skge.c 87 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/config.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <linux/dma-mapping.h>
  39. #include <asm/irq.h>
  40. #include "skge.h"
  41. #define DRV_NAME "skge"
  42. #define DRV_VERSION "0.7"
  43. #define PFX DRV_NAME " "
  44. #define DEFAULT_TX_RING_SIZE 128
  45. #define DEFAULT_RX_RING_SIZE 512
  46. #define MAX_TX_RING_SIZE 1024
  47. #define MAX_RX_RING_SIZE 4096
  48. #define RX_COPY_THRESHOLD 128
  49. #define RX_BUF_SIZE 1536
  50. #define PHY_RETRIES 1000
  51. #define ETH_JUMBO_MTU 9000
  52. #define TX_WATCHDOG (5 * HZ)
  53. #define NAPI_WEIGHT 64
  54. #define BLINK_HZ (HZ/4)
  55. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  56. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  57. MODULE_LICENSE("GPL");
  58. MODULE_VERSION(DRV_VERSION);
  59. static const u32 default_msg
  60. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  61. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  62. static int debug = -1; /* defaults above */
  63. module_param(debug, int, 0);
  64. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  65. static const struct pci_device_id skge_id_table[] = {
  66. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  67. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  68. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  69. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  70. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) }, /* SK-9Exx */
  71. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
  72. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  73. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  74. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1032) },
  76. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  77. { 0 }
  78. };
  79. MODULE_DEVICE_TABLE(pci, skge_id_table);
  80. static int skge_up(struct net_device *dev);
  81. static int skge_down(struct net_device *dev);
  82. static void skge_tx_clean(struct skge_port *skge);
  83. static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  84. static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  85. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  86. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  87. static void yukon_init(struct skge_hw *hw, int port);
  88. static void yukon_reset(struct skge_hw *hw, int port);
  89. static void genesis_mac_init(struct skge_hw *hw, int port);
  90. static void genesis_reset(struct skge_hw *hw, int port);
  91. static void genesis_link_up(struct skge_port *skge);
  92. /* Avoid conditionals by using array */
  93. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  94. static const int rxqaddr[] = { Q_R1, Q_R2 };
  95. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  96. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  97. static const u32 portirqmask[] = { IS_PORT_1, IS_PORT_2 };
  98. /* Don't need to look at whole 16K.
  99. * last interesting register is descriptor poll timer.
  100. */
  101. #define SKGE_REGS_LEN (29*128)
  102. static int skge_get_regs_len(struct net_device *dev)
  103. {
  104. return SKGE_REGS_LEN;
  105. }
  106. /*
  107. * Returns copy of control register region
  108. * I/O region is divided into banks and certain regions are unreadable
  109. */
  110. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  111. void *p)
  112. {
  113. const struct skge_port *skge = netdev_priv(dev);
  114. unsigned long offs;
  115. const void __iomem *io = skge->hw->regs;
  116. static const unsigned long bankmap
  117. = (1<<0) | (1<<2) | (1<<8) | (1<<9)
  118. | (1<<12) | (1<<13) | (1<<14) | (1<<15) | (1<<16)
  119. | (1<<17) | (1<<20) | (1<<21) | (1<<22) | (1<<23)
  120. | (1<<24) | (1<<25) | (1<<26) | (1<<27) | (1<<28);
  121. regs->version = 1;
  122. for (offs = 0; offs < regs->len; offs += 128) {
  123. u32 len = min_t(u32, 128, regs->len - offs);
  124. if (bankmap & (1<<(offs/128)))
  125. memcpy_fromio(p + offs, io + offs, len);
  126. else
  127. memset(p + offs, 0, len);
  128. }
  129. }
  130. /* Wake on Lan only supported on Yukon chps with rev 1 or above */
  131. static int wol_supported(const struct skge_hw *hw)
  132. {
  133. return !((hw->chip_id == CHIP_ID_GENESIS ||
  134. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
  135. }
  136. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  137. {
  138. struct skge_port *skge = netdev_priv(dev);
  139. wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
  140. wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
  141. }
  142. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  143. {
  144. struct skge_port *skge = netdev_priv(dev);
  145. struct skge_hw *hw = skge->hw;
  146. if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
  147. return -EOPNOTSUPP;
  148. if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
  149. return -EOPNOTSUPP;
  150. skge->wol = wol->wolopts == WAKE_MAGIC;
  151. if (skge->wol) {
  152. memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
  153. skge_write16(hw, WOL_CTRL_STAT,
  154. WOL_CTL_ENA_PME_ON_MAGIC_PKT |
  155. WOL_CTL_ENA_MAGIC_PKT_UNIT);
  156. } else
  157. skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
  158. return 0;
  159. }
  160. /* Determine supported/adverised modes based on hardware.
  161. * Note: ethtoool ADVERTISED_xxx == SUPPORTED_xxx
  162. */
  163. static u32 skge_supported_modes(const struct skge_hw *hw)
  164. {
  165. u32 supported;
  166. if (iscopper(hw)) {
  167. supported = SUPPORTED_10baseT_Half
  168. | SUPPORTED_10baseT_Full
  169. | SUPPORTED_100baseT_Half
  170. | SUPPORTED_100baseT_Full
  171. | SUPPORTED_1000baseT_Half
  172. | SUPPORTED_1000baseT_Full
  173. | SUPPORTED_Autoneg| SUPPORTED_TP;
  174. if (hw->chip_id == CHIP_ID_GENESIS)
  175. supported &= ~(SUPPORTED_10baseT_Half
  176. | SUPPORTED_10baseT_Full
  177. | SUPPORTED_100baseT_Half
  178. | SUPPORTED_100baseT_Full);
  179. else if (hw->chip_id == CHIP_ID_YUKON)
  180. supported &= ~SUPPORTED_1000baseT_Half;
  181. } else
  182. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  183. | SUPPORTED_Autoneg;
  184. return supported;
  185. }
  186. static int skge_get_settings(struct net_device *dev,
  187. struct ethtool_cmd *ecmd)
  188. {
  189. struct skge_port *skge = netdev_priv(dev);
  190. struct skge_hw *hw = skge->hw;
  191. ecmd->transceiver = XCVR_INTERNAL;
  192. ecmd->supported = skge_supported_modes(hw);
  193. if (iscopper(hw)) {
  194. ecmd->port = PORT_TP;
  195. ecmd->phy_address = hw->phy_addr;
  196. } else
  197. ecmd->port = PORT_FIBRE;
  198. ecmd->advertising = skge->advertising;
  199. ecmd->autoneg = skge->autoneg;
  200. ecmd->speed = skge->speed;
  201. ecmd->duplex = skge->duplex;
  202. return 0;
  203. }
  204. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  205. {
  206. struct skge_port *skge = netdev_priv(dev);
  207. const struct skge_hw *hw = skge->hw;
  208. u32 supported = skge_supported_modes(hw);
  209. if (ecmd->autoneg == AUTONEG_ENABLE) {
  210. ecmd->advertising = supported;
  211. skge->duplex = -1;
  212. skge->speed = -1;
  213. } else {
  214. u32 setting;
  215. switch(ecmd->speed) {
  216. case SPEED_1000:
  217. if (ecmd->duplex == DUPLEX_FULL)
  218. setting = SUPPORTED_1000baseT_Full;
  219. else if (ecmd->duplex == DUPLEX_HALF)
  220. setting = SUPPORTED_1000baseT_Half;
  221. else
  222. return -EINVAL;
  223. break;
  224. case SPEED_100:
  225. if (ecmd->duplex == DUPLEX_FULL)
  226. setting = SUPPORTED_100baseT_Full;
  227. else if (ecmd->duplex == DUPLEX_HALF)
  228. setting = SUPPORTED_100baseT_Half;
  229. else
  230. return -EINVAL;
  231. break;
  232. case SPEED_10:
  233. if (ecmd->duplex == DUPLEX_FULL)
  234. setting = SUPPORTED_10baseT_Full;
  235. else if (ecmd->duplex == DUPLEX_HALF)
  236. setting = SUPPORTED_10baseT_Half;
  237. else
  238. return -EINVAL;
  239. break;
  240. default:
  241. return -EINVAL;
  242. }
  243. if ((setting & supported) == 0)
  244. return -EINVAL;
  245. skge->speed = ecmd->speed;
  246. skge->duplex = ecmd->duplex;
  247. }
  248. skge->autoneg = ecmd->autoneg;
  249. skge->advertising = ecmd->advertising;
  250. if (netif_running(dev)) {
  251. skge_down(dev);
  252. skge_up(dev);
  253. }
  254. return (0);
  255. }
  256. static void skge_get_drvinfo(struct net_device *dev,
  257. struct ethtool_drvinfo *info)
  258. {
  259. struct skge_port *skge = netdev_priv(dev);
  260. strcpy(info->driver, DRV_NAME);
  261. strcpy(info->version, DRV_VERSION);
  262. strcpy(info->fw_version, "N/A");
  263. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  264. }
  265. static const struct skge_stat {
  266. char name[ETH_GSTRING_LEN];
  267. u16 xmac_offset;
  268. u16 gma_offset;
  269. } skge_stats[] = {
  270. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  271. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  272. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  273. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  274. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  275. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  276. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  277. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  278. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  279. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  280. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  281. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  282. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  283. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  284. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  285. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  286. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  287. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  288. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  289. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  290. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  291. };
  292. static int skge_get_stats_count(struct net_device *dev)
  293. {
  294. return ARRAY_SIZE(skge_stats);
  295. }
  296. static void skge_get_ethtool_stats(struct net_device *dev,
  297. struct ethtool_stats *stats, u64 *data)
  298. {
  299. struct skge_port *skge = netdev_priv(dev);
  300. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  301. genesis_get_stats(skge, data);
  302. else
  303. yukon_get_stats(skge, data);
  304. }
  305. /* Use hardware MIB variables for critical path statistics and
  306. * transmit feedback not reported at interrupt.
  307. * Other errors are accounted for in interrupt handler.
