
  15. * the locking. I'm sure we don't need _2_ spinlocks, and we probably
  16. * can avoid taking most of them for so long period of time (and schedule
  17. * instead). The main issues at this point are caused by the netdev layer
  18. * though:
  19. *
  20. * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
  21. * help by net/core/dev.c, thus they can't schedule. That means they can't
  22. * call netif_poll_disable() neither, thus force gem_poll() to keep a spinlock
  23. * where it could have been dropped. change_mtu especially would love also to
  24. * be able to msleep instead of horrid locked delays when resetting the HW,
  25. * but that read_lock() makes it impossible, unless I defer it's action to
  26. * the reset task, which means it'll be asynchronous (won't take effect until
  27. * the system schedules a bit).
  28. *
  29. * Also, it would probably be possible to also remove most of the long-life
  30. * locking in open/resume code path (gem_reinit_chip) by beeing more careful
  31. * about when we can start taking interrupts or get xmit() called...
  32. */
  33. #include <linux/module.h>
  34. #include <linux/kernel.h>
  35. #include <linux/types.h>
  36. #include <linux/fcntl.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/ioport.h>
  39. #include <linux/in.h>
  40. #include <linux/slab.h>
  41. #include <linux/string.h>
  42. #include <linux/delay.h>
  43. #include <linux/init.h>
  44. #include <linux/errno.h>
  45. #include <linux/pci.h>
  46. #include <linux/dma-mapping.h>
  47. #include <linux/netdevice.h>
  48. #include <linux/etherdevice.h>
  49. #include <linux/skbuff.h>
  50. #include <linux/mii.h>
  51. #include <linux/ethtool.h>
  52. #include <linux/crc32.h>
  53. #include <linux/random.h>
  54. #include <linux/workqueue.h>
  55. #include <linux/if_vlan.h>
  56. #include <linux/bitops.h>
  57. #include <asm/system.h>
  58. #include <asm/io.h>
  59. #include <asm/byteorder.h>
  60. #include <asm/uaccess.h>
  61. #include <asm/irq.h>
  62. #ifdef __sparc__
  63. #include <asm/idprom.h>
  64. #include <asm/openprom.h>
  65. #include <asm/oplib.h>
  66. #include <asm/pbm.h>
  67. #endif
  68. #ifdef CONFIG_PPC_PMAC
  69. #include <asm/pci-bridge.h>
  70. #include <asm/prom.h>
  71. #include <asm/machdep.h>
  72. #include <asm/pmac_feature.h>
  73. #endif
  74. #include "sungem_phy.h"
  75. #include "sungem.h"
  76. /* Stripping FCS is causing problems, disabled for now */
  77. #undef STRIP_FCS
  78. #define DEFAULT_MSG (NETIF_MSG_DRV | \
  79. NETIF_MSG_PROBE | \
  80. NETIF_MSG_LINK)
  81. #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  82. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  83. SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
  84. #define DRV_NAME "sungem"
  85. #define DRV_VERSION "0.98"
  86. #define DRV_RELDATE "8/24/03"
  87. #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
  88. static char version[] __devinitdata =
  89. DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
  90. MODULE_AUTHOR(DRV_AUTHOR);
  91. MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
  92. MODULE_LICENSE("GPL");
  93. #define GEM_MODULE_NAME "gem"
  94. #define PFX GEM_MODULE_NAME ": "
  95. static struct pci_device_id gem_pci_tbl[] = {
  96. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
  97. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  98. /* These models only differ from the original GEM in
  99. * that their tx/rx fifos are of a different size and
  100. * they only support 10/100 speeds. -DaveM
  101. *
  102. * Apple's GMAC does support gigabit on machines with
  103. * the BCM54xx PHYs. -BenH
  104. */
  105. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
  106. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  107. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
  108. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  109. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
  110. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  111. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
  112. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  113. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
  114. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  115. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  117. {0, }
  118. };
  119. MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
  120. static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
  121. {
  122. u32 cmd;
  123. int limit = 10000;
  124. cmd = (1 << 30);
  125. cmd |= (2 << 28);
  126. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  127. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  128. cmd |= (MIF_FRAME_TAMSB);
  129. writel(cmd, gp->regs + MIF_FRAME);
  130. while (limit--) {
  131. cmd = readl(gp->regs + MIF_FRAME);
  132. if (cmd & MIF_FRAME_TALSB)
  133. break;
  134. udelay(10);
  135. }
  136. if (!limit)
  137. cmd = 0xffff;
  138. return cmd & MIF_FRAME_DATA;
  139. }
  140. static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
  141. {
  142. struct gem *gp = dev->priv;
  143. return __phy_read(gp, mii_id, reg);
  144. }
  145. static inline u16 phy_read(struct gem *gp, int reg)
  146. {
  147. return __phy_read(gp, gp->mii_phy_addr, reg);
  148. }
  149. static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
  150. {
  151. u32 cmd;
  152. int limit = 10000;
  153. cmd = (1 << 30);
  154. cmd |= (1 << 28);
  155. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  156. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  157. cmd |= (MIF_FRAME_TAMSB);
  158. cmd |= (val & MIF_FRAME_DATA);
  159. writel(cmd, gp->regs + MIF_FRAME);
  160. while (limit--) {
  161. cmd = readl(gp->regs + MIF_FRAME);
  162. if (cmd & MIF_FRAME_TALSB)
  163. break;
  164. udelay(10);
  165. }
  166. }
  167. static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
  168. {
  169. struct gem *gp = dev->priv;
  170. __phy_write(gp, mii_id, reg, val & 0xffff);
  171. }
  172. static inline void phy_write(struct gem *gp, int reg, u16 val)
  173. {
  174. __phy_write(gp, gp->mii_phy_addr, reg, val);
  175. }
  176. static inline void gem_enable_ints(struct gem *gp)
  177. {
  178. /* Enable all interrupts but TXDONE */
  179. writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  180. }
  181. static inline void gem_disable_ints(struct gem *gp)
  182. {
  183. /* Disable all interrupts, including TXDONE */
  184. writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  185. }
  186. static void gem_get_cell(struct gem *gp)
  187. {
  188. BUG_ON(gp->cell_enabled < 0);
  189. gp->cell_enabled++;
  190. #ifdef CONFIG_PPC_PMAC
  191. if (gp->cell_enabled == 1) {
  192. mb();
  193. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
  194. udelay(10);
  195. }
  196. #endif /* CONFIG_PPC_PMAC */
  197. }
  198. /* Turn off the chip's clock */
  199. static void gem_put_cell(struct gem *gp)
  200. {
  201. BUG_ON(gp->cell_enabled <= 0);
  202. gp->cell_enabled--;
  203. #ifdef CONFIG_PPC_PMAC
  204. if (gp->cell_enabled == 0) {
  205. mb();
  206. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
  207. udelay(10);
  208. }
  209. #endif /* CONFIG_PPC_PMAC */
  210. }
  211. static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
  212. {
  213. if (netif_msg_intr(gp))
  214. printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
  215. }
  216. static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  217. {
  218. u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
  219. u32 pcs_miistat;
  220. if (netif_msg_intr(gp))
  221. printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
  222. gp->dev->name, pcs_istat);
  223. if (!(pcs_istat & PCS_ISTAT_LSC)) {
  224. printk(KERN_ERR "%s: PCS irq but no link status change???\n",
  225. dev->name);
  226. return 0;
  227. }
  228. /* The link status bit latches on zero, so you must
  229. * read it twice in such a case to see a transition
  230. * to the link being up.
  231. */
  232. pcs_miistat = readl(gp->regs + PCS_MIISTAT);
  233. if (!(pcs_miistat & PCS_MIISTAT_LS))
  234. pcs_miistat |=
  235. (readl(gp->regs + PCS_MIISTAT) &
  236. PCS_MIISTAT_LS);
  237. if (pcs_miistat & PCS_MIISTAT_ANC) {
  238. /* The remote-fault indication is only valid
  239. * when autoneg has completed.
  240. */
  241. if (pcs_miistat & PCS_MIISTAT_RF)
  242. printk(KERN_INFO "%s: PCS AutoNEG complete, "
  243. "RemoteFault\n", dev->name);
  244. else
  245. printk(KERN_INFO "%s: PCS AutoNEG complete.\n",
  246. dev->name);
  247. }
  248. if (pcs_miistat & PCS_MIISTAT_LS) {
  249. printk(KERN_INFO "%s: PCS link is now up.\n",
  250. dev->name);
  251. netif_carrier_on(gp->dev);
  252. } else {
  253. printk(KERN_INFO "%s: PCS link is now down.\n",
  254. dev->name);
  255. netif_carrier_off(gp->dev);
  256. /* If this happens and the link timer is not running,
  257. * reset so we re-negotiate.
  258. */
  259. if (!timer_pending(&gp->link_timer))
  260. return 1;
  261. }
  262. return 0;
  263. }
  264. static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  265. {
  266. u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
  267. if (netif_msg_intr(gp))
  268. printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
  269. gp->dev->name, txmac_stat);
  270. /* Defer timer expiration is quite normal,
  271. * don't even log the event.
  272. */
  273. if ((txmac_stat & MAC_TXSTAT_DTE) &&
  274. !(txmac_stat & ~MAC_TXSTAT_DTE))
  275. return 0;
  276. if (txmac_stat & MAC_TXSTAT_URUN) {
  277. printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
  278. dev->name);
  279. gp->net_stats.tx_fifo_errors++;
  280. }
  281. if (txmac_stat & MAC_TXSTAT_MPE) {
  282. printk(KERN_ERR "%s: TX MAC max packet size error.\n",
  283. dev->name);
  284. gp->net_stats.tx_errors++;
  285. }
  286. /* The rest are all cases of one of the 16-bit TX
  287. * counters expiring.
  288. */
  289. if (txmac_stat & MAC_TXSTAT_NCE)
  290. gp->net_stats.collisions += 0x10000;
  291. if (txmac_stat & MAC_TXSTAT_ECE) {
  292. gp->net_stats.tx_aborted_errors += 0x10000;
  293. gp->net_stats.collisions += 0x10000;
  294. }
  295. if (txmac_stat & MAC_TXSTAT_LCE) {
  296. gp->net_stats.tx_aborted_errors += 0x10000;
  297. gp->net_stats.collisions += 0x10000;
  298. }
  299. /* We do not keep track of MAC_TXSTAT_FCE and
  300. * MAC_TXSTAT_PCE events.
  301. */
  302. return 0;
  303. }
  304. /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
  305. * so we do the following.
  306. *
  307. * If any part of the reset goes wrong, we return 1 and that causes the
  308. * whole chip to be reset.
  309. */
  310. static int gem_rxmac_reset(struct gem *gp)
  311. {
  312. struct net_device *dev = gp->dev;
  313. int limit, i;
  314. u64 desc_dma;
  315. u32 val;
  316. /* First, reset & disable MAC RX. */
  317. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  318. for (limit = 0; limit < 5000; limit++) {
  319. if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
  320. break;
  321. udelay(10);
  322. }
  323. if (limit == 5000) {
  324. printk(KERN_ERR "%s: RX MAC will not reset, resetting whole "
  325. "chip.\n", dev->name);
  326. return 1;
  327. }
  328. writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
  329. gp->regs + MAC_RXCFG);
  330. for (limit = 0; limit < 5000; limit++) {
  331. if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
  332. break;
  333. udelay(10);
  334. }
  335. if (limit == 5000) {
  336. printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
  337. "chip.\n", dev->name);
  338. return 1;
  339. }
  340. /* Second, disable RX DMA. */
  341. writel(0, gp->regs + RXDMA_CFG);
  342. for (limit = 0; limit < 5000; limit++) {
  343. if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
  344. break;
  345. udelay(10);
  346. }
  347. if (limit == 5000) {
  348. printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
  349. "chip.\n", dev->name);
  350. return 1;
  351. }
  352. udelay(5000);
  353. /* Execute RX reset command. */
  354. writel(gp->swrst_base | GREG_SWRST_RXRST,
  355. gp->regs + GREG_SWRST);
  356. for (limit = 0; limit < 5000; limit++) {
  357. if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
  358. break;
  359. udelay(10);
  360. }
  361. if (limit == 5000) {
  362. printk(KERN_ERR "%s: RX reset command will not execute, resetting "
  363. "whole chip.\n", dev->name);
  364. return 1;
  365. }
  366. /* Refresh the RX ring. */
  367. for (i = 0; i < RX_RING_SIZE; i++) {
  368. struct gem_rxd *rxd = &gp->init_block->rxd[i];
  369. if (gp->rx_skbs[i] == NULL) {
  370. printk(KERN_ERR "%s: Parts of RX ring empty, resetting "
  371. "whole chip.\n", dev->name);
  372. return 1;
  373. }
  374. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  375. }
  376. gp->rx_new = gp->rx_old = 0;
  377. /* Now we must reprogram the rest of RX unit. */
  378. desc_dma = (u64) gp->gblock_dvma;
  379. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  380. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  381. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  382. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  383. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  384. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  385. writel(val, gp->regs + RXDMA_CFG);
  386. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  387. writel(((5 & RXDMA_BLANK_IPKTS) |
  388. ((8 << 12) & RXDMA_BLANK_ITIME)),
  389. gp->regs + RXDMA_BLANK);
  390. else
  391. writel(((5 & RXDMA_BLANK_IPKTS) |
  392. ((4 << 12) & RXDMA_BLANK_ITIME)),
  393. gp->regs + RXDMA_BLANK);
  394. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  395. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  396. writel(val, gp->regs + RXDMA_PTHRESH);
  397. val = readl(gp->regs + RXDMA_CFG);
  398. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  399. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  400. val = readl(gp->regs + MAC_RXCFG);
  401. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  402. return 0;
  403. }
  404. static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  405. {
  406. u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
  407. int ret = 0;
  408. if (netif_msg_intr(gp))
  409. printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
  410. gp->dev->name, rxmac_stat);
  411. if (rxmac_stat & MAC_RXSTAT_OFLW) {
  412. u32 smac = readl(gp->regs + MAC_SMACHINE);
  413. printk(KERN_ERR "%s: RX MAC fifo overflow smac[%08x].\n",
  414. dev->name, smac);
  415. gp->net_stats.rx_over_errors++;
  416. gp->net_stats.rx_fifo_errors++;
  417. ret = gem_rxmac_reset(gp);
  418. }
  419. if (rxmac_stat & MAC_RXSTAT_ACE)
  420. gp->net_stats.rx_frame_errors += 0x10000;
  421. if (rxmac_stat & MAC_RXSTAT_CCE)
  422. gp->net_stats.rx_crc_errors += 0x10000;
  423. if (rxmac_stat & MAC_RXSTAT_LCE)
  424. gp->net_stats.rx_length_errors += 0x10000;
  425. /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
  426. * events.
