mtdpart.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * (C) 2000 Nicolas Pitre <nico@cam.org>
  5. *
  6. * This code is GPL
  7. *
  8. * $Id: mtdpart.c,v 1.51 2004/11/16 18:28:59 dwmw2 Exp $
  9. *
  10. * 02-21-2002 Thomas Gleixner <gleixner@autronix.de>
  11. * added support for read_oob, write_oob
  12. */
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/kernel.h>
  16. #include <linux/slab.h>
  17. #include <linux/list.h>
  18. #include <linux/config.h>
  19. #include <linux/kmod.h>
  20. #include <linux/mtd/mtd.h>
  21. #include <linux/mtd/partitions.h>
  22. #include <linux/mtd/compatmac.h>
  23. /* Our partition linked list */
  24. static LIST_HEAD(mtd_partitions);
  25. /* Our partition node structure */
  26. struct mtd_part {
  27. struct mtd_info mtd;
  28. struct mtd_info *master;
  29. u_int32_t offset;
  30. int index;
  31. struct list_head list;
  32. int registered;
  33. };
  34. /*
  35. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  36. * the pointer to that structure with this macro.
  37. */
  38. #define PART(x) ((struct mtd_part *)(x))
  39. /*
  40. * MTD methods which simply translate the effective address and pass through
  41. * to the _real_ device.
  42. */
  43. static int part_read (struct mtd_info *mtd, loff_t from, size_t len,
  44. size_t *retlen, u_char *buf)
  45. {
  46. struct mtd_part *part = PART(mtd);
  47. if (from >= mtd->size)
  48. len = 0;
  49. else if (from + len > mtd->size)
  50. len = mtd->size - from;
  51. if (part->master->read_ecc == NULL)
  52. return part->master->read (part->master, from + part->offset,
  53. len, retlen, buf);
  54. else
  55. return part->master->read_ecc (part->master, from + part->offset,
  56. len, retlen, buf, NULL, &mtd->oobinfo);
  57. }
  58. static int part_point (struct mtd_info *mtd, loff_t from, size_t len,
  59. size_t *retlen, u_char **buf)
  60. {
  61. struct mtd_part *part = PART(mtd);
  62. if (from >= mtd->size)
  63. len = 0;
  64. else if (from + len > mtd->size)
  65. len = mtd->size - from;
  66. return part->master->point (part->master, from + part->offset,
  67. len, retlen, buf);
  68. }
  69. static void part_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
  70. {
  71. struct mtd_part *part = PART(mtd);
  72. part->master->unpoint (part->master, addr, from + part->offset, len);
  73. }
  74. static int part_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
  75. size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel)
  76. {
  77. struct mtd_part *part = PART(mtd);
  78. if (oobsel == NULL)
  79. oobsel = &mtd->oobinfo;
  80. if (from >= mtd->size)
  81. len = 0;
  82. else if (from + len > mtd->size)
  83. len = mtd->size - from;
  84. return part->master->read_ecc (part->master, from + part->offset,
  85. len, retlen, buf, eccbuf, oobsel);
  86. }
  87. static int part_read_oob (struct mtd_info *mtd, loff_t from, size_t len,
  88. size_t *retlen, u_char *buf)
  89. {
  90. struct mtd_part *part = PART(mtd);
  91. if (from >= mtd->size)
  92. len = 0;
  93. else if (from + len > mtd->size)
  94. len = mtd->size - from;
  95. return part->master->read_oob (part->master, from + part->offset,
  96. len, retlen, buf);
  97. }
  98. static int part_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
  99. size_t *retlen, u_char *buf)
  100. {
  101. struct mtd_part *part = PART(mtd);
  102. return part->master->read_user_prot_reg (part->master, from,
  103. len, retlen, buf);
  104. }
  105. static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
  106. size_t *retlen, u_char *buf)
  107. {
  108. struct mtd_part *part = PART(mtd);