  308. */
  309. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  310. {
  311. struct skge_port *skge = netdev_priv(dev);
  312. u64 data[ARRAY_SIZE(skge_stats)];
  313. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  314. genesis_get_stats(skge, data);
  315. else
  316. yukon_get_stats(skge, data);
  317. skge->net_stats.tx_bytes = data[0];
  318. skge->net_stats.rx_bytes = data[1];
  319. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  320. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  321. skge->net_stats.multicast = data[5] + data[7];
  322. skge->net_stats.collisions = data[10];
  323. skge->net_stats.tx_aborted_errors = data[12];
  324. return &skge->net_stats;
  325. }
  326. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  327. {
  328. int i;
  329. switch (stringset) {
  330. case ETH_SS_STATS:
  331. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  332. memcpy(data + i * ETH_GSTRING_LEN,
  333. skge_stats[i].name, ETH_GSTRING_LEN);
  334. break;
  335. }
  336. }
  337. static void skge_get_ring_param(struct net_device *dev,
  338. struct ethtool_ringparam *p)
  339. {
  340. struct skge_port *skge = netdev_priv(dev);
  341. p->rx_max_pending = MAX_RX_RING_SIZE;
  342. p->tx_max_pending = MAX_TX_RING_SIZE;
  343. p->rx_mini_max_pending = 0;
  344. p->rx_jumbo_max_pending = 0;
  345. p->rx_pending = skge->rx_ring.count;
  346. p->tx_pending = skge->tx_ring.count;
  347. p->rx_mini_pending = 0;
  348. p->rx_jumbo_pending = 0;
  349. }
  350. static int skge_set_ring_param(struct net_device *dev,
  351. struct ethtool_ringparam *p)
  352. {
  353. struct skge_port *skge = netdev_priv(dev);
  354. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  355. p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
  356. return -EINVAL;
  357. skge->rx_ring.count = p->rx_pending;
  358. skge->tx_ring.count = p->tx_pending;
  359. if (netif_running(dev)) {
  360. skge_down(dev);
  361. skge_up(dev);
  362. }
  363. return 0;
  364. }
  365. static u32 skge_get_msglevel(struct net_device *netdev)
  366. {
  367. struct skge_port *skge = netdev_priv(netdev);
  368. return skge->msg_enable;
  369. }
  370. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  371. {
  372. struct skge_port *skge = netdev_priv(netdev);
  373. skge->msg_enable = value;
  374. }
  375. static int skge_nway_reset(struct net_device *dev)
  376. {
  377. struct skge_port *skge = netdev_priv(dev);
  378. struct skge_hw *hw = skge->hw;
  379. int port = skge->port;
  380. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  381. return -EINVAL;
  382. spin_lock_bh(&hw->phy_lock);
  383. if (hw->chip_id == CHIP_ID_GENESIS) {
  384. genesis_reset(hw, port);
  385. genesis_mac_init(hw, port);
  386. } else {
  387. yukon_reset(hw, port);
  388. yukon_init(hw, port);
  389. }
  390. spin_unlock_bh(&hw->phy_lock);
  391. return 0;
  392. }
  393. static int skge_set_sg(struct net_device *dev, u32 data)
  394. {
  395. struct skge_port *skge = netdev_priv(dev);
  396. struct skge_hw *hw = skge->hw;
  397. if (hw->chip_id == CHIP_ID_GENESIS && data)
  398. return -EOPNOTSUPP;
  399. return ethtool_op_set_sg(dev, data);
  400. }
  401. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  402. {
  403. struct skge_port *skge = netdev_priv(dev);
  404. struct skge_hw *hw = skge->hw;
  405. if (hw->chip_id == CHIP_ID_GENESIS && data)
  406. return -EOPNOTSUPP;
  407. return ethtool_op_set_tx_csum(dev, data);
  408. }
  409. static u32 skge_get_rx_csum(struct net_device *dev)
  410. {
  411. struct skge_port *skge = netdev_priv(dev);
  412. return skge->rx_csum;
  413. }
  414. /* Only Yukon supports checksum offload. */
  415. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  416. {
  417. struct skge_port *skge = netdev_priv(dev);
  418. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  419. return -EOPNOTSUPP;
  420. skge->rx_csum = data;
  421. return 0;
  422. }
  423. static void skge_get_pauseparam(struct net_device *dev,
  424. struct ethtool_pauseparam *ecmd)
  425. {
  426. struct skge_port *skge = netdev_priv(dev);
  427. ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
  428. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  429. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
  430. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  431. ecmd->autoneg = skge->autoneg;
  432. }
  433. static int skge_set_pauseparam(struct net_device *dev,
  434. struct ethtool_pauseparam *ecmd)
  435. {
  436. struct skge_port *skge = netdev_priv(dev);
  437. skge->autoneg = ecmd->autoneg;
  438. if (ecmd->rx_pause && ecmd->tx_pause)
  439. skge->flow_control = FLOW_MODE_SYMMETRIC;
  440. else if (ecmd->rx_pause && !ecmd->tx_pause)
  441. skge->flow_control = FLOW_MODE_REM_SEND;
  442. else if (!ecmd->rx_pause && ecmd->tx_pause)
  443. skge->flow_control = FLOW_MODE_LOC_SEND;
  444. else
  445. skge->flow_control = FLOW_MODE_NONE;
  446. if (netif_running(dev)) {
  447. skge_down(dev);
  448. skge_up(dev);
  449. }
  450. return 0;
  451. }
  452. /* Chip internal frequency for clock calculations */
  453. static inline u32 hwkhz(const struct skge_hw *hw)
  454. {
  455. if (hw->chip_id == CHIP_ID_GENESIS)
  456. return 53215; /* or: 53.125 MHz */
  457. else
  458. return 78215; /* or: 78.125 MHz */
  459. }
  460. /* Chip hz to microseconds */
  461. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  462. {
  463. return (ticks * 1000) / hwkhz(hw);
  464. }
  465. /* Microseconds to chip hz */
  466. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  467. {
  468. return hwkhz(hw) * usec / 1000;
  469. }
  470. static int skge_get_coalesce(struct net_device *dev,
  471. struct ethtool_coalesce *ecmd)
  472. {
  473. struct skge_port *skge = netdev_priv(dev);
  474. struct skge_hw *hw = skge->hw;
  475. int port = skge->port;
  476. ecmd->rx_coalesce_usecs = 0;
  477. ecmd->tx_coalesce_usecs = 0;
  478. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  479. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  480. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  481. if (msk & rxirqmask[port])
  482. ecmd->rx_coalesce_usecs = delay;
  483. if (msk & txirqmask[port])
  484. ecmd->tx_coalesce_usecs = delay;
  485. }
  486. return 0;
  487. }
  488. /* Note: interrupt timer is per board, but can turn on/off per port */
  489. static int skge_set_coalesce(struct net_device *dev,
  490. struct ethtool_coalesce *ecmd)
  491. {
  492. struct skge_port *skge = netdev_priv(dev);
  493. struct skge_hw *hw = skge->hw;
  494. int port = skge->port;
  495. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  496. u32 delay = 25;
  497. if (ecmd->rx_coalesce_usecs == 0)
  498. msk &= ~rxirqmask[port];
  499. else if (ecmd->rx_coalesce_usecs < 25 ||
  500. ecmd->rx_coalesce_usecs > 33333)
  501. return -EINVAL;
  502. else {
  503. msk |= rxirqmask[port];
  504. delay = ecmd->rx_coalesce_usecs;
  505. }
  506. if (ecmd->tx_coalesce_usecs == 0)
  507. msk &= ~txirqmask[port];
  508. else if (ecmd->tx_coalesce_usecs < 25 ||
  509. ecmd->tx_coalesce_usecs > 33333)
  510. return -EINVAL;
  511. else {
  512. msk |= txirqmask[port];
  513. delay = min(delay, ecmd->rx_coalesce_usecs);
  514. }
  515. skge_write32(hw, B2_IRQM_MSK, msk);
  516. if (msk == 0)
  517. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  518. else {
  519. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  520. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  521. }
  522. return 0;
  523. }
  524. static void skge_led_on(struct skge_hw *hw, int port)
  525. {
  526. if (hw->chip_id == CHIP_ID_GENESIS) {
  527. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  528. skge_write8(hw, B0_LED, LED_STAT_ON);
  529. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  530. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  531. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  532. /* For Broadcom Phy only */
  533. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  534. } else {
  535. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  536. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  537. PHY_M_LED_MO_DUP(MO_LED_ON) |
  538. PHY_M_LED_MO_10(MO_LED_ON) |
  539. PHY_M_LED_MO_100(MO_LED_ON) |
  540. PHY_M_LED_MO_1000(MO_LED_ON) |
  541. PHY_M_LED_MO_RX(MO_LED_ON));
  542. }
  543. }
  544. static void skge_led_off(struct skge_hw *hw, int port)
  545. {
  546. if (hw->chip_id == CHIP_ID_GENESIS) {
  547. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  548. skge_write8(hw, B0_LED, LED_STAT_OFF);
  549. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  550. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  551. /* Broadcom only */
  552. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  553. } else {
  554. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  555. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  556. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  557. PHY_M_LED_MO_10(MO_LED_OFF) |
  558. PHY_M_LED_MO_100(MO_LED_OFF) |
  559. PHY_M_LED_MO_1000(MO_LED_OFF) |
  560. PHY_M_LED_MO_RX(MO_LED_OFF));
  561. }
  562. }
  563. static void skge_blink_timer(unsigned long data)
  564. {
  565. struct skge_port *skge = (struct skge_port *) data;
  566. struct skge_hw *hw = skge->hw;
  567. unsigned long flags;
  568. spin_lock_irqsave(&hw->phy_lock, flags);
  569. if (skge->blink_on)
  570. skge_led_on(hw, skge->port);
  571. else
  572. skge_led_off(hw, skge->port);
  573. spin_unlock_irqrestore(&hw->phy_lock, flags);
  574. skge->blink_on = !skge->blink_on;
  575. mod_timer(&skge->led_blink, jiffies + BLINK_HZ);
  576. }
  577. /* blink LED's for finding board */
  578. static int skge_phys_id(struct net_device *dev, u32 data)
  579. {
  580. struct skge_port *skge = netdev_priv(dev);
  581. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  582. data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
  583. /* start blinking */
  584. skge->blink_on = 1;
  585. mod_timer(&skge->led_blink, jiffies+1);
  586. msleep_interruptible(data * 1000);
  587. del_timer_sync(&skge->led_blink);
  588. skge_led_off(skge->hw, skge->port);
  589. return 0;
  590. }
  591. static struct ethtool_ops skge_ethtool_ops = {
  592. .get_settings = skge_get_settings,
  593. .set_settings = skge_set_settings,
  594. .get_drvinfo = skge_get_drvinfo,
  595. .get_regs_len = skge_get_regs_len,
  596. .get_regs = skge_get_regs,
  597. .get_wol = skge_get_wol,
  598. .set_wol = skge_set_wol,
  599. .get_msglevel = skge_get_msglevel,
  600. .set_msglevel = skge_set_msglevel,
  601. .nway_reset = skge_nway_reset,
  602. .get_link = ethtool_op_get_link,
  603. .get_ringparam = skge_get_ring_param,
  604. .set_ringparam = skge_set_ring_param,
  605. .get_pauseparam = skge_get_pauseparam,
  606. .set_pauseparam = skge_set_pauseparam,
  607. .get_coalesce = skge_get_coalesce,
  608. .set_coalesce = skge_set_coalesce,
  609. .get_sg = ethtool_op_get_sg,
  610. .set_sg = skge_set_sg,
  611. .get_tx_csum = ethtool_op_get_tx_csum,
  612. .set_tx_csum = skge_set_tx_csum,
  613. .get_rx_csum = skge_get_rx_csum,
  614. .set_rx_csum = skge_set_rx_csum,
  615. .get_strings = skge_get_strings,
  616. .phys_id = skge_phys_id,
  617. .get_stats_count = skge_get_stats_count,
  618. .get_ethtool_stats = skge_get_ethtool_stats,
  619. };
  620. /*
  621. * Allocate ring elements and chain them together
  622. * One-to-one association of board descriptors with ring elements
  623. */
  624. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base)
  625. {
  626. struct skge_tx_desc *d;
  627. struct skge_element *e;
  628. int i;
  629. ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL);
  630. if (!ring->start)
  631. return -ENOMEM;
  632. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  633. e->desc = d;
  634. e->skb = NULL;
  635. if (i == ring->count - 1) {
  636. e->next = ring->start;
  637. d->next_offset = base;
  638. } else {
  639. e->next = e + 1;
  640. d->next_offset = base + (i+1) * sizeof(*d);
  641. }
  642. }
  643. ring->to_use = ring->to_clean = ring->start;
  644. return 0;
  645. }
  646. static struct sk_buff *skge_rx_alloc(struct net_device *dev, unsigned int size)
  647. {
  648. struct sk_buff *skb = dev_alloc_skb(size);
  649. if (likely(skb)) {
  650. skb->dev = dev;
  651. skb_reserve(skb, NET_IP_ALIGN);
  652. }
  653. return skb;
  654. }
  655. /* Allocate and setup a new buffer for receiving */
  656. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  657. struct sk_buff *skb, unsigned int bufsize)
  658. {
  659. struct skge_rx_desc *rd = e->desc;
  660. u64 map;
  661. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  662. PCI_DMA_FROMDEVICE);
  663. rd->dma_lo = map;
  664. rd->dma_hi = map >> 32;
  665. e->skb = skb;
  666. rd->csum1_start = ETH_HLEN;
  667. rd->csum2_start = ETH_HLEN;
  668. rd->csum1 = 0;
  669. rd->csum2 = 0;
  670. wmb();
  671. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  672. pci_unmap_addr_set(e, mapaddr, map);
  673. pci_unmap_len_set(e, maplen, bufsize);
  674. }
  675. /* Resume receiving using existing skb,
  676. * Note: DMA address is not changed by chip.
  677. * MTU not changed while receiver active.
  678. */
  679. static void skge_rx_reuse(struct skge_element *e, unsigned int size)
  680. {
  681. struct skge_rx_desc *rd = e->desc;
  682. rd->csum2 = 0;
  683. rd->csum2_start = ETH_HLEN;
  684. wmb();
  685. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  686. }
  687. /* Free all buffers in receive ring, assumes receiver stopped */
  688. static void skge_rx_clean(struct skge_port *skge)
  689. {
  690. struct skge_hw *hw = skge->hw;
  691. struct skge_ring *ring = &skge->rx_ring;
  692. struct skge_element *e;
  693. e = ring->start;
  694. do {
  695. struct skge_rx_desc *rd = e->desc;
  696. rd->control = 0;
  697. if (e->skb) {
  698. pci_unmap_single(hw->pdev,
  699. pci_unmap_addr(e, mapaddr),
  700. pci_unmap_len(e, maplen),
  701. PCI_DMA_FROMDEVICE);
  702. dev_kfree_skb(e->skb);
  703. e->skb = NULL;
  704. }
  705. } while ((e = e->next) != ring->start);
  706. }
  707. /* Allocate buffers for receive ring
  708. * For receive: to_clean is next received frame.