  427. */
  428. return ret;
  429. }
  430. static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  431. {
  432. u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
  433. if (netif_msg_intr(gp))
  434. printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
  435. gp->dev->name, mac_cstat);
  436. /* This interrupt is just for pause frame and pause
  437. * tracking. It is useful for diagnostics and debug
  438. * but probably by default we will mask these events.
  439. */
  440. if (mac_cstat & MAC_CSTAT_PS)
  441. gp->pause_entered++;
  442. if (mac_cstat & MAC_CSTAT_PRCV)
  443. gp->pause_last_time_recvd = (mac_cstat >> 16);
  444. return 0;
  445. }
  446. static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  447. {
  448. u32 mif_status = readl(gp->regs + MIF_STATUS);
  449. u32 reg_val, changed_bits;
  450. reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
  451. changed_bits = (mif_status & MIF_STATUS_STAT);
  452. gem_handle_mif_event(gp, reg_val, changed_bits);
  453. return 0;
  454. }
  455. static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  456. {
  457. u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
  458. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  459. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  460. printk(KERN_ERR "%s: PCI error [%04x] ",
  461. dev->name, pci_estat);
  462. if (pci_estat & GREG_PCIESTAT_BADACK)
  463. printk("<No ACK64# during ABS64 cycle> ");
  464. if (pci_estat & GREG_PCIESTAT_DTRTO)
  465. printk("<Delayed transaction timeout> ");
  466. if (pci_estat & GREG_PCIESTAT_OTHER)
  467. printk("<other>");
  468. printk("\n");
  469. } else {
  470. pci_estat |= GREG_PCIESTAT_OTHER;
  471. printk(KERN_ERR "%s: PCI error\n", dev->name);
  472. }
  473. if (pci_estat & GREG_PCIESTAT_OTHER) {
  474. u16 pci_cfg_stat;
  475. /* Interrogate PCI config space for the
  476. * true cause.
  477. */
  478. pci_read_config_word(gp->pdev, PCI_STATUS,
  479. &pci_cfg_stat);
  480. printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
  481. dev->name, pci_cfg_stat);
  482. if (pci_cfg_stat & PCI_STATUS_PARITY)
  483. printk(KERN_ERR "%s: PCI parity error detected.\n",
  484. dev->name);
  485. if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
  486. printk(KERN_ERR "%s: PCI target abort.\n",
  487. dev->name);
  488. if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
  489. printk(KERN_ERR "%s: PCI master acks target abort.\n",
  490. dev->name);
  491. if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
  492. printk(KERN_ERR "%s: PCI master abort.\n",
  493. dev->name);
  494. if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
  495. printk(KERN_ERR "%s: PCI system error SERR#.\n",
  496. dev->name);
  497. if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
  498. printk(KERN_ERR "%s: PCI parity error.\n",
  499. dev->name);
  500. /* Write the error bits back to clear them. */
  501. pci_cfg_stat &= (PCI_STATUS_PARITY |
  502. PCI_STATUS_SIG_TARGET_ABORT |
  503. PCI_STATUS_REC_TARGET_ABORT |
  504. PCI_STATUS_REC_MASTER_ABORT |
  505. PCI_STATUS_SIG_SYSTEM_ERROR |
  506. PCI_STATUS_DETECTED_PARITY);
  507. pci_write_config_word(gp->pdev,
  508. PCI_STATUS, pci_cfg_stat);
  509. }
  510. /* For all PCI errors, we should reset the chip. */
  511. return 1;
  512. }
  513. /* All non-normal interrupt conditions get serviced here.
  514. * Returns non-zero if we should just exit the interrupt
  515. * handler right now (ie. if we reset the card which invalidates
  516. * all of the other original irq status bits).
  517. */
  518. static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
  519. {
  520. if (gem_status & GREG_STAT_RXNOBUF) {
  521. /* Frame arrived, no free RX buffers available. */
  522. if (netif_msg_rx_err(gp))
  523. printk(KERN_DEBUG "%s: no buffer for rx frame\n",
  524. gp->dev->name);
  525. gp->net_stats.rx_dropped++;
  526. }
  527. if (gem_status & GREG_STAT_RXTAGERR) {
  528. /* corrupt RX tag framing */
  529. if (netif_msg_rx_err(gp))
  530. printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
  531. gp->dev->name);
  532. gp->net_stats.rx_errors++;
  533. goto do_reset;
  534. }
  535. if (gem_status & GREG_STAT_PCS) {
  536. if (gem_pcs_interrupt(dev, gp, gem_status))
  537. goto do_reset;
  538. }
  539. if (gem_status & GREG_STAT_TXMAC) {
  540. if (gem_txmac_interrupt(dev, gp, gem_status))
  541. goto do_reset;
  542. }
  543. if (gem_status & GREG_STAT_RXMAC) {
  544. if (gem_rxmac_interrupt(dev, gp, gem_status))
  545. goto do_reset;
  546. }
  547. if (gem_status & GREG_STAT_MAC) {
  548. if (gem_mac_interrupt(dev, gp, gem_status))
  549. goto do_reset;
  550. }
  551. if (gem_status & GREG_STAT_MIF) {
  552. if (gem_mif_interrupt(dev, gp, gem_status))
  553. goto do_reset;
  554. }
  555. if (gem_status & GREG_STAT_PCIERR) {
  556. if (gem_pci_interrupt(dev, gp, gem_status))
  557. goto do_reset;
  558. }
  559. return 0;
  560. do_reset:
  561. gp->reset_task_pending = 1;
  562. schedule_work(&gp->reset_task);
  563. return 1;
  564. }
  565. static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
  566. {
  567. int entry, limit;
  568. if (netif_msg_intr(gp))
  569. printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
  570. gp->dev->name, gem_status);
  571. entry = gp->tx_old;
  572. limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
  573. while (entry != limit) {
  574. struct sk_buff *skb;
  575. struct gem_txd *txd;
  576. dma_addr_t dma_addr;
  577. u32 dma_len;
  578. int frag;
  579. if (netif_msg_tx_done(gp))
  580. printk(KERN_DEBUG "%s: tx done, slot %d\n",
  581. gp->dev->name, entry);
  582. skb = gp->tx_skbs[entry];
  583. if (skb_shinfo(skb)->nr_frags) {
  584. int last = entry + skb_shinfo(skb)->nr_frags;
  585. int walk = entry;
  586. int incomplete = 0;
  587. last &= (TX_RING_SIZE - 1);
  588. for (;;) {
  589. walk = NEXT_TX(walk);
  590. if (walk == limit)
  591. incomplete = 1;
  592. if (walk == last)
  593. break;
  594. }
  595. if (incomplete)
  596. break;
  597. }
  598. gp->tx_skbs[entry] = NULL;
  599. gp->net_stats.tx_bytes += skb->len;
  600. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  601. txd = &gp->init_block->txd[entry];
  602. dma_addr = le64_to_cpu(txd->buffer);
  603. dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
  604. pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
  605. entry = NEXT_TX(entry);
  606. }
  607. gp->net_stats.tx_packets++;
  608. dev_kfree_skb_irq(skb);
  609. }
  610. gp->tx_old = entry;
  611. if (netif_queue_stopped(dev) &&
  612. TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
  613. netif_wake_queue(dev);
  614. }
  615. static __inline__ void gem_post_rxds(struct gem *gp, int limit)
  616. {
  617. int cluster_start, curr, count, kick;
  618. cluster_start = curr = (gp->rx_new & ~(4 - 1));
  619. count = 0;
  620. kick = -1;
  621. wmb();
  622. while (curr != limit) {
  623. curr = NEXT_RX(curr);
  624. if (++count == 4) {
  625. struct gem_rxd *rxd =
  626. &gp->init_block->rxd[cluster_start];
  627. for (;;) {
  628. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  629. rxd++;
  630. cluster_start = NEXT_RX(cluster_start);
  631. if (cluster_start == curr)
  632. break;
  633. }
  634. kick = curr;
  635. count = 0;
  636. }
  637. }
  638. if (kick >= 0) {
  639. mb();
  640. writel(kick, gp->regs + RXDMA_KICK);
  641. }
  642. }
  643. static int gem_rx(struct gem *gp, int work_to_do)
  644. {
  645. int entry, drops, work_done = 0;
  646. u32 done;
  647. if (netif_msg_rx_status(gp))
  648. printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
  649. gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
  650. entry = gp->rx_new;
  651. drops = 0;
  652. done = readl(gp->regs + RXDMA_DONE);
  653. for (;;) {
  654. struct gem_rxd *rxd = &gp->init_block->rxd[entry];
  655. struct sk_buff *skb;
  656. u64 status = cpu_to_le64(rxd->status_word);
  657. dma_addr_t dma_addr;
  658. int len;
  659. if ((status & RXDCTRL_OWN) != 0)
  660. break;
  661. if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
  662. break;
  663. /* When writing back RX descriptor, GEM writes status
  664. * then buffer address, possibly in seperate transactions.
  665. * If we don't wait for the chip to write both, we could
  666. * post a new buffer to this descriptor then have GEM spam
  667. * on the buffer address. We sync on the RX completion
  668. * register to prevent this from happening.
  669. */
  670. if (entry == done) {
  671. done = readl(gp->regs + RXDMA_DONE);
  672. if (entry == done)
  673. break;
  674. }
  675. /* We can now account for the work we're about to do */
  676. work_done++;
  677. skb = gp->rx_skbs[entry];
  678. len = (status & RXDCTRL_BUFSZ) >> 16;
  679. if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
  680. gp->net_stats.rx_errors++;
  681. if (len < ETH_ZLEN)
  682. gp->net_stats.rx_length_errors++;
  683. if (len & RXDCTRL_BAD)
  684. gp->net_stats.rx_crc_errors++;
  685. /* We'll just return it to GEM. */
  686. drop_it:
  687. gp->net_stats.rx_dropped++;
  688. goto next;
  689. }
  690. dma_addr = cpu_to_le64(rxd->buffer);
  691. if (len > RX_COPY_THRESHOLD) {
  692. struct sk_buff *new_skb;
  693. new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  694. if (new_skb == NULL) {
  695. drops++;
  696. goto drop_it;
  697. }
  698. pci_unmap_page(gp->pdev, dma_addr,
  699. RX_BUF_ALLOC_SIZE(gp),
  700. PCI_DMA_FROMDEVICE);
  701. gp->rx_skbs[entry] = new_skb;
  702. new_skb->dev = gp->dev;
  703. skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
  704. rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
  705. virt_to_page(new_skb->data),
  706. offset_in_page(new_skb->data),
  707. RX_BUF_ALLOC_SIZE(gp),
  708. PCI_DMA_FROMDEVICE));
  709. skb_reserve(new_skb, RX_OFFSET);
  710. /* Trim the original skb for the netif. */
  711. skb_trim(skb, len);
  712. } else {
  713. struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
  714. if (copy_skb == NULL) {
  715. drops++;
  716. goto drop_it;
  717. }
  718. copy_skb->dev = gp->dev;
  719. skb_reserve(copy_skb, 2);
  720. skb_put(copy_skb, len);
  721. pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  722. memcpy(copy_skb->data, skb->data, len);
  723. pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  724. /* We'll reuse the original ring buffer. */
  725. skb = copy_skb;
  726. }
  727. skb->csum = ntohs((status & RXDCTRL_TCPCSUM) ^ 0xffff);
  728. skb->ip_summed = CHECKSUM_HW;
  729. skb->protocol = eth_type_trans(skb, gp->dev);
  730. netif_receive_skb(skb);
  731. gp->net_stats.rx_packets++;
  732. gp->net_stats.rx_bytes += len;
  733. gp->dev->last_rx = jiffies;
  734. next:
  735. entry = NEXT_RX(entry);
  736. }
  737. gem_post_rxds(gp, entry);
  738. gp->rx_new = entry;
  739. if (drops)
  740. printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
  741. gp->dev->name);
  742. return work_done;
  743. }
  744. static int gem_poll(struct net_device *dev, int *budget)
  745. {
  746. struct gem *gp = dev->priv;
  747. unsigned long flags;
  748. /*
  749. * NAPI locking nightmare: See comment at head of driver
  750. */
  751. spin_lock_irqsave(&gp->lock, flags);
  752. do {
  753. int work_to_do, work_done;
  754. /* Handle anomalies */
  755. if (gp->status & GREG_STAT_ABNORMAL) {
  756. if (gem_abnormal_irq(dev, gp, gp->status))
  757. break;
  758. }
  759. /* Run TX completion thread */
  760. spin_lock(&gp->tx_lock);
  761. gem_tx(dev, gp, gp->status);
  762. spin_unlock(&gp->tx_lock);
  763. spin_unlock_irqrestore(&gp->lock, flags);
  764. /* Run RX thread. We don't use any locking here,
  765. * code willing to do bad things - like cleaning the
  766. * rx ring - must call netif_poll_disable(), which
  767. * schedule_timeout()'s if polling is already disabled.
