pmac.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213
  1. /*
  2. * linux/drivers/ide/ide-pmac.c
  3. *
  4. * Support for IDE interfaces on PowerMacs.
  5. * These IDE interfaces are memory-mapped and have a DBDMA channel
  6. * for doing DMA.
  7. *
  8. * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Some code taken from drivers/ide/ide-dma.c:
  16. *
  17. * Copyright (c) 1995-1998 Mark Lord
  18. *
  19. * TODO: - Use pre-calculated (kauai) timing tables all the time and
  20. * get rid of the "rounded" tables used previously, so we have the
  21. * same table format for all controllers and can then just have one
  22. * big table
  23. *
  24. */
  25. #include <linux/config.h>
  26. #include <linux/types.h>
  27. #include <linux/kernel.h>
  28. #include <linux/sched.h>
  29. #include <linux/init.h>
  30. #include <linux/delay.h>
  31. #include <linux/ide.h>
  32. #include <linux/notifier.h>
  33. #include <linux/reboot.h>
  34. #include <linux/pci.h>
  35. #include <linux/adb.h>
  36. #include <linux/pmu.h>
  37. #include <linux/scatterlist.h>
  38. #include <asm/prom.h>
  39. #include <asm/io.h>
  40. #include <asm/dbdma.h>
  41. #include <asm/ide.h>
  42. #include <asm/pci-bridge.h>
  43. #include <asm/machdep.h>
  44. #include <asm/pmac_feature.h>
  45. #include <asm/sections.h>
  46. #include <asm/irq.h>
  47. #ifndef CONFIG_PPC64
  48. #include <asm/mediabay.h>
  49. #endif
  50. #include "ide-timing.h"
  51. #undef IDE_PMAC_DEBUG
  52. #define DMA_WAIT_TIMEOUT 50
  53. typedef struct pmac_ide_hwif {
  54. unsigned long regbase;
  55. int irq;
  56. int kind;
  57. int aapl_bus_id;
  58. unsigned cable_80 : 1;
  59. unsigned mediabay : 1;
  60. unsigned broken_dma : 1;
  61. unsigned broken_dma_warn : 1;
  62. struct device_node* node;
  63. struct macio_dev *mdev;
  64. u32 timings[4];
  65. volatile u32 __iomem * *kauai_fcr;
  66. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  67. /* Those fields are duplicating what is in hwif. We currently
  68. * can't use the hwif ones because of some assumptions that are
  69. * beeing done by the generic code about the kind of dma controller
  70. * and format of the dma table. This will have to be fixed though.
  71. */
  72. volatile struct dbdma_regs __iomem * dma_regs;
  73. struct dbdma_cmd* dma_table_cpu;
  74. #endif
  75. } pmac_ide_hwif_t;
  76. static pmac_ide_hwif_t pmac_ide[MAX_HWIFS] __pmacdata;
  77. static int pmac_ide_count;
  78. enum {
  79. controller_ohare, /* OHare based */
  80. controller_heathrow, /* Heathrow/Paddington */
  81. controller_kl_ata3, /* KeyLargo ATA-3 */
  82. controller_kl_ata4, /* KeyLargo ATA-4 */
  83. controller_un_ata6, /* UniNorth2 ATA-6 */
  84. controller_k2_ata6, /* K2 ATA-6 */
  85. controller_sh_ata6, /* Shasta ATA-6 */
  86. };
  87. static const char* model_name[] = {
  88. "OHare ATA", /* OHare based */
  89. "Heathrow ATA", /* Heathrow/Paddington */
  90. "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
  91. "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
  92. "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
  93. "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
  94. "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
  95. };
  96. /*
  97. * Extra registers, both 32-bit little-endian
  98. */
  99. #define IDE_TIMING_CONFIG 0x200
  100. #define IDE_INTERRUPT 0x300
  101. /* Kauai (U2) ATA has different register setup */
  102. #define IDE_KAUAI_PIO_CONFIG 0x200
  103. #define IDE_KAUAI_ULTRA_CONFIG 0x210
  104. #define IDE_KAUAI_POLL_CONFIG 0x220
  105. /*
  106. * Timing configuration register definitions
  107. */
  108. /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
  109. #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
  110. #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
  111. #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
  112. #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
  113. /* 133Mhz cell, found in shasta.
  114. * See comments about 100 Mhz Uninorth 2...
  115. * Note that PIO_MASK and MDMA_MASK seem to overlap
  116. */
  117. #define TR_133_PIOREG_PIO_MASK 0xff000fff
  118. #define TR_133_PIOREG_MDMA_MASK 0x00fff800
  119. #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
  120. #define TR_133_UDMAREG_UDMA_EN 0x00000001
  121. /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
  122. * this one yet, it appears as a pci device (106b/0033) on uninorth
  123. * internal PCI bus and it's clock is controlled like gem or fw. It
  124. * appears to be an evolution of keylargo ATA4 with a timing register
  125. * extended to 2 32bits registers and a similar DBDMA channel. Other
  126. * registers seem to exist but I can't tell much about them.
  127. *
  128. * So far, I'm using pre-calculated tables for this extracted from
  129. * the values used by the MacOS X driver.
  130. *
  131. * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
  132. * register controls the UDMA timings. At least, it seems bit 0
  133. * of this one enables UDMA vs. MDMA, and bits 4..7 are the
  134. * cycle time in units of 10ns. Bits 8..15 are used by I don't
  135. * know their meaning yet
  136. */
  137. #define TR_100_PIOREG_PIO_MASK 0xff000fff
  138. #define TR_100_PIOREG_MDMA_MASK 0x00fff000
  139. #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
  140. #define TR_100_UDMAREG_UDMA_EN 0x00000001
  141. /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
  142. * 40 connector cable and to 4 on 80 connector one.
  143. * Clock unit is 15ns (66Mhz)
  144. *
  145. * 3 Values can be programmed:
  146. * - Write data setup, which appears to match the cycle time. They
  147. * also call it DIOW setup.
  148. * - Ready to pause time (from spec)
  149. * - Address setup. That one is weird. I don't see where exactly
  150. * it fits in UDMA cycles, I got it's name from an obscure piece
  151. * of commented out code in Darwin. They leave it to 0, we do as
  152. * well, despite a comment that would lead to think it has a
  153. * min value of 45ns.
  154. * Apple also add 60ns to the write data setup (or cycle time ?) on
  155. * reads.
  156. */
  157. #define TR_66_UDMA_MASK 0xfff00000
  158. #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
  159. #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
  160. #define TR_66_UDMA_ADDRSETUP_SHIFT 29
  161. #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
  162. #define TR_66_UDMA_RDY2PAUS_SHIFT 25
  163. #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
  164. #define TR_66_UDMA_WRDATASETUP_SHIFT 21
  165. #define TR_66_MDMA_MASK 0x000ffc00
  166. #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
  167. #define TR_66_MDMA_RECOVERY_SHIFT 15
  168. #define TR_66_MDMA_ACCESS_MASK 0x00007c00
  169. #define TR_66_MDMA_ACCESS_SHIFT 10
  170. #define TR_66_PIO_MASK 0x000003ff
  171. #define TR_66_PIO_RECOVERY_MASK 0x000003e0
  172. #define TR_66_PIO_RECOVERY_SHIFT 5
  173. #define TR_66_PIO_ACCESS_MASK 0x0000001f
  174. #define TR_66_PIO_ACCESS_SHIFT 0
  175. /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
  176. * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
  177. *
  178. * The access time and recovery time can be programmed. Some older
  179. * Darwin code base limit OHare to 150ns cycle time. I decided to do
  180. * the same here fore safety against broken old hardware ;)
  181. * The HalfTick bit, when set, adds half a clock (15ns) to the access
  182. * time and removes one from recovery. It's not supported on KeyLargo
  183. * implementation afaik. The E bit appears to be set for PIO mode 0 and
  184. * is used to reach long timings used in this mode.
  185. */
  186. #define TR_33_MDMA_MASK 0x003ff800
  187. #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
  188. #define TR_33_MDMA_RECOVERY_SHIFT 16
  189. #define TR_33_MDMA_ACCESS_MASK 0x0000f800
  190. #define TR_33_MDMA_ACCESS_SHIFT 11
  191. #define TR_33_MDMA_HALFTICK 0x00200000
  192. #define TR_33_PIO_MASK 0x000007ff
  193. #define TR_33_PIO_E 0x00000400
  194. #define TR_33_PIO_RECOVERY_MASK 0x000003e0
  195. #define TR_33_PIO_RECOVERY_SHIFT 5
  196. #define TR_33_PIO_ACCESS_MASK 0x0000001f
  197. #define TR_33_PIO_ACCESS_SHIFT 0
  198. /*
  199. * Interrupt register definitions
  200. */
  201. #define IDE_INTR_DMA 0x80000000
  202. #define IDE_INTR_DEVICE 0x40000000
  203. /*
  204. * FCR Register on Kauai. Not sure what bit 0x4 is ...
  205. */
  206. #define KAUAI_FCR_UATA_MAGIC 0x00000004
  207. #define KAUAI_FCR_UATA_RESET_N 0x00000002
  208. #define KAUAI_FCR_UATA_ENABLE 0x00000001
  209. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  210. /* Rounded Multiword DMA timings
  211. *
  212. * I gave up finding a generic formula for all controller
  213. * types and instead, built tables based on timing values
  214. * used by Apple in Darwin's implementation.