  709. */
  710. static int skge_rx_fill(struct skge_port *skge)
  711. {
  712. struct skge_ring *ring = &skge->rx_ring;
  713. struct skge_element *e;
  714. unsigned int bufsize = skge->rx_buf_size;
  715. e = ring->start;
  716. do {
  717. struct sk_buff *skb = skge_rx_alloc(skge->netdev, bufsize);
  718. if (!skb)
  719. return -ENOMEM;
  720. skge_rx_setup(skge, e, skb, bufsize);
  721. } while ( (e = e->next) != ring->start);
  722. ring->to_clean = ring->start;
  723. return 0;
  724. }
  725. static void skge_link_up(struct skge_port *skge)
  726. {
  727. netif_carrier_on(skge->netdev);
  728. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  729. netif_wake_queue(skge->netdev);
  730. if (netif_msg_link(skge))
  731. printk(KERN_INFO PFX
  732. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  733. skge->netdev->name, skge->speed,
  734. skge->duplex == DUPLEX_FULL ? "full" : "half",
  735. (skge->flow_control == FLOW_MODE_NONE) ? "none" :
  736. (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
  737. (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
  738. (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
  739. "unknown");
  740. }
  741. static void skge_link_down(struct skge_port *skge)
  742. {
  743. netif_carrier_off(skge->netdev);
  744. netif_stop_queue(skge->netdev);
  745. if (netif_msg_link(skge))
  746. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  747. }
  748. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  749. {
  750. int i;
  751. u16 v;
  752. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  753. v = xm_read16(hw, port, XM_PHY_DATA);
  754. /* Need to wait for external PHY */
  755. for (i = 0; i < PHY_RETRIES; i++) {
  756. udelay(1);
  757. if (xm_read16(hw, port, XM_MMU_CMD)
  758. & XM_MMU_PHY_RDY)
  759. goto ready;
  760. }
  761. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  762. hw->dev[port]->name);
  763. return 0;
  764. ready:
  765. v = xm_read16(hw, port, XM_PHY_DATA);
  766. return v;
  767. }
  768. static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  769. {
  770. int i;
  771. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  772. for (i = 0; i < PHY_RETRIES; i++) {
  773. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  774. goto ready;
  775. udelay(1);
  776. }
  777. printk(KERN_WARNING PFX "%s: phy write failed to come ready\n",
  778. hw->dev[port]->name);
  779. ready:
  780. xm_write16(hw, port, XM_PHY_DATA, val);
  781. for (i = 0; i < PHY_RETRIES; i++) {
  782. udelay(1);
  783. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  784. return;
  785. }
  786. printk(KERN_WARNING PFX "%s: phy write timed out\n",
  787. hw->dev[port]->name);
  788. }
  789. static void genesis_init(struct skge_hw *hw)
  790. {
  791. /* set blink source counter */
  792. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  793. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  794. /* configure mac arbiter */
  795. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  796. /* configure mac arbiter timeout values */
  797. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  798. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  799. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  800. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  801. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  802. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  803. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  804. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  805. /* configure packet arbiter timeout */
  806. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  807. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  808. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  809. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  810. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  811. }
  812. static void genesis_reset(struct skge_hw *hw, int port)
  813. {
  814. const u8 zero[8] = { 0 };
  815. /* reset the statistics module */
  816. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  817. xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  818. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  819. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  820. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  821. /* disable Broadcom PHY IRQ */
  822. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  823. xm_outhash(hw, port, XM_HSM, zero);
  824. }
  825. /* Convert mode to MII values */
  826. static const u16 phy_pause_map[] = {
  827. [FLOW_MODE_NONE] = 0,
  828. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  829. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  830. [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  831. };
  832. /* Check status of Broadcom phy link */
  833. static void bcom_check_link(struct skge_hw *hw, int port)
  834. {
  835. struct net_device *dev = hw->dev[port];
  836. struct skge_port *skge = netdev_priv(dev);
  837. u16 status;
  838. /* read twice because of latch */
  839. (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
  840. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  841. pr_debug("bcom_check_link status=0x%x\n", status);
  842. if ((status & PHY_ST_LSYNC) == 0) {
  843. u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
  844. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  845. xm_write16(hw, port, XM_MMU_CMD, cmd);
  846. /* dummy read to ensure writing */
  847. (void) xm_read16(hw, port, XM_MMU_CMD);
  848. if (netif_carrier_ok(dev))
  849. skge_link_down(skge);
  850. } else {
  851. if (skge->autoneg == AUTONEG_ENABLE &&
  852. (status & PHY_ST_AN_OVER)) {
  853. u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
  854. u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  855. if (lpa & PHY_B_AN_RF) {
  856. printk(KERN_NOTICE PFX "%s: remote fault\n",
  857. dev->name);
  858. return;
  859. }
  860. /* Check Duplex mismatch */
  861. switch(aux & PHY_B_AS_AN_RES_MSK) {
  862. case PHY_B_RES_1000FD:
  863. skge->duplex = DUPLEX_FULL;
  864. break;
  865. case PHY_B_RES_1000HD:
  866. skge->duplex = DUPLEX_HALF;
  867. break;
  868. default:
  869. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  870. dev->name);
  871. return;
  872. }
  873. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  874. switch (aux & PHY_B_AS_PAUSE_MSK) {
  875. case PHY_B_AS_PAUSE_MSK:
  876. skge->flow_control = FLOW_MODE_SYMMETRIC;
  877. break;
  878. case PHY_B_AS_PRR:
  879. skge->flow_control = FLOW_MODE_REM_SEND;
  880. break;
  881. case PHY_B_AS_PRT:
  882. skge->flow_control = FLOW_MODE_LOC_SEND;
  883. break;
  884. default:
  885. skge->flow_control = FLOW_MODE_NONE;
  886. }
  887. skge->speed = SPEED_1000;
  888. }
  889. if (!netif_carrier_ok(dev))
  890. genesis_link_up(skge);
  891. }
  892. }
  893. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  894. * Phy on for 100 or 10Mbit operation
  895. */
  896. static void bcom_phy_init(struct skge_port *skge, int jumbo)
  897. {
  898. struct skge_hw *hw = skge->hw;
  899. int port = skge->port;
  900. int i;
  901. u16 id1, r, ext, ctl;
  902. /* magic workaround patterns for Broadcom */
  903. static const struct {
  904. u16 reg;
  905. u16 val;
  906. } A1hack[] = {
  907. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  908. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  909. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  910. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  911. }, C0hack[] = {
  912. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  913. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  914. };
  915. pr_debug("bcom_phy_init\n");
  916. /* read Id from external PHY (all have the same address) */
  917. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  918. /* Optimize MDIO transfer by suppressing preamble. */
  919. r = xm_read16(hw, port, XM_MMU_CMD);
  920. r |= XM_MMU_NO_PRE;
  921. xm_write16(hw, port, XM_MMU_CMD,r);
  922. switch(id1) {
  923. case PHY_BCOM_ID1_C0:
  924. /*
  925. * Workaround BCOM Errata for the C0 type.
  926. * Write magic patterns to reserved registers.
  927. */
  928. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  929. xm_phy_write(hw, port,
  930. C0hack[i].reg, C0hack[i].val);
  931. break;
  932. case PHY_BCOM_ID1_A1:
  933. /*
  934. * Workaround BCOM Errata for the A1 type.
  935. * Write magic patterns to reserved registers.
  936. */
  937. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  938. xm_phy_write(hw, port,
  939. A1hack[i].reg, A1hack[i].val);
  940. break;
  941. }
  942. /*
  943. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  944. * Disable Power Management after reset.
  945. */
  946. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  947. r |= PHY_B_AC_DIS_PM;
  948. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  949. /* Dummy read */
  950. xm_read16(hw, port, XM_ISRC);
  951. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  952. ctl = PHY_CT_SP1000; /* always 1000mbit */
  953. if (skge->autoneg == AUTONEG_ENABLE) {
  954. /*
  955. * Workaround BCOM Errata #1 for the C5 type.
  956. * 1000Base-T Link Acquisition Failure in Slave Mode
  957. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  958. */
  959. u16 adv = PHY_B_1000C_RD;
  960. if (skge->advertising & ADVERTISED_1000baseT_Half)
  961. adv |= PHY_B_1000C_AHD;
  962. if (skge->advertising & ADVERTISED_1000baseT_Full)
  963. adv |= PHY_B_1000C_AFD;
  964. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  965. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  966. } else {
  967. if (skge->duplex == DUPLEX_FULL)
  968. ctl |= PHY_CT_DUP_MD;
  969. /* Force to slave */
  970. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  971. }
  972. /* Set autonegotiation pause parameters */
  973. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  974. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  975. /* Handle Jumbo frames */
  976. if (jumbo) {
  977. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  978. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  979. ext |= PHY_B_PEC_HIGH_LA;
  980. }
  981. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  982. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  983. /* Use link status change interrrupt */
  984. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  985. bcom_check_link(hw, port);
  986. }
  987. static void genesis_mac_init(struct skge_hw *hw, int port)
  988. {
  989. struct net_device *dev = hw->dev[port];
  990. struct skge_port *skge = netdev_priv(dev);
  991. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  992. int i;
  993. u32 r;
  994. const u8 zero[6] = { 0 };
  995. /* Clear MIB counters */
  996. xm_write16(hw, port, XM_STAT_CMD,
  997. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  998. /* Clear two times according to Errata #3 */
  999. xm_write16(hw, port, XM_STAT_CMD,
  1000. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1001. /* initialize Rx, Tx and Link LED */
  1002. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  1003. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  1004. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  1005. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  1006. /* Unreset the XMAC. */
  1007. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1008. /*
  1009. * Perform additional initialization for external PHYs,
  1010. * namely for the 1000baseTX cards that use the XMAC's
  1011. * GMII mode.
  1012. */
  1013. spin_lock_bh(&hw->phy_lock);
  1014. /* Take external Phy out of reset */
  1015. r = skge_read32(hw, B2_GP_IO);
  1016. if (port == 0)
  1017. r |= GP_DIR_0|GP_IO_0;
  1018. else
  1019. r |= GP_DIR_2|GP_IO_2;
  1020. skge_write32(hw, B2_GP_IO, r);
  1021. skge_read32(hw, B2_GP_IO);
  1022. spin_unlock_bh(&hw->phy_lock);
  1023. /* Enable GMII interfac */
  1024. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1025. bcom_phy_init(skge, jumbo);
  1026. /* Set Station Address */
  1027. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1028. /* We don't use match addresses so clear */
  1029. for (i = 1; i < 16; i++)
  1030. xm_outaddr(hw, port, XM_EXM(i), zero);
  1031. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1032. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1033. /* We don't need the FCS appended to the packet. */
  1034. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1035. if (jumbo)
  1036. r |= XM_RX_BIG_PK_OK;
  1037. if (skge->duplex == DUPLEX_HALF) {
  1038. /*
  1039. * If in manual half duplex mode the other side might be in
  1040. * full duplex mode, so ignore if a carrier extension is not seen
  1041. * on frames received
  1042. */
  1043. r |= XM_RX_DIS_CEXT;
  1044. }
  1045. xm_write16(hw, port, XM_RX_CMD, r);
  1046. /* We want short frames padded to 60 bytes. */
  1047. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1048. /*
  1049. * Bump up the transmit threshold. This helps hold off transmit
  1050. * underruns when we're blasting traffic from both ports at once.
  1051. */
  1052. xm_write16(hw, port, XM_TX_THR, 512);
  1053. /*
  1054. * Enable the reception of all error frames. This is is
  1055. * a necessary evil due to the design of the XMAC. The
  1056. * XMAC's receive FIFO is only 8K in size, however jumbo
  1057. * frames can be up to 9000 bytes in length. When bad
  1058. * frame filtering is enabled, the XMAC's RX FIFO operates
  1059. * in 'store and forward' mode. For this to work, the
  1060. * entire frame has to fit into the FIFO, but that means
  1061. * that jumbo frames larger than 8192 bytes will be
  1062. * truncated. Disabling all bad frame filtering causes
  1063. * the RX FIFO to operate in streaming mode, in which
  1064. * case the XMAC will start transfering frames out of the
  1065. * RX FIFO as soon as the FIFO threshold is reached.