  109. return part->master->read_fact_prot_reg (part->master, from,
  110. len, retlen, buf);
  111. }
  112. static int part_write (struct mtd_info *mtd, loff_t to, size_t len,
  113. size_t *retlen, const u_char *buf)
  114. {
  115. struct mtd_part *part = PART(mtd);
  116. if (!(mtd->flags & MTD_WRITEABLE))
  117. return -EROFS;
  118. if (to >= mtd->size)
  119. len = 0;
  120. else if (to + len > mtd->size)
  121. len = mtd->size - to;
  122. if (part->master->write_ecc == NULL)
  123. return part->master->write (part->master, to + part->offset,
  124. len, retlen, buf);
  125. else
  126. return part->master->write_ecc (part->master, to + part->offset,
  127. len, retlen, buf, NULL, &mtd->oobinfo);
  128. }
  129. static int part_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
  130. size_t *retlen, const u_char *buf,
  131. u_char *eccbuf, struct nand_oobinfo *oobsel)
  132. {
  133. struct mtd_part *part = PART(mtd);
  134. if (!(mtd->flags & MTD_WRITEABLE))
  135. return -EROFS;
  136. if (oobsel == NULL)
  137. oobsel = &mtd->oobinfo;
  138. if (to >= mtd->size)
  139. len = 0;
  140. else if (to + len > mtd->size)
  141. len = mtd->size - to;
  142. return part->master->write_ecc (part->master, to + part->offset,
  143. len, retlen, buf, eccbuf, oobsel);
  144. }
  145. static int part_write_oob (struct mtd_info *mtd, loff_t to, size_t len,
  146. size_t *retlen, const u_char *buf)
  147. {
  148. struct mtd_part *part = PART(mtd);
  149. if (!(mtd->flags & MTD_WRITEABLE))
  150. return -EROFS;
  151. if (to >= mtd->size)
  152. len = 0;
  153. else if (to + len > mtd->size)
  154. len = mtd->size - to;
  155. return part->master->write_oob (part->master, to + part->offset,
  156. len, retlen, buf);
  157. }
  158. static int part_write_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
  159. size_t *retlen, u_char *buf)
  160. {
  161. struct mtd_part *part = PART(mtd);
  162. return part->master->write_user_prot_reg (part->master, from,
  163. len, retlen, buf);
  164. }
  165. static int part_writev (struct mtd_info *mtd, const struct kvec *vecs,
  166. unsigned long count, loff_t to, size_t *retlen)
  167. {
  168. struct mtd_part *part = PART(mtd);
  169. if (!(mtd->flags & MTD_WRITEABLE))
  170. return -EROFS;
  171. if (part->master->writev_ecc == NULL)
  172. return part->master->writev (part->master, vecs, count,
  173. to + part->offset, retlen);
  174. else
  175. return part->master->writev_ecc (part->master, vecs, count,
  176. to + part->offset, retlen,
  177. NULL, &mtd->oobinfo);
  178. }
  179. static int part_readv (struct mtd_info *mtd, struct kvec *vecs,
  180. unsigned long count, loff_t from, size_t *retlen)
  181. {
  182. struct mtd_part *part = PART(mtd);
  183. if (part->master->readv_ecc == NULL)
  184. return part->master->readv (part->master, vecs, count,
  185. from + part->offset, retlen);
  186. else
  187. return part->master->readv_ecc (part->master, vecs, count,
  188. from + part->offset, retlen,
  189. NULL, &mtd->oobinfo);
  190. }
  191. static int part_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs,
  192. unsigned long count, loff_t to, size_t *retlen,
  193. u_char *eccbuf, struct nand_oobinfo *oobsel)
  194. {
  195. struct mtd_part *part = PART(mtd);
  196. if (!(mtd->flags & MTD_WRITEABLE))
  197. return -EROFS;
  198. if (oobsel == NULL)
  199. oobsel = &mtd->oobinfo;
  200. return part->master->writev_ecc (part->master, vecs, count,
  201. to + part->offset, retlen,
  202. eccbuf, oobsel);
  203. }
  204. static int part_readv_ecc (struct mtd_info *mtd, struct kvec *vecs,
  205. unsigned long count, loff_t from, size_t *retlen,