  215. */
  216. struct mdma_timings_t {
  217. int accessTime;
  218. int recoveryTime;
  219. int cycleTime;
  220. };
  221. struct mdma_timings_t mdma_timings_33[] __pmacdata =
  222. {
  223. { 240, 240, 480 },
  224. { 180, 180, 360 },
  225. { 135, 135, 270 },
  226. { 120, 120, 240 },
  227. { 105, 105, 210 },
  228. { 90, 90, 180 },
  229. { 75, 75, 150 },
  230. { 75, 45, 120 },
  231. { 0, 0, 0 }
  232. };
  233. struct mdma_timings_t mdma_timings_33k[] __pmacdata =
  234. {
  235. { 240, 240, 480 },
  236. { 180, 180, 360 },
  237. { 150, 150, 300 },
  238. { 120, 120, 240 },
  239. { 90, 120, 210 },
  240. { 90, 90, 180 },
  241. { 90, 60, 150 },
  242. { 90, 30, 120 },
  243. { 0, 0, 0 }
  244. };
  245. struct mdma_timings_t mdma_timings_66[] __pmacdata =
  246. {
  247. { 240, 240, 480 },
  248. { 180, 180, 360 },
  249. { 135, 135, 270 },
  250. { 120, 120, 240 },
  251. { 105, 105, 210 },
  252. { 90, 90, 180 },
  253. { 90, 75, 165 },
  254. { 75, 45, 120 },
  255. { 0, 0, 0 }
  256. };
  257. /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
  258. struct {
  259. int addrSetup; /* ??? */
  260. int rdy2pause;
  261. int wrDataSetup;
  262. } kl66_udma_timings[] __pmacdata =
  263. {
  264. { 0, 180, 120 }, /* Mode 0 */
  265. { 0, 150, 90 }, /* 1 */
  266. { 0, 120, 60 }, /* 2 */
  267. { 0, 90, 45 }, /* 3 */
  268. { 0, 90, 30 } /* 4 */
  269. };
  270. /* UniNorth 2 ATA/100 timings */
  271. struct kauai_timing {
  272. int cycle_time;
  273. u32 timing_reg;
  274. };
  275. static struct kauai_timing kauai_pio_timings[] __pmacdata =
  276. {
  277. { 930 , 0x08000fff },
  278. { 600 , 0x08000a92 },
  279. { 383 , 0x0800060f },
  280. { 360 , 0x08000492 },
  281. { 330 , 0x0800048f },
  282. { 300 , 0x080003cf },
  283. { 270 , 0x080003cc },
  284. { 240 , 0x0800038b },
  285. { 239 , 0x0800030c },
  286. { 180 , 0x05000249 },
  287. { 120 , 0x04000148 }
  288. };
  289. static struct kauai_timing kauai_mdma_timings[] __pmacdata =
  290. {
  291. { 1260 , 0x00fff000 },
  292. { 480 , 0x00618000 },
  293. { 360 , 0x00492000 },
  294. { 270 , 0x0038e000 },
  295. { 240 , 0x0030c000 },
  296. { 210 , 0x002cb000 },
  297. { 180 , 0x00249000 },
  298. { 150 , 0x00209000 },
  299. { 120 , 0x00148000 },
  300. { 0 , 0 },
  301. };
  302. static struct kauai_timing kauai_udma_timings[] __pmacdata =
  303. {
  304. { 120 , 0x000070c0 },
  305. { 90 , 0x00005d80 },
  306. { 60 , 0x00004a60 },
  307. { 45 , 0x00003a50 },
  308. { 30 , 0x00002a30 },
  309. { 20 , 0x00002921 },
  310. { 0 , 0 },
  311. };
  312. static struct kauai_timing shasta_pio_timings[] __pmacdata =
  313. {
  314. { 930 , 0x08000fff },
  315. { 600 , 0x0A000c97 },
  316. { 383 , 0x07000712 },
  317. { 360 , 0x040003cd },
  318. { 330 , 0x040003cd },
  319. { 300 , 0x040003cd },
  320. { 270 , 0x040003cd },
  321. { 240 , 0x040003cd },
  322. { 239 , 0x040003cd },
  323. { 180 , 0x0400028b },
  324. { 120 , 0x0400010a }
  325. };
  326. static struct kauai_timing shasta_mdma_timings[] __pmacdata =
  327. {
  328. { 1260 , 0x00fff000 },
  329. { 480 , 0x00820800 },
  330. { 360 , 0x00820800 },
  331. { 270 , 0x00820800 },
  332. { 240 , 0x00820800 },
  333. { 210 , 0x00820800 },
  334. { 180 , 0x00820800 },
  335. { 150 , 0x0028b000 },
  336. { 120 , 0x001ca000 },
  337. { 0 , 0 },
  338. };
  339. static struct kauai_timing shasta_udma133_timings[] __pmacdata =
  340. {
  341. { 120 , 0x00035901, },
  342. { 90 , 0x000348b1, },
  343. { 60 , 0x00033881, },
  344. { 45 , 0x00033861, },
  345. { 30 , 0x00033841, },
  346. { 20 , 0x00033031, },
  347. { 15 , 0x00033021, },
  348. { 0 , 0 },
  349. };
  350. static inline u32
  351. kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
  352. {
  353. int i;
  354. for (i=0; table[i].cycle_time; i++)
  355. if (cycle_time > table[i+1].cycle_time)
  356. return table[i].timing_reg;
  357. return 0;
  358. }
  359. /* allow up to 256 DBDMA commands per xfer */
  360. #define MAX_DCMDS 256
  361. /*
  362. * Wait 1s for disk to answer on IDE bus after a hard reset
  363. * of the device (via GPIO/FCR).
  364. *
  365. * Some devices seem to "pollute" the bus even after dropping
  366. * the BSY bit (typically some combo drives slave on the UDMA
  367. * bus) after a hard reset. Since we hard reset all drives on
  368. * KeyLargo ATA66, we have to keep that delay around. I may end
  369. * up not hard resetting anymore on these and keep the delay only
  370. * for older interfaces instead (we have to reset when coming
  371. * from MacOS...) --BenH.
  372. */
  373. #define IDE_WAKEUP_DELAY (1*HZ)
  374. static void pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif);
  375. static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
  376. static int pmac_ide_tune_chipset(ide_drive_t *drive, u8 speed);
  377. static void pmac_ide_tuneproc(ide_drive_t *drive, u8 pio);
  378. static void pmac_ide_selectproc(ide_drive_t *drive);
  379. static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
  380. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  381. /*
  382. * Below is the code for blinking the laptop LED along with hard
  383. * disk activity.
  384. */
  385. #ifdef CONFIG_BLK_DEV_IDE_PMAC_BLINK
  386. /* Set to 50ms minimum led-on time (also used to limit frequency
  387. * of requests sent to the PMU
  388. */
  389. #define PMU_HD_BLINK_TIME (HZ/50)
  390. static struct adb_request pmu_blink_on, pmu_blink_off;
  391. static spinlock_t pmu_blink_lock;
  392. static unsigned long pmu_blink_stoptime;
  393. static int pmu_blink_ledstate;
  394. static struct timer_list pmu_blink_timer;
  395. static int pmu_ide_blink_enabled;
  396. static void
  397. pmu_hd_blink_timeout(unsigned long data)
  398. {
  399. unsigned long flags;
  400. spin_lock_irqsave(&pmu_blink_lock, flags);
  401. /* We may have been triggered again in a racy way, check
  402. * that we really want to switch it off
  403. */
  404. if (time_after(pmu_blink_stoptime, jiffies))
  405. goto done;
  406. /* Previous req. not complete, try 100ms more */
  407. if (pmu_blink_off.complete == 0)
  408. mod_timer(&pmu_blink_timer, jiffies + PMU_HD_BLINK_TIME);
  409. else if (pmu_blink_ledstate) {
  410. pmu_request(&pmu_blink_off, NULL, 4, 0xee, 4, 0, 0);
  411. pmu_blink_ledstate = 0;
  412. }
  413. done:
  414. spin_unlock_irqrestore(&pmu_blink_lock, flags);
  415. }
  416. static void
  417. pmu_hd_kick_blink(void *data, int rw)
  418. {
  419. unsigned long flags;
  420. pmu_blink_stoptime = jiffies + PMU_HD_BLINK_TIME;
  421. wmb();
  422. mod_timer(&pmu_blink_timer, pmu_blink_stoptime);
  423. /* Fast path when LED is already ON */
  424. if (pmu_blink_ledstate == 1)
  425. return;
  426. spin_lock_irqsave(&pmu_blink_lock, flags);
  427. if (pmu_blink_on.complete && !pmu_blink_ledstate) {
  428. pmu_request(&pmu_blink_on, NULL, 4, 0xee, 4, 0, 1);
  429. pmu_blink_ledstate = 1;
  430. }
  431. spin_unlock_irqrestore(&pmu_blink_lock, flags);
  432. }
  433. static int
  434. pmu_hd_blink_init(void)
  435. {
  436. struct device_node *dt;
  437. const char *model;
  438. /* Currently, I only enable this feature on KeyLargo based laptops,
  439. * older laptops may support it (at least heathrow/paddington) but
  440. * I don't feel like loading those venerable old machines with so
  441. * much additional interrupt & PMU activity...
  442. */
  443. if (pmu_get_model() != PMU_KEYLARGO_BASED)
  444. return 0;
  445. dt = find_devices("device-tree");
  446. if (dt == NULL)
  447. return 0;
  448. model = (const char *)get_property(dt, "model", NULL);
  449. if (model == NULL)
  450. return 0;
  451. if (strncmp(model, "PowerBook", strlen("PowerBook")) != 0 &&
  452. strncmp(model, "iBook", strlen("iBook")) != 0)
  453. return 0;
  454. pmu_blink_on.complete = 1;
  455. pmu_blink_off.complete = 1;
  456. spin_lock_init(&pmu_blink_lock);
  457. init_timer(&pmu_blink_timer);
  458. pmu_blink_timer.function = pmu_hd_blink_timeout;
  459. return 1;
  460. }
  461. #endif /* CONFIG_BLK_DEV_IDE_PMAC_BLINK */
  462. /*
  463. * N.B. this can't be an initfunc, because the media-bay task can
  464. * call ide_[un]register at any time.