  1066. */
  1067. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1068. /*
  1069. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1070. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1071. * and 'Octets Rx OK Hi Cnt Ov'.
  1072. */
  1073. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1074. /*
  1075. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1076. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1077. * and 'Octets Tx OK Hi Cnt Ov'.
  1078. */
  1079. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1080. /* Configure MAC arbiter */
  1081. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1082. /* configure timeout values */
  1083. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1084. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1085. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1086. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1087. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1088. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1089. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1090. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1091. /* Configure Rx MAC FIFO */
  1092. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1093. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1094. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1095. /* Configure Tx MAC FIFO */
  1096. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1097. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1098. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1099. if (jumbo) {
  1100. /* Enable frame flushing if jumbo frames used */
  1101. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1102. } else {
  1103. /* enable timeout timers if normal frames */
  1104. skge_write16(hw, B3_PA_CTRL,
  1105. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1106. }
  1107. }
  1108. static void genesis_stop(struct skge_port *skge)
  1109. {
  1110. struct skge_hw *hw = skge->hw;
  1111. int port = skge->port;
  1112. u32 reg;
  1113. /* Clear Tx packet arbiter timeout IRQ */
  1114. skge_write16(hw, B3_PA_CTRL,
  1115. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1116. /*
  1117. * If the transfer stucks at the MAC the STOP command will not
  1118. * terminate if we don't flush the XMAC's transmit FIFO !
  1119. */
  1120. xm_write32(hw, port, XM_MODE,
  1121. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1122. /* Reset the MAC */
  1123. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1124. /* For external PHYs there must be special handling */
  1125. reg = skge_read32(hw, B2_GP_IO);
  1126. if (port == 0) {
  1127. reg |= GP_DIR_0;
  1128. reg &= ~GP_IO_0;
  1129. } else {
  1130. reg |= GP_DIR_2;
  1131. reg &= ~GP_IO_2;
  1132. }
  1133. skge_write32(hw, B2_GP_IO, reg);
  1134. skge_read32(hw, B2_GP_IO);
  1135. xm_write16(hw, port, XM_MMU_CMD,
  1136. xm_read16(hw, port, XM_MMU_CMD)
  1137. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1138. xm_read16(hw, port, XM_MMU_CMD);
  1139. }
  1140. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1141. {
  1142. struct skge_hw *hw = skge->hw;
  1143. int port = skge->port;
  1144. int i;
  1145. unsigned long timeout = jiffies + HZ;
  1146. xm_write16(hw, port,
  1147. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1148. /* wait for update to complete */
  1149. while (xm_read16(hw, port, XM_STAT_CMD)
  1150. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1151. if (time_after(jiffies, timeout))
  1152. break;
  1153. udelay(10);
  1154. }
  1155. /* special case for 64 bit octet counter */
  1156. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1157. | xm_read32(hw, port, XM_TXO_OK_LO);
  1158. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1159. | xm_read32(hw, port, XM_RXO_OK_LO);
  1160. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1161. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1162. }
  1163. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1164. {
  1165. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1166. u16 status = xm_read16(hw, port, XM_ISRC);
  1167. if (netif_msg_intr(skge))
  1168. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1169. skge->netdev->name, status);
  1170. if (status & XM_IS_TXF_UR) {
  1171. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1172. ++skge->net_stats.tx_fifo_errors;
  1173. }
  1174. if (status & XM_IS_RXF_OV) {
  1175. xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1176. ++skge->net_stats.rx_fifo_errors;
  1177. }
  1178. }
  1179. static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1180. {
  1181. int i;
  1182. gma_write16(hw, port, GM_SMI_DATA, val);
  1183. gma_write16(hw, port, GM_SMI_CTRL,
  1184. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1185. for (i = 0; i < PHY_RETRIES; i++) {
  1186. udelay(1);
  1187. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1188. break;
  1189. }
  1190. }
  1191. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1192. {
  1193. int i;
  1194. gma_write16(hw, port, GM_SMI_CTRL,
  1195. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1196. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1197. for (i = 0; i < PHY_RETRIES; i++) {
  1198. udelay(1);
  1199. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1200. goto ready;
  1201. }
  1202. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1203. hw->dev[port]->name);
  1204. return 0;
  1205. ready:
  1206. return gma_read16(hw, port, GM_SMI_DATA);
  1207. }
  1208. static void genesis_link_up(struct skge_port *skge)
  1209. {
  1210. struct skge_hw *hw = skge->hw;
  1211. int port = skge->port;
  1212. u16 cmd;
  1213. u32 mode, msk;
  1214. pr_debug("genesis_link_up\n");
  1215. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1216. /*
  1217. * enabling pause frame reception is required for 1000BT
  1218. * because the XMAC is not reset if the link is going down
  1219. */
  1220. if (skge->flow_control == FLOW_MODE_NONE ||
  1221. skge->flow_control == FLOW_MODE_LOC_SEND)
  1222. /* Disable Pause Frame Reception */
  1223. cmd |= XM_MMU_IGN_PF;
  1224. else
  1225. /* Enable Pause Frame Reception */
  1226. cmd &= ~XM_MMU_IGN_PF;
  1227. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1228. mode = xm_read32(hw, port, XM_MODE);
  1229. if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1230. skge->flow_control == FLOW_MODE_LOC_SEND) {
  1231. /*
  1232. * Configure Pause Frame Generation
  1233. * Use internal and external Pause Frame Generation.
  1234. * Sending pause frames is edge triggered.
  1235. * Send a Pause frame with the maximum pause time if
  1236. * internal oder external FIFO full condition occurs.
  1237. * Send a zero pause time frame to re-start transmission.
  1238. */
  1239. /* XM_PAUSE_DA = '010000C28001' (default) */
  1240. /* XM_MAC_PTIME = 0xffff (maximum) */
  1241. /* remember this value is defined in big endian (!) */
  1242. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1243. mode |= XM_PAUSE_MODE;
  1244. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1245. } else {
  1246. /*
  1247. * disable pause frame generation is required for 1000BT
  1248. * because the XMAC is not reset if the link is going down
  1249. */
  1250. /* Disable Pause Mode in Mode Register */
  1251. mode &= ~XM_PAUSE_MODE;
  1252. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1253. }
  1254. xm_write32(hw, port, XM_MODE, mode);
  1255. msk = XM_DEF_MSK;
  1256. /* disable GP0 interrupt bit for external Phy */
  1257. msk |= XM_IS_INP_ASS;
  1258. xm_write16(hw, port, XM_IMSK, msk);
  1259. xm_read16(hw, port, XM_ISRC);
  1260. /* get MMU Command Reg. */
  1261. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1262. if (skge->duplex == DUPLEX_FULL)
  1263. cmd |= XM_MMU_GMII_FD;
  1264. /*
  1265. * Workaround BCOM Errata (#10523) for all BCom Phys
  1266. * Enable Power Management after link up
  1267. */
  1268. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1269. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1270. & ~PHY_B_AC_DIS_PM);
  1271. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1272. /* enable Rx/Tx */
  1273. xm_write16(hw, port, XM_MMU_CMD,
  1274. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1275. skge_link_up(skge);
  1276. }
  1277. static inline void bcom_phy_intr(struct skge_port *skge)
  1278. {
  1279. struct skge_hw *hw = skge->hw;
  1280. int port = skge->port;
  1281. u16 isrc;
  1282. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1283. if (netif_msg_intr(skge))
  1284. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1285. skge->netdev->name, isrc);
  1286. if (isrc & PHY_B_IS_PSE)
  1287. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1288. hw->dev[port]->name);
  1289. /* Workaround BCom Errata:
  1290. * enable and disable loopback mode if "NO HCD" occurs.
  1291. */
  1292. if (isrc & PHY_B_IS_NO_HDCL) {
  1293. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1294. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1295. ctrl | PHY_CT_LOOP);
  1296. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1297. ctrl & ~PHY_CT_LOOP);
  1298. }
  1299. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1300. bcom_check_link(hw, port);
  1301. }
  1302. /* Marvell Phy Initailization */
  1303. static void yukon_init(struct skge_hw *hw, int port)
  1304. {
  1305. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1306. u16 ctrl, ct1000, adv;
  1307. u16 ledctrl, ledover;
  1308. pr_debug("yukon_init\n");
  1309. if (skge->autoneg == AUTONEG_ENABLE) {
  1310. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1311. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1312. PHY_M_EC_MAC_S_MSK);
  1313. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1314. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1315. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1316. }
  1317. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1318. if (skge->autoneg == AUTONEG_DISABLE)
  1319. ctrl &= ~PHY_CT_ANE;
  1320. ctrl |= PHY_CT_RESET;
  1321. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1322. ctrl = 0;
  1323. ct1000 = 0;
  1324. adv = PHY_AN_CSMA;
  1325. if (skge->autoneg == AUTONEG_ENABLE) {
  1326. if (iscopper(hw)) {
  1327. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1328. ct1000 |= PHY_M_1000C_AFD;
  1329. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1330. ct1000 |= PHY_M_1000C_AHD;
  1331. if (skge->advertising & ADVERTISED_100baseT_Full)
  1332. adv |= PHY_M_AN_100_FD;
  1333. if (skge->advertising & ADVERTISED_100baseT_Half)
  1334. adv |= PHY_M_AN_100_HD;
  1335. if (skge->advertising & ADVERTISED_10baseT_Full)
  1336. adv |= PHY_M_AN_10_FD;
  1337. if (skge->advertising & ADVERTISED_10baseT_Half)
  1338. adv |= PHY_M_AN_10_HD;
  1339. } else /* special defines for FIBER (88E1011S only) */
  1340. adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
  1341. /* Set Flow-control capabilities */
  1342. adv |= phy_pause_map[skge->flow_control];
  1343. /* Restart Auto-negotiation */
  1344. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1345. } else {
  1346. /* forced speed/duplex settings */
  1347. ct1000 = PHY_M_1000C_MSE;
  1348. if (skge->duplex == DUPLEX_FULL)
  1349. ctrl |= PHY_CT_DUP_MD;
  1350. switch (skge->speed) {
  1351. case SPEED_1000:
  1352. ctrl |= PHY_CT_SP1000;
  1353. break;
  1354. case SPEED_100:
  1355. ctrl |= PHY_CT_SP100;
  1356. break;
  1357. }
  1358. ctrl |= PHY_CT_RESET;
  1359. }
  1360. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1361. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1362. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1363. /* Setup Phy LED's */
  1364. ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
  1365. ledover = 0;
  1366. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
  1367. /* turn off the Rx LED (LED_RX) */
  1368. ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
  1369. /* disable blink mode (LED_DUPLEX) on collisions */
  1370. ctrl |= PHY_M_LEDC_DP_CTRL;
  1371. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  1372. if (skge->autoneg == AUTONEG_DISABLE || skge->speed == SPEED_100) {
  1373. /* turn on 100 Mbps LED (LED_LINK100) */
  1374. ledover |= PHY_M_LED_MO_100(MO_LED_ON);
  1375. }
  1376. if (ledover)
  1377. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  1378. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1379. if (skge->autoneg == AUTONEG_ENABLE)
  1380. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
  1381. else
  1382. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1383. }
  1384. static void yukon_reset(struct skge_hw *hw, int port)
  1385. {
  1386. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1387. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1388. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1389. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1390. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1391. gma_write16(hw, port, GM_RX_CTRL,
  1392. gma_read16(hw, port, GM_RX_CTRL)
  1393. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1394. }
  1395. static void yukon_mac_init(struct skge_hw *hw, int port)
  1396. {
  1397. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1398. int i;
  1399. u32 reg;
  1400. const u8 *addr = hw->dev[port]->dev_addr;
  1401. /* WA code for COMA mode -- set PHY reset */
  1402. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1403. hw->chip_rev == CHIP_REV_YU_LITE_A3)
  1404. skge_write32(hw, B2_GP_IO,
  1405. (skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9));
  1406. /* hard reset */
  1407. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1408. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1409. /* WA code for COMA mode -- clear PHY reset */
  1410. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1411. hw->chip_rev == CHIP_REV_YU_LITE_A3)
  1412. skge_write32(hw, B2_GP_IO,
  1413. (skge_read32(hw, B2_GP_IO) | GP_DIR_9)
  1414. & ~GP_IO_9);
  1415. /* Set hardware config mode */
  1416. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1417. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1418. reg |= iscopper(hw) ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1419. /* Clear GMC reset */
  1420. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1421. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1422. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1423. if (skge->autoneg == AUTONEG_DISABLE) {
  1424. reg = GM_GPCR_AU_ALL_DIS;
  1425. gma_write16(hw, port, GM_GP_CTRL,
  1426. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1427. switch (skge->speed) {
  1428. case SPEED_1000:
  1429. reg |= GM_GPCR_SPEED_1000;
  1430. /* fallthru */
  1431. case SPEED_100:
  1432. reg |= GM_GPCR_SPEED_100;
  1433. }
  1434. if (skge->duplex == DUPLEX_FULL)
  1435. reg |= GM_GPCR_DUP_FULL;
  1436. } else
  1437. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1438. switch (skge->flow_control) {
  1439. case FLOW_MODE_NONE:
  1440. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1441. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1442. break;
  1443. case FLOW_MODE_LOC_SEND:
  1444. /* disable Rx flow-control */
  1445. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1446. }
  1447. gma_write16(hw, port, GM_GP_CTRL, reg);
  1448. skge_read16(hw, GMAC_IRQ_SRC);
  1449. spin_lock_bh(&hw->phy_lock);
  1450. yukon_init(hw, port);
  1451. spin_unlock_bh(&hw->phy_lock);
  1452. /* MIB clear */