  206. u_char *eccbuf, struct nand_oobinfo *oobsel)
  207. {
  208. struct mtd_part *part = PART(mtd);
  209. if (oobsel == NULL)
  210. oobsel = &mtd->oobinfo;
  211. return part->master->readv_ecc (part->master, vecs, count,
  212. from + part->offset, retlen,
  213. eccbuf, oobsel);
  214. }
  215. static int part_erase (struct mtd_info *mtd, struct erase_info *instr)
  216. {
  217. struct mtd_part *part = PART(mtd);
  218. int ret;
  219. if (!(mtd->flags & MTD_WRITEABLE))
  220. return -EROFS;
  221. if (instr->addr >= mtd->size)
  222. return -EINVAL;
  223. instr->addr += part->offset;
  224. ret = part->master->erase(part->master, instr);
  225. return ret;
  226. }
  227. void mtd_erase_callback(struct erase_info *instr)
  228. {
  229. if (instr->mtd->erase == part_erase) {
  230. struct mtd_part *part = PART(instr->mtd);
  231. if (instr->fail_addr != 0xffffffff)
  232. instr->fail_addr -= part->offset;
  233. instr->addr -= part->offset;
  234. }
  235. if (instr->callback)
  236. instr->callback(instr);
  237. }
  238. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  239. static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len)
  240. {
  241. struct mtd_part *part = PART(mtd);
  242. if ((len + ofs) > mtd->size)
  243. return -EINVAL;
  244. return part->master->lock(part->master, ofs + part->offset, len);
  245. }
  246. static int part_unlock (struct mtd_info *mtd, loff_t ofs, size_t len)
  247. {
  248. struct mtd_part *part = PART(mtd);
  249. if ((len + ofs) > mtd->size)
  250. return -EINVAL;
  251. return part->master->unlock(part->master, ofs + part->offset, len);
  252. }
  253. static void part_sync(struct mtd_info *mtd)
  254. {
  255. struct mtd_part *part = PART(mtd);
  256. part->master->sync(part->master);
  257. }
  258. static int part_suspend(struct mtd_info *mtd)
  259. {
  260. struct mtd_part *part = PART(mtd);
  261. return part->master->suspend(part->master);
  262. }
  263. static void part_resume(struct mtd_info *mtd)
  264. {
  265. struct mtd_part *part = PART(mtd);
  266. part->master->resume(part->master);
  267. }
  268. static int part_block_isbad (struct mtd_info *mtd, loff_t ofs)
  269. {
  270. struct mtd_part *part = PART(mtd);
  271. if (ofs >= mtd->size)
  272. return -EINVAL;
  273. ofs += part->offset;
  274. return part->master->block_isbad(part->master, ofs);
  275. }
  276. static int part_block_markbad (struct mtd_info *mtd, loff_t ofs)
  277. {
  278. struct mtd_part *part = PART(mtd);
  279. if (!(mtd->flags & MTD_WRITEABLE))
  280. return -EROFS;
  281. if (ofs >= mtd->size)
  282. return -EINVAL;
  283. ofs += part->offset;
  284. return part->master->block_markbad(part->master, ofs);
  285. }
  286. /*
  287. * This function unregisters and destroy all slave MTD objects which are
  288. * attached to the given master MTD object.
  289. */
  290. int del_mtd_partitions(struct mtd_info *master)
  291. {
  292. struct list_head *node;
  293. struct mtd_part *slave;
  294. for (node = mtd_partitions.next;
  295. node != &mtd_partitions;
  296. node = node->next) {
  297. slave = list_entry(node, struct mtd_part, list);
  298. if (slave->master == master) {
  299. struct list_head *prev = node->prev;
  300. __list_del(prev, node->next);
  301. if(slave->registered)
  302. del_mtd_device(&slave->mtd);
  303. kfree(slave);
  304. node = prev;
  305. }
  306. }
  307. return 0;
  308. }
  309. /*
  310. * This function, given a master MTD object and a partition table, creates
  311. * and registers slave MTD objects which are bound to the master according to
  312. * the partition definitions.
  313. * (Q: should we register the master MTD object as well?)
  314. */
  315. int add_mtd_partitions(struct mtd_info *master,
  316. const struct mtd_partition *parts,
  317. int nbparts)
  318. {
  319. struct mtd_part *slave;
  320. u_int32_t cur_offset = 0;
  321. int i;
  322. printk (KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  323. for (i = 0; i < nbparts; i++) {
  324. /* allocate the partition structure */
  325. slave = kmalloc (sizeof(*slave), GFP_KERNEL);
  326. if (!slave) {
  327. printk ("memory allocation error while creating partitions for \"%s\"\n",
  328. master->name);
  329. del_mtd_partitions(master);
  330. return -ENOMEM;
  331. }
  332. memset(slave, 0, sizeof(*slave));
  333. list_add(&slave->list, &mtd_partitions);
  334. /* set up the MTD object for this partition */
  335. slave->mtd.type = master->type;
  336. slave->mtd.flags = master->flags & ~parts[i].mask_flags;
  337. slave->mtd.size = parts[i].size;
  338. slave->mtd.oobblock = master->oobblock;
  339. slave->mtd.oobsize = master->oobsize;
  340. slave->mtd.ecctype = master->ecctype;
  341. slave->mtd.eccsize = master->eccsize;
  342. slave->mtd.name = parts[i].name;
  343. slave->mtd.bank_size = master->bank_size;
  344. slave->mtd.owner = master->owner;
  345. slave->mtd.read = part_read;
  346. slave->mtd.write = part_write;
  347. if(master->point && master->unpoint){
  348. slave->mtd.point = part_point;
  349. slave->mtd.unpoint = part_unpoint;
  350. }
  351. if (master->read_ecc)
  352. slave->mtd.read_ecc = part_read_ecc;
  353. if (master->write_ecc)
  354. slave->mtd.write_ecc = part_write_ecc;
  355. if (master->read_oob)
  356. slave->mtd.read_oob = part_read_oob;
  357. if (master->write_oob)
  358. slave->mtd.write_oob = part_write_oob;
  359. if(master->read_user_prot_reg)
  360. slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
  361. if(master->read_fact_prot_reg)
  362. slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
  363. if(master->write_user_prot_reg)
  364. slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
  365. if (master->sync)
  366. slave->mtd.sync = part_sync;
  367. if (!i && master->suspend && master->resume) {
  368. slave->mtd.suspend = part_suspend;
  369. slave->mtd.resume = part_resume;
  370. }
  371. if (master->writev)
  372. slave->mtd.writev = part_writev;
  373. if (master->readv)
  374. slave->mtd.readv = part_readv;
  375. if (master->writev_ecc)
  376. slave->mtd.writev_ecc = part_writev_ecc;
  377. if (master->readv_ecc)
  378. slave->mtd.readv_ecc = part_readv_ecc;
  379. if (master->lock)
  380. slave->mtd.lock = part_lock;
  381. if (master->unlock)
  382. slave->mtd.unlock = part_unlock;
  383. if (master->block_isbad)
  384. slave->mtd.block_isbad = part_block_isbad;
  385. if (master->block_markbad)
  386. slave->mtd.block_markbad = part_block_markbad;
  387. slave->mtd.erase = part_erase;
  388. slave->master = master;
  389. slave->offset = parts[i].offset;
  390. slave->index = i;
  391. if (slave->offset == MTDPART_OFS_APPEND)
  392. slave->offset = cur_offset;
  393. if (slave->offset == MTDPART_OFS_NXTBLK) {
  394. u_int32_t emask = master->erasesize-1;
  395. slave->offset = (cur_offset + emask) & ~emask;
  396. if (slave->offset != cur_offset) {
  397. printk(KERN_NOTICE "Moving partition %d: "
  398. "0x%08x -> 0x%08x\n", i,
  399. cur_offset, slave->offset);
  400. }
  401. }
  402. if (slave->mtd.size == MTDPART_SIZ_FULL)
  403. slave->mtd.size = master->size - slave->offset;
  404. cur_offset = slave->offset + slave->mtd.size;
  405. printk (KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset,
  406. slave->offset + slave->mtd.size, slave->mtd.name);
  407. /* let's do some sanity checks */
  408. if (slave->offset >= master->size) {
  409. /* let's register it anyway to preserve ordering */
  410. slave->offset = 0;
  411. slave->mtd.size = 0;
  412. printk ("mtd: partition \"%s\" is out of reach -- disabled\n",
  413. parts[i].name);
  414. }
  415. if (slave->offset + slave->mtd.size > master->size) {
  416. slave->mtd.size = master->size - slave->offset;