  465. */
  466. void __pmac
  467. pmac_ide_init_hwif_ports(hw_regs_t *hw,
  468. unsigned long data_port, unsigned long ctrl_port,
  469. int *irq)
  470. {
  471. int i, ix;
  472. if (data_port == 0)
  473. return;
  474. for (ix = 0; ix < MAX_HWIFS; ++ix)
  475. if (data_port == pmac_ide[ix].regbase)
  476. break;
  477. if (ix >= MAX_HWIFS) {
  478. /* Probably a PCI interface... */
  479. for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; ++i)
  480. hw->io_ports[i] = data_port + i - IDE_DATA_OFFSET;
  481. hw->io_ports[IDE_CONTROL_OFFSET] = ctrl_port;
  482. return;
  483. }
  484. for (i = 0; i < 8; ++i)
  485. hw->io_ports[i] = data_port + i * 0x10;
  486. hw->io_ports[8] = data_port + 0x160;
  487. if (irq != NULL)
  488. *irq = pmac_ide[ix].irq;
  489. }
  490. #define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x)))
  491. /*
  492. * Apply the timings of the proper unit (master/slave) to the shared
  493. * timing register when selecting that unit. This version is for
  494. * ASICs with a single timing register
  495. */
  496. static void __pmac
  497. pmac_ide_selectproc(ide_drive_t *drive)
  498. {
  499. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  500. if (pmif == NULL)
  501. return;
  502. if (drive->select.b.unit & 0x01)
  503. writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
  504. else
  505. writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
  506. (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  507. }
  508. /*
  509. * Apply the timings of the proper unit (master/slave) to the shared
  510. * timing register when selecting that unit. This version is for
  511. * ASICs with a dual timing register (Kauai)
  512. */
  513. static void __pmac
  514. pmac_ide_kauai_selectproc(ide_drive_t *drive)
  515. {
  516. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  517. if (pmif == NULL)
  518. return;
  519. if (drive->select.b.unit & 0x01) {
  520. writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  521. writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
  522. } else {
  523. writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  524. writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
  525. }
  526. (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  527. }
  528. /*
  529. * Force an update of controller timing values for a given drive
  530. */
  531. static void __pmac
  532. pmac_ide_do_update_timings(ide_drive_t *drive)
  533. {
  534. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  535. if (pmif == NULL)
  536. return;
  537. if (pmif->kind == controller_sh_ata6 ||
  538. pmif->kind == controller_un_ata6 ||
  539. pmif->kind == controller_k2_ata6)
  540. pmac_ide_kauai_selectproc(drive);
  541. else
  542. pmac_ide_selectproc(drive);
  543. }
  544. static void
  545. pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port)
  546. {
  547. u32 tmp;
  548. writeb(value, (void __iomem *) port);
  549. tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  550. }
  551. /*
  552. * Send the SET_FEATURE IDE command to the drive and update drive->id with
  553. * the new state. We currently don't use the generic routine as it used to
  554. * cause various trouble, especially with older mediabays.
  555. * This code is sometimes triggering a spurrious interrupt though, I need
  556. * to sort that out sooner or later and see if I can finally get the
  557. * common version to work properly in all cases
  558. */
  559. static int __pmac
  560. pmac_ide_do_setfeature(ide_drive_t *drive, u8 command)
  561. {
  562. ide_hwif_t *hwif = HWIF(drive);
  563. int result = 1;
  564. disable_irq_nosync(hwif->irq);
  565. udelay(1);
  566. SELECT_DRIVE(drive);
  567. SELECT_MASK(drive, 0);
  568. udelay(1);
  569. /* Get rid of pending error state */
  570. (void) hwif->INB(IDE_STATUS_REG);
  571. /* Timeout bumped for some powerbooks */
  572. if (wait_for_ready(drive, 2000)) {
  573. /* Timeout bumped for some powerbooks */
  574. printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready "
  575. "before SET_FEATURE!\n", drive->name);
  576. goto out;
  577. }
  578. udelay(10);
  579. hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
  580. hwif->OUTB(command, IDE_NSECTOR_REG);
  581. hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
  582. hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
  583. udelay(1);
  584. /* Timeout bumped for some powerbooks */
  585. result = wait_for_ready(drive, 2000);
  586. hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
  587. if (result)
  588. printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready "
  589. "after SET_FEATURE !\n", drive->name);
  590. out:
  591. SELECT_MASK(drive, 0);
  592. if (result == 0) {
  593. drive->id->dma_ultra &= ~0xFF00;
  594. drive->id->dma_mword &= ~0x0F00;
  595. drive->id->dma_1word &= ~0x0F00;
  596. switch(command) {
  597. case XFER_UDMA_7:
  598. drive->id->dma_ultra |= 0x8080; break;
  599. case XFER_UDMA_6:
  600. drive->id->dma_ultra |= 0x4040; break;
  601. case XFER_UDMA_5:
  602. drive->id->dma_ultra |= 0x2020; break;
  603. case XFER_UDMA_4:
  604. drive->id->dma_ultra |= 0x1010; break;
  605. case XFER_UDMA_3:
  606. drive->id->dma_ultra |= 0x0808; break;
  607. case XFER_UDMA_2:
  608. drive->id->dma_ultra |= 0x0404; break;
  609. case XFER_UDMA_1:
  610. drive->id->dma_ultra |= 0x0202; break;
  611. case XFER_UDMA_0:
  612. drive->id->dma_ultra |= 0x0101; break;
  613. case XFER_MW_DMA_2:
  614. drive->id->dma_mword |= 0x0404; break;
  615. case XFER_MW_DMA_1:
  616. drive->id->dma_mword |= 0x0202; break;
  617. case XFER_MW_DMA_0:
  618. drive->id->dma_mword |= 0x0101; break;
  619. case XFER_SW_DMA_2:
  620. drive->id->dma_1word |= 0x0404; break;
  621. case XFER_SW_DMA_1:
  622. drive->id->dma_1word |= 0x0202; break;
  623. case XFER_SW_DMA_0:
  624. drive->id->dma_1word |= 0x0101; break;
  625. default: break;
  626. }
  627. }
  628. enable_irq(hwif->irq);
  629. return result;
  630. }
  631. /*
  632. * Old tuning functions (called on hdparm -p), sets up drive PIO timings
  633. */
  634. static void __pmac
  635. pmac_ide_tuneproc(ide_drive_t *drive, u8 pio)
  636. {
  637. ide_pio_data_t d;
  638. u32 *timings;
  639. unsigned accessTicks, recTicks;
  640. unsigned accessTime, recTime;
  641. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  642. if (pmif == NULL)
  643. return;
  644. /* which drive is it ? */
  645. timings = &pmif->timings[drive->select.b.unit & 0x01];
  646. pio = ide_get_best_pio_mode(drive, pio, 4, &d);
  647. switch (pmif->kind) {
  648. case controller_sh_ata6: {
  649. /* 133Mhz cell */
  650. u32 tr = kauai_lookup_timing(shasta_pio_timings, d.cycle_time);
  651. if (tr == 0)
  652. return;
  653. *timings = ((*timings) & ~TR_133_PIOREG_PIO_MASK) | tr;
  654. break;
  655. }
  656. case controller_un_ata6:
  657. case controller_k2_ata6: {
  658. /* 100Mhz cell */
  659. u32 tr = kauai_lookup_timing(kauai_pio_timings, d.cycle_time);
  660. if (tr == 0)
  661. return;
  662. *timings = ((*timings) & ~TR_100_PIOREG_PIO_MASK) | tr;
  663. break;
  664. }
  665. case controller_kl_ata4:
  666. /* 66Mhz cell */
  667. recTime = d.cycle_time - ide_pio_timings[pio].active_time
  668. - ide_pio_timings[pio].setup_time;
  669. recTime = max(recTime, 150U);
  670. accessTime = ide_pio_timings[pio].active_time;
  671. accessTime = max(accessTime, 150U);
  672. accessTicks = SYSCLK_TICKS_66(accessTime);
  673. accessTicks = min(accessTicks, 0x1fU);
  674. recTicks = SYSCLK_TICKS_66(recTime);
  675. recTicks = min(recTicks, 0x1fU);
  676. *timings = ((*timings) & ~TR_66_PIO_MASK) |
  677. (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
  678. (recTicks << TR_66_PIO_RECOVERY_SHIFT);
  679. break;
  680. default: {
  681. /* 33Mhz cell */
  682. int ebit = 0;
  683. recTime = d.cycle_time - ide_pio_timings[pio].active_time
  684. - ide_pio_timings[pio].setup_time;
  685. recTime = max(recTime, 150U);
  686. accessTime = ide_pio_timings[pio].active_time;
  687. accessTime = max(accessTime, 150U);
  688. accessTicks = SYSCLK_TICKS(accessTime);
  689. accessTicks = min(accessTicks, 0x1fU);
  690. accessTicks = max(accessTicks, 4U);
  691. recTicks = SYSCLK_TICKS(recTime);
  692. recTicks = min(recTicks, 0x1fU);
  693. recTicks = max(recTicks, 5U) - 4;
  694. if (recTicks > 9) {
  695. recTicks--; /* guess, but it's only for PIO0, so... */
  696. ebit = 1;
  697. }
  698. *timings = ((*timings) & ~TR_33_PIO_MASK) |
  699. (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
  700. (recTicks << TR_33_PIO_RECOVERY_SHIFT);
  701. if (ebit)
  702. *timings |= TR_33_PIO_E;
  703. break;
  704. }
  705. }
  706. #ifdef IDE_PMAC_DEBUG
  707. printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
  708. drive->name, pio, *timings);
  709. #endif
  710. if (drive->select.all == HWIF(drive)->INB(IDE_SELECT_REG))
  711. pmac_ide_do_update_timings(drive);
  712. }
  713. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  714. /*
  715. * Calculate KeyLargo ATA/66 UDMA timings
  716. */
  717. static int __pmac
  718. set_timings_udma_ata4(u32 *timings, u8 speed)
  719. {
  720. unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
  721. if (speed > XFER_UDMA_4)
  722. return 1;
  723. rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
  724. wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
  725. addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
  726. *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
  727. (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
  728. (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
  729. (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
  730. TR_66_UDMA_EN;
  731. #ifdef IDE_PMAC_DEBUG
  732. printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
  733. speed & 0xf, *timings);
  734. #endif
  735. return 0;
  736. }
  737. /*
  738. * Calculate Kauai ATA/100 UDMA timings
  739. */
  740. static int __pmac