  768. */
  769. work_to_do = min(*budget, dev->quota);
  770. work_done = gem_rx(gp, work_to_do);
  771. *budget -= work_done;
  772. dev->quota -= work_done;
  773. if (work_done >= work_to_do)
  774. return 1;
  775. spin_lock_irqsave(&gp->lock, flags);
  776. gp->status = readl(gp->regs + GREG_STAT);
  777. } while (gp->status & GREG_STAT_NAPI);
  778. __netif_rx_complete(dev);
  779. gem_enable_ints(gp);
  780. spin_unlock_irqrestore(&gp->lock, flags);
  781. return 0;
  782. }
  783. static irqreturn_t gem_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  784. {
  785. struct net_device *dev = dev_id;
  786. struct gem *gp = dev->priv;
  787. unsigned long flags;
  788. /* Swallow interrupts when shutting the chip down, though
  789. * that shouldn't happen, we should have done free_irq() at
  790. * this point...
  791. */
  792. if (!gp->running)
  793. return IRQ_HANDLED;
  794. spin_lock_irqsave(&gp->lock, flags);
  795. if (netif_rx_schedule_prep(dev)) {
  796. u32 gem_status = readl(gp->regs + GREG_STAT);
  797. if (gem_status == 0) {
  798. spin_unlock_irqrestore(&gp->lock, flags);
  799. return IRQ_NONE;
  800. }
  801. gp->status = gem_status;
  802. gem_disable_ints(gp);
  803. __netif_rx_schedule(dev);
  804. }
  805. spin_unlock_irqrestore(&gp->lock, flags);
  806. /* If polling was disabled at the time we received that
  807. * interrupt, we may return IRQ_HANDLED here while we
  808. * should return IRQ_NONE. No big deal...
  809. */
  810. return IRQ_HANDLED;
  811. }
  812. #ifdef CONFIG_NET_POLL_CONTROLLER
  813. static void gem_poll_controller(struct net_device *dev)
  814. {
  815. /* gem_interrupt is safe to reentrance so no need
  816. * to disable_irq here.
  817. */
  818. gem_interrupt(dev->irq, dev, NULL);
  819. }
  820. #endif
  821. static void gem_tx_timeout(struct net_device *dev)
  822. {
  823. struct gem *gp = dev->priv;
  824. printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
  825. if (!gp->running) {
  826. printk("%s: hrm.. hw not running !\n", dev->name);
  827. return;
  828. }
  829. printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x]\n",
  830. dev->name,
  831. readl(gp->regs + TXDMA_CFG),
  832. readl(gp->regs + MAC_TXSTAT),
  833. readl(gp->regs + MAC_TXCFG));
  834. printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
  835. dev->name,
  836. readl(gp->regs + RXDMA_CFG),
  837. readl(gp->regs + MAC_RXSTAT),
  838. readl(gp->regs + MAC_RXCFG));
  839. spin_lock_irq(&gp->lock);
  840. spin_lock(&gp->tx_lock);
  841. gp->reset_task_pending = 1;
  842. schedule_work(&gp->reset_task);
  843. spin_unlock(&gp->tx_lock);
  844. spin_unlock_irq(&gp->lock);
  845. }
  846. static __inline__ int gem_intme(int entry)
  847. {
  848. /* Algorithm: IRQ every 1/2 of descriptors. */
  849. if (!(entry & ((TX_RING_SIZE>>1)-1)))
  850. return 1;
  851. return 0;
  852. }
  853. static int gem_start_xmit(struct sk_buff *skb, struct net_device *dev)
  854. {
  855. struct gem *gp = dev->priv;
  856. int entry;
  857. u64 ctrl;
  858. unsigned long flags;
  859. ctrl = 0;
  860. if (skb->ip_summed == CHECKSUM_HW) {
  861. u64 csum_start_off, csum_stuff_off;
  862. csum_start_off = (u64) (skb->h.raw - skb->data);
  863. csum_stuff_off = (u64) ((skb->h.raw + skb->csum) - skb->data);
  864. ctrl = (TXDCTRL_CENAB |
  865. (csum_start_off << 15) |
  866. (csum_stuff_off << 21));
  867. }
  868. local_irq_save(flags);
  869. if (!spin_trylock(&gp->tx_lock)) {
  870. /* Tell upper layer to requeue */
  871. local_irq_restore(flags);
  872. return NETDEV_TX_LOCKED;
  873. }
  874. /* We raced with gem_do_stop() */
  875. if (!gp->running) {
  876. spin_unlock_irqrestore(&gp->tx_lock, flags);
  877. return NETDEV_TX_BUSY;
  878. }
  879. /* This is a hard error, log it. */
  880. if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  881. netif_stop_queue(dev);
  882. spin_unlock_irqrestore(&gp->tx_lock, flags);
  883. printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
  884. dev->name);
  885. return NETDEV_TX_BUSY;
  886. }
  887. entry = gp->tx_new;
  888. gp->tx_skbs[entry] = skb;
  889. if (skb_shinfo(skb)->nr_frags == 0) {
  890. struct gem_txd *txd = &gp->init_block->txd[entry];
  891. dma_addr_t mapping;
  892. u32 len;
  893. len = skb->len;
  894. mapping = pci_map_page(gp->pdev,
  895. virt_to_page(skb->data),
  896. offset_in_page(skb->data),
  897. len, PCI_DMA_TODEVICE);
  898. ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
  899. if (gem_intme(entry))
  900. ctrl |= TXDCTRL_INTME;
  901. txd->buffer = cpu_to_le64(mapping);
  902. wmb();
  903. txd->control_word = cpu_to_le64(ctrl);
  904. entry = NEXT_TX(entry);
  905. } else {
  906. struct gem_txd *txd;
  907. u32 first_len;
  908. u64 intme;
  909. dma_addr_t first_mapping;
  910. int frag, first_entry = entry;
  911. intme = 0;
  912. if (gem_intme(entry))
  913. intme |= TXDCTRL_INTME;
  914. /* We must give this initial chunk to the device last.
  915. * Otherwise we could race with the device.
  916. */
  917. first_len = skb_headlen(skb);
  918. first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
  919. offset_in_page(skb->data),
  920. first_len, PCI_DMA_TODEVICE);
  921. entry = NEXT_TX(entry);
  922. for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
  923. skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
  924. u32 len;
  925. dma_addr_t mapping;
  926. u64 this_ctrl;
  927. len = this_frag->size;
  928. mapping = pci_map_page(gp->pdev,
  929. this_frag->page,
  930. this_frag->page_offset,
  931. len, PCI_DMA_TODEVICE);
  932. this_ctrl = ctrl;
  933. if (frag == skb_shinfo(skb)->nr_frags - 1)
  934. this_ctrl |= TXDCTRL_EOF;
  935. txd = &gp->init_block->txd[entry];
  936. txd->buffer = cpu_to_le64(mapping);
  937. wmb();
  938. txd->control_word = cpu_to_le64(this_ctrl | len);
  939. if (gem_intme(entry))
  940. intme |= TXDCTRL_INTME;
  941. entry = NEXT_TX(entry);
  942. }
  943. txd = &gp->init_block->txd[first_entry];
  944. txd->buffer = cpu_to_le64(first_mapping);
  945. wmb();
  946. txd->control_word =
  947. cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
  948. }
  949. gp->tx_new = entry;
  950. if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
  951. netif_stop_queue(dev);
  952. if (netif_msg_tx_queued(gp))
  953. printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
  954. dev->name, entry, skb->len);
  955. mb();
  956. writel(gp->tx_new, gp->regs + TXDMA_KICK);
  957. spin_unlock_irqrestore(&gp->tx_lock, flags);
  958. dev->trans_start = jiffies;
  959. return NETDEV_TX_OK;
  960. }
  961. #define STOP_TRIES 32
  962. /* Must be invoked under gp->lock and gp->tx_lock. */
  963. static void gem_reset(struct gem *gp)
  964. {
  965. int limit;
  966. u32 val;
  967. /* Make sure we won't get any more interrupts */
  968. writel(0xffffffff, gp->regs + GREG_IMASK);
  969. /* Reset the chip */
  970. writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
  971. gp->regs + GREG_SWRST);
  972. limit = STOP_TRIES;
  973. do {
  974. udelay(20);
  975. val = readl(gp->regs + GREG_SWRST);
  976. if (limit-- <= 0)
  977. break;
  978. } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
  979. if (limit <= 0)
  980. printk(KERN_ERR "%s: SW reset is ghetto.\n", gp->dev->name);
  981. }
  982. /* Must be invoked under gp->lock and gp->tx_lock. */
  983. static void gem_start_dma(struct gem *gp)
  984. {
  985. u32 val;
  986. /* We are ready to rock, turn everything on. */
  987. val = readl(gp->regs + TXDMA_CFG);
  988. writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  989. val = readl(gp->regs + RXDMA_CFG);
  990. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  991. val = readl(gp->regs + MAC_TXCFG);
  992. writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  993. val = readl(gp->regs + MAC_RXCFG);
  994. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  995. (void) readl(gp->regs + MAC_RXCFG);
  996. udelay(100);
  997. gem_enable_ints(gp);
  998. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  999. }
  1000. /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
  1001. * actually stopped before about 4ms tho ...
  1002. */
  1003. static void gem_stop_dma(struct gem *gp)
  1004. {
  1005. u32 val;
  1006. /* We are done rocking, turn everything off. */
  1007. val = readl(gp->regs + TXDMA_CFG);
  1008. writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1009. val = readl(gp->regs + RXDMA_CFG);
  1010. writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1011. val = readl(gp->regs + MAC_TXCFG);
  1012. writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1013. val = readl(gp->regs + MAC_RXCFG);
  1014. writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1015. (void) readl(gp->regs + MAC_RXCFG);
  1016. /* Need to wait a bit ... done by the caller */
  1017. }
  1018. /* Must be invoked under gp->lock and gp->tx_lock. */
  1019. // XXX dbl check what that function should do when called on PCS PHY
  1020. static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
  1021. {
  1022. u32 advertise, features;
  1023. int autoneg;
  1024. int speed;
  1025. int duplex;
  1026. if (gp->phy_type != phy_mii_mdio0 &&
  1027. gp->phy_type != phy_mii_mdio1)
  1028. goto non_mii;
  1029. /* Setup advertise */
  1030. if (found_mii_phy(gp))
  1031. features = gp->phy_mii.def->features;
  1032. else
  1033. features = 0;
  1034. advertise = features & ADVERTISE_MASK;
  1035. if (gp->phy_mii.advertising != 0)
  1036. advertise &= gp->phy_mii.advertising;
  1037. autoneg = gp->want_autoneg;
  1038. speed = gp->phy_mii.speed;
  1039. duplex = gp->phy_mii.duplex;
  1040. /* Setup link parameters */
  1041. if (!ep)
  1042. goto start_aneg;
  1043. if (ep->autoneg == AUTONEG_ENABLE) {
  1044. advertise = ep->advertising;
  1045. autoneg = 1;
  1046. } else {
  1047. autoneg = 0;
  1048. speed = ep->speed;
  1049. duplex = ep->duplex;
  1050. }
  1051. start_aneg:
  1052. /* Sanitize settings based on PHY capabilities */
  1053. if ((features & SUPPORTED_Autoneg) == 0)
  1054. autoneg = 0;
  1055. if (speed == SPEED_1000 &&
  1056. !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
  1057. speed = SPEED_100;
  1058. if (speed == SPEED_100 &&
  1059. !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
  1060. speed = SPEED_10;
  1061. if (duplex == DUPLEX_FULL &&
  1062. !(features & (SUPPORTED_1000baseT_Full |
  1063. SUPPORTED_100baseT_Full |
  1064. SUPPORTED_10baseT_Full)))
  1065. duplex = DUPLEX_HALF;
  1066. if (speed == 0)
  1067. speed = SPEED_10;
  1068. /* If we are asleep, we don't try to actually setup the PHY, we
  1069. * just store the settings
  1070. */
  1071. if (gp->asleep) {
  1072. gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
  1073. gp->phy_mii.speed = speed;
  1074. gp->phy_mii.duplex = duplex;
  1075. return;
  1076. }
  1077. /* Configure PHY & start aneg */
  1078. gp->want_autoneg = autoneg;
  1079. if (autoneg) {
  1080. if (found_mii_phy(gp))
  1081. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
  1082. gp->lstate = link_aneg;
  1083. } else {
  1084. if (found_mii_phy(gp))
  1085. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
  1086. gp->lstate = link_force_ok;
  1087. }
  1088. non_mii:
  1089. gp->timer_ticks = 0;
  1090. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1091. }
  1092. /* A link-up condition has occurred, initialize and enable the
  1093. * rest of the chip.