  1453. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1454. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1455. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1456. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1457. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1458. /* transmit control */
  1459. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1460. /* receive control reg: unicast + multicast + no FCS */
  1461. gma_write16(hw, port, GM_RX_CTRL,
  1462. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1463. /* transmit flow control */
  1464. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1465. /* transmit parameter */
  1466. gma_write16(hw, port, GM_TX_PARAM,
  1467. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1468. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1469. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1470. /* serial mode register */
  1471. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1472. if (hw->dev[port]->mtu > 1500)
  1473. reg |= GM_SMOD_JUMBO_ENA;
  1474. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1475. /* physical address: used for pause frames */
  1476. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1477. /* virtual address for data */
  1478. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1479. /* enable interrupt mask for counter overflows */
  1480. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1481. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1482. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1483. /* Initialize Mac Fifo */
  1484. /* Configure Rx MAC FIFO */
  1485. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1486. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1487. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1488. hw->chip_rev == CHIP_REV_YU_LITE_A3)
  1489. reg &= ~GMF_RX_F_FL_ON;
  1490. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1491. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1492. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
  1493. /* Configure Tx MAC FIFO */
  1494. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1495. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1496. }
  1497. static void yukon_stop(struct skge_port *skge)
  1498. {
  1499. struct skge_hw *hw = skge->hw;
  1500. int port = skge->port;
  1501. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1502. hw->chip_rev == CHIP_REV_YU_LITE_A3) {
  1503. skge_write32(hw, B2_GP_IO,
  1504. skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9);
  1505. }
  1506. gma_write16(hw, port, GM_GP_CTRL,
  1507. gma_read16(hw, port, GM_GP_CTRL)
  1508. & ~(GM_GPCR_RX_ENA|GM_GPCR_RX_ENA));
  1509. gma_read16(hw, port, GM_GP_CTRL);
  1510. /* set GPHY Control reset */
  1511. gma_write32(hw, port, GPHY_CTRL, GPC_RST_SET);
  1512. gma_write32(hw, port, GMAC_CTRL, GMC_RST_SET);
  1513. }
  1514. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1515. {
  1516. struct skge_hw *hw = skge->hw;
  1517. int port = skge->port;
  1518. int i;
  1519. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1520. | gma_read32(hw, port, GM_TXO_OK_LO);
  1521. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1522. | gma_read32(hw, port, GM_RXO_OK_LO);
  1523. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1524. data[i] = gma_read32(hw, port,
  1525. skge_stats[i].gma_offset);
  1526. }
  1527. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1528. {
  1529. struct net_device *dev = hw->dev[port];
  1530. struct skge_port *skge = netdev_priv(dev);
  1531. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1532. if (netif_msg_intr(skge))
  1533. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1534. dev->name, status);
  1535. if (status & GM_IS_RX_FF_OR) {
  1536. ++skge->net_stats.rx_fifo_errors;
  1537. gma_write8(hw, port, RX_GMF_CTRL_T, GMF_CLI_RX_FO);
  1538. }
  1539. if (status & GM_IS_TX_FF_UR) {
  1540. ++skge->net_stats.tx_fifo_errors;
  1541. gma_write8(hw, port, TX_GMF_CTRL_T, GMF_CLI_TX_FU);
  1542. }
  1543. }
  1544. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1545. {
  1546. switch (aux & PHY_M_PS_SPEED_MSK) {
  1547. case PHY_M_PS_SPEED_1000:
  1548. return SPEED_1000;
  1549. case PHY_M_PS_SPEED_100:
  1550. return SPEED_100;
  1551. default:
  1552. return SPEED_10;
  1553. }
  1554. }
  1555. static void yukon_link_up(struct skge_port *skge)
  1556. {
  1557. struct skge_hw *hw = skge->hw;
  1558. int port = skge->port;
  1559. u16 reg;
  1560. pr_debug("yukon_link_up\n");
  1561. /* Enable Transmit FIFO Underrun */
  1562. skge_write8(hw, GMAC_IRQ_MSK, GMAC_DEF_MSK);
  1563. reg = gma_read16(hw, port, GM_GP_CTRL);
  1564. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1565. reg |= GM_GPCR_DUP_FULL;
  1566. /* enable Rx/Tx */
  1567. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1568. gma_write16(hw, port, GM_GP_CTRL, reg);
  1569. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1570. skge_link_up(skge);
  1571. }
  1572. static void yukon_link_down(struct skge_port *skge)
  1573. {
  1574. struct skge_hw *hw = skge->hw;
  1575. int port = skge->port;
  1576. pr_debug("yukon_link_down\n");
  1577. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1578. gm_phy_write(hw, port, GM_GP_CTRL,
  1579. gm_phy_read(hw, port, GM_GP_CTRL)
  1580. & ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA));
  1581. if (skge->flow_control == FLOW_MODE_REM_SEND) {
  1582. /* restore Asymmetric Pause bit */
  1583. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1584. gm_phy_read(hw, port,
  1585. PHY_MARV_AUNE_ADV)
  1586. | PHY_M_AN_ASP);
  1587. }
  1588. yukon_reset(hw, port);
  1589. skge_link_down(skge);
  1590. yukon_init(hw, port);
  1591. }
  1592. static void yukon_phy_intr(struct skge_port *skge)
  1593. {
  1594. struct skge_hw *hw = skge->hw;
  1595. int port = skge->port;
  1596. const char *reason = NULL;
  1597. u16 istatus, phystat;
  1598. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1599. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1600. if (netif_msg_intr(skge))
  1601. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1602. skge->netdev->name, istatus, phystat);
  1603. if (istatus & PHY_M_IS_AN_COMPL) {
  1604. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1605. & PHY_M_AN_RF) {
  1606. reason = "remote fault";
  1607. goto failed;
  1608. }
  1609. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1610. reason = "master/slave fault";
  1611. goto failed;
  1612. }
  1613. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1614. reason = "speed/duplex";
  1615. goto failed;
  1616. }
  1617. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1618. ? DUPLEX_FULL : DUPLEX_HALF;
  1619. skge->speed = yukon_speed(hw, phystat);
  1620. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1621. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1622. case PHY_M_PS_PAUSE_MSK:
  1623. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1624. break;
  1625. case PHY_M_PS_RX_P_EN:
  1626. skge->flow_control = FLOW_MODE_REM_SEND;
  1627. break;
  1628. case PHY_M_PS_TX_P_EN:
  1629. skge->flow_control = FLOW_MODE_LOC_SEND;
  1630. break;
  1631. default:
  1632. skge->flow_control = FLOW_MODE_NONE;
  1633. }
  1634. if (skge->flow_control == FLOW_MODE_NONE ||
  1635. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1636. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1637. else
  1638. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1639. yukon_link_up(skge);
  1640. return;
  1641. }
  1642. if (istatus & PHY_M_IS_LSP_CHANGE)
  1643. skge->speed = yukon_speed(hw, phystat);
  1644. if (istatus & PHY_M_IS_DUP_CHANGE)
  1645. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1646. if (istatus & PHY_M_IS_LST_CHANGE) {
  1647. if (phystat & PHY_M_PS_LINK_UP)
  1648. yukon_link_up(skge);
  1649. else
  1650. yukon_link_down(skge);
  1651. }
  1652. return;
  1653. failed:
  1654. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1655. skge->netdev->name, reason);
  1656. /* XXX restart autonegotiation? */
  1657. }
  1658. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1659. {
  1660. u32 end;
  1661. start /= 8;
  1662. len /= 8;
  1663. end = start + len - 1;
  1664. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1665. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1666. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1667. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1668. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1669. if (q == Q_R1 || q == Q_R2) {
  1670. /* Set thresholds on receive queue's */
  1671. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1672. start + (2*len)/3);
  1673. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1674. start + (len/3));
  1675. } else {
  1676. /* Enable store & forward on Tx queue's because
  1677. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1678. */
  1679. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1680. }
  1681. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1682. }
  1683. /* Setup Bus Memory Interface */
  1684. static void skge_qset(struct skge_port *skge, u16 q,
  1685. const struct skge_element *e)
  1686. {
  1687. struct skge_hw *hw = skge->hw;
  1688. u32 watermark = 0x600;
  1689. u64 base = skge->dma + (e->desc - skge->mem);
  1690. /* optimization to reduce window on 32bit/33mhz */
  1691. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  1692. watermark /= 2;
  1693. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  1694. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  1695. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  1696. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  1697. }
  1698. static int skge_up(struct net_device *dev)
  1699. {
  1700. struct skge_port *skge = netdev_priv(dev);
  1701. struct skge_hw *hw = skge->hw;
  1702. int port = skge->port;
  1703. u32 chunk, ram_addr;
  1704. size_t rx_size, tx_size;
  1705. int err;
  1706. if (netif_msg_ifup(skge))
  1707. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  1708. if (dev->mtu > RX_BUF_SIZE)
  1709. skge->rx_buf_size = dev->mtu + ETH_HLEN + NET_IP_ALIGN;
  1710. else
  1711. skge->rx_buf_size = RX_BUF_SIZE;
  1712. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  1713. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  1714. skge->mem_size = tx_size + rx_size;
  1715. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  1716. if (!skge->mem)
  1717. return -ENOMEM;
  1718. memset(skge->mem, 0, skge->mem_size);
  1719. if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma)))
  1720. goto free_pci_mem;
  1721. err = skge_rx_fill(skge);
  1722. if (err)
  1723. goto free_rx_ring;
  1724. if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  1725. skge->dma + rx_size)))
  1726. goto free_rx_ring;
  1727. skge->tx_avail = skge->tx_ring.count - 1;
  1728. /* Enable IRQ from port */
  1729. hw->intr_mask |= portirqmask[port];
  1730. skge_write32(hw, B0_IMSK, hw->intr_mask);
  1731. /* Initialze MAC */
  1732. if (hw->chip_id == CHIP_ID_GENESIS)
  1733. genesis_mac_init(hw, port);
  1734. else
  1735. yukon_mac_init(hw, port);
  1736. /* Configure RAMbuffers */
  1737. chunk = hw->ram_size / ((hw->ports + 1)*2);
  1738. ram_addr = hw->ram_offset + 2 * chunk * port;
  1739. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  1740. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  1741. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  1742. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  1743. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  1744. /* Start receiver BMU */
  1745. wmb();
  1746. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  1747. pr_debug("skge_up completed\n");
  1748. return 0;
  1749. free_rx_ring:
  1750. skge_rx_clean(skge);
  1751. kfree(skge->rx_ring.start);
  1752. free_pci_mem:
  1753. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1754. return err;
  1755. }
  1756. static int skge_down(struct net_device *dev)
  1757. {
  1758. struct skge_port *skge = netdev_priv(dev);
  1759. struct skge_hw *hw = skge->hw;
  1760. int port = skge->port;
  1761. if (netif_msg_ifdown(skge))
  1762. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1763. netif_stop_queue(dev);
  1764. del_timer_sync(&skge->led_blink);
  1765. /* Stop transmitter */
  1766. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  1767. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1768. RB_RST_SET|RB_DIS_OP_MD);
  1769. if (hw->chip_id == CHIP_ID_GENESIS)
  1770. genesis_stop(skge);
  1771. else
  1772. yukon_stop(skge);
  1773. /* Disable Force Sync bit and Enable Alloc bit */
  1774. skge_write8(hw, SK_REG(port, TXA_CTRL),
  1775. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1776. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1777. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1778. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1779. /* Reset PCI FIFO */
  1780. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  1781. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1782. /* Reset the RAM Buffer async Tx queue */
  1783. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  1784. /* stop receiver */
  1785. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  1786. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  1787. RB_RST_SET|RB_DIS_OP_MD);
  1788. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  1789. if (hw->chip_id == CHIP_ID_GENESIS) {
  1790. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  1791. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  1792. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_STOP);
  1793. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_STOP);
  1794. } else {
  1795. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1796. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1797. }
  1798. /* turn off led's */
  1799. skge_write16(hw, B0_LED, LED_STAT_OFF);
  1800. skge_tx_clean(skge);
  1801. skge_rx_clean(skge);
  1802. kfree(skge->rx_ring.start);
  1803. kfree(skge->tx_ring.start);
  1804. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1805. return 0;
  1806. }
  1807. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  1808. {
  1809. struct skge_port *skge = netdev_priv(dev);
  1810. struct skge_hw *hw = skge->hw;
  1811. struct skge_ring *ring = &skge->tx_ring;
  1812. struct skge_element *e;
  1813. struct skge_tx_desc *td;
  1814. int i;
  1815. u32 control, len;
  1816. u64 map;
  1817. unsigned long flags;
  1818. skb = skb_padto(skb, ETH_ZLEN);
  1819. if (!skb)
  1820. return NETDEV_TX_OK;
  1821. local_irq_save(flags);
  1822. if (!spin_trylock(&skge->tx_lock)) {
  1823. /* Collision - tell upper layer to requeue */
  1824. local_irq_restore(flags);
  1825. return NETDEV_TX_LOCKED;
  1826. }
  1827. if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) {
  1828. netif_stop_queue(dev);
  1829. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1830. printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
  1831. dev->name);
  1832. return NETDEV_TX_BUSY;
  1833. }
  1834. e = ring->to_use;
  1835. td = e->desc;
  1836. e->skb = skb;
  1837. len = skb_headlen(skb);
  1838. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1839. pci_unmap_addr_set(e, mapaddr, map);
  1840. pci_unmap_len_set(e, maplen, len);
  1841. td->dma_lo = map;
  1842. td->dma_hi = map >> 32;
  1843. if (skb->ip_summed == CHECKSUM_HW) {
  1844. const struct iphdr *ip
  1845. = (const struct iphdr *) (skb->data + ETH_HLEN);
  1846. int offset = skb->h.raw - skb->data;
  1847. /* This seems backwards, but it is what the sk98lin
  1848. * does. Looks like hardware is wrong?
