123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468 |
- /*
- * Cryptographic API.
- *
- * Support for VIA PadLock hardware crypto engine.
- *
- * Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
- *
- * Key expansion routine taken from crypto/aes.c
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * ---------------------------------------------------------------------------
- * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
- * All rights reserved.
- *
- * LICENSE TERMS
- *
- * The free distribution and use of this software in both source and binary
- * form is allowed (with or without changes) provided that:
- *
- * 1. distributions of this source code include the above copyright
- * notice, this list of conditions and the following disclaimer;
- *
- * 2. distributions in binary form include the above copyright
- * notice, this list of conditions and the following disclaimer
- * in the documentation and/or other associated materials;
- *
- * 3. the copyright holder's name is not used to endorse products
- * built using this software without specific written permission.
- *
- * ALTERNATIVELY, provided that this notice is retained in full, this product
- * may be distributed under the terms of the GNU General Public License (GPL),
- * in which case the provisions of the GPL apply INSTEAD OF those given above.
- *
- * DISCLAIMER
- *
- * This software is provided 'as is' with no explicit or implied warranties
- * in respect of its properties, including, but not limited to, correctness
- * and/or fitness for purpose.
- * ---------------------------------------------------------------------------
- */
- #include <linux/module.h>
- #include <linux/init.h>
- #include <linux/types.h>
- #include <linux/errno.h>
- #include <linux/crypto.h>
- #include <linux/interrupt.h>
- #include <asm/byteorder.h>
- #include "padlock.h"
- #define AES_MIN_KEY_SIZE 16 /* in uint8_t units */
- #define AES_MAX_KEY_SIZE 32 /* ditto */
- #define AES_BLOCK_SIZE 16 /* ditto */
- #define AES_EXTENDED_KEY_SIZE 64 /* in uint32_t units */
- #define AES_EXTENDED_KEY_SIZE_B (AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
- struct aes_ctx {
- uint32_t e_data[AES_EXTENDED_KEY_SIZE+4];
- uint32_t d_data[AES_EXTENDED_KEY_SIZE+4];
- uint32_t *E;
- uint32_t *D;
- int key_length;
- };
- /* ====== Key management routines ====== */
- static inline uint32_t
- generic_rotr32 (const uint32_t x, const unsigned bits)
- {
- const unsigned n = bits % 32;
- return (x >> n) | (x << (32 - n));
- }
- static inline uint32_t
- generic_rotl32 (const uint32_t x, const unsigned bits)
- {
- const unsigned n = bits % 32;
- return (x << n) | (x >> (32 - n));
- }
- #define rotl generic_rotl32
- #define rotr generic_rotr32
- /*
- * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
- */
- static inline uint8_t
- byte(const uint32_t x, const unsigned n)
- {
- return x >> (n << 3);
- }
- #define uint32_t_in(x) le32_to_cpu(*(const uint32_t *)(x))
- #define uint32_t_out(to, from) (*(uint32_t *)(to) = cpu_to_le32(from))
- #define E_KEY ctx->E
- #define D_KEY ctx->D
- static uint8_t pow_tab[256];
- static uint8_t log_tab[256];
- static uint8_t sbx_tab[256];
- static uint8_t isb_tab[256];
- static uint32_t rco_tab[10];
- static uint32_t ft_tab[4][256];
- static uint32_t it_tab[4][256];
- static uint32_t fl_tab[4][256];
- static uint32_t il_tab[4][256];
- static inline uint8_t
- f_mult (uint8_t a, uint8_t b)
- {
- uint8_t aa = log_tab[a], cc = aa + log_tab[b];
- return pow_tab[cc + (cc < aa ? 1 : 0)];
- }
- #define ff_mult(a,b) (a && b ? f_mult(a, b) : 0)
- #define f_rn(bo, bi, n, k) \
- bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
- ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
- ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
- ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
- #define i_rn(bo, bi, n, k) \
- bo[n] = it_tab[0][byte(bi[n],0)] ^ \
- it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
- it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
- it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
- #define ls_box(x) \
- ( fl_tab[0][byte(x, 0)] ^ \
- fl_tab[1][byte(x, 1)] ^ \
- fl_tab[2][byte(x, 2)] ^ \
- fl_tab[3][byte(x, 3)] )
- #define f_rl(bo, bi, n, k) \
- bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
- fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
- fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
- fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
- #define i_rl(bo, bi, n, k) \
- bo[n] = il_tab[0][byte(bi[n],0)] ^ \
- il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
- il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
- il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
- static void
- gen_tabs (void)
- {
- uint32_t i, t;
- uint8_t p, q;
- /* log and power tables for GF(2**8) finite field with
- 0x011b as modular polynomial - the simplest prmitive
- root is 0x03, used here to generate the tables */
- for (i = 0, p = 1; i < 256; ++i) {
- pow_tab[i] = (uint8_t) p;
- log_tab[p] = (uint8_t) i;
- p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
- }
- log_tab[1] = 0;
- for (i = 0, p = 1; i < 10; ++i) {
- rco_tab[i] = p;
- p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
- }
- for (i = 0; i < 256; ++i) {
- p = (i ? pow_tab[255 - log_tab[i]] : 0);
- q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
- p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
- sbx_tab[i] = p;
- isb_tab[p] = (uint8_t) i;
- }
- for (i = 0; i < 256; ++i) {
- p = sbx_tab[i];
- t = p;
- fl_tab[0][i] = t;
- fl_tab[1][i] = rotl (t, 8);
- fl_tab[2][i] = rotl (t, 16);
- fl_tab[3][i] = rotl (t, 24);
- t = ((uint32_t) ff_mult (2, p)) |
- ((uint32_t) p << 8) |
- ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);
- ft_tab[0][i] = t;
- ft_tab[1][i] = rotl (t, 8);
- ft_tab[2][i] = rotl (t, 16);
- ft_tab[3][i] = rotl (t, 24);
- p = isb_tab[i];
- t = p;
- il_tab[0][i] = t;
- il_tab[1][i] = rotl (t, 8);
- il_tab[2][i] = rotl (t, 16);
- il_tab[3][i] = rotl (t, 24);
- t = ((uint32_t) ff_mult (14, p)) |
- ((uint32_t) ff_mult (9, p) << 8) |
- ((uint32_t) ff_mult (13, p) << 16) |
- ((uint32_t) ff_mult (11, p) << 24);
- it_tab[0][i] = t;
- it_tab[1][i] = rotl (t, 8);
- it_tab[2][i] = rotl (t, 16);
- it_tab[3][i] = rotl (t, 24);
- }
- }
- #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
- #define imix_col(y,x) \
- u = star_x(x); \
- v = star_x(u); \
- w = star_x(v); \
- t = w ^ (x); \
- (y) = u ^ v ^ w; \
- (y) ^= rotr(u ^ t, 8) ^ \
- rotr(v ^ t, 16) ^ \
- rotr(t,24)
- /* initialise the key schedule from the user supplied key */
- #define loop4(i) \
- { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
- t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
- t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
- t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
- t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
- }
- #define loop6(i) \
- { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
- t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
- t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
- t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
- t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
- t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
- t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
- }
- #define loop8(i) \
- { t = rotr(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
- t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
- t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
- t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
- t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
- t = E_KEY[8 * i + 4] ^ ls_box(t); \
- E_KEY[8 * i + 12] = t; \
- t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
- t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
- t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
- }
- /* Tells whether the ACE is capable to generate
- the extended key for a given key_len. */
- static inline int
- aes_hw_extkey_available(uint8_t key_len)
- {
- /* TODO: We should check the actual CPU model/stepping
- as it's possible that the capability will be
- added in the next CPU revisions. */
- if (key_len == 16)
- return 1;
- return 0;
- }
- static int
- aes_set_key(void *ctx_arg, const uint8_t *in_key, unsigned int key_len, uint32_t *flags)
- {
- struct aes_ctx *ctx = ctx_arg;
- uint32_t i, t, u, v, w;
- uint32_t P[AES_EXTENDED_KEY_SIZE];
- uint32_t rounds;
- if (key_len != 16 && key_len != 24 && key_len != 32) {
- *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
- return -EINVAL;
- }
- ctx->key_length = key_len;
- ctx->E = ctx->e_data;
- ctx->D = ctx->d_data;
- /* Ensure 16-Bytes alignmentation of keys for VIA PadLock. */
- if ((int)(ctx->e_data) & 0x0F)
- ctx->E += 4 - (((int)(ctx->e_data) & 0x0F) / sizeof (ctx->e_data[0]));
- if ((int)(ctx->d_data) & 0x0F)