  1094. *
  1095. * Must be invoked under gp->lock and gp->tx_lock.
  1096. */
  1097. static int gem_set_link_modes(struct gem *gp)
  1098. {
  1099. u32 val;
  1100. int full_duplex, speed, pause;
  1101. full_duplex = 0;
  1102. speed = SPEED_10;
  1103. pause = 0;
  1104. if (found_mii_phy(gp)) {
  1105. if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
  1106. return 1;
  1107. full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
  1108. speed = gp->phy_mii.speed;
  1109. pause = gp->phy_mii.pause;
  1110. } else if (gp->phy_type == phy_serialink ||
  1111. gp->phy_type == phy_serdes) {
  1112. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1113. if (pcs_lpa & PCS_MIIADV_FD)
  1114. full_duplex = 1;
  1115. speed = SPEED_1000;
  1116. }
  1117. if (netif_msg_link(gp))
  1118. printk(KERN_INFO "%s: Link is up at %d Mbps, %s-duplex.\n",
  1119. gp->dev->name, speed, (full_duplex ? "full" : "half"));
  1120. if (!gp->running)
  1121. return 0;
  1122. val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
  1123. if (full_duplex) {
  1124. val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
  1125. } else {
  1126. /* MAC_TXCFG_NBO must be zero. */
  1127. }
  1128. writel(val, gp->regs + MAC_TXCFG);
  1129. val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
  1130. if (!full_duplex &&
  1131. (gp->phy_type == phy_mii_mdio0 ||
  1132. gp->phy_type == phy_mii_mdio1)) {
  1133. val |= MAC_XIFCFG_DISE;
  1134. } else if (full_duplex) {
  1135. val |= MAC_XIFCFG_FLED;
  1136. }
  1137. if (speed == SPEED_1000)
  1138. val |= (MAC_XIFCFG_GMII);
  1139. writel(val, gp->regs + MAC_XIFCFG);
  1140. /* If gigabit and half-duplex, enable carrier extension
  1141. * mode. Else, disable it.
  1142. */
  1143. if (speed == SPEED_1000 && !full_duplex) {
  1144. val = readl(gp->regs + MAC_TXCFG);
  1145. writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1146. val = readl(gp->regs + MAC_RXCFG);
  1147. writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1148. } else {
  1149. val = readl(gp->regs + MAC_TXCFG);
  1150. writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1151. val = readl(gp->regs + MAC_RXCFG);
  1152. writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1153. }
  1154. if (gp->phy_type == phy_serialink ||
  1155. gp->phy_type == phy_serdes) {
  1156. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1157. if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
  1158. pause = 1;
  1159. }
  1160. if (netif_msg_link(gp)) {
  1161. if (pause) {
  1162. printk(KERN_INFO "%s: Pause is enabled "
  1163. "(rxfifo: %d off: %d on: %d)\n",
  1164. gp->dev->name,
  1165. gp->rx_fifo_sz,
  1166. gp->rx_pause_off,
  1167. gp->rx_pause_on);
  1168. } else {
  1169. printk(KERN_INFO "%s: Pause is disabled\n",
  1170. gp->dev->name);
  1171. }
  1172. }
  1173. if (!full_duplex)
  1174. writel(512, gp->regs + MAC_STIME);
  1175. else
  1176. writel(64, gp->regs + MAC_STIME);
  1177. val = readl(gp->regs + MAC_MCCFG);
  1178. if (pause)
  1179. val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1180. else
  1181. val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1182. writel(val, gp->regs + MAC_MCCFG);
  1183. gem_start_dma(gp);
  1184. return 0;
  1185. }
  1186. /* Must be invoked under gp->lock and gp->tx_lock. */
  1187. static int gem_mdio_link_not_up(struct gem *gp)
  1188. {
  1189. switch (gp->lstate) {
  1190. case link_force_ret:
  1191. if (netif_msg_link(gp))
  1192. printk(KERN_INFO "%s: Autoneg failed again, keeping"
  1193. " forced mode\n", gp->dev->name);
  1194. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
  1195. gp->last_forced_speed, DUPLEX_HALF);
  1196. gp->timer_ticks = 5;
  1197. gp->lstate = link_force_ok;
  1198. return 0;
  1199. case link_aneg:
  1200. /* We try forced modes after a failed aneg only on PHYs that don't
  1201. * have "magic_aneg" bit set, which means they internally do the
  1202. * while forced-mode thingy. On these, we just restart aneg
  1203. */
  1204. if (gp->phy_mii.def->magic_aneg)
  1205. return 1;
  1206. if (netif_msg_link(gp))
  1207. printk(KERN_INFO "%s: switching to forced 100bt\n",
  1208. gp->dev->name);
  1209. /* Try forced modes. */
  1210. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
  1211. DUPLEX_HALF);
  1212. gp->timer_ticks = 5;
  1213. gp->lstate = link_force_try;
  1214. return 0;
  1215. case link_force_try:
  1216. /* Downgrade from 100 to 10 Mbps if necessary.
  1217. * If already at 10Mbps, warn user about the
  1218. * situation every 10 ticks.
  1219. */
  1220. if (gp->phy_mii.speed == SPEED_100) {
  1221. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
  1222. DUPLEX_HALF);
  1223. gp->timer_ticks = 5;
  1224. if (netif_msg_link(gp))
  1225. printk(KERN_INFO "%s: switching to forced 10bt\n",
  1226. gp->dev->name);
  1227. return 0;
  1228. } else
  1229. return 1;
  1230. default:
  1231. return 0;
  1232. }
  1233. }
  1234. static void gem_link_timer(unsigned long data)
  1235. {
  1236. struct gem *gp = (struct gem *) data;
  1237. int restart_aneg = 0;
  1238. if (gp->asleep)
  1239. return;
  1240. spin_lock_irq(&gp->lock);
  1241. spin_lock(&gp->tx_lock);
  1242. gem_get_cell(gp);
  1243. /* If the reset task is still pending, we just
  1244. * reschedule the link timer
  1245. */
  1246. if (gp->reset_task_pending)
  1247. goto restart;
  1248. if (gp->phy_type == phy_serialink ||
  1249. gp->phy_type == phy_serdes) {
  1250. u32 val = readl(gp->regs + PCS_MIISTAT);
  1251. if (!(val & PCS_MIISTAT_LS))
  1252. val = readl(gp->regs + PCS_MIISTAT);
  1253. if ((val & PCS_MIISTAT_LS) != 0) {
  1254. gp->lstate = link_up;
  1255. netif_carrier_on(gp->dev);
  1256. (void)gem_set_link_modes(gp);
  1257. }
  1258. goto restart;
  1259. }
  1260. if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
  1261. /* Ok, here we got a link. If we had it due to a forced
  1262. * fallback, and we were configured for autoneg, we do
  1263. * retry a short autoneg pass. If you know your hub is
  1264. * broken, use ethtool ;)
  1265. */
  1266. if (gp->lstate == link_force_try && gp->want_autoneg) {
  1267. gp->lstate = link_force_ret;
  1268. gp->last_forced_speed = gp->phy_mii.speed;
  1269. gp->timer_ticks = 5;
  1270. if (netif_msg_link(gp))
  1271. printk(KERN_INFO "%s: Got link after fallback, retrying"
  1272. " autoneg once...\n", gp->dev->name);
  1273. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
  1274. } else if (gp->lstate != link_up) {
  1275. gp->lstate = link_up;
  1276. netif_carrier_on(gp->dev);
  1277. if (gem_set_link_modes(gp))
  1278. restart_aneg = 1;
  1279. }
  1280. } else {
  1281. /* If the link was previously up, we restart the
  1282. * whole process
  1283. */
  1284. if (gp->lstate == link_up) {
  1285. gp->lstate = link_down;
  1286. if (netif_msg_link(gp))
  1287. printk(KERN_INFO "%s: Link down\n",
  1288. gp->dev->name);
  1289. netif_carrier_off(gp->dev);
  1290. gp->reset_task_pending = 1;
  1291. schedule_work(&gp->reset_task);
  1292. restart_aneg = 1;
  1293. } else if (++gp->timer_ticks > 10) {
  1294. if (found_mii_phy(gp))
  1295. restart_aneg = gem_mdio_link_not_up(gp);
  1296. else
  1297. restart_aneg = 1;
  1298. }
  1299. }
  1300. if (restart_aneg) {
  1301. gem_begin_auto_negotiation(gp, NULL);
  1302. goto out_unlock;
  1303. }
  1304. restart:
  1305. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1306. out_unlock:
  1307. gem_put_cell(gp);
  1308. spin_unlock(&gp->tx_lock);
  1309. spin_unlock_irq(&gp->lock);
  1310. }
  1311. /* Must be invoked under gp->lock and gp->tx_lock. */
  1312. static void gem_clean_rings(struct gem *gp)
  1313. {
  1314. struct gem_init_block *gb = gp->init_block;
  1315. struct sk_buff *skb;
  1316. int i;
  1317. dma_addr_t dma_addr;
  1318. for (i = 0; i < RX_RING_SIZE; i++) {
  1319. struct gem_rxd *rxd;
  1320. rxd = &gb->rxd[i];
  1321. if (gp->rx_skbs[i] != NULL) {
  1322. skb = gp->rx_skbs[i];
  1323. dma_addr = le64_to_cpu(rxd->buffer);
  1324. pci_unmap_page(gp->pdev, dma_addr,
  1325. RX_BUF_ALLOC_SIZE(gp),
  1326. PCI_DMA_FROMDEVICE);
  1327. dev_kfree_skb_any(skb);
  1328. gp->rx_skbs[i] = NULL;
  1329. }
  1330. rxd->status_word = 0;
  1331. wmb();
  1332. rxd->buffer = 0;
  1333. }
  1334. for (i = 0; i < TX_RING_SIZE; i++) {
  1335. if (gp->tx_skbs[i] != NULL) {
  1336. struct gem_txd *txd;
  1337. int frag;
  1338. skb = gp->tx_skbs[i];
  1339. gp->tx_skbs[i] = NULL;
  1340. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  1341. int ent = i & (TX_RING_SIZE - 1);
  1342. txd = &gb->txd[ent];
  1343. dma_addr = le64_to_cpu(txd->buffer);
  1344. pci_unmap_page(gp->pdev, dma_addr,
  1345. le64_to_cpu(txd->control_word) &
  1346. TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
  1347. if (frag != skb_shinfo(skb)->nr_frags)
  1348. i++;
  1349. }
  1350. dev_kfree_skb_any(skb);
  1351. }
  1352. }
  1353. }
  1354. /* Must be invoked under gp->lock and gp->tx_lock. */
  1355. static void gem_init_rings(struct gem *gp)
  1356. {
  1357. struct gem_init_block *gb = gp->init_block;
  1358. struct net_device *dev = gp->dev;
  1359. int i;
  1360. dma_addr_t dma_addr;
  1361. gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
  1362. gem_clean_rings(gp);
  1363. gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
  1364. (unsigned)VLAN_ETH_FRAME_LEN);
  1365. for (i = 0; i < RX_RING_SIZE; i++) {
  1366. struct sk_buff *skb;
  1367. struct gem_rxd *rxd = &gb->rxd[i];
  1368. skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  1369. if (!skb) {
  1370. rxd->buffer = 0;
  1371. rxd->status_word = 0;
  1372. continue;
  1373. }
  1374. gp->rx_skbs[i] = skb;
  1375. skb->dev = dev;
  1376. skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
  1377. dma_addr = pci_map_page(gp->pdev,
  1378. virt_to_page(skb->data),
  1379. offset_in_page(skb->data),
  1380. RX_BUF_ALLOC_SIZE(gp),
  1381. PCI_DMA_FROMDEVICE);
  1382. rxd->buffer = cpu_to_le64(dma_addr);
  1383. wmb();
  1384. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  1385. skb_reserve(skb, RX_OFFSET);
  1386. }
  1387. for (i = 0; i < TX_RING_SIZE; i++) {
  1388. struct gem_txd *txd = &gb->txd[i];
  1389. txd->control_word = 0;
  1390. wmb();
  1391. txd->buffer = 0;
  1392. }
  1393. wmb();
  1394. }
  1395. /* Init PHY interface and start link poll state machine */
  1396. static void gem_init_phy(struct gem *gp)
  1397. {
  1398. u32 mifcfg;
  1399. /* Revert MIF CFG setting done on stop_phy */
  1400. mifcfg = readl(gp->regs + MIF_CFG);
  1401. mifcfg &= ~MIF_CFG_BBMODE;
  1402. writel(mifcfg, gp->regs + MIF_CFG);
  1403. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1404. int i;
  1405. /* Those delay sucks, the HW seem to love them though, I'll
  1406. * serisouly consider breaking some locks here to be able
  1407. * to schedule instead
  1408. */
  1409. for (i = 0; i < 3; i++) {
  1410. #ifdef CONFIG_PPC_PMAC
  1411. pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
  1412. msleep(20);
  1413. #endif
  1414. /* Some PHYs used by apple have problem getting back to us,
  1415. * we do an additional reset here
  1416. */
  1417. phy_write(gp, MII_BMCR, BMCR_RESET);
  1418. msleep(20);
  1419. if (phy_read(gp, MII_BMCR) != 0xffff)
  1420. break;
  1421. if (i == 2)
  1422. printk(KERN_WARNING "%s: GMAC PHY not responding !\n",
  1423. gp->dev->name);
  1424. }
  1425. }
  1426. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  1427. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1428. u32 val;
  1429. /* Init datapath mode register. */
  1430. if (gp->phy_type == phy_mii_mdio0 ||
  1431. gp->phy_type == phy_mii_mdio1) {
  1432. val = PCS_DMODE_MGM;
  1433. } else if (gp->phy_type == phy_serialink) {
  1434. val = PCS_DMODE_SM | PCS_DMODE_GMOE;
  1435. } else {
  1436. val = PCS_DMODE_ESM;
  1437. }
  1438. writel(val, gp->regs + PCS_DMODE);
  1439. }
  1440. if (gp->phy_type == phy_mii_mdio0 ||
  1441. gp->phy_type == phy_mii_mdio1) {
  1442. // XXX check for errors
  1443. mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
  1444. /* Init PHY */
  1445. if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
  1446. gp->phy_mii.def->ops->init(&gp->phy_mii);
  1447. } else {
  1448. u32 val;
  1449. int limit;
  1450. /* Reset PCS unit. */
  1451. val = readl(gp->regs + PCS_MIICTRL);
  1452. val |= PCS_MIICTRL_RST;
  1453. writeb(val, gp->regs + PCS_MIICTRL);
  1454. limit = 32;
  1455. while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
  1456. udelay(100);
  1457. if (limit-- <= 0)
  1458. break;
  1459. }
  1460. if (limit <= 0)
  1461. printk(KERN_WARNING "%s: PCS reset bit would not clear.\n",
  1462. gp->dev->name);
  1463. /* Make sure PCS is disabled while changing advertisement
  1464. * configuration.