  1849. */
  1850. if (ip->protocol == IPPROTO_UDP
  1851. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  1852. control = BMU_TCP_CHECK;
  1853. else
  1854. control = BMU_UDP_CHECK;
  1855. td->csum_offs = 0;
  1856. td->csum_start = offset;
  1857. td->csum_write = offset + skb->csum;
  1858. } else
  1859. control = BMU_CHECK;
  1860. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  1861. control |= BMU_EOF| BMU_IRQ_EOF;
  1862. else {
  1863. struct skge_tx_desc *tf = td;
  1864. control |= BMU_STFWD;
  1865. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1866. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1867. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1868. frag->size, PCI_DMA_TODEVICE);
  1869. e = e->next;
  1870. e->skb = NULL;
  1871. tf = e->desc;
  1872. tf->dma_lo = map;
  1873. tf->dma_hi = (u64) map >> 32;
  1874. pci_unmap_addr_set(e, mapaddr, map);
  1875. pci_unmap_len_set(e, maplen, frag->size);
  1876. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  1877. }
  1878. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  1879. }
  1880. /* Make sure all the descriptors written */
  1881. wmb();
  1882. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  1883. wmb();
  1884. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  1885. if (netif_msg_tx_queued(skge))
  1886. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  1887. dev->name, e - ring->start, skb->len);
  1888. ring->to_use = e->next;
  1889. skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1;
  1890. if (skge->tx_avail <= MAX_SKB_FRAGS + 1) {
  1891. pr_debug("%s: transmit queue full\n", dev->name);
  1892. netif_stop_queue(dev);
  1893. }
  1894. dev->trans_start = jiffies;
  1895. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1896. return NETDEV_TX_OK;
  1897. }
  1898. static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e)
  1899. {
  1900. /* This ring element can be skb or fragment */
  1901. if (e->skb) {
  1902. pci_unmap_single(hw->pdev,
  1903. pci_unmap_addr(e, mapaddr),
  1904. pci_unmap_len(e, maplen),
  1905. PCI_DMA_TODEVICE);
  1906. dev_kfree_skb_any(e->skb);
  1907. e->skb = NULL;
  1908. } else {
  1909. pci_unmap_page(hw->pdev,
  1910. pci_unmap_addr(e, mapaddr),
  1911. pci_unmap_len(e, maplen),
  1912. PCI_DMA_TODEVICE);
  1913. }
  1914. }
  1915. static void skge_tx_clean(struct skge_port *skge)
  1916. {
  1917. struct skge_ring *ring = &skge->tx_ring;
  1918. struct skge_element *e;
  1919. unsigned long flags;
  1920. spin_lock_irqsave(&skge->tx_lock, flags);
  1921. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  1922. ++skge->tx_avail;
  1923. skge_tx_free(skge->hw, e);
  1924. }
  1925. ring->to_clean = e;
  1926. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1927. }
  1928. static void skge_tx_timeout(struct net_device *dev)
  1929. {
  1930. struct skge_port *skge = netdev_priv(dev);
  1931. if (netif_msg_timer(skge))
  1932. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  1933. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  1934. skge_tx_clean(skge);
  1935. }
  1936. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  1937. {
  1938. int err = 0;
  1939. int running = netif_running(dev);
  1940. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  1941. return -EINVAL;
  1942. if (running)
  1943. skge_down(dev);
  1944. dev->mtu = new_mtu;
  1945. if (running)
  1946. skge_up(dev);
  1947. return err;
  1948. }
  1949. static void genesis_set_multicast(struct net_device *dev)
  1950. {
  1951. struct skge_port *skge = netdev_priv(dev);
  1952. struct skge_hw *hw = skge->hw;
  1953. int port = skge->port;
  1954. int i, count = dev->mc_count;
  1955. struct dev_mc_list *list = dev->mc_list;
  1956. u32 mode;
  1957. u8 filter[8];
  1958. pr_debug("genesis_set_multicast flags=%x count=%d\n", dev->flags, dev->mc_count);
  1959. mode = xm_read32(hw, port, XM_MODE);
  1960. mode |= XM_MD_ENA_HASH;
  1961. if (dev->flags & IFF_PROMISC)
  1962. mode |= XM_MD_ENA_PROM;
  1963. else
  1964. mode &= ~XM_MD_ENA_PROM;
  1965. if (dev->flags & IFF_ALLMULTI)
  1966. memset(filter, 0xff, sizeof(filter));
  1967. else {
  1968. memset(filter, 0, sizeof(filter));
  1969. for (i = 0; list && i < count; i++, list = list->next) {
  1970. u32 crc, bit;
  1971. crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
  1972. bit = ~crc & 0x3f;
  1973. filter[bit/8] |= 1 << (bit%8);
  1974. }
  1975. }
  1976. xm_write32(hw, port, XM_MODE, mode);
  1977. xm_outhash(hw, port, XM_HSM, filter);
  1978. }
  1979. static void yukon_set_multicast(struct net_device *dev)
  1980. {
  1981. struct skge_port *skge = netdev_priv(dev);
  1982. struct skge_hw *hw = skge->hw;
  1983. int port = skge->port;
  1984. struct dev_mc_list *list = dev->mc_list;
  1985. u16 reg;
  1986. u8 filter[8];
  1987. memset(filter, 0, sizeof(filter));
  1988. reg = gma_read16(hw, port, GM_RX_CTRL);
  1989. reg |= GM_RXCR_UCF_ENA;
  1990. if (dev->flags & IFF_PROMISC) /* promiscious */
  1991. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1992. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  1993. memset(filter, 0xff, sizeof(filter));
  1994. else if (dev->mc_count == 0) /* no multicast */
  1995. reg &= ~GM_RXCR_MCF_ENA;
  1996. else {
  1997. int i;
  1998. reg |= GM_RXCR_MCF_ENA;
  1999. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2000. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2001. filter[bit/8] |= 1 << (bit%8);
  2002. }
  2003. }
  2004. gma_write16(hw, port, GM_MC_ADDR_H1,
  2005. (u16)filter[0] | ((u16)filter[1] << 8));
  2006. gma_write16(hw, port, GM_MC_ADDR_H2,
  2007. (u16)filter[2] | ((u16)filter[3] << 8));
  2008. gma_write16(hw, port, GM_MC_ADDR_H3,
  2009. (u16)filter[4] | ((u16)filter[5] << 8));
  2010. gma_write16(hw, port, GM_MC_ADDR_H4,
  2011. (u16)filter[6] | ((u16)filter[7] << 8));
  2012. gma_write16(hw, port, GM_RX_CTRL, reg);
  2013. }
  2014. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2015. {
  2016. if (hw->chip_id == CHIP_ID_GENESIS)
  2017. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2018. else
  2019. return (status & GMR_FS_ANY_ERR) ||
  2020. (status & GMR_FS_RX_OK) == 0;
  2021. }
  2022. static void skge_rx_error(struct skge_port *skge, int slot,
  2023. u32 control, u32 status)
  2024. {
  2025. if (netif_msg_rx_err(skge))
  2026. printk(KERN_DEBUG PFX "%s: rx err, slot %d control 0x%x status 0x%x\n",
  2027. skge->netdev->name, slot, control, status);
  2028. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2029. skge->net_stats.rx_length_errors++;
  2030. else if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2031. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2032. skge->net_stats.rx_length_errors++;
  2033. if (status & XMR_FS_FRA_ERR)
  2034. skge->net_stats.rx_frame_errors++;
  2035. if (status & XMR_FS_FCS_ERR)
  2036. skge->net_stats.rx_crc_errors++;
  2037. } else {
  2038. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2039. skge->net_stats.rx_length_errors++;
  2040. if (status & GMR_FS_FRAGMENT)
  2041. skge->net_stats.rx_frame_errors++;
  2042. if (status & GMR_FS_CRC_ERR)
  2043. skge->net_stats.rx_crc_errors++;
  2044. }
  2045. }
  2046. /* Get receive buffer from descriptor.