- ctx->D += 4 - (((int)(ctx->d_data) & 0x0F) / sizeof (ctx->d_data[0]));
- E_KEY[0] = uint32_t_in (in_key);
- E_KEY[1] = uint32_t_in (in_key + 4);
- E_KEY[2] = uint32_t_in (in_key + 8);
- E_KEY[3] = uint32_t_in (in_key + 12);
- /* Don't generate extended keys if the hardware can do it. */
- if (aes_hw_extkey_available(key_len))
- return 0;
- switch (key_len) {
- case 16:
- t = E_KEY[3];
- for (i = 0; i < 10; ++i)
- loop4 (i);
- break;
- case 24:
- E_KEY[4] = uint32_t_in (in_key + 16);
- t = E_KEY[5] = uint32_t_in (in_key + 20);
- for (i = 0; i < 8; ++i)
- loop6 (i);
- break;
- case 32:
- E_KEY[4] = uint32_t_in (in_key + 16);
- E_KEY[5] = uint32_t_in (in_key + 20);
- E_KEY[6] = uint32_t_in (in_key + 24);
- t = E_KEY[7] = uint32_t_in (in_key + 28);
- for (i = 0; i < 7; ++i)
- loop8 (i);
- break;
- }
- D_KEY[0] = E_KEY[0];
- D_KEY[1] = E_KEY[1];
- D_KEY[2] = E_KEY[2];
- D_KEY[3] = E_KEY[3];
- for (i = 4; i < key_len + 24; ++i) {
- imix_col (D_KEY[i], E_KEY[i]);
- }
- /* PadLock needs a different format of the decryption key. */
- rounds = 10 + (key_len - 16) / 4;
- for (i = 0; i < rounds; i++) {
- P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
- P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
- P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
- P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
- }
- P[0] = E_KEY[(rounds * 4) + 0];
- P[1] = E_KEY[(rounds * 4) + 1];
- P[2] = E_KEY[(rounds * 4) + 2];
- P[3] = E_KEY[(rounds * 4) + 3];
- memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);
- return 0;
- }
- /* ====== Encryption/decryption routines ====== */
- /* This is the real call to PadLock. */
- static inline void
- padlock_xcrypt_ecb(uint8_t *input, uint8_t *output, uint8_t *key,
- void *control_word, uint32_t count)
- {
- asm volatile ("pushfl; popfl"); /* enforce key reload. */
- asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
- : "+S"(input), "+D"(output)
- : "d"(control_word), "b"(key), "c"(count));
- }
- static void
- aes_padlock(void *ctx_arg, uint8_t *out_arg, const uint8_t *in_arg, int encdec)
- {
- /* Don't blindly modify this structure - the items must
- fit on 16-Bytes boundaries! */
- struct padlock_xcrypt_data {
- uint8_t buf[AES_BLOCK_SIZE];
- union cword cword;
- };
- struct aes_ctx *ctx = ctx_arg;
- char bigbuf[sizeof(struct padlock_xcrypt_data) + 16];
- struct padlock_xcrypt_data *data;
- void *key;
- /* Place 'data' at the first 16-Bytes aligned address in 'bigbuf'. */
- if (((long)bigbuf) & 0x0F)
- data = (void*)(bigbuf + 16 - ((long)bigbuf & 0x0F));
- else
- data = (void*)bigbuf;
- /* Prepare Control word. */
- memset (data, 0, sizeof(struct padlock_xcrypt_data));
- data->cword.b.encdec = !encdec; /* in the rest of cryptoapi ENC=1/DEC=0 */
- data->cword.b.rounds = 10 + (ctx->key_length - 16) / 4;
- data->cword.b.ksize = (ctx->key_length - 16) / 8;
- /* Is the hardware capable to generate the extended key? */
- if (!aes_hw_extkey_available(ctx->key_length))
- data->cword.b.keygen = 1;
- /* ctx->E starts with a plain key - if the hardware is capable
- to generate the extended key itself we must supply
- the plain key for both Encryption and Decryption. */
- if (encdec == CRYPTO_DIR_ENCRYPT || data->cword.b.keygen == 0)
- key = ctx->E;
- else
- key = ctx->D;
-
- memcpy(data->buf, in_arg, AES_BLOCK_SIZE);
- padlock_xcrypt_ecb(data->buf, data->buf, key, &data->cword, 1);
- memcpy(out_arg, data->buf, AES_BLOCK_SIZE);
- }
- static void
- aes_encrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
- {
- aes_padlock(ctx_arg, out, in, CRYPTO_DIR_ENCRYPT);
- }
- static void
- aes_decrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
- {
- aes_padlock(ctx_arg, out, in, CRYPTO_DIR_DECRYPT);
- }
- static struct crypto_alg aes_alg = {
- .cra_name = "aes",
- .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
- .cra_blocksize = AES_BLOCK_SIZE,
- .cra_ctxsize = sizeof(struct aes_ctx),
- .cra_module = THIS_MODULE,
- .cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
- .cra_u = {
- .cipher = {
- .cia_min_keysize = AES_MIN_KEY_SIZE,
- .cia_max_keysize = AES_MAX_KEY_SIZE,
- .cia_setkey = aes_set_key,
- .cia_encrypt = aes_encrypt,
- .cia_decrypt = aes_decrypt
- }
- }
- };
- int __init padlock_init_aes(void)
- {
- printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
- gen_tabs();
- return crypto_register_alg(&aes_alg);
- }
- void __exit padlock_fini_aes(void)
- {
- crypto_unregister_alg(&aes_alg);
- }
|