  741. set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
  742. {
  743. struct ide_timing *t = ide_timing_find_mode(speed);
  744. u32 tr;
  745. if (speed > XFER_UDMA_5 || t == NULL)
  746. return 1;
  747. tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
  748. if (tr == 0)
  749. return 1;
  750. *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
  751. *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
  752. return 0;
  753. }
  754. /*
  755. * Calculate Shasta ATA/133 UDMA timings
  756. */
  757. static int __pmac
  758. set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
  759. {
  760. struct ide_timing *t = ide_timing_find_mode(speed);
  761. u32 tr;
  762. if (speed > XFER_UDMA_6 || t == NULL)
  763. return 1;
  764. tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
  765. if (tr == 0)
  766. return 1;
  767. *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
  768. *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
  769. return 0;
  770. }
  771. /*
  772. * Calculate MDMA timings for all cells
  773. */
  774. static int __pmac
  775. set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
  776. u8 speed, int drive_cycle_time)
  777. {
  778. int cycleTime, accessTime = 0, recTime = 0;
  779. unsigned accessTicks, recTicks;
  780. struct mdma_timings_t* tm = NULL;
  781. int i;
  782. /* Get default cycle time for mode */
  783. switch(speed & 0xf) {
  784. case 0: cycleTime = 480; break;
  785. case 1: cycleTime = 150; break;
  786. case 2: cycleTime = 120; break;
  787. default:
  788. return 1;
  789. }
  790. /* Adjust for drive */
  791. if (drive_cycle_time && drive_cycle_time > cycleTime)
  792. cycleTime = drive_cycle_time;
  793. /* OHare limits according to some old Apple sources */
  794. if ((intf_type == controller_ohare) && (cycleTime < 150))
  795. cycleTime = 150;
  796. /* Get the proper timing array for this controller */
  797. switch(intf_type) {
  798. case controller_sh_ata6:
  799. case controller_un_ata6:
  800. case controller_k2_ata6:
  801. break;
  802. case controller_kl_ata4:
  803. tm = mdma_timings_66;
  804. break;
  805. case controller_kl_ata3:
  806. tm = mdma_timings_33k;
  807. break;
  808. default:
  809. tm = mdma_timings_33;
  810. break;
  811. }
  812. if (tm != NULL) {
  813. /* Lookup matching access & recovery times */
  814. i = -1;
  815. for (;;) {
  816. if (tm[i+1].cycleTime < cycleTime)
  817. break;
  818. i++;
  819. }
  820. if (i < 0)
  821. return 1;
  822. cycleTime = tm[i].cycleTime;
  823. accessTime = tm[i].accessTime;
  824. recTime = tm[i].recoveryTime;
  825. #ifdef IDE_PMAC_DEBUG
  826. printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
  827. drive->name, cycleTime, accessTime, recTime);
  828. #endif
  829. }
  830. switch(intf_type) {
  831. case controller_sh_ata6: {
  832. /* 133Mhz cell */
  833. u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
  834. if (tr == 0)
  835. return 1;
  836. *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
  837. *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
  838. }
  839. case controller_un_ata6:
  840. case controller_k2_ata6: {
  841. /* 100Mhz cell */
  842. u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
  843. if (tr == 0)
  844. return 1;
  845. *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
  846. *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
  847. }
  848. break;
  849. case controller_kl_ata4:
  850. /* 66Mhz cell */
  851. accessTicks = SYSCLK_TICKS_66(accessTime);
  852. accessTicks = min(accessTicks, 0x1fU);
  853. accessTicks = max(accessTicks, 0x1U);
  854. recTicks = SYSCLK_TICKS_66(recTime);
  855. recTicks = min(recTicks, 0x1fU);
  856. recTicks = max(recTicks, 0x3U);
  857. /* Clear out mdma bits and disable udma */
  858. *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
  859. (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
  860. (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
  861. break;
  862. case controller_kl_ata3:
  863. /* 33Mhz cell on KeyLargo */
  864. accessTicks = SYSCLK_TICKS(accessTime);
  865. accessTicks = max(accessTicks, 1U);
  866. accessTicks = min(accessTicks, 0x1fU);
  867. accessTime = accessTicks * IDE_SYSCLK_NS;
  868. recTicks = SYSCLK_TICKS(recTime);
  869. recTicks = max(recTicks, 1U);
  870. recTicks = min(recTicks, 0x1fU);
  871. *timings = ((*timings) & ~TR_33_MDMA_MASK) |
  872. (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
  873. (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
  874. break;
  875. default: {
  876. /* 33Mhz cell on others */
  877. int halfTick = 0;
  878. int origAccessTime = accessTime;
  879. int origRecTime = recTime;
  880. accessTicks = SYSCLK_TICKS(accessTime);
  881. accessTicks = max(accessTicks, 1U);
  882. accessTicks = min(accessTicks, 0x1fU);
  883. accessTime = accessTicks * IDE_SYSCLK_NS;
  884. recTicks = SYSCLK_TICKS(recTime);
  885. recTicks = max(recTicks, 2U) - 1;
  886. recTicks = min(recTicks, 0x1fU);
  887. recTime = (recTicks + 1) * IDE_SYSCLK_NS;
  888. if ((accessTicks > 1) &&
  889. ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
  890. ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
  891. halfTick = 1;
  892. accessTicks--;
  893. }
  894. *timings = ((*timings) & ~TR_33_MDMA_MASK) |
  895. (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
  896. (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
  897. if (halfTick)
  898. *timings |= TR_33_MDMA_HALFTICK;
  899. }
  900. }
  901. #ifdef IDE_PMAC_DEBUG
  902. printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
  903. drive->name, speed & 0xf, *timings);
  904. #endif
  905. return 0;
  906. }
  907. #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
  908. /*
  909. * Speedproc. This function is called by the core to set any of the standard
  910. * timing (PIO, MDMA or UDMA) to both the drive and the controller.
  911. * You may notice we don't use this function on normal "dma check" operation,
  912. * our dedicated function is more precise as it uses the drive provided
  913. * cycle time value. We should probably fix this one to deal with that too...
  914. */
  915. static int __pmac
  916. pmac_ide_tune_chipset (ide_drive_t *drive, byte speed)
  917. {
  918. int unit = (drive->select.b.unit & 0x01);
  919. int ret = 0;
  920. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  921. u32 *timings, *timings2;
  922. if (pmif == NULL)
  923. return 1;
  924. timings = &pmif->timings[unit];
  925. timings2 = &pmif->timings[unit+2];
  926. switch(speed) {
  927. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  928. case XFER_UDMA_6:
  929. if (pmif->kind != controller_sh_ata6)
  930. return 1;
  931. case XFER_UDMA_5:
  932. if (pmif->kind != controller_un_ata6 &&
  933. pmif->kind != controller_k2_ata6 &&
  934. pmif->kind != controller_sh_ata6)
  935. return 1;
  936. case XFER_UDMA_4:
  937. case XFER_UDMA_3:
  938. if (HWIF(drive)->udma_four == 0)
  939. return 1;
  940. case XFER_UDMA_2:
  941. case XFER_UDMA_1:
  942. case XFER_UDMA_0:
  943. if (pmif->kind == controller_kl_ata4)
  944. ret = set_timings_udma_ata4(timings, speed);
  945. else if (pmif->kind == controller_un_ata6
  946. || pmif->kind == controller_k2_ata6)
  947. ret = set_timings_udma_ata6(timings, timings2, speed);
  948. else if (pmif->kind == controller_sh_ata6)
  949. ret = set_timings_udma_shasta(timings, timings2, speed);
  950. else
  951. ret = 1;
  952. break;
  953. case XFER_MW_DMA_2:
  954. case XFER_MW_DMA_1:
  955. case XFER_MW_DMA_0:
  956. ret = set_timings_mdma(drive, pmif->kind, timings, timings2, speed, 0);
  957. break;
  958. case XFER_SW_DMA_2:
  959. case XFER_SW_DMA_1:
  960. case XFER_SW_DMA_0:
  961. return 1;
  962. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  963. case XFER_PIO_4:
  964. case XFER_PIO_3:
  965. case XFER_PIO_2:
  966. case XFER_PIO_1:
  967. case XFER_PIO_0:
  968. pmac_ide_tuneproc(drive, speed & 0x07);
  969. break;
  970. default:
  971. ret = 1;
  972. }
  973. if (ret)
  974. return ret;
  975. ret = pmac_ide_do_setfeature(drive, speed);
  976. if (ret)
  977. return ret;
  978. pmac_ide_do_update_timings(drive);
  979. drive->current_speed = speed;
  980. return 0;
  981. }
  982. /*
  983. * Blast some well known "safe" values to the timing registers at init or
  984. * wakeup from sleep time, before we do real calculation
  985. */
  986. static void __pmac
  987. sanitize_timings(pmac_ide_hwif_t *pmif)
  988. {
  989. unsigned int value, value2 = 0;
  990. switch(pmif->kind) {
  991. case controller_sh_ata6:
  992. value = 0x0a820c97;
  993. value2 = 0x00033031;
  994. break;
  995. case controller_un_ata6:
  996. case controller_k2_ata6:
  997. value = 0x08618a92;
  998. value2 = 0x00002921;
  999. break;
  1000. case controller_kl_ata4:
  1001. value = 0x0008438c;
  1002. break;
  1003. case controller_kl_ata3:
  1004. value = 0x00084526;
  1005. break;
  1006. case controller_heathrow:
  1007. case controller_ohare:
  1008. default:
  1009. value = 0x00074526;
  1010. break;
  1011. }
  1012. pmif->timings[0] = pmif->timings[1] = value;
  1013. pmif->timings[2] = pmif->timings[3] = value2;
  1014. }
  1015. unsigned long __pmac
  1016. pmac_ide_get_base(int index)
  1017. {
  1018. return pmac_ide[index].regbase;
  1019. }
  1020. int __pmac
  1021. pmac_ide_check_base(unsigned long base)
  1022. {
  1023. int ix;
  1024. for (ix = 0; ix < MAX_HWIFS; ++ix)
  1025. if (base == pmac_ide[ix].regbase)
  1026. return ix;
  1027. return -1;
  1028. }
  1029. int __pmac
  1030. pmac_ide_get_irq(unsigned long base)
  1031. {
  1032. int ix;
  1033. for (ix = 0; ix < MAX_HWIFS; ++ix)
  1034. if (base == pmac_ide[ix].regbase)
  1035. return pmac_ide[ix].irq;
  1036. return 0;
  1037. }
  1038. static int ide_majors[] __pmacdata = { 3, 22, 33, 34, 56, 57 };
  1039. dev_t __init
  1040. pmac_find_ide_boot(char *bootdevice, int n)
  1041. {
  1042. int i;
  1043. /*
  1044. * Look through the list of IDE interfaces for this one.