  2047. * Handles copy of small buffers and reallocation failures
  2048. */
  2049. static inline struct sk_buff *skge_rx_get(struct skge_port *skge,
  2050. struct skge_element *e,
  2051. unsigned int len)
  2052. {
  2053. struct sk_buff *nskb, *skb;
  2054. if (len < RX_COPY_THRESHOLD) {
  2055. nskb = skge_rx_alloc(skge->netdev, len + NET_IP_ALIGN);
  2056. if (unlikely(!nskb))
  2057. return NULL;
  2058. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2059. pci_unmap_addr(e, mapaddr),
  2060. len, PCI_DMA_FROMDEVICE);
  2061. memcpy(nskb->data, e->skb->data, len);
  2062. pci_dma_sync_single_for_device(skge->hw->pdev,
  2063. pci_unmap_addr(e, mapaddr),
  2064. len, PCI_DMA_FROMDEVICE);
  2065. if (skge->rx_csum) {
  2066. struct skge_rx_desc *rd = e->desc;
  2067. nskb->csum = le16_to_cpu(rd->csum2);
  2068. nskb->ip_summed = CHECKSUM_HW;
  2069. }
  2070. skge_rx_reuse(e, skge->rx_buf_size);
  2071. return nskb;
  2072. } else {
  2073. nskb = skge_rx_alloc(skge->netdev, skge->rx_buf_size);
  2074. if (unlikely(!nskb))
  2075. return NULL;
  2076. pci_unmap_single(skge->hw->pdev,
  2077. pci_unmap_addr(e, mapaddr),
  2078. pci_unmap_len(e, maplen),
  2079. PCI_DMA_FROMDEVICE);
  2080. skb = e->skb;
  2081. if (skge->rx_csum) {
  2082. struct skge_rx_desc *rd = e->desc;
  2083. skb->csum = le16_to_cpu(rd->csum2);
  2084. skb->ip_summed = CHECKSUM_HW;
  2085. }
  2086. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2087. return skb;
  2088. }
  2089. }
  2090. static int skge_poll(struct net_device *dev, int *budget)
  2091. {
  2092. struct skge_port *skge = netdev_priv(dev);
  2093. struct skge_hw *hw = skge->hw;
  2094. struct skge_ring *ring = &skge->rx_ring;
  2095. struct skge_element *e;
  2096. unsigned int to_do = min(dev->quota, *budget);
  2097. unsigned int work_done = 0;
  2098. pr_debug("skge_poll\n");
  2099. for (e = ring->to_clean; work_done < to_do; e = e->next) {
  2100. struct skge_rx_desc *rd = e->desc;
  2101. struct sk_buff *skb;
  2102. u32 control, len, status;
  2103. rmb();
  2104. control = rd->control;
  2105. if (control & BMU_OWN)
  2106. break;
  2107. len = control & BMU_BBC;
  2108. status = rd->status;
  2109. if (unlikely((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
  2110. || bad_phy_status(hw, status))) {
  2111. skge_rx_error(skge, e - ring->start, control, status);
  2112. skge_rx_reuse(e, skge->rx_buf_size);
  2113. continue;
  2114. }
  2115. if (netif_msg_rx_status(skge))
  2116. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2117. dev->name, e - ring->start, rd->status, len);
  2118. skb = skge_rx_get(skge, e, len);
  2119. if (likely(skb)) {
  2120. skb_put(skb, len);
  2121. skb->protocol = eth_type_trans(skb, dev);
  2122. dev->last_rx = jiffies;
  2123. netif_receive_skb(skb);
  2124. ++work_done;
  2125. } else
  2126. skge_rx_reuse(e, skge->rx_buf_size);
  2127. }
  2128. ring->to_clean = e;
  2129. /* restart receiver */
  2130. wmb();
  2131. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR),
  2132. CSR_START | CSR_IRQ_CL_F);
  2133. *budget -= work_done;
  2134. dev->quota -= work_done;
  2135. if (work_done >= to_do)
  2136. return 1; /* not done */
  2137. local_irq_disable();
  2138. __netif_rx_complete(dev);
  2139. hw->intr_mask |= portirqmask[skge->port];
  2140. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2141. local_irq_enable();
  2142. return 0;
  2143. }
  2144. static inline void skge_tx_intr(struct net_device *dev)
  2145. {
  2146. struct skge_port *skge = netdev_priv(dev);
  2147. struct skge_hw *hw = skge->hw;
  2148. struct skge_ring *ring = &skge->tx_ring;
  2149. struct skge_element *e;
  2150. spin_lock(&skge->tx_lock);
  2151. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2152. struct skge_tx_desc *td = e->desc;
  2153. u32 control;
  2154. rmb();
  2155. control = td->control;
  2156. if (control & BMU_OWN)
  2157. break;
  2158. if (unlikely(netif_msg_tx_done(skge)))
  2159. printk(KERN_DEBUG PFX "%s: tx done slot %td status 0x%x\n",
  2160. dev->name, e - ring->start, td->status);
  2161. skge_tx_free(hw, e);
  2162. e->skb = NULL;
  2163. ++skge->tx_avail;
  2164. }
  2165. ring->to_clean = e;
  2166. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2167. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  2168. netif_wake_queue(dev);
  2169. spin_unlock(&skge->tx_lock);
  2170. }
  2171. static void skge_mac_parity(struct skge_hw *hw, int port)
  2172. {
  2173. printk(KERN_ERR PFX "%s: mac data parity error\n",
  2174. hw->dev[port] ? hw->dev[port]->name
  2175. : (port == 0 ? "(port A)": "(port B"));
  2176. if (hw->chip_id == CHIP_ID_GENESIS)
  2177. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2178. MFF_CLR_PERR);
  2179. else
  2180. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2181. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2182. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2183. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2184. }
  2185. static void skge_pci_clear(struct skge_hw *hw)
  2186. {
  2187. u16 status;
  2188. pci_read_config_word(hw->pdev, PCI_STATUS, &status);
  2189. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2190. pci_write_config_word(hw->pdev, PCI_STATUS,
  2191. status | PCI_STATUS_ERROR_BITS);
  2192. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2193. }
  2194. static void skge_mac_intr(struct skge_hw *hw, int port)
  2195. {
  2196. if (hw->chip_id == CHIP_ID_GENESIS)
  2197. genesis_mac_intr(hw, port);
  2198. else
  2199. yukon_mac_intr(hw, port);
  2200. }
  2201. /* Handle device specific framing and timeout interrupts */
  2202. static void skge_error_irq(struct skge_hw *hw)
  2203. {
  2204. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2205. if (hw->chip_id == CHIP_ID_GENESIS) {
  2206. /* clear xmac errors */
  2207. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2208. skge_write16(hw, SK_REG(0, RX_MFF_CTRL1), MFF_CLR_INSTAT);
  2209. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2210. skge_write16(hw, SK_REG(0, RX_MFF_CTRL2), MFF_CLR_INSTAT);
  2211. } else {
  2212. /* Timestamp (unused) overflow */
  2213. if (hwstatus & IS_IRQ_TIST_OV)
  2214. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2215. if (hwstatus & IS_IRQ_SENSOR) {
  2216. /* no sensors on 32-bit Yukon */
  2217. if (!(skge_read16(hw, B0_CTST) & CS_BUS_SLOT_SZ)) {
  2218. printk(KERN_ERR PFX "ignoring bogus sensor interrups\n");
  2219. skge_write32(hw, B0_HWE_IMSK,
  2220. IS_ERR_MSK & ~IS_IRQ_SENSOR);
  2221. } else
  2222. printk(KERN_WARNING PFX "sensor interrupt\n");
  2223. }
  2224. }
  2225. if (hwstatus & IS_RAM_RD_PAR) {
  2226. printk(KERN_ERR PFX "Ram read data parity error\n");
  2227. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2228. }
  2229. if (hwstatus & IS_RAM_WR_PAR) {
  2230. printk(KERN_ERR PFX "Ram write data parity error\n");
  2231. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2232. }
  2233. if (hwstatus & IS_M1_PAR_ERR)
  2234. skge_mac_parity(hw, 0);
  2235. if (hwstatus & IS_M2_PAR_ERR)
  2236. skge_mac_parity(hw, 1);
  2237. if (hwstatus & IS_R1_PAR_ERR)
  2238. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2239. if (hwstatus & IS_R2_PAR_ERR)
  2240. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2241. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2242. printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n",
  2243. hwstatus);
  2244. skge_pci_clear(hw);
  2245. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2246. if (hwstatus & IS_IRQ_STAT) {
  2247. printk(KERN_WARNING PFX "IRQ status %x: still set ignoring hardware errors\n",
  2248. hwstatus);
  2249. hw->intr_mask &= ~IS_HW_ERR;
  2250. }
  2251. }
  2252. }
  2253. /*
  2254. * Interrrupt from PHY are handled in tasklet (soft irq)
  2255. * because accessing phy registers requires spin wait which might
  2256. * cause excess interrupt latency.
  2257. */
  2258. static void skge_extirq(unsigned long data)
  2259. {
  2260. struct skge_hw *hw = (struct skge_hw *) data;
  2261. int port;
  2262. spin_lock(&hw->phy_lock);
  2263. for (port = 0; port < 2; port++) {
  2264. struct net_device *dev = hw->dev[port];
  2265. if (dev && netif_running(dev)) {
  2266. struct skge_port *skge = netdev_priv(dev);
  2267. if (hw->chip_id != CHIP_ID_GENESIS)
  2268. yukon_phy_intr(skge);
  2269. else
  2270. bcom_phy_intr(skge);
  2271. }
  2272. }
  2273. spin_unlock(&hw->phy_lock);
  2274. local_irq_disable();
  2275. hw->intr_mask |= IS_EXT_REG;
  2276. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2277. local_irq_enable();
  2278. }
  2279. static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
  2280. {
  2281. struct skge_hw *hw = dev_id;
  2282. u32 status = skge_read32(hw, B0_SP_ISRC);
  2283. if (status == 0 || status == ~0) /* hotplug or shared irq */
  2284. return IRQ_NONE;
  2285. status &= hw->intr_mask;
  2286. if (status & IS_R1_F) {
  2287. hw->intr_mask &= ~IS_R1_F;
  2288. netif_rx_schedule(hw->dev[0]);
  2289. }
  2290. if (status & IS_R2_F) {
  2291. hw->intr_mask &= ~IS_R2_F;
  2292. netif_rx_schedule(hw->dev[1]);
  2293. }
  2294. if (status & IS_XA1_F)
  2295. skge_tx_intr(hw->dev[0]);
  2296. if (status & IS_XA2_F)
  2297. skge_tx_intr(hw->dev[1]);
  2298. if (status & IS_PA_TO_RX1) {
  2299. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2300. ++skge->net_stats.rx_over_errors;
  2301. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2302. }
  2303. if (status & IS_PA_TO_RX2) {
  2304. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2305. ++skge->net_stats.rx_over_errors;
  2306. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2307. }
  2308. if (status & IS_PA_TO_TX1)
  2309. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2310. if (status & IS_PA_TO_TX2)
  2311. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2312. if (status & IS_MAC1)
  2313. skge_mac_intr(hw, 0);
  2314. if (status & IS_MAC2)
  2315. skge_mac_intr(hw, 1);
  2316. if (status & IS_HW_ERR)
  2317. skge_error_irq(hw);
  2318. if (status & IS_EXT_REG) {
  2319. hw->intr_mask &= ~IS_EXT_REG;
  2320. tasklet_schedule(&hw->ext_tasklet);
  2321. }
  2322. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2323. return IRQ_HANDLED;
  2324. }
  2325. #ifdef CONFIG_NET_POLL_CONTROLLER
  2326. static void skge_netpoll(struct net_device *dev)
  2327. {
  2328. struct skge_port *skge = netdev_priv(dev);
  2329. disable_irq(dev->irq);
  2330. skge_intr(dev->irq, skge->hw, NULL);
  2331. enable_irq(dev->irq);
  2332. }
  2333. #endif
  2334. static int skge_set_mac_address(struct net_device *dev, void *p)
  2335. {
  2336. struct skge_port *skge = netdev_priv(dev);
  2337. struct sockaddr *addr = p;
  2338. int err = 0;
  2339. if (!is_valid_ether_addr(addr->sa_data))
  2340. return -EADDRNOTAVAIL;
  2341. skge_down(dev);
  2342. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2343. memcpy_toio(skge->hw->regs + B2_MAC_1 + skge->port*8,
  2344. dev->dev_addr, ETH_ALEN);
  2345. memcpy_toio(skge->hw->regs + B2_MAC_2 + skge->port*8,
  2346. dev->dev_addr, ETH_ALEN);
  2347. if (dev->flags & IFF_UP)
  2348. err = skge_up(dev);
  2349. return err;
  2350. }
  2351. static const struct {
  2352. u8 id;
  2353. const char *name;
  2354. } skge_chips[] = {
  2355. { CHIP_ID_GENESIS, "Genesis" },
  2356. { CHIP_ID_YUKON, "Yukon" },
  2357. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2358. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2359. };
  2360. static const char *skge_board_name(const struct skge_hw *hw)
  2361. {
  2362. int i;
  2363. static char buf[16];
  2364. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2365. if (skge_chips[i].id == hw->chip_id)
  2366. return skge_chips[i].name;
  2367. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2368. return buf;
  2369. }
  2370. /*
  2371. * Setup the board data structure, but don't bring up
  2372. * the port(s)
  2373. */
  2374. static int skge_reset(struct skge_hw *hw)
  2375. {
  2376. u16 ctst;
  2377. u8 t8, mac_cfg;
  2378. int i;
  2379. ctst = skge_read16(hw, B0_CTST);
  2380. /* do a SW reset */
  2381. skge_write8(hw, B0_CTST, CS_RST_SET);
  2382. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2383. /* clear PCI errors, if any */
  2384. skge_pci_clear(hw);
  2385. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2386. /* restore CLK_RUN bits (for Yukon-Lite) */
  2387. skge_write16(hw, B0_CTST,
  2388. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2389. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2390. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2391. hw->pmd_type = skge_read8(hw, B2_PMD_TYP);