  1465. */
  1466. val = readl(gp->regs + PCS_CFG);
  1467. val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
  1468. writel(val, gp->regs + PCS_CFG);
  1469. /* Advertise all capabilities except assymetric
  1470. * pause.
  1471. */
  1472. val = readl(gp->regs + PCS_MIIADV);
  1473. val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
  1474. PCS_MIIADV_SP | PCS_MIIADV_AP);
  1475. writel(val, gp->regs + PCS_MIIADV);
  1476. /* Enable and restart auto-negotiation, disable wrapback/loopback,
  1477. * and re-enable PCS.
  1478. */
  1479. val = readl(gp->regs + PCS_MIICTRL);
  1480. val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
  1481. val &= ~PCS_MIICTRL_WB;
  1482. writel(val, gp->regs + PCS_MIICTRL);
  1483. val = readl(gp->regs + PCS_CFG);
  1484. val |= PCS_CFG_ENABLE;
  1485. writel(val, gp->regs + PCS_CFG);
  1486. /* Make sure serialink loopback is off. The meaning
  1487. * of this bit is logically inverted based upon whether
  1488. * you are in Serialink or SERDES mode.
  1489. */
  1490. val = readl(gp->regs + PCS_SCTRL);
  1491. if (gp->phy_type == phy_serialink)
  1492. val &= ~PCS_SCTRL_LOOP;
  1493. else
  1494. val |= PCS_SCTRL_LOOP;
  1495. writel(val, gp->regs + PCS_SCTRL);
  1496. }
  1497. /* Default aneg parameters */
  1498. gp->timer_ticks = 0;
  1499. gp->lstate = link_down;
  1500. netif_carrier_off(gp->dev);
  1501. /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
  1502. spin_lock_irq(&gp->lock);
  1503. gem_begin_auto_negotiation(gp, NULL);
  1504. spin_unlock_irq(&gp->lock);
  1505. }
  1506. /* Must be invoked under gp->lock and gp->tx_lock. */
  1507. static void gem_init_dma(struct gem *gp)
  1508. {
  1509. u64 desc_dma = (u64) gp->gblock_dvma;
  1510. u32 val;
  1511. val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
  1512. writel(val, gp->regs + TXDMA_CFG);
  1513. writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
  1514. writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
  1515. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  1516. writel(0, gp->regs + TXDMA_KICK);
  1517. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  1518. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  1519. writel(val, gp->regs + RXDMA_CFG);
  1520. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  1521. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  1522. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1523. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  1524. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  1525. writel(val, gp->regs + RXDMA_PTHRESH);
  1526. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  1527. writel(((5 & RXDMA_BLANK_IPKTS) |
  1528. ((8 << 12) & RXDMA_BLANK_ITIME)),
  1529. gp->regs + RXDMA_BLANK);
  1530. else
  1531. writel(((5 & RXDMA_BLANK_IPKTS) |
  1532. ((4 << 12) & RXDMA_BLANK_ITIME)),
  1533. gp->regs + RXDMA_BLANK);
  1534. }
  1535. /* Must be invoked under gp->lock and gp->tx_lock. */
  1536. static u32 gem_setup_multicast(struct gem *gp)
  1537. {
  1538. u32 rxcfg = 0;
  1539. int i;
  1540. if ((gp->dev->flags & IFF_ALLMULTI) ||
  1541. (gp->dev->mc_count > 256)) {
  1542. for (i=0; i<16; i++)
  1543. writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
  1544. rxcfg |= MAC_RXCFG_HFE;
  1545. } else if (gp->dev->flags & IFF_PROMISC) {
  1546. rxcfg |= MAC_RXCFG_PROM;
  1547. } else {
  1548. u16 hash_table[16];
  1549. u32 crc;
  1550. struct dev_mc_list *dmi = gp->dev->mc_list;
  1551. int i;
  1552. for (i = 0; i < 16; i++)
  1553. hash_table[i] = 0;
  1554. for (i = 0; i < gp->dev->mc_count; i++) {
  1555. char *addrs = dmi->dmi_addr;
  1556. dmi = dmi->next;
  1557. if (!(*addrs & 1))
  1558. continue;
  1559. crc = ether_crc_le(6, addrs);
  1560. crc >>= 24;
  1561. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  1562. }
  1563. for (i=0; i<16; i++)
  1564. writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
  1565. rxcfg |= MAC_RXCFG_HFE;
  1566. }
  1567. return rxcfg;
  1568. }
  1569. /* Must be invoked under gp->lock and gp->tx_lock. */
  1570. static void gem_init_mac(struct gem *gp)
  1571. {
  1572. unsigned char *e = &gp->dev->dev_addr[0];
  1573. writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
  1574. writel(0x00, gp->regs + MAC_IPG0);
  1575. writel(0x08, gp->regs + MAC_IPG1);
  1576. writel(0x04, gp->regs + MAC_IPG2);
  1577. writel(0x40, gp->regs + MAC_STIME);
  1578. writel(0x40, gp->regs + MAC_MINFSZ);
  1579. /* Ethernet payload + header + FCS + optional VLAN tag. */
  1580. writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
  1581. writel(0x07, gp->regs + MAC_PASIZE);
  1582. writel(0x04, gp->regs + MAC_JAMSIZE);
  1583. writel(0x10, gp->regs + MAC_ATTLIM);
  1584. writel(0x8808, gp->regs + MAC_MCTYPE);
  1585. writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
  1586. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  1587. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  1588. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  1589. writel(0, gp->regs + MAC_ADDR3);
  1590. writel(0, gp->regs + MAC_ADDR4);
  1591. writel(0, gp->regs + MAC_ADDR5);
  1592. writel(0x0001, gp->regs + MAC_ADDR6);
  1593. writel(0xc200, gp->regs + MAC_ADDR7);
  1594. writel(0x0180, gp->regs + MAC_ADDR8);
  1595. writel(0, gp->regs + MAC_AFILT0);
  1596. writel(0, gp->regs + MAC_AFILT1);
  1597. writel(0, gp->regs + MAC_AFILT2);
  1598. writel(0, gp->regs + MAC_AF21MSK);
  1599. writel(0, gp->regs + MAC_AF0MSK);
  1600. gp->mac_rx_cfg = gem_setup_multicast(gp);
  1601. #ifdef STRIP_FCS
  1602. gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
  1603. #endif
  1604. writel(0, gp->regs + MAC_NCOLL);
  1605. writel(0, gp->regs + MAC_FASUCC);
  1606. writel(0, gp->regs + MAC_ECOLL);
  1607. writel(0, gp->regs + MAC_LCOLL);
  1608. writel(0, gp->regs + MAC_DTIMER);
  1609. writel(0, gp->regs + MAC_PATMPS);
  1610. writel(0, gp->regs + MAC_RFCTR);
  1611. writel(0, gp->regs + MAC_LERR);
  1612. writel(0, gp->regs + MAC_AERR);
  1613. writel(0, gp->regs + MAC_FCSERR);
  1614. writel(0, gp->regs + MAC_RXCVERR);
  1615. /* Clear RX/TX/MAC/XIF config, we will set these up and enable
  1616. * them once a link is established.
  1617. */
  1618. writel(0, gp->regs + MAC_TXCFG);
  1619. writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
  1620. writel(0, gp->regs + MAC_MCCFG);
  1621. writel(0, gp->regs + MAC_XIFCFG);
  1622. /* Setup MAC interrupts. We want to get all of the interesting
  1623. * counter expiration events, but we do not want to hear about
  1624. * normal rx/tx as the DMA engine tells us that.
  1625. */
  1626. writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
  1627. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  1628. /* Don't enable even the PAUSE interrupts for now, we
  1629. * make no use of those events other than to record them.
  1630. */
  1631. writel(0xffffffff, gp->regs + MAC_MCMASK);
  1632. /* Don't enable GEM's WOL in normal operations
  1633. */
  1634. if (gp->has_wol)
  1635. writel(0, gp->regs + WOL_WAKECSR);
  1636. }
  1637. /* Must be invoked under gp->lock and gp->tx_lock. */
  1638. static void gem_init_pause_thresholds(struct gem *gp)
  1639. {
  1640. u32 cfg;
  1641. /* Calculate pause thresholds. Setting the OFF threshold to the
  1642. * full RX fifo size effectively disables PAUSE generation which
  1643. * is what we do for 10/100 only GEMs which have FIFOs too small
  1644. * to make real gains from PAUSE.
  1645. */
  1646. if (gp->rx_fifo_sz <= (2 * 1024)) {
  1647. gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
  1648. } else {
  1649. int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
  1650. int off = (gp->rx_fifo_sz - (max_frame * 2));
  1651. int on = off - max_frame;
  1652. gp->rx_pause_off = off;
  1653. gp->rx_pause_on = on;
  1654. }
  1655. /* Configure the chip "burst" DMA mode & enable some
  1656. * HW bug fixes on Apple version
  1657. */
  1658. cfg = 0;
  1659. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
  1660. cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
  1661. #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
  1662. cfg |= GREG_CFG_IBURST;
  1663. #endif
  1664. cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
  1665. cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
  1666. writel(cfg, gp->regs + GREG_CFG);
  1667. /* If Infinite Burst didn't stick, then use different
  1668. * thresholds (and Apple bug fixes don't exist)
  1669. */
  1670. if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
  1671. cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
  1672. cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
  1673. writel(cfg, gp->regs + GREG_CFG);
  1674. }
  1675. }
  1676. static int gem_check_invariants(struct gem *gp)
  1677. {
  1678. struct pci_dev *pdev = gp->pdev;
  1679. u32 mif_cfg;
  1680. /* On Apple's sungem, we can't rely on registers as the chip
  1681. * was been powered down by the firmware. The PHY is looked
  1682. * up later on.
  1683. */
  1684. if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1685. gp->phy_type = phy_mii_mdio0;
  1686. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1687. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1688. gp->swrst_base = 0;
  1689. mif_cfg = readl(gp->regs + MIF_CFG);
  1690. mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
  1691. mif_cfg |= MIF_CFG_MDI0;
  1692. writel(mif_cfg, gp->regs + MIF_CFG);
  1693. writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
  1694. writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
  1695. /* We hard-code the PHY address so we can properly bring it out of
  1696. * reset later on, we can't really probe it at this point, though
  1697. * that isn't an issue.
  1698. */
  1699. if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
  1700. gp->mii_phy_addr = 1;
  1701. else
  1702. gp->mii_phy_addr = 0;
  1703. return 0;
  1704. }
  1705. mif_cfg = readl(gp->regs + MIF_CFG);
  1706. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  1707. pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
  1708. /* One of the MII PHYs _must_ be present
  1709. * as this chip has no gigabit PHY.