  1045. */
  1046. for (i = 0; i < pmac_ide_count; ++i) {
  1047. char *name;
  1048. if (!pmac_ide[i].node || !pmac_ide[i].node->full_name)
  1049. continue;
  1050. name = pmac_ide[i].node->full_name;
  1051. if (memcmp(name, bootdevice, n) == 0 && name[n] == 0) {
  1052. /* XXX should cope with the 2nd drive as well... */
  1053. return MKDEV(ide_majors[i], 0);
  1054. }
  1055. }
  1056. return 0;
  1057. }
  1058. /* Suspend call back, should be called after the child devices
  1059. * have actually been suspended
  1060. */
  1061. static int
  1062. pmac_ide_do_suspend(ide_hwif_t *hwif)
  1063. {
  1064. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1065. /* We clear the timings */
  1066. pmif->timings[0] = 0;
  1067. pmif->timings[1] = 0;
  1068. #ifdef CONFIG_BLK_DEV_IDE_PMAC_BLINK
  1069. /* Note: This code will be called for every hwif, thus we'll
  1070. * try several time to stop the LED blinker timer, but that
  1071. * should be harmless
  1072. */
  1073. if (pmu_ide_blink_enabled) {
  1074. unsigned long flags;
  1075. /* Make sure we don't hit the PMU blink */
  1076. spin_lock_irqsave(&pmu_blink_lock, flags);
  1077. if (pmu_blink_ledstate)
  1078. del_timer(&pmu_blink_timer);
  1079. pmu_blink_ledstate = 0;
  1080. spin_unlock_irqrestore(&pmu_blink_lock, flags);
  1081. }
  1082. #endif /* CONFIG_BLK_DEV_IDE_PMAC_BLINK */
  1083. disable_irq(pmif->irq);
  1084. /* The media bay will handle itself just fine */
  1085. if (pmif->mediabay)
  1086. return 0;
  1087. /* Kauai has bus control FCRs directly here */
  1088. if (pmif->kauai_fcr) {
  1089. u32 fcr = readl(pmif->kauai_fcr);
  1090. fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
  1091. writel(fcr, pmif->kauai_fcr);
  1092. }
  1093. /* Disable the bus on older machines and the cell on kauai */
  1094. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
  1095. 0);
  1096. return 0;
  1097. }
  1098. /* Resume call back, should be called before the child devices
  1099. * are resumed
  1100. */
  1101. static int
  1102. pmac_ide_do_resume(ide_hwif_t *hwif)
  1103. {
  1104. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1105. /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
  1106. if (!pmif->mediabay) {
  1107. ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
  1108. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
  1109. msleep(10);
  1110. ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
  1111. /* Kauai has it different */
  1112. if (pmif->kauai_fcr) {
  1113. u32 fcr = readl(pmif->kauai_fcr);
  1114. fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
  1115. writel(fcr, pmif->kauai_fcr);
  1116. }
  1117. msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
  1118. }
  1119. /* Sanitize drive timings */
  1120. sanitize_timings(pmif);
  1121. enable_irq(pmif->irq);
  1122. return 0;
  1123. }
  1124. /*
  1125. * Setup, register & probe an IDE channel driven by this driver, this is
  1126. * called by one of the 2 probe functions (macio or PCI). Note that a channel
  1127. * that ends up beeing free of any device is not kept around by this driver
  1128. * (it is kept in 2.4). This introduce an interface numbering change on some
  1129. * rare machines unfortunately, but it's better this way.
  1130. */
  1131. static int
  1132. pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
  1133. {
  1134. struct device_node *np = pmif->node;
  1135. int *bidp, i;
  1136. pmif->cable_80 = 0;
  1137. pmif->broken_dma = pmif->broken_dma_warn = 0;
  1138. if (device_is_compatible(np, "shasta-ata"))
  1139. pmif->kind = controller_sh_ata6;
  1140. else if (device_is_compatible(np, "kauai-ata"))
  1141. pmif->kind = controller_un_ata6;
  1142. else if (device_is_compatible(np, "K2-UATA"))
  1143. pmif->kind = controller_k2_ata6;
  1144. else if (device_is_compatible(np, "keylargo-ata")) {
  1145. if (strcmp(np->name, "ata-4") == 0)
  1146. pmif->kind = controller_kl_ata4;
  1147. else
  1148. pmif->kind = controller_kl_ata3;
  1149. } else if (device_is_compatible(np, "heathrow-ata"))
  1150. pmif->kind = controller_heathrow;
  1151. else {
  1152. pmif->kind = controller_ohare;
  1153. pmif->broken_dma = 1;
  1154. }
  1155. bidp = (int *)get_property(np, "AAPL,bus-id", NULL);
  1156. pmif->aapl_bus_id = bidp ? *bidp : 0;
  1157. /* Get cable type from device-tree */
  1158. if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6
  1159. || pmif->kind == controller_k2_ata6
  1160. || pmif->kind == controller_sh_ata6) {
  1161. char* cable = get_property(np, "cable-type", NULL);
  1162. if (cable && !strncmp(cable, "80-", 3))
  1163. pmif->cable_80 = 1;
  1164. }
  1165. /* G5's seem to have incorrect cable type in device-tree. Let's assume
  1166. * they have a 80 conductor cable, this seem to be always the case unless
  1167. * the user mucked around
  1168. */
  1169. if (device_is_compatible(np, "K2-UATA") ||
  1170. device_is_compatible(np, "shasta-ata"))
  1171. pmif->cable_80 = 1;
  1172. /* On Kauai-type controllers, we make sure the FCR is correct */
  1173. if (pmif->kauai_fcr)
  1174. writel(KAUAI_FCR_UATA_MAGIC |
  1175. KAUAI_FCR_UATA_RESET_N |
  1176. KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
  1177. pmif->mediabay = 0;
  1178. /* Make sure we have sane timings */
  1179. sanitize_timings(pmif);
  1180. #ifndef CONFIG_PPC64
  1181. /* XXX FIXME: Media bay stuff need re-organizing */
  1182. if (np->parent && np->parent->name
  1183. && strcasecmp(np->parent->name, "media-bay") == 0) {
  1184. #ifdef CONFIG_PMAC_MEDIABAY
  1185. media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq, hwif->index);
  1186. #endif /* CONFIG_PMAC_MEDIABAY */
  1187. pmif->mediabay = 1;
  1188. if (!bidp)
  1189. pmif->aapl_bus_id = 1;
  1190. } else if (pmif->kind == controller_ohare) {
  1191. /* The code below is having trouble on some ohare machines
  1192. * (timing related ?). Until I can put my hand on one of these
  1193. * units, I keep the old way
  1194. */
  1195. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
  1196. } else
  1197. #endif
  1198. {
  1199. /* This is necessary to enable IDE when net-booting */
  1200. ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
  1201. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
  1202. msleep(10);
  1203. ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
  1204. msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
  1205. }
  1206. /* Setup MMIO ops */
  1207. default_hwif_mmiops(hwif);
  1208. hwif->OUTBSYNC = pmac_outbsync;
  1209. /* Tell common code _not_ to mess with resources */
  1210. hwif->mmio = 2;
  1211. hwif->hwif_data = pmif;
  1212. pmac_ide_init_hwif_ports(&hwif->hw, pmif->regbase, 0, &hwif->irq);
  1213. memcpy(hwif->io_ports, hwif->hw.io_ports, sizeof(hwif->io_ports));
  1214. hwif->chipset = ide_pmac;
  1215. hwif->noprobe = !hwif->io_ports[IDE_DATA_OFFSET] || pmif->mediabay;
  1216. hwif->hold = pmif->mediabay;
  1217. hwif->udma_four = pmif->cable_80;
  1218. hwif->drives[0].unmask = 1;
  1219. hwif->drives[1].unmask = 1;
  1220. hwif->tuneproc = pmac_ide_tuneproc;
  1221. if (pmif->kind == controller_un_ata6
  1222. || pmif->kind == controller_k2_ata6
  1223. || pmif->kind == controller_sh_ata6)
  1224. hwif->selectproc = pmac_ide_kauai_selectproc;
  1225. else
  1226. hwif->selectproc = pmac_ide_selectproc;
  1227. hwif->speedproc = pmac_ide_tune_chipset;
  1228. #ifdef CONFIG_BLK_DEV_IDE_PMAC_BLINK
  1229. pmu_ide_blink_enabled = pmu_hd_blink_init();
  1230. if (pmu_ide_blink_enabled)
  1231. hwif->led_act = pmu_hd_kick_blink;
  1232. #endif
  1233. printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
  1234. hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
  1235. pmif->mediabay ? " (mediabay)" : "", hwif->irq);
  1236. #ifdef CONFIG_PMAC_MEDIABAY
  1237. if (pmif->mediabay && check_media_bay_by_base(pmif->regbase, MB_CD) == 0)
  1238. hwif->noprobe = 0;
  1239. #endif /* CONFIG_PMAC_MEDIABAY */
  1240. hwif->sg_max_nents = MAX_DCMDS;
  1241. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1242. /* has a DBDMA controller channel */
  1243. if (pmif->dma_regs)
  1244. pmac_ide_setup_dma(pmif, hwif);
  1245. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1246. /* We probe the hwif now */
  1247. probe_hwif_init(hwif);
  1248. /* The code IDE code will have set hwif->present if we have devices attached,
  1249. * if we don't, the discard the interface except if we are on a media bay slot
  1250. */
  1251. if (!hwif->present && !pmif->mediabay) {
  1252. printk(KERN_INFO "ide%d: Bus empty, interface released.\n",
  1253. hwif->index);
  1254. default_hwif_iops(hwif);
  1255. for (i = IDE_DATA_OFFSET; i <= IDE_CONTROL_OFFSET; ++i)
  1256. hwif->io_ports[i] = 0;