  417. printk ("mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n",
  418. parts[i].name, master->name, slave->mtd.size);
  419. }
  420. if (master->numeraseregions>1) {
  421. /* Deal with variable erase size stuff */
  422. int i;
  423. struct mtd_erase_region_info *regions = master->eraseregions;
  424. /* Find the first erase regions which is part of this partition. */
  425. for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++)
  426. ;
  427. for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) {
  428. if (slave->mtd.erasesize < regions[i].erasesize) {
  429. slave->mtd.erasesize = regions[i].erasesize;
  430. }
  431. }
  432. } else {
  433. /* Single erase size */
  434. slave->mtd.erasesize = master->erasesize;
  435. }
  436. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  437. (slave->offset % slave->mtd.erasesize)) {
  438. /* Doesn't start on a boundary of major erase size */
  439. /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */
  440. slave->mtd.flags &= ~MTD_WRITEABLE;
  441. printk ("mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  442. parts[i].name);
  443. }
  444. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  445. (slave->mtd.size % slave->mtd.erasesize)) {
  446. slave->mtd.flags &= ~MTD_WRITEABLE;
  447. printk ("mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  448. parts[i].name);
  449. }
  450. /* copy oobinfo from master */
  451. memcpy(&slave->mtd.oobinfo, &master->oobinfo, sizeof(slave->mtd.oobinfo));
  452. if(parts[i].mtdp)
  453. { /* store the object pointer (caller may or may not register it */
  454. *parts[i].mtdp = &slave->mtd;
  455. slave->registered = 0;
  456. }
  457. else
  458. {
  459. /* register our partition */
  460. add_mtd_device(&slave->mtd);
  461. slave->registered = 1;
  462. }
  463. }
  464. return 0;
  465. }
  466. EXPORT_SYMBOL(add_mtd_partitions);
  467. EXPORT_SYMBOL(del_mtd_partitions);
  468. static DEFINE_SPINLOCK(part_parser_lock);
  469. static LIST_HEAD(part_parsers);
  470. static struct mtd_part_parser *get_partition_parser(const char *name)
  471. {
  472. struct list_head *this;
  473. void *ret = NULL;
  474. spin_lock(&part_parser_lock);
  475. list_for_each(this, &part_parsers) {
  476. struct mtd_part_parser *p = list_entry(this, struct mtd_part_parser, list);
  477. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  478. ret = p;
  479. break;
  480. }
  481. }
  482. spin_unlock(&part_parser_lock);
  483. return ret;
  484. }
  485. int register_mtd_parser(struct mtd_part_parser *p)
  486. {
  487. spin_lock(&part_parser_lock);
  488. list_add(&p->list, &part_parsers);
  489. spin_unlock(&part_parser_lock);
  490. return 0;
  491. }
  492. int deregister_mtd_parser(struct mtd_part_parser *p)
  493. {
  494. spin_lock(&part_parser_lock);
  495. list_del(&p->list);
  496. spin_unlock(&part_parser_lock);
  497. return 0;
  498. }
  499. int parse_mtd_partitions(struct mtd_info *master, const char **types,
  500. struct mtd_partition **pparts, unsigned long origin)
  501. {
  502. struct mtd_part_parser *parser;
  503. int ret = 0;
  504. for ( ; ret <= 0 && *types; types++) {
  505. parser = get_partition_parser(*types);
  506. #ifdef CONFIG_KMOD
  507. if (!parser && !request_module("%s", *types))
  508. parser = get_partition_parser(*types);
  509. #endif
  510. if (!parser) {
  511. printk(KERN_NOTICE "%s partition parsing not available\n",
  512. *types);
  513. continue;
  514. }
  515. ret = (*parser->parse_fn)(master, pparts, origin);
  516. if (ret > 0) {
  517. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  518. ret, parser->name, master->name);
  519. }
  520. put_partition_parser(parser);
  521. }
  522. return ret;
  523. }
  524. EXPORT_SYMBOL_GPL(parse_mtd_partitions);
  525. EXPORT_SYMBOL_GPL(register_mtd_parser);
  526. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  527. MODULE_LICENSE("GPL");
  528. MODULE_AUTHOR("Nicolas Pitre <nico@cam.org>");
  529. MODULE_DESCRIPTION("Generic support for partitioning of MTD devices");