  1710. */
  1711. if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
  1712. printk(KERN_ERR PFX "RIO GEM lacks MII phy, mif_cfg[%08x]\n",
  1713. mif_cfg);
  1714. return -1;
  1715. }
  1716. }
  1717. /* Determine initial PHY interface type guess. MDIO1 is the
  1718. * external PHY and thus takes precedence over MDIO0.
  1719. */
  1720. if (mif_cfg & MIF_CFG_MDI1) {
  1721. gp->phy_type = phy_mii_mdio1;
  1722. mif_cfg |= MIF_CFG_PSELECT;
  1723. writel(mif_cfg, gp->regs + MIF_CFG);
  1724. } else if (mif_cfg & MIF_CFG_MDI0) {
  1725. gp->phy_type = phy_mii_mdio0;
  1726. mif_cfg &= ~MIF_CFG_PSELECT;
  1727. writel(mif_cfg, gp->regs + MIF_CFG);
  1728. } else {
  1729. gp->phy_type = phy_serialink;
  1730. }
  1731. if (gp->phy_type == phy_mii_mdio1 ||
  1732. gp->phy_type == phy_mii_mdio0) {
  1733. int i;
  1734. for (i = 0; i < 32; i++) {
  1735. gp->mii_phy_addr = i;
  1736. if (phy_read(gp, MII_BMCR) != 0xffff)
  1737. break;
  1738. }
  1739. if (i == 32) {
  1740. if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
  1741. printk(KERN_ERR PFX "RIO MII phy will not respond.\n");
  1742. return -1;
  1743. }
  1744. gp->phy_type = phy_serdes;
  1745. }
  1746. }
  1747. /* Fetch the FIFO configurations now too. */
  1748. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1749. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1750. if (pdev->vendor == PCI_VENDOR_ID_SUN) {
  1751. if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1752. if (gp->tx_fifo_sz != (9 * 1024) ||
  1753. gp->rx_fifo_sz != (20 * 1024)) {
  1754. printk(KERN_ERR PFX "GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1755. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1756. return -1;
  1757. }
  1758. gp->swrst_base = 0;
  1759. } else {
  1760. if (gp->tx_fifo_sz != (2 * 1024) ||
  1761. gp->rx_fifo_sz != (2 * 1024)) {
  1762. printk(KERN_ERR PFX "RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1763. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1764. return -1;
  1765. }
  1766. gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
  1767. }
  1768. }
  1769. return 0;
  1770. }
  1771. /* Must be invoked under gp->lock and gp->tx_lock. */
  1772. static void gem_reinit_chip(struct gem *gp)
  1773. {
  1774. /* Reset the chip */
  1775. gem_reset(gp);
  1776. /* Make sure ints are disabled */
  1777. gem_disable_ints(gp);
  1778. /* Allocate & setup ring buffers */
  1779. gem_init_rings(gp);
  1780. /* Configure pause thresholds */
  1781. gem_init_pause_thresholds(gp);
  1782. /* Init DMA & MAC engines */
  1783. gem_init_dma(gp);
  1784. gem_init_mac(gp);
  1785. }
  1786. /* Must be invoked with no lock held. */
  1787. static void gem_stop_phy(struct gem *gp, int wol)
  1788. {
  1789. u32 mifcfg;
  1790. unsigned long flags;
  1791. /* Let the chip settle down a bit, it seems that helps
  1792. * for sleep mode on some models
  1793. */
  1794. msleep(10);
  1795. /* Make sure we aren't polling PHY status change. We
  1796. * don't currently use that feature though
  1797. */
  1798. mifcfg = readl(gp->regs + MIF_CFG);
  1799. mifcfg &= ~MIF_CFG_POLL;
  1800. writel(mifcfg, gp->regs + MIF_CFG);
  1801. if (wol && gp->has_wol) {
  1802. unsigned char *e = &gp->dev->dev_addr[0];
  1803. u32 csr;
  1804. /* Setup wake-on-lan for MAGIC packet */
  1805. writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
  1806. gp->regs + MAC_RXCFG);
  1807. writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
  1808. writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
  1809. writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
  1810. writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
  1811. csr = WOL_WAKECSR_ENABLE;
  1812. if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
  1813. csr |= WOL_WAKECSR_MII;
  1814. writel(csr, gp->regs + WOL_WAKECSR);
  1815. } else {
  1816. writel(0, gp->regs + MAC_RXCFG);
  1817. (void)readl(gp->regs + MAC_RXCFG);
  1818. /* Machine sleep will die in strange ways if we
  1819. * dont wait a bit here, looks like the chip takes
  1820. * some time to really shut down
  1821. */
  1822. msleep(10);
  1823. }
  1824. writel(0, gp->regs + MAC_TXCFG);
  1825. writel(0, gp->regs + MAC_XIFCFG);
  1826. writel(0, gp->regs + TXDMA_CFG);
  1827. writel(0, gp->regs + RXDMA_CFG);
  1828. if (!wol) {
  1829. spin_lock_irqsave(&gp->lock, flags);
  1830. spin_lock(&gp->tx_lock);
  1831. gem_reset(gp);
  1832. writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
  1833. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  1834. spin_unlock(&gp->tx_lock);
  1835. spin_unlock_irqrestore(&gp->lock, flags);
  1836. /* No need to take the lock here */
  1837. if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
  1838. gp->phy_mii.def->ops->suspend(&gp->phy_mii);
  1839. /* According to Apple, we must set the MDIO pins to this begnign
  1840. * state or we may 1) eat more current, 2) damage some PHYs
  1841. */
  1842. writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
  1843. writel(0, gp->regs + MIF_BBCLK);
  1844. writel(0, gp->regs + MIF_BBDATA);
  1845. writel(0, gp->regs + MIF_BBOENAB);
  1846. writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
  1847. (void) readl(gp->regs + MAC_XIFCFG);
  1848. }
  1849. }
  1850. static int gem_do_start(struct net_device *dev)
  1851. {
  1852. struct gem *gp = dev->priv;
  1853. unsigned long flags;
  1854. spin_lock_irqsave(&gp->lock, flags);
  1855. spin_lock(&gp->tx_lock);
  1856. /* Enable the cell */
  1857. gem_get_cell(gp);
  1858. /* Init & setup chip hardware */
  1859. gem_reinit_chip(gp);
  1860. gp->running = 1;
  1861. if (gp->lstate == link_up) {
  1862. netif_carrier_on(gp->dev);
  1863. gem_set_link_modes(gp);
  1864. }
  1865. netif_wake_queue(gp->dev);
  1866. spin_unlock(&gp->tx_lock);
  1867. spin_unlock_irqrestore(&gp->lock, flags);
  1868. if (request_irq(gp->pdev->irq, gem_interrupt,
  1869. SA_SHIRQ, dev->name, (void *)dev)) {
  1870. printk(KERN_ERR "%s: failed to request irq !\n", gp->dev->name);
  1871. spin_lock_irqsave(&gp->lock, flags);
  1872. spin_lock(&gp->tx_lock);
  1873. gp->running = 0;
  1874. gem_reset(gp);
  1875. gem_clean_rings(gp);
  1876. gem_put_cell(gp);
  1877. spin_unlock(&gp->tx_lock);
  1878. spin_unlock_irqrestore(&gp->lock, flags);
  1879. return -EAGAIN;
  1880. }
  1881. return 0;
  1882. }
  1883. static void gem_do_stop(struct net_device *dev, int wol)
  1884. {
  1885. struct gem *gp = dev->priv;
  1886. unsigned long flags;
  1887. spin_lock_irqsave(&gp->lock, flags);
  1888. spin_lock(&gp->tx_lock);
  1889. gp->running = 0;
  1890. /* Stop netif queue */
  1891. netif_stop_queue(dev);
  1892. /* Make sure ints are disabled */
  1893. gem_disable_ints(gp);
  1894. /* We can drop the lock now */
  1895. spin_unlock(&gp->tx_lock);
  1896. spin_unlock_irqrestore(&gp->lock, flags);
  1897. /* If we are going to sleep with WOL */
  1898. gem_stop_dma(gp);
  1899. msleep(10);
  1900. if (!wol)
  1901. gem_reset(gp);
  1902. msleep(10);
  1903. /* Get rid of rings */
  1904. gem_clean_rings(gp);
  1905. /* No irq needed anymore */
  1906. free_irq(gp->pdev->irq, (void *) dev);
  1907. /* Cell not needed neither if no WOL */
  1908. if (!wol) {
  1909. spin_lock_irqsave(&gp->lock, flags);
  1910. gem_put_cell(gp);
  1911. spin_unlock_irqrestore(&gp->lock, flags);
  1912. }
  1913. }
  1914. static void gem_reset_task(void *data)
  1915. {
  1916. struct gem *gp = (struct gem *) data;
  1917. down(&gp->pm_sem);
  1918. netif_poll_disable(gp->dev);
  1919. spin_lock_irq(&gp->lock);
  1920. spin_lock(&gp->tx_lock);
  1921. if (gp->running == 0)
  1922. goto not_running;
  1923. if (gp->running) {
  1924. netif_stop_queue(gp->dev);
  1925. /* Reset the chip & rings */
  1926. gem_reinit_chip(gp);
  1927. if (gp->lstate == link_up)
  1928. gem_set_link_modes(gp);
  1929. netif_wake_queue(gp->dev);
  1930. }
  1931. not_running:
  1932. gp->reset_task_pending = 0;
  1933. spin_unlock(&gp->tx_lock);
  1934. spin_unlock_irq(&gp->lock);
  1935. netif_poll_enable(gp->dev);
  1936. up(&gp->pm_sem);
  1937. }
  1938. static int gem_open(struct net_device *dev)
  1939. {
  1940. struct gem *gp = dev->priv;
  1941. int rc = 0;
  1942. down(&gp->pm_sem);
  1943. /* We need the cell enabled */
  1944. if (!gp->asleep)
  1945. rc = gem_do_start(dev);
  1946. gp->opened = (rc == 0);
  1947. up(&gp->pm_sem);
  1948. return rc;
  1949. }
  1950. static int gem_close(struct net_device *dev)
  1951. {
  1952. struct gem *gp = dev->priv;
  1953. /* Note: we don't need to call netif_poll_disable() here because
  1954. * our caller (dev_close) already did it for us
  1955. */
  1956. down(&gp->pm_sem);
  1957. gp->opened = 0;
  1958. if (!gp->asleep)
  1959. gem_do_stop(dev, 0);
  1960. up(&gp->pm_sem);
  1961. return 0;
  1962. }
  1963. #ifdef CONFIG_PM
  1964. static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
  1965. {
  1966. struct net_device *dev = pci_get_drvdata(pdev);
  1967. struct gem *gp = dev->priv;
  1968. unsigned long flags;
  1969. down(&gp->pm_sem);
  1970. netif_poll_disable(dev);
  1971. printk(KERN_INFO "%s: suspending, WakeOnLan %s\n",
  1972. dev->name,
  1973. (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
  1974. /* Keep the cell enabled during the entire operation */
  1975. spin_lock_irqsave(&gp->lock, flags);
  1976. spin_lock(&gp->tx_lock);
  1977. gem_get_cell(gp);
  1978. spin_unlock(&gp->tx_lock);
  1979. spin_unlock_irqrestore(&gp->lock, flags);
  1980. /* If the driver is opened, we stop the MAC */
  1981. if (gp->opened) {
  1982. /* Stop traffic, mark us closed */
  1983. netif_device_detach(dev);
  1984. /* Switch off MAC, remember WOL setting */
  1985. gp->asleep_wol = gp->wake_on_lan;
  1986. gem_do_stop(dev, gp->asleep_wol);
  1987. } else
  1988. gp->asleep_wol = 0;
  1989. /* Mark us asleep */
  1990. gp->asleep = 1;
  1991. wmb();
  1992. /* Stop the link timer */
  1993. del_timer_sync(&gp->link_timer);
  1994. /* Now we release the semaphore to not block the reset task who
  1995. * can take it too. We are marked asleep, so there will be no
  1996. * conflict here
  1997. */
  1998. up(&gp->pm_sem);
  1999. /* Wait for a pending reset task to complete */
  2000. while (gp->reset_task_pending)
  2001. yield();
  2002. flush_scheduled_work();
  2003. /* Shut the PHY down eventually and setup WOL */
  2004. gem_stop_phy(gp, gp->asleep_wol);
  2005. /* Make sure bus master is disabled */
  2006. pci_disable_device(gp->pdev);
  2007. /* Release the cell, no need to take a lock at this point since
  2008. * nothing else can happen now
  2009. */
  2010. gem_put_cell(gp);
  2011. return 0;
  2012. }
  2013. static int gem_resume(struct pci_dev *pdev)
  2014. {
  2015. struct net_device *dev = pci_get_drvdata(pdev);
  2016. struct gem *gp = dev->priv;
  2017. unsigned long flags;
  2018. printk(KERN_INFO "%s: resuming\n", dev->name);
  2019. down(&gp->pm_sem);
  2020. /* Keep the cell enabled during the entire operation, no need to
  2021. * take a lock here tho since nothing else can happen while we are
  2022. * marked asleep
  2023. */
  2024. gem_get_cell(gp);
  2025. /* Make sure PCI access and bus master are enabled */
  2026. if (pci_enable_device(gp->pdev)) {
  2027. printk(KERN_ERR "%s: Can't re-enable chip !\n",
  2028. dev->name);
  2029. /* Put cell and forget it for now, it will be considered as
  2030. * still asleep, a new sleep cycle may bring it back
  2031. */
  2032. gem_put_cell(gp);
  2033. up(&gp->pm_sem);
  2034. return 0;
  2035. }
  2036. pci_set_master(gp->pdev);
  2037. /* Reset everything */
  2038. gem_reset(gp);
  2039. /* Mark us woken up */
  2040. gp->asleep = 0;
  2041. wmb();
  2042. /* Bring the PHY back. Again, lock is useless at this point as
  2043. * nothing can be happening until we restart the whole thing
  2044. */
  2045. gem_init_phy(gp);
  2046. /* If we were opened, bring everything back */
  2047. if (gp->opened) {
  2048. /* Restart MAC */
  2049. gem_do_start(dev);
  2050. /* Re-attach net device */
  2051. netif_device_attach(dev);
  2052. }
  2053. spin_lock_irqsave(&gp->lock, flags);
  2054. spin_lock(&gp->tx_lock);
  2055. /* If we had WOL enabled, the cell clock was never turned off during
  2056. * sleep, so we end up beeing unbalanced. Fix that here
  2057. */
  2058. if (gp->asleep_wol)
  2059. gem_put_cell(gp);
  2060. /* This function doesn't need to hold the cell, it will be held if the
  2061. * driver is open by gem_do_start().