  1257. hwif->chipset = ide_unknown;
  1258. hwif->noprobe = 1;
  1259. return -ENODEV;
  1260. }
  1261. return 0;
  1262. }
  1263. /*
  1264. * Attach to a macio probed interface
  1265. */
  1266. static int __devinit
  1267. pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_match *match)
  1268. {
  1269. void __iomem *base;
  1270. unsigned long regbase;
  1271. int irq;
  1272. ide_hwif_t *hwif;
  1273. pmac_ide_hwif_t *pmif;
  1274. int i, rc;
  1275. i = 0;
  1276. while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
  1277. || pmac_ide[i].node != NULL))
  1278. ++i;
  1279. if (i >= MAX_HWIFS) {
  1280. printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
  1281. printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
  1282. return -ENODEV;
  1283. }
  1284. pmif = &pmac_ide[i];
  1285. hwif = &ide_hwifs[i];
  1286. if (mdev->ofdev.node->n_addrs == 0) {
  1287. printk(KERN_WARNING "ide%d: no address for %s\n",
  1288. i, mdev->ofdev.node->full_name);
  1289. return -ENXIO;
  1290. }
  1291. /* Request memory resource for IO ports */
  1292. if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
  1293. printk(KERN_ERR "ide%d: can't request mmio resource !\n", i);
  1294. return -EBUSY;
  1295. }
  1296. /* XXX This is bogus. Should be fixed in the registry by checking
  1297. * the kind of host interrupt controller, a bit like gatwick
  1298. * fixes in irq.c. That works well enough for the single case
  1299. * where that happens though...
  1300. */
  1301. if (macio_irq_count(mdev) == 0) {
  1302. printk(KERN_WARNING "ide%d: no intrs for device %s, using 13\n",
  1303. i, mdev->ofdev.node->full_name);
  1304. irq = 13;
  1305. } else
  1306. irq = macio_irq(mdev, 0);
  1307. base = ioremap(macio_resource_start(mdev, 0), 0x400);
  1308. regbase = (unsigned long) base;
  1309. hwif->pci_dev = mdev->bus->pdev;
  1310. hwif->gendev.parent = &mdev->ofdev.dev;
  1311. pmif->mdev = mdev;
  1312. pmif->node = mdev->ofdev.node;
  1313. pmif->regbase = regbase;
  1314. pmif->irq = irq;
  1315. pmif->kauai_fcr = NULL;
  1316. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1317. if (macio_resource_count(mdev) >= 2) {
  1318. if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
  1319. printk(KERN_WARNING "ide%d: can't request DMA resource !\n", i);
  1320. else
  1321. pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
  1322. } else
  1323. pmif->dma_regs = NULL;
  1324. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1325. dev_set_drvdata(&mdev->ofdev.dev, hwif);
  1326. rc = pmac_ide_setup_device(pmif, hwif);
  1327. if (rc != 0) {
  1328. /* The inteface is released to the common IDE layer */
  1329. dev_set_drvdata(&mdev->ofdev.dev, NULL);
  1330. iounmap(base);
  1331. if (pmif->dma_regs)
  1332. iounmap(pmif->dma_regs);
  1333. memset(pmif, 0, sizeof(*pmif));
  1334. macio_release_resource(mdev, 0);
  1335. if (pmif->dma_regs)
  1336. macio_release_resource(mdev, 1);
  1337. }
  1338. return rc;
  1339. }
  1340. static int
  1341. pmac_ide_macio_suspend(struct macio_dev *mdev, u32 state)
  1342. {
  1343. ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
  1344. int rc = 0;
  1345. if (state != mdev->ofdev.dev.power.power_state && state >= 2) {
  1346. rc = pmac_ide_do_suspend(hwif);
  1347. if (rc == 0)
  1348. mdev->ofdev.dev.power.power_state = state;
  1349. }
  1350. return rc;
  1351. }
  1352. static int
  1353. pmac_ide_macio_resume(struct macio_dev *mdev)
  1354. {
  1355. ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
  1356. int rc = 0;
  1357. if (mdev->ofdev.dev.power.power_state != 0) {
  1358. rc = pmac_ide_do_resume(hwif);
  1359. if (rc == 0)
  1360. mdev->ofdev.dev.power.power_state = 0;
  1361. }
  1362. return rc;
  1363. }
  1364. /*
  1365. * Attach to a PCI probed interface
  1366. */
  1367. static int __devinit
  1368. pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
  1369. {
  1370. ide_hwif_t *hwif;
  1371. struct device_node *np;
  1372. pmac_ide_hwif_t *pmif;
  1373. void __iomem *base;
  1374. unsigned long rbase, rlen;
  1375. int i, rc;
  1376. np = pci_device_to_OF_node(pdev);
  1377. if (np == NULL) {
  1378. printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
  1379. return -ENODEV;
  1380. }
  1381. i = 0;
  1382. while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
  1383. || pmac_ide[i].node != NULL))
  1384. ++i;
  1385. if (i >= MAX_HWIFS) {
  1386. printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
  1387. printk(KERN_ERR " %s\n", np->full_name);
  1388. return -ENODEV;
  1389. }
  1390. pmif = &pmac_ide[i];
  1391. hwif = &ide_hwifs[i];
  1392. if (pci_enable_device(pdev)) {
  1393. printk(KERN_WARNING "ide%i: Can't enable PCI device for %s\n",
  1394. i, np->full_name);
  1395. return -ENXIO;
  1396. }
  1397. pci_set_master(pdev);
  1398. if (pci_request_regions(pdev, "Kauai ATA")) {
  1399. printk(KERN_ERR "ide%d: Cannot obtain PCI resources for %s\n",
  1400. i, np->full_name);
  1401. return -ENXIO;
  1402. }
  1403. hwif->pci_dev = pdev;
  1404. hwif->gendev.parent = &pdev->dev;
  1405. pmif->mdev = NULL;
  1406. pmif->node = np;
  1407. rbase = pci_resource_start(pdev, 0);
  1408. rlen = pci_resource_len(pdev, 0);
  1409. base = ioremap(rbase, rlen);
  1410. pmif->regbase = (unsigned long) base + 0x2000;
  1411. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1412. pmif->dma_regs = base + 0x1000;
  1413. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1414. pmif->kauai_fcr = base;
  1415. pmif->irq = pdev->irq;
  1416. pci_set_drvdata(pdev, hwif);
  1417. rc = pmac_ide_setup_device(pmif, hwif);
  1418. if (rc != 0) {
  1419. /* The inteface is released to the common IDE layer */
  1420. pci_set_drvdata(pdev, NULL);
  1421. iounmap(base);
  1422. memset(pmif, 0, sizeof(*pmif));
  1423. pci_release_regions(pdev);
  1424. }
  1425. return rc;
  1426. }
  1427. static int
  1428. pmac_ide_pci_suspend(struct pci_dev *pdev, u32 state)
  1429. {
  1430. ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
  1431. int rc = 0;
  1432. if (state != pdev->dev.power.power_state && state >= 2) {
  1433. rc = pmac_ide_do_suspend(hwif);
  1434. if (rc == 0)
  1435. pdev->dev.power.power_state = state;
  1436. }
  1437. return rc;
  1438. }
  1439. static int
  1440. pmac_ide_pci_resume(struct pci_dev *pdev)
  1441. {
  1442. ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
  1443. int rc = 0;
  1444. if (pdev->dev.power.power_state != 0) {
  1445. rc = pmac_ide_do_resume(hwif);
  1446. if (rc == 0)
  1447. pdev->dev.power.power_state = 0;
  1448. }
  1449. return rc;
  1450. }
  1451. static struct of_match pmac_ide_macio_match[] =
  1452. {
  1453. {
  1454. .name = "IDE",
  1455. .type = OF_ANY_MATCH,
  1456. .compatible = OF_ANY_MATCH
  1457. },
  1458. {
  1459. .name = "ATA",
  1460. .type = OF_ANY_MATCH,
  1461. .compatible = OF_ANY_MATCH
  1462. },
  1463. {
  1464. .name = OF_ANY_MATCH,
  1465. .type = "ide",
  1466. .compatible = OF_ANY_MATCH
  1467. },
  1468. {
  1469. .name = OF_ANY_MATCH,
  1470. .type = "ata",
  1471. .compatible = OF_ANY_MATCH
  1472. },
  1473. {},
  1474. };
  1475. static struct macio_driver pmac_ide_macio_driver =
  1476. {
  1477. .name = "ide-pmac",
  1478. .match_table = pmac_ide_macio_match,
  1479. .probe = pmac_ide_macio_attach,
  1480. .suspend = pmac_ide_macio_suspend,
  1481. .resume = pmac_ide_macio_resume,
  1482. };
  1483. static struct pci_device_id pmac_ide_pci_match[] = {
  1484. { PCI_VENDOR_ID_APPLE, PCI_DEVIEC_ID_APPLE_UNI_N_ATA, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  1485. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  1486. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  1487. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_ATA,
  1488. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  1489. };
  1490. static struct pci_driver pmac_ide_pci_driver = {
  1491. .name = "ide-pmac",
  1492. .id_table = pmac_ide_pci_match,
  1493. .probe = pmac_ide_pci_attach,
  1494. .suspend = pmac_ide_pci_suspend,
  1495. .resume = pmac_ide_pci_resume,
  1496. };
  1497. MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
  1498. void __init
  1499. pmac_ide_probe(void)
  1500. {
  1501. if (_machine != _MACH_Pmac)
  1502. return;
  1503. #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
  1504. pci_register_driver(&pmac_ide_pci_driver);
  1505. macio_register_driver(&pmac_ide_macio_driver);
  1506. #else
  1507. macio_register_driver(&pmac_ide_macio_driver);
  1508. pci_register_driver(&pmac_ide_pci_driver);
  1509. #endif
  1510. }
  1511. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1512. /*
  1513. * pmac_ide_build_dmatable builds the DBDMA command list
  1514. * for a transfer and sets the DBDMA channel to point to it.