  2392. switch (hw->chip_id) {
  2393. case CHIP_ID_GENESIS:
  2394. switch (hw->phy_type) {
  2395. case SK_PHY_BCOM:
  2396. hw->phy_addr = PHY_ADDR_BCOM;
  2397. break;
  2398. default:
  2399. printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
  2400. pci_name(hw->pdev), hw->phy_type);
  2401. return -EOPNOTSUPP;
  2402. }
  2403. break;
  2404. case CHIP_ID_YUKON:
  2405. case CHIP_ID_YUKON_LITE:
  2406. case CHIP_ID_YUKON_LP:
  2407. if (hw->phy_type < SK_PHY_MARV_COPPER && hw->pmd_type != 'S')
  2408. hw->phy_type = SK_PHY_MARV_COPPER;
  2409. hw->phy_addr = PHY_ADDR_MARV;
  2410. if (!iscopper(hw))
  2411. hw->phy_type = SK_PHY_MARV_FIBER;
  2412. break;
  2413. default:
  2414. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  2415. pci_name(hw->pdev), hw->chip_id);
  2416. return -EOPNOTSUPP;
  2417. }
  2418. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2419. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2420. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2421. /* read the adapters RAM size */
  2422. t8 = skge_read8(hw, B2_E_0);
  2423. if (hw->chip_id == CHIP_ID_GENESIS) {
  2424. if (t8 == 3) {
  2425. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2426. hw->ram_size = 0x100000;
  2427. hw->ram_offset = 0x80000;
  2428. } else
  2429. hw->ram_size = t8 * 512;
  2430. }
  2431. else if (t8 == 0)
  2432. hw->ram_size = 0x20000;
  2433. else
  2434. hw->ram_size = t8 * 4096;
  2435. if (hw->chip_id == CHIP_ID_GENESIS)
  2436. genesis_init(hw);
  2437. else {
  2438. /* switch power to VCC (WA for VAUX problem) */
  2439. skge_write8(hw, B0_POWER_CTRL,
  2440. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2441. for (i = 0; i < hw->ports; i++) {
  2442. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2443. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2444. }
  2445. }
  2446. /* turn off hardware timer (unused) */
  2447. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2448. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2449. skge_write8(hw, B0_LED, LED_STAT_ON);
  2450. /* enable the Tx Arbiters */
  2451. for (i = 0; i < hw->ports; i++)
  2452. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2453. /* Initialize ram interface */
  2454. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2455. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2456. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2457. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2458. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2459. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2460. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2461. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2462. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2463. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2464. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2465. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2466. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2467. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2468. /* Set interrupt moderation for Transmit only
  2469. * Receive interrupts avoided by NAPI
  2470. */
  2471. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2472. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2473. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2474. hw->intr_mask = IS_HW_ERR | IS_EXT_REG;
  2475. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2476. if (hw->chip_id != CHIP_ID_GENESIS)
  2477. skge_write8(hw, GMAC_IRQ_MSK, 0);
  2478. spin_lock_bh(&hw->phy_lock);
  2479. for (i = 0; i < hw->ports; i++) {
  2480. if (hw->chip_id == CHIP_ID_GENESIS)
  2481. genesis_reset(hw, i);
  2482. else
  2483. yukon_reset(hw, i);
  2484. }
  2485. spin_unlock_bh(&hw->phy_lock);
  2486. return 0;
  2487. }
  2488. /* Initialize network device */
  2489. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  2490. int highmem)
  2491. {
  2492. struct skge_port *skge;
  2493. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2494. if (!dev) {
  2495. printk(KERN_ERR "skge etherdev alloc failed");
  2496. return NULL;
  2497. }
  2498. SET_MODULE_OWNER(dev);
  2499. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2500. dev->open = skge_up;
  2501. dev->stop = skge_down;
  2502. dev->hard_start_xmit = skge_xmit_frame;
  2503. dev->get_stats = skge_get_stats;
  2504. if (hw->chip_id == CHIP_ID_GENESIS)
  2505. dev->set_multicast_list = genesis_set_multicast;
  2506. else
  2507. dev->set_multicast_list = yukon_set_multicast;
  2508. dev->set_mac_address = skge_set_mac_address;
  2509. dev->change_mtu = skge_change_mtu;
  2510. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2511. dev->tx_timeout = skge_tx_timeout;
  2512. dev->watchdog_timeo = TX_WATCHDOG;
  2513. dev->poll = skge_poll;
  2514. dev->weight = NAPI_WEIGHT;
  2515. #ifdef CONFIG_NET_POLL_CONTROLLER
  2516. dev->poll_controller = skge_netpoll;
  2517. #endif
  2518. dev->irq = hw->pdev->irq;
  2519. dev->features = NETIF_F_LLTX;
  2520. if (highmem)
  2521. dev->features |= NETIF_F_HIGHDMA;
  2522. skge = netdev_priv(dev);
  2523. skge->netdev = dev;
  2524. skge->hw = hw;
  2525. skge->msg_enable = netif_msg_init(debug, default_msg);
  2526. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2527. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2528. /* Auto speed and flow control */
  2529. skge->autoneg = AUTONEG_ENABLE;
  2530. skge->flow_control = FLOW_MODE_SYMMETRIC;
  2531. skge->duplex = -1;
  2532. skge->speed = -1;
  2533. skge->advertising = skge_supported_modes(hw);
  2534. hw->dev[port] = dev;
  2535. skge->port = port;
  2536. spin_lock_init(&skge->tx_lock);
  2537. init_timer(&skge->led_blink);
  2538. skge->led_blink.function = skge_blink_timer;
  2539. skge->led_blink.data = (unsigned long) skge;
  2540. if (hw->chip_id != CHIP_ID_GENESIS) {
  2541. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2542. skge->rx_csum = 1;
  2543. }
  2544. /* read the mac address */
  2545. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2546. /* device is off until link detection */
  2547. netif_carrier_off(dev);
  2548. netif_stop_queue(dev);
  2549. return dev;
  2550. }
  2551. static void __devinit skge_show_addr(struct net_device *dev)
  2552. {
  2553. const struct skge_port *skge = netdev_priv(dev);
  2554. if (netif_msg_probe(skge))
  2555. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2556. dev->name,
  2557. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2558. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2559. }
  2560. static int __devinit skge_probe(struct pci_dev *pdev,
  2561. const struct pci_device_id *ent)
  2562. {
  2563. struct net_device *dev, *dev1;
  2564. struct skge_hw *hw;
  2565. int err, using_dac = 0;
  2566. if ((err = pci_enable_device(pdev))) {
  2567. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2568. pci_name(pdev));
  2569. goto err_out;
  2570. }
  2571. if ((err = pci_request_regions(pdev, DRV_NAME))) {
  2572. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2573. pci_name(pdev));
  2574. goto err_out_disable_pdev;
  2575. }
  2576. pci_set_master(pdev);
  2577. if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)))
  2578. using_dac = 1;
  2579. else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2580. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2581. pci_name(pdev));
  2582. goto err_out_free_regions;
  2583. }
  2584. #ifdef __BIG_ENDIAN
  2585. /* byte swap decriptors in hardware */
  2586. {
  2587. u32 reg;
  2588. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2589. reg |= PCI_REV_DESC;
  2590. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2591. }
  2592. #endif
  2593. err = -ENOMEM;
  2594. hw = kmalloc(sizeof(*hw), GFP_KERNEL);
  2595. if (!hw) {
  2596. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2597. pci_name(pdev));
  2598. goto err_out_free_regions;
  2599. }
  2600. memset(hw, 0, sizeof(*hw));
  2601. hw->pdev = pdev;
  2602. spin_lock_init(&hw->phy_lock);
  2603. tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);
  2604. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2605. if (!hw->regs) {
  2606. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2607. pci_name(pdev));
  2608. goto err_out_free_hw;
  2609. }
  2610. if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) {
  2611. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2612. pci_name(pdev), pdev->irq);
  2613. goto err_out_iounmap;
  2614. }
  2615. pci_set_drvdata(pdev, hw);
  2616. err = skge_reset(hw);
  2617. if (err)
  2618. goto err_out_free_irq;
  2619. printk(KERN_INFO PFX "addr 0x%lx irq %d chip %s rev %d\n",
  2620. pci_resource_start(pdev, 0), pdev->irq,
  2621. skge_board_name(hw), hw->chip_rev);
  2622. if ((dev = skge_devinit(hw, 0, using_dac)) == NULL)
  2623. goto err_out_led_off;
  2624. if ((err = register_netdev(dev))) {
  2625. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2626. pci_name(pdev));
  2627. goto err_out_free_netdev;
  2628. }
  2629. skge_show_addr(dev);
  2630. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  2631. if (register_netdev(dev1) == 0)
  2632. skge_show_addr(dev1);
  2633. else {
  2634. /* Failure to register second port need not be fatal */
  2635. printk(KERN_WARNING PFX "register of second port failed\n");
  2636. hw->dev[1] = NULL;
  2637. free_netdev(dev1);
  2638. }
  2639. }
  2640. return 0;
  2641. err_out_free_netdev:
  2642. free_netdev(dev);
  2643. err_out_led_off:
  2644. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2645. err_out_free_irq:
  2646. free_irq(pdev->irq, hw);
  2647. err_out_iounmap:
  2648. iounmap(hw->regs);
  2649. err_out_free_hw:
  2650. kfree(hw);
  2651. err_out_free_regions:
  2652. pci_release_regions(pdev);
  2653. err_out_disable_pdev:
  2654. pci_disable_device(pdev);
  2655. pci_set_drvdata(pdev, NULL);
  2656. err_out:
  2657. return err;
  2658. }
  2659. static void __devexit skge_remove(struct pci_dev *pdev)
  2660. {
  2661. struct skge_hw *hw = pci_get_drvdata(pdev);
  2662. struct net_device *dev0, *dev1;
  2663. if (!hw)
  2664. return;
  2665. if ((dev1 = hw->dev[1]))
  2666. unregister_netdev(dev1);
  2667. dev0 = hw->dev[0];
  2668. unregister_netdev(dev0);
  2669. tasklet_kill(&hw->ext_tasklet);
  2670. free_irq(pdev->irq, hw);
  2671. pci_release_regions(pdev);
  2672. pci_disable_device(pdev);
  2673. if (dev1)
  2674. free_netdev(dev1);
  2675. free_netdev(dev0);
  2676. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2677. iounmap(hw->regs);
  2678. kfree(hw);
  2679. pci_set_drvdata(pdev, NULL);
  2680. }
  2681. #ifdef CONFIG_PM
  2682. static int skge_suspend(struct pci_dev *pdev, u32 state)
  2683. {
  2684. struct skge_hw *hw = pci_get_drvdata(pdev);
  2685. int i, wol = 0;
  2686. for (i = 0; i < 2; i++) {
  2687. struct net_device *dev = hw->dev[i];
  2688. if (dev) {
  2689. struct skge_port *skge = netdev_priv(dev);
  2690. if (netif_running(dev)) {
  2691. netif_carrier_off(dev);
  2692. skge_down(dev);
  2693. }
  2694. netif_device_detach(dev);
  2695. wol |= skge->wol;
  2696. }
  2697. }
  2698. pci_save_state(pdev);
  2699. pci_enable_wake(pdev, state, wol);
  2700. pci_disable_device(pdev);
  2701. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2702. return 0;
  2703. }
  2704. static int skge_resume(struct pci_dev *pdev)
  2705. {
  2706. struct skge_hw *hw = pci_get_drvdata(pdev);
  2707. int i;
  2708. pci_set_power_state(pdev, PCI_D0);
  2709. pci_restore_state(pdev);
  2710. pci_enable_wake(pdev, PCI_D0, 0);
  2711. skge_reset(hw);
  2712. for (i = 0; i < 2; i++) {
  2713. struct net_device *dev = hw->dev[i];
  2714. if (dev) {
  2715. netif_device_attach(dev);
  2716. if (netif_running(dev))
  2717. skge_up(dev);
  2718. }
  2719. }
  2720. return 0;
  2721. }
  2722. #endif
  2723. static struct pci_driver skge_driver = {
  2724. .name = DRV_NAME,
  2725. .id_table = skge_id_table,
  2726. .probe = skge_probe,
  2727. .remove = __devexit_p(skge_remove),
  2728. #ifdef CONFIG_PM
  2729. .suspend = skge_suspend,
  2730. .resume = skge_resume,
  2731. #endif
  2732. };
  2733. static int __init skge_init_module(void)
  2734. {
  2735. return pci_module_init(&skge_driver);
  2736. }
  2737. static void __exit skge_cleanup_module(void)
  2738. {
  2739. pci_unregister_driver(&skge_driver);
  2740. }
  2741. module_init(skge_init_module);
  2742. module_exit(skge_cleanup_module);