  2062. */
  2063. gem_put_cell(gp);
  2064. spin_unlock(&gp->tx_lock);
  2065. spin_unlock_irqrestore(&gp->lock, flags);
  2066. netif_poll_enable(dev);
  2067. up(&gp->pm_sem);
  2068. return 0;
  2069. }
  2070. #endif /* CONFIG_PM */
  2071. static struct net_device_stats *gem_get_stats(struct net_device *dev)
  2072. {
  2073. struct gem *gp = dev->priv;
  2074. struct net_device_stats *stats = &gp->net_stats;
  2075. spin_lock_irq(&gp->lock);
  2076. spin_lock(&gp->tx_lock);
  2077. /* I have seen this being called while the PM was in progress,
  2078. * so we shield against this
  2079. */
  2080. if (gp->running) {
  2081. stats->rx_crc_errors += readl(gp->regs + MAC_FCSERR);
  2082. writel(0, gp->regs + MAC_FCSERR);
  2083. stats->rx_frame_errors += readl(gp->regs + MAC_AERR);
  2084. writel(0, gp->regs + MAC_AERR);
  2085. stats->rx_length_errors += readl(gp->regs + MAC_LERR);
  2086. writel(0, gp->regs + MAC_LERR);
  2087. stats->tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
  2088. stats->collisions +=
  2089. (readl(gp->regs + MAC_ECOLL) +
  2090. readl(gp->regs + MAC_LCOLL));
  2091. writel(0, gp->regs + MAC_ECOLL);
  2092. writel(0, gp->regs + MAC_LCOLL);
  2093. }
  2094. spin_unlock(&gp->tx_lock);
  2095. spin_unlock_irq(&gp->lock);
  2096. return &gp->net_stats;
  2097. }
  2098. static void gem_set_multicast(struct net_device *dev)
  2099. {
  2100. struct gem *gp = dev->priv;
  2101. u32 rxcfg, rxcfg_new;
  2102. int limit = 10000;
  2103. spin_lock_irq(&gp->lock);
  2104. spin_lock(&gp->tx_lock);
  2105. if (!gp->running)
  2106. goto bail;
  2107. netif_stop_queue(dev);
  2108. rxcfg = readl(gp->regs + MAC_RXCFG);
  2109. rxcfg_new = gem_setup_multicast(gp);
  2110. #ifdef STRIP_FCS
  2111. rxcfg_new |= MAC_RXCFG_SFCS;
  2112. #endif
  2113. gp->mac_rx_cfg = rxcfg_new;
  2114. writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  2115. while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
  2116. if (!limit--)
  2117. break;
  2118. udelay(10);
  2119. }
  2120. rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
  2121. rxcfg |= rxcfg_new;
  2122. writel(rxcfg, gp->regs + MAC_RXCFG);
  2123. netif_wake_queue(dev);
  2124. bail:
  2125. spin_unlock(&gp->tx_lock);
  2126. spin_unlock_irq(&gp->lock);
  2127. }
  2128. /* Jumbo-grams don't seem to work :-( */
  2129. #define GEM_MIN_MTU 68
  2130. #if 1
  2131. #define GEM_MAX_MTU 1500
  2132. #else
  2133. #define GEM_MAX_MTU 9000
  2134. #endif
  2135. static int gem_change_mtu(struct net_device *dev, int new_mtu)
  2136. {
  2137. struct gem *gp = dev->priv;
  2138. if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
  2139. return -EINVAL;
  2140. if (!netif_running(dev) || !netif_device_present(dev)) {
  2141. /* We'll just catch it later when the
  2142. * device is up'd or resumed.
  2143. */
  2144. dev->mtu = new_mtu;
  2145. return 0;
  2146. }
  2147. down(&gp->pm_sem);
  2148. spin_lock_irq(&gp->lock);
  2149. spin_lock(&gp->tx_lock);
  2150. dev->mtu = new_mtu;
  2151. if (gp->running) {
  2152. gem_reinit_chip(gp);
  2153. if (gp->lstate == link_up)
  2154. gem_set_link_modes(gp);
  2155. }
  2156. spin_unlock(&gp->tx_lock);
  2157. spin_unlock_irq(&gp->lock);
  2158. up(&gp->pm_sem);
  2159. return 0;
  2160. }
  2161. static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2162. {
  2163. struct gem *gp = dev->priv;
  2164. strcpy(info->driver, DRV_NAME);
  2165. strcpy(info->version, DRV_VERSION);
  2166. strcpy(info->bus_info, pci_name(gp->pdev));
  2167. }
  2168. static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2169. {
  2170. struct gem *gp = dev->priv;
  2171. if (gp->phy_type == phy_mii_mdio0 ||
  2172. gp->phy_type == phy_mii_mdio1) {
  2173. if (gp->phy_mii.def)
  2174. cmd->supported = gp->phy_mii.def->features;
  2175. else
  2176. cmd->supported = (SUPPORTED_10baseT_Half |
  2177. SUPPORTED_10baseT_Full);
  2178. /* XXX hardcoded stuff for now */
  2179. cmd->port = PORT_MII;
  2180. cmd->transceiver = XCVR_EXTERNAL;
  2181. cmd->phy_address = 0; /* XXX fixed PHYAD */
  2182. /* Return current PHY settings */
  2183. spin_lock_irq(&gp->lock);
  2184. cmd->autoneg = gp->want_autoneg;
  2185. cmd->speed = gp->phy_mii.speed;
  2186. cmd->duplex = gp->phy_mii.duplex;
  2187. cmd->advertising = gp->phy_mii.advertising;
  2188. /* If we started with a forced mode, we don't have a default
  2189. * advertise set, we need to return something sensible so
  2190. * userland can re-enable autoneg properly.
  2191. */
  2192. if (cmd->advertising == 0)
  2193. cmd->advertising = cmd->supported;
  2194. spin_unlock_irq(&gp->lock);
  2195. } else { // XXX PCS ?
  2196. cmd->supported =
  2197. (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2198. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2199. SUPPORTED_Autoneg);
  2200. cmd->advertising = cmd->supported;
  2201. cmd->speed = 0;
  2202. cmd->duplex = cmd->port = cmd->phy_address =
  2203. cmd->transceiver = cmd->autoneg = 0;
  2204. }
  2205. cmd->maxtxpkt = cmd->maxrxpkt = 0;
  2206. return 0;
  2207. }
  2208. static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2209. {
  2210. struct gem *gp = dev->priv;
  2211. /* Verify the settings we care about. */
  2212. if (cmd->autoneg != AUTONEG_ENABLE &&
  2213. cmd->autoneg != AUTONEG_DISABLE)
  2214. return -EINVAL;
  2215. if (cmd->autoneg == AUTONEG_ENABLE &&
  2216. cmd->advertising == 0)
  2217. return -EINVAL;
  2218. if (cmd->autoneg == AUTONEG_DISABLE &&
  2219. ((cmd->speed != SPEED_1000 &&
  2220. cmd->speed != SPEED_100 &&
  2221. cmd->speed != SPEED_10) ||
  2222. (cmd->duplex != DUPLEX_HALF &&
  2223. cmd->duplex != DUPLEX_FULL)))
  2224. return -EINVAL;
  2225. /* Apply settings and restart link process. */
  2226. spin_lock_irq(&gp->lock);
  2227. gem_get_cell(gp);
  2228. gem_begin_auto_negotiation(gp, cmd);
  2229. gem_put_cell(gp);
  2230. spin_unlock_irq(&gp->lock);
  2231. return 0;
  2232. }
  2233. static int gem_nway_reset(struct net_device *dev)
  2234. {
  2235. struct gem *gp = dev->priv;
  2236. if (!gp->want_autoneg)
  2237. return -EINVAL;
  2238. /* Restart link process. */
  2239. spin_lock_irq(&gp->lock);
  2240. gem_get_cell(gp);
  2241. gem_begin_auto_negotiation(gp, NULL);
  2242. gem_put_cell(gp);
  2243. spin_unlock_irq(&gp->lock);
  2244. return 0;
  2245. }
  2246. static u32 gem_get_msglevel(struct net_device *dev)
  2247. {
  2248. struct gem *gp = dev->priv;
  2249. return gp->msg_enable;
  2250. }
  2251. static void gem_set_msglevel(struct net_device *dev, u32 value)
  2252. {
  2253. struct gem *gp = dev->priv;
  2254. gp->msg_enable = value;
  2255. }
  2256. /* Add more when I understand how to program the chip */
  2257. /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
  2258. #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
  2259. static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2260. {
  2261. struct gem *gp = dev->priv;
  2262. /* Add more when I understand how to program the chip */
  2263. if (gp->has_wol) {
  2264. wol->supported = WOL_SUPPORTED_MASK;
  2265. wol->wolopts = gp->wake_on_lan;
  2266. } else {
  2267. wol->supported = 0;
  2268. wol->wolopts = 0;
  2269. }
  2270. }
  2271. static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2272. {
  2273. struct gem *gp = dev->priv;
  2274. if (!gp->has_wol)
  2275. return -EOPNOTSUPP;
  2276. gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
  2277. return 0;
  2278. }
  2279. static struct ethtool_ops gem_ethtool_ops = {
  2280. .get_drvinfo = gem_get_drvinfo,
  2281. .get_link = ethtool_op_get_link,
  2282. .get_settings = gem_get_settings,
  2283. .set_settings = gem_set_settings,
  2284. .nway_reset = gem_nway_reset,
  2285. .get_msglevel = gem_get_msglevel,
  2286. .set_msglevel = gem_set_msglevel,
  2287. .get_wol = gem_get_wol,
  2288. .set_wol = gem_set_wol,
  2289. };
  2290. static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2291. {
  2292. struct gem *gp = dev->priv;
  2293. struct mii_ioctl_data *data = if_mii(ifr);
  2294. int rc = -EOPNOTSUPP;
  2295. unsigned long flags;
  2296. /* Hold the PM semaphore while doing ioctl's or we may collide
  2297. * with power management.
  2298. */
  2299. down(&gp->pm_sem);
  2300. spin_lock_irqsave(&gp->lock, flags);
  2301. gem_get_cell(gp);
  2302. spin_unlock_irqrestore(&gp->lock, flags);
  2303. switch (cmd) {
  2304. case SIOCGMIIPHY: /* Get address of MII PHY in use. */
  2305. data->phy_id = gp->mii_phy_addr;
  2306. /* Fallthrough... */
  2307. case SIOCGMIIREG: /* Read MII PHY register. */
  2308. if (!gp->running)
  2309. rc = -EAGAIN;
  2310. else {
  2311. data->val_out = __phy_read(gp, data->phy_id & 0x1f,
  2312. data->reg_num & 0x1f);
  2313. rc = 0;
  2314. }
  2315. break;
  2316. case SIOCSMIIREG: /* Write MII PHY register. */
  2317. if (!capable(CAP_NET_ADMIN))
  2318. rc = -EPERM;
  2319. else if (!gp->running)
  2320. rc = -EAGAIN;
  2321. else {
  2322. __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
  2323. data->val_in);
  2324. rc = 0;
  2325. }
  2326. break;
  2327. };
  2328. spin_lock_irqsave(&gp->lock, flags);
  2329. gem_put_cell(gp);
  2330. spin_unlock_irqrestore(&gp->lock, flags);
  2331. up(&gp->pm_sem);
  2332. return rc;
  2333. }
  2334. #if (!defined(__sparc__) && !defined(CONFIG_PPC_PMAC))
  2335. /* Fetch MAC address from vital product data of PCI ROM. */
  2336. static void find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
  2337. {
  2338. int this_offset;
  2339. for (this_offset = 0x20; this_offset < len; this_offset++) {
  2340. void __iomem *p = rom_base + this_offset;
  2341. int i;
  2342. if (readb(p + 0) != 0x90 ||
  2343. readb(p + 1) != 0x00 ||
  2344. readb(p + 2) != 0x09 ||
  2345. readb(p + 3) != 0x4e ||
  2346. readb(p + 4) != 0x41 ||
  2347. readb(p + 5) != 0x06)
  2348. continue;
  2349. this_offset += 6;
  2350. p += 6;
  2351. for (i = 0; i < 6; i++)
  2352. dev_addr[i] = readb(p + i);
  2353. break;
  2354. }
  2355. }
  2356. static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
  2357. {
  2358. u32 rom_reg_orig;
  2359. void __iomem *p;
  2360. if (pdev->resource[PCI_ROM_RESOURCE].parent == NULL) {
  2361. if (pci_assign_resource(pdev, PCI_ROM_RESOURCE) < 0)
  2362. goto use_random;
  2363. }
  2364. pci_read_config_dword(pdev, pdev->rom_base_reg, &rom_reg_orig);
  2365. pci_write_config_dword(pdev, pdev->rom_base_reg,
  2366. rom_reg_orig | PCI_ROM_ADDRESS_ENABLE);
  2367. p = ioremap(pci_resource_start(pdev, PCI_ROM_RESOURCE), (64 * 1024));
  2368. if (p != NULL && readb(p) == 0x55 && readb(p + 1) == 0xaa)
  2369. find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
  2370. if (p != NULL)
  2371. iounmap(p);
  2372. pci_write_config_dword(pdev, pdev->rom_base_reg, rom_reg_orig);
  2373. return;
  2374. use_random:
  2375. /* Sun MAC prefix then 3 random bytes. */
  2376. dev_addr[0] = 0x08;
  2377. dev_addr[1] = 0x00;
  2378. dev_addr[2] = 0x20;
  2379. get_random_bytes(dev_addr + 3, 3);
  2380. return;
  2381. }
  2382. #endif /* not Sparc and not PPC */
  2383. static int __devinit gem_get_device_address(struct gem *gp)
  2384. {
  2385. #if defined(__sparc__) || defined(CONFIG_PPC_PMAC)
  2386. struct net_device *dev = gp->dev;
  2387. #endif
  2388. #if defined(__sparc__)
  2389. struct pci_dev *pdev = gp->pdev;
  2390. struct pcidev_cookie *pcp = pdev->sysdata;
  2391. int node = -1;
  2392. if (pcp != NULL) {
  2393. node = pcp->prom_node;
  2394. if (prom_getproplen(node, "local-mac-address") == 6)
  2395. prom_getproperty(node, "local-mac-address",
  2396. dev->dev_addr, 6);
  2397. else
  2398. node = -1;
  2399. }
  2400. if (node == -1)
  2401. memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
  2402. #elif defined(CONFIG_PPC_PMAC)
  2403. unsigned char *addr;
  2404. addr = get_property(gp->of_node, "local-mac-address", NULL);
  2405. if (addr == NULL) {
  2406. printk("\n");
  2407. printk(KERN_ERR "%s: can't get mac-address\n", dev->name);
  2408. return -1;
  2409. }
  2410. memcpy(dev->dev_addr, addr, 6);
  2411. #else
  2412. get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
  2413. #endif
  2414. return 0;
  2415. }
  2416. static void __devexit gem_remove_one(struct pci_dev *pdev)
  2417. {
  2418. struct net_device *dev = pci_get_drvdata(pdev);
  2419. if (dev) {
  2420. struct gem *gp = dev->priv;
  2421. unregister_netdev(dev);
  2422. /* Stop the link timer */
  2423. del_timer_sync(&gp->link_timer);
  2424. /* We shouldn't need any locking here */
  2425. gem_get_cell(gp);
  2426. /* Wait for a pending reset task to complete */
  2427. while (gp->reset_task_pending)
  2428. yield();
  2429. flush_scheduled_work();
  2430. /* Shut the PHY down */
  2431. gem_stop_phy(gp, 0);
  2432. gem_put_cell(gp);
  2433. /* Make sure bus master is disabled */
  2434. pci_disable_device(gp->pdev);
  2435. /* Free resources */
  2436. pci_free_consistent(pdev,
  2437. sizeof(struct gem_init_block),
  2438. gp->init_block,
  2439. gp->gblock_dvma);
  2440. iounmap(gp->regs);
  2441. pci_release_regions(pdev);
  2442. free_netdev(dev);
  2443. pci_set_drvdata(pdev, NULL);
  2444. }
  2445. }
  2446. static int __devinit gem_init_one(struct pci_dev *pdev,
  2447. const struct pci_device_id *ent)
  2448. {
  2449. static int gem_version_printed = 0;
  2450. unsigned long gemreg_base, gemreg_len;
  2451. struct net_device *dev;
  2452. struct gem *gp;
  2453. int i, err, pci_using_dac;
  2454. if (gem_version_printed++ == 0)
  2455. printk(KERN_INFO "%s", version);
  2456. /* Apple gmac note: during probe, the chip is powered up by
  2457. * the arch code to allow the code below to work (and to let
  2458. * the chip be probed on the config space. It won't stay powered
  2459. * up until the interface is brought up however, so we can't rely
  2460. * on register configuration done at this point.
  2461. */
  2462. err = pci_enable_device(pdev);
  2463. if (err) {
  2464. printk(KERN_ERR PFX "Cannot enable MMIO operation, "
  2465. "aborting.\n");
  2466. return err;
  2467. }
  2468. pci_set_master(pdev);
  2469. /* Configure DMA attributes. */
  2470. /* All of the GEM documentation states that 64-bit DMA addressing
  2471. * is fully supported and should work just fine. However the
  2472. * front end for RIO based GEMs is different and only supports
  2473. * 32-bit addressing.
  2474. *
  2475. * For now we assume the various PPC GEMs are 32-bit only as well.
  2476. */
  2477. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  2478. pdev->device == PCI_DEVICE_ID_SUN_GEM &&
  2479. !pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  2480. pci_using_dac = 1;
  2481. } else {
  2482. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  2483. if (err) {
  2484. printk(KERN_ERR PFX "No usable DMA configuration, "
  2485. "aborting.\n");
  2486. goto err_disable_device;
  2487. }
  2488. pci_using_dac = 0;
  2489. }
  2490. gemreg_base = pci_resource_start(pdev, 0);
  2491. gemreg_len = pci_resource_len(pdev, 0);
  2492. if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
  2493. printk(KERN_ERR PFX "Cannot find proper PCI device "
  2494. "base address, aborting.\n");
  2495. err = -ENODEV;
  2496. goto err_disable_device;
  2497. }
  2498. dev = alloc_etherdev(sizeof(*gp));
  2499. if (!dev) {
  2500. printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
  2501. err = -ENOMEM;
  2502. goto err_disable_device;
  2503. }
  2504. SET_MODULE_OWNER(dev);
  2505. SET_NETDEV_DEV(dev, &pdev->dev);
  2506. gp = dev->priv;
  2507. err = pci_request_regions(pdev, DRV_NAME);
  2508. if (err) {
  2509. printk(KERN_ERR PFX "Cannot obtain PCI resources, "
  2510. "aborting.\n");
  2511. goto err_out_free_netdev;
  2512. }
  2513. gp->pdev = pdev;
  2514. dev->base_addr = (long) pdev;
  2515. gp->dev = dev;
  2516. gp->msg_enable = DEFAULT_MSG;
  2517. spin_lock_init(&gp->lock);
  2518. spin_lock_init(&gp->tx_lock);
  2519. init_MUTEX(&gp->pm_sem);
  2520. init_timer(&gp->link_timer);
  2521. gp->link_timer.function = gem_link_timer;
  2522. gp->link_timer.data = (unsigned long) gp;
  2523. INIT_WORK(&gp->reset_task, gem_reset_task, gp);
  2524. gp->lstate = link_down;
  2525. gp->timer_ticks = 0;
  2526. netif_carrier_off(dev);
  2527. gp->regs = ioremap(gemreg_base, gemreg_len);
  2528. if (gp->regs == 0UL) {
  2529. printk(KERN_ERR PFX "Cannot map device registers, "
  2530. "aborting.\n");
  2531. err = -EIO;
  2532. goto err_out_free_res;
  2533. }
  2534. /* On Apple, we want a reference to the Open Firmware device-tree
  2535. * node. We use it for clock control.
  2536. */
  2537. #ifdef CONFIG_PPC_PMAC
  2538. gp->of_node = pci_device_to_OF_node(pdev);
  2539. #endif
  2540. /* Only Apple version supports WOL afaik */
  2541. if (pdev->vendor == PCI_VENDOR_ID_APPLE)
  2542. gp->has_wol = 1;
  2543. /* Make sure cell is enabled */
  2544. gem_get_cell(gp);
  2545. /* Make sure everything is stopped and in init state */
  2546. gem_reset(gp);
  2547. /* Fill up the mii_phy structure (even if we won't use it) */
  2548. gp->phy_mii.dev = dev;
  2549. gp->phy_mii.mdio_read = _phy_read;
  2550. gp->phy_mii.mdio_write = _phy_write;
  2551. /* By default, we start with autoneg */
  2552. gp->want_autoneg = 1;
  2553. /* Check fifo sizes, PHY type, etc... */
  2554. if (gem_check_invariants(gp)) {
  2555. err = -ENODEV;
  2556. goto err_out_iounmap;
  2557. }
  2558. /* It is guaranteed that the returned buffer will be at least
  2559. * PAGE_SIZE aligned.
  2560. */
  2561. gp->init_block = (struct gem_init_block *)
  2562. pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
  2563. &gp->gblock_dvma);
  2564. if (!gp->init_block) {
  2565. printk(KERN_ERR PFX "Cannot allocate init block, "
  2566. "aborting.\n");
  2567. err = -ENOMEM;
  2568. goto err_out_iounmap;
  2569. }
  2570. if (gem_get_device_address(gp))
  2571. goto err_out_free_consistent;
  2572. dev->open = gem_open;
  2573. dev->stop = gem_close;
  2574. dev->hard_start_xmit = gem_start_xmit;
  2575. dev->get_stats = gem_get_stats;
  2576. dev->set_multicast_list = gem_set_multicast;
  2577. dev->do_ioctl = gem_ioctl;
  2578. dev->poll = gem_poll;
  2579. dev->weight = 64;
  2580. dev->ethtool_ops = &gem_ethtool_ops;
  2581. dev->tx_timeout = gem_tx_timeout;
  2582. dev->watchdog_timeo = 5 * HZ;
  2583. dev->change_mtu = gem_change_mtu;
  2584. dev->irq = pdev->irq;
  2585. dev->dma = 0;
  2586. #ifdef CONFIG_NET_POLL_CONTROLLER
  2587. dev->poll_controller = gem_poll_controller;
  2588. #endif
  2589. /* Set that now, in case PM kicks in now */
  2590. pci_set_drvdata(pdev, dev);
  2591. /* Detect & init PHY, start autoneg, we release the cell now
  2592. * too, it will be managed by whoever needs it
  2593. */
  2594. gem_init_phy(gp);
  2595. spin_lock_irq(&gp->lock);
  2596. gem_put_cell(gp);
  2597. spin_unlock_irq(&gp->lock);
  2598. /* Register with kernel */
  2599. if (register_netdev(dev)) {
  2600. printk(KERN_ERR PFX "Cannot register net device, "
  2601. "aborting.\n");
  2602. err = -ENOMEM;
  2603. goto err_out_free_consistent;
  2604. }
  2605. printk(KERN_INFO "%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet ",
  2606. dev->name);
  2607. for (i = 0; i < 6; i++)
  2608. printk("%2.2x%c", dev->dev_addr[i],
  2609. i == 5 ? ' ' : ':');
  2610. printk("\n");
  2611. if (gp->phy_type == phy_mii_mdio0 ||
  2612. gp->phy_type == phy_mii_mdio1)
  2613. printk(KERN_INFO "%s: Found %s PHY\n", dev->name,
  2614. gp->phy_mii.def ? gp->phy_mii.def->name : "no");
  2615. /* GEM can do it all... */
  2616. dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_LLTX;
  2617. if (pci_using_dac)
  2618. dev->features |= NETIF_F_HIGHDMA;
  2619. return 0;
  2620. err_out_free_consistent:
  2621. gem_remove_one(pdev);
  2622. err_out_iounmap:
  2623. gem_put_cell(gp);
  2624. iounmap(gp->regs);
  2625. err_out_free_res:
  2626. pci_release_regions(pdev);
  2627. err_out_free_netdev:
  2628. free_netdev(dev);
  2629. err_disable_device:
  2630. pci_disable_device(pdev);
  2631. return err;
  2632. }
  2633. static struct pci_driver gem_driver = {
  2634. .name = GEM_MODULE_NAME,
  2635. .id_table = gem_pci_tbl,
  2636. .probe = gem_init_one,
  2637. .remove = __devexit_p(gem_remove_one),
  2638. #ifdef CONFIG_PM
  2639. .suspend = gem_suspend,
  2640. .resume = gem_resume,
  2641. #endif /* CONFIG_PM */
  2642. };
  2643. static int __init gem_init(void)
  2644. {
  2645. return pci_module_init(&gem_driver);
  2646. }
  2647. static void __exit gem_cleanup(void)
  2648. {
  2649. pci_unregister_driver(&gem_driver);
  2650. }
  2651. module_init(gem_init);
  2652. module_exit(gem_cleanup);