  1515. */
  1516. static int __pmac
  1517. pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
  1518. {
  1519. struct dbdma_cmd *table;
  1520. int i, count = 0;
  1521. ide_hwif_t *hwif = HWIF(drive);
  1522. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1523. volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
  1524. struct scatterlist *sg;
  1525. int wr = (rq_data_dir(rq) == WRITE);
  1526. /* DMA table is already aligned */
  1527. table = (struct dbdma_cmd *) pmif->dma_table_cpu;
  1528. /* Make sure DMA controller is stopped (necessary ?) */
  1529. writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
  1530. while (readl(&dma->status) & RUN)
  1531. udelay(1);
  1532. hwif->sg_nents = i = ide_build_sglist(drive, rq);
  1533. if (!i)
  1534. return 0;
  1535. /* Build DBDMA commands list */
  1536. sg = hwif->sg_table;
  1537. while (i && sg_dma_len(sg)) {
  1538. u32 cur_addr;
  1539. u32 cur_len;
  1540. cur_addr = sg_dma_address(sg);
  1541. cur_len = sg_dma_len(sg);
  1542. if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
  1543. if (pmif->broken_dma_warn == 0) {
  1544. printk(KERN_WARNING "%s: DMA on non aligned address,"
  1545. "switching to PIO on Ohare chipset\n", drive->name);
  1546. pmif->broken_dma_warn = 1;
  1547. }
  1548. goto use_pio_instead;
  1549. }
  1550. while (cur_len) {
  1551. unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
  1552. if (count++ >= MAX_DCMDS) {
  1553. printk(KERN_WARNING "%s: DMA table too small\n",
  1554. drive->name);
  1555. goto use_pio_instead;
  1556. }
  1557. st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
  1558. st_le16(&table->req_count, tc);
  1559. st_le32(&table->phy_addr, cur_addr);
  1560. table->cmd_dep = 0;
  1561. table->xfer_status = 0;
  1562. table->res_count = 0;
  1563. cur_addr += tc;
  1564. cur_len -= tc;
  1565. ++table;
  1566. }
  1567. sg++;
  1568. i--;
  1569. }
  1570. /* convert the last command to an input/output last command */
  1571. if (count) {
  1572. st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
  1573. /* add the stop command to the end of the list */
  1574. memset(table, 0, sizeof(struct dbdma_cmd));
  1575. st_le16(&table->command, DBDMA_STOP);
  1576. mb();
  1577. writel(hwif->dmatable_dma, &dma->cmdptr);
  1578. return 1;
  1579. }
  1580. printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
  1581. use_pio_instead:
  1582. pci_unmap_sg(hwif->pci_dev,
  1583. hwif->sg_table,
  1584. hwif->sg_nents,
  1585. hwif->sg_dma_direction);
  1586. return 0; /* revert to PIO for this request */
  1587. }
  1588. /* Teardown mappings after DMA has completed. */
  1589. static void __pmac
  1590. pmac_ide_destroy_dmatable (ide_drive_t *drive)
  1591. {
  1592. ide_hwif_t *hwif = drive->hwif;
  1593. struct pci_dev *dev = HWIF(drive)->pci_dev;
  1594. struct scatterlist *sg = hwif->sg_table;
  1595. int nents = hwif->sg_nents;
  1596. if (nents) {
  1597. pci_unmap_sg(dev, sg, nents, hwif->sg_dma_direction);
  1598. hwif->sg_nents = 0;
  1599. }
  1600. }
  1601. /*
  1602. * Pick up best MDMA timing for the drive and apply it
  1603. */
  1604. static int __pmac
  1605. pmac_ide_mdma_enable(ide_drive_t *drive, u16 mode)
  1606. {
  1607. ide_hwif_t *hwif = HWIF(drive);
  1608. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1609. int drive_cycle_time;
  1610. struct hd_driveid *id = drive->id;
  1611. u32 *timings, *timings2;
  1612. u32 timing_local[2];
  1613. int ret;
  1614. /* which drive is it ? */
  1615. timings = &pmif->timings[drive->select.b.unit & 0x01];
  1616. timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2];
  1617. /* Check if drive provide explicit cycle time */
  1618. if ((id->field_valid & 2) && (id->eide_dma_time))
  1619. drive_cycle_time = id->eide_dma_time;
  1620. else
  1621. drive_cycle_time = 0;
  1622. /* Copy timings to local image */
  1623. timing_local[0] = *timings;
  1624. timing_local[1] = *timings2;
  1625. /* Calculate controller timings */
  1626. ret = set_timings_mdma( drive, pmif->kind,
  1627. &timing_local[0],
  1628. &timing_local[1],
  1629. mode,
  1630. drive_cycle_time);
  1631. if (ret)
  1632. return 0;
  1633. /* Set feature on drive */
  1634. printk(KERN_INFO "%s: Enabling MultiWord DMA %d\n", drive->name, mode & 0xf);
  1635. ret = pmac_ide_do_setfeature(drive, mode);
  1636. if (ret) {
  1637. printk(KERN_WARNING "%s: Failed !\n", drive->name);
  1638. return 0;
  1639. }
  1640. /* Apply timings to controller */
  1641. *timings = timing_local[0];
  1642. *timings2 = timing_local[1];
  1643. /* Set speed info in drive */
  1644. drive->current_speed = mode;
  1645. if (!drive->init_speed)
  1646. drive->init_speed = mode;
  1647. return 1;
  1648. }
  1649. /*
  1650. * Pick up best UDMA timing for the drive and apply it
  1651. */
  1652. static int __pmac
  1653. pmac_ide_udma_enable(ide_drive_t *drive, u16 mode)
  1654. {
  1655. ide_hwif_t *hwif = HWIF(drive);
  1656. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1657. u32 *timings, *timings2;
  1658. u32 timing_local[2];
  1659. int ret;
  1660. /* which drive is it ? */
  1661. timings = &pmif->timings[drive->select.b.unit & 0x01];
  1662. timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2];
  1663. /* Copy timings to local image */
  1664. timing_local[0] = *timings;
  1665. timing_local[1] = *timings2;
  1666. /* Calculate timings for interface */
  1667. if (pmif->kind == controller_un_ata6
  1668. || pmif->kind == controller_k2_ata6)
  1669. ret = set_timings_udma_ata6( &timing_local[0],
  1670. &timing_local[1],
  1671. mode);
  1672. else if (pmif->kind == controller_sh_ata6)
  1673. ret = set_timings_udma_shasta( &timing_local[0],
  1674. &timing_local[1],
  1675. mode);
  1676. else
  1677. ret = set_timings_udma_ata4(&timing_local[0], mode);
  1678. if (ret)
  1679. return 0;
  1680. /* Set feature on drive */
  1681. printk(KERN_INFO "%s: Enabling Ultra DMA %d\n", drive->name, mode & 0x0f);
  1682. ret = pmac_ide_do_setfeature(drive, mode);
  1683. if (ret) {
  1684. printk(KERN_WARNING "%s: Failed !\n", drive->name);
  1685. return 0;
  1686. }
  1687. /* Apply timings to controller */
  1688. *timings = timing_local[0];
  1689. *timings2 = timing_local[1];
  1690. /* Set speed info in drive */
  1691. drive->current_speed = mode;
  1692. if (!drive->init_speed)
  1693. drive->init_speed = mode;
  1694. return 1;
  1695. }
  1696. /*
  1697. * Check what is the best DMA timing setting for the drive and
  1698. * call appropriate functions to apply it.
  1699. */
  1700. static int __pmac
  1701. pmac_ide_dma_check(ide_drive_t *drive)
  1702. {
  1703. struct hd_driveid *id = drive->id;
  1704. ide_hwif_t *hwif = HWIF(drive);
  1705. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1706. int enable = 1;
  1707. int map;
  1708. drive->using_dma = 0;
  1709. if (drive->media == ide_floppy)
  1710. enable = 0;
  1711. if (((id->capability & 1) == 0) && !__ide_dma_good_drive(drive))
  1712. enable = 0;
  1713. if (__ide_dma_bad_drive(drive))
  1714. enable = 0;
  1715. if (enable) {
  1716. short mode;
  1717. map = XFER_MWDMA;
  1718. if (pmif->kind == controller_kl_ata4
  1719. || pmif->kind == controller_un_ata6
  1720. || pmif->kind == controller_k2_ata6
  1721. || pmif->kind == controller_sh_ata6) {
  1722. map |= XFER_UDMA;
  1723. if (pmif->cable_80) {
  1724. map |= XFER_UDMA_66;
  1725. if (pmif->kind == controller_un_ata6 ||
  1726. pmif->kind == controller_k2_ata6 ||
  1727. pmif->kind == controller_sh_ata6)
  1728. map |= XFER_UDMA_100;
  1729. if (pmif->kind == controller_sh_ata6)
  1730. map |= XFER_UDMA_133;
  1731. }
  1732. }
  1733. mode = ide_find_best_mode(drive, map);
  1734. if (mode & XFER_UDMA)
  1735. drive->using_dma = pmac_ide_udma_enable(drive, mode);
  1736. else if (mode & XFER_MWDMA)
  1737. drive->using_dma = pmac_ide_mdma_enable(drive, mode);
  1738. hwif->OUTB(0, IDE_CONTROL_REG);
  1739. /* Apply settings to controller */
  1740. pmac_ide_do_update_timings(drive);
  1741. }
  1742. return 0;
  1743. }
  1744. /*
  1745. * Prepare a DMA transfer. We build the DMA table, adjust the timings for
  1746. * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
  1747. */
  1748. static int __pmac
  1749. pmac_ide_dma_setup(ide_drive_t *drive)
  1750. {
  1751. ide_hwif_t *hwif = HWIF(drive);
  1752. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1753. struct request *rq = HWGROUP(drive)->rq;
  1754. u8 unit = (drive->select.b.unit & 0x01);
  1755. u8 ata4;
  1756. if (pmif == NULL)
  1757. return 1;
  1758. ata4 = (pmif->kind == controller_kl_ata4);
  1759. if (!pmac_ide_build_dmatable(drive, rq)) {
  1760. ide_map_sg(drive, rq);
  1761. return 1;
  1762. }
  1763. /* Apple adds 60ns to wrDataSetup on reads */
  1764. if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
  1765. writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
  1766. PMAC_IDE_REG(IDE_TIMING_CONFIG));
  1767. (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  1768. }
  1769. drive->waiting_for_dma = 1;
  1770. return 0;
  1771. }
  1772. static void __pmac
  1773. pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
  1774. {
  1775. /* issue cmd to drive */
  1776. ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
  1777. }
  1778. /*
  1779. * Kick the DMA controller into life after the DMA command has been issued
  1780. * to the drive.
  1781. */
  1782. static void __pmac
  1783. pmac_ide_dma_start(ide_drive_t *drive)
  1784. {
  1785. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1786. volatile struct dbdma_regs __iomem *dma;
  1787. dma = pmif->dma_regs;
  1788. writel((RUN << 16) | RUN, &dma->control);
  1789. /* Make sure it gets to the controller right now */
  1790. (void)readl(&dma->control);
  1791. }
  1792. /*
  1793. * After a DMA transfer, make sure the controller is stopped
  1794. */
  1795. static int __pmac
  1796. pmac_ide_dma_end (ide_drive_t *drive)
  1797. {
  1798. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1799. volatile struct dbdma_regs __iomem *dma;
  1800. u32 dstat;
  1801. if (pmif == NULL)
  1802. return 0;
  1803. dma = pmif->dma_regs;
  1804. drive->waiting_for_dma = 0;
  1805. dstat = readl(&dma->status);
  1806. writel(((RUN|WAKE|DEAD) << 16), &dma->control);
  1807. pmac_ide_destroy_dmatable(drive);
  1808. /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
  1809. * in theory, but with ATAPI decices doing buffer underruns, that would
  1810. * cause us to disable DMA, which isn't what we want
  1811. */
  1812. return (dstat & (RUN|DEAD)) != RUN;
  1813. }
  1814. /*
  1815. * Check out that the interrupt we got was for us. We can't always know this
  1816. * for sure with those Apple interfaces (well, we could on the recent ones but
  1817. * that's not implemented yet), on the other hand, we don't have shared interrupts
  1818. * so it's not really a problem
  1819. */
  1820. static int __pmac
  1821. pmac_ide_dma_test_irq (ide_drive_t *drive)
  1822. {
  1823. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1824. volatile struct dbdma_regs __iomem *dma;
  1825. unsigned long status, timeout;
  1826. if (pmif == NULL)
  1827. return 0;
  1828. dma = pmif->dma_regs;
  1829. /* We have to things to deal with here:
  1830. *
  1831. * - The dbdma won't stop if the command was started
  1832. * but completed with an error without transferring all
  1833. * datas. This happens when bad blocks are met during
  1834. * a multi-block transfer.
  1835. *
  1836. * - The dbdma fifo hasn't yet finished flushing to
  1837. * to system memory when the disk interrupt occurs.
  1838. *
  1839. */
  1840. /* If ACTIVE is cleared, the STOP command have passed and
  1841. * transfer is complete.
  1842. */
  1843. status = readl(&dma->status);
  1844. if (!(status & ACTIVE))
  1845. return 1;
  1846. if (!drive->waiting_for_dma)
  1847. printk(KERN_WARNING "ide%d, ide_dma_test_irq \
  1848. called while not waiting\n", HWIF(drive)->index);
  1849. /* If dbdma didn't execute the STOP command yet, the
  1850. * active bit is still set. We consider that we aren't
  1851. * sharing interrupts (which is hopefully the case with
  1852. * those controllers) and so we just try to flush the
  1853. * channel for pending data in the fifo
  1854. */
  1855. udelay(1);
  1856. writel((FLUSH << 16) | FLUSH, &dma->control);
  1857. timeout = 0;
  1858. for (;;) {
  1859. udelay(1);
  1860. status = readl(&dma->status);
  1861. if ((status & FLUSH) == 0)
  1862. break;
  1863. if (++timeout > 100) {
  1864. printk(KERN_WARNING "ide%d, ide_dma_test_irq \
  1865. timeout flushing channel\n", HWIF(drive)->index);
  1866. break;
  1867. }
  1868. }
  1869. return 1;
  1870. }
  1871. static int __pmac
  1872. pmac_ide_dma_host_off (ide_drive_t *drive)
  1873. {
  1874. return 0;
  1875. }
  1876. static int __pmac
  1877. pmac_ide_dma_host_on (ide_drive_t *drive)
  1878. {
  1879. return 0;
  1880. }
  1881. static int __pmac
  1882. pmac_ide_dma_lostirq (ide_drive_t *drive)
  1883. {
  1884. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1885. volatile struct dbdma_regs __iomem *dma;
  1886. unsigned long status;
  1887. if (pmif == NULL)
  1888. return 0;
  1889. dma = pmif->dma_regs;
  1890. status = readl(&dma->status);
  1891. printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
  1892. return 0;
  1893. }
  1894. /*
  1895. * Allocate the data structures needed for using DMA with an interface
  1896. * and fill the proper list of functions pointers
  1897. */
  1898. static void __init
  1899. pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
  1900. {
  1901. /* We won't need pci_dev if we switch to generic consistent
  1902. * DMA routines ...
  1903. */
  1904. if (hwif->pci_dev == NULL)
  1905. return;
  1906. /*
  1907. * Allocate space for the DBDMA commands.
  1908. * The +2 is +1 for the stop command and +1 to allow for
  1909. * aligning the start address to a multiple of 16 bytes.
  1910. */
  1911. pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
  1912. hwif->pci_dev,
  1913. (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
  1914. &hwif->dmatable_dma);
  1915. if (pmif->dma_table_cpu == NULL) {
  1916. printk(KERN_ERR "%s: unable to allocate DMA command list\n",
  1917. hwif->name);
  1918. return;
  1919. }
  1920. hwif->ide_dma_off_quietly = &__ide_dma_off_quietly;
  1921. hwif->ide_dma_on = &__ide_dma_on;
  1922. hwif->ide_dma_check = &pmac_ide_dma_check;
  1923. hwif->dma_setup = &pmac_ide_dma_setup;
  1924. hwif->dma_exec_cmd = &pmac_ide_dma_exec_cmd;
  1925. hwif->dma_start = &pmac_ide_dma_start;
  1926. hwif->ide_dma_end = &pmac_ide_dma_end;
  1927. hwif->ide_dma_test_irq = &pmac_ide_dma_test_irq;
  1928. hwif->ide_dma_host_off = &pmac_ide_dma_host_off;
  1929. hwif->ide_dma_host_on = &pmac_ide_dma_host_on;
  1930. hwif->ide_dma_timeout = &__ide_dma_timeout;
  1931. hwif->ide_dma_lostirq = &pmac_ide_dma_lostirq;
  1932. hwif->atapi_dma = 1;
  1933. switch(pmif->kind) {
  1934. case controller_sh_ata6:
  1935. hwif->ultra_mask = pmif->cable_80 ? 0x7f : 0x07;
  1936. hwif->mwdma_mask = 0x07;
  1937. hwif->swdma_mask = 0x00;
  1938. break;
  1939. case controller_un_ata6:
  1940. case controller_k2_ata6:
  1941. hwif->ultra_mask = pmif->cable_80 ? 0x3f : 0x07;
  1942. hwif->mwdma_mask = 0x07;
  1943. hwif->swdma_mask = 0x00;
  1944. break;
  1945. case controller_kl_ata4:
  1946. hwif->ultra_mask = pmif->cable_80 ? 0x1f : 0x07;
  1947. hwif->mwdma_mask = 0x07;
  1948. hwif->swdma_mask = 0x00;
  1949. break;
  1950. default:
  1951. hwif->ultra_mask = 0x00;
  1952. hwif->mwdma_mask = 0x07;
  1953. hwif->swdma_mask = 0x00;
  1954. break;
  1955. }
  1956. }
  1957. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */