cpufreq_ondemand.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493
  1. /*
  2. * drivers/cpufreq/cpufreq_ondemand.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/smp.h>
  15. #include <linux/init.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/ctype.h>
  18. #include <linux/cpufreq.h>
  19. #include <linux/sysctl.h>
  20. #include <linux/types.h>
  21. #include <linux/fs.h>
  22. #include <linux/sysfs.h>
  23. #include <linux/sched.h>
  24. #include <linux/kmod.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/kernel_stat.h>
  28. #include <linux/percpu.h>
  29. /*
  30. * dbs is used in this file as a shortform for demandbased switching
  31. * It helps to keep variable names smaller, simpler
  32. */
  33. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  34. #define MIN_FREQUENCY_UP_THRESHOLD (11)
  35. #define MAX_FREQUENCY_UP_THRESHOLD (100)
  36. /*
  37. * The polling frequency of this governor depends on the capability of
  38. * the processor. Default polling frequency is 1000 times the transition
  39. * latency of the processor. The governor will work on any processor with
  40. * transition latency <= 10mS, using appropriate sampling
  41. * rate.
  42. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  43. * this governor will not work.
  44. * All times here are in uS.
  45. */
  46. static unsigned int def_sampling_rate;
  47. #define MIN_SAMPLING_RATE (def_sampling_rate / 2)
  48. #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
  49. #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
  50. #define DEF_SAMPLING_DOWN_FACTOR (1)
  51. #define MAX_SAMPLING_DOWN_FACTOR (10)
  52. #define TRANSITION_LATENCY_LIMIT (10 * 1000)
  53. static void do_dbs_timer(void *data);
  54. struct cpu_dbs_info_s {
  55. struct cpufreq_policy *cur_policy;
  56. unsigned int prev_cpu_idle_up;
  57. unsigned int prev_cpu_idle_down;
  58. unsigned int enable;
  59. };
  60. static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
  61. static unsigned int dbs_enable; /* number of CPUs using this policy */
  62. static DECLARE_MUTEX (dbs_sem);
  63. static DECLARE_WORK (dbs_work, do_dbs_timer, NULL);
  64. struct dbs_tuners {
  65. unsigned int sampling_rate;
  66. unsigned int sampling_down_factor;
  67. unsigned int up_threshold;
  68. unsigned int ignore_nice;
  69. };
  70. static struct dbs_tuners dbs_tuners_ins = {
  71. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  72. .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
  73. };
  74. static inline unsigned int get_cpu_idle_time(unsigned int cpu)
  75. {
  76. return kstat_cpu(cpu).cpustat.idle +
  77. kstat_cpu(cpu).cpustat.iowait +
  78. ( !dbs_tuners_ins.ignore_nice ?
  79. kstat_cpu(cpu).cpustat.nice :
  80. 0);
  81. }
  82. /************************** sysfs interface ************************/
  83. static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
  84. {
  85. return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
  86. }
  87. static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
  88. {
  89. return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
  90. }
  91. #define define_one_ro(_name) \
  92. static struct freq_attr _name = \
  93. __ATTR(_name, 0444, show_##_name, NULL)
  94. define_one_ro(sampling_rate_max);
  95. define_one_ro(sampling_rate_min);
  96. /* cpufreq_ondemand Governor Tunables */
  97. #define show_one(file_name, object) \
  98. static ssize_t show_##file_name \
  99. (struct cpufreq_policy *unused, char *buf) \
  100. { \
  101. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  102. }
  103. show_one(sampling_rate, sampling_rate);
  104. show_one(sampling_down_factor, sampling_down_factor);
  105. show_one(up_threshold, up_threshold);
  106. show_one(ignore_nice, ignore_nice);
  107. static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
  108. const char *buf, size_t count)
  109. {
  110. unsigned int input;
  111. int ret;
  112. ret = sscanf (buf, "%u", &input);
  113. if (ret != 1 )
  114. return -EINVAL;
  115. if (input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
  116. return -EINVAL;
  117. down(&dbs_sem);
  118. dbs_tuners_ins.sampling_down_factor = input;
  119. up(&dbs_sem);
  120. return count;
  121. }
  122. static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
  123. const char *buf, size_t count)
  124. {
  125. unsigned int input;
  126. int ret;
  127. ret = sscanf (buf, "%u", &input);
  128. down(&dbs_sem);
  129. if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
  130. up(&dbs_sem);
  131. return -EINVAL;
  132. }
  133. dbs_tuners_ins.sampling_rate = input;
  134. up(&dbs_sem);
  135. return count;
  136. }
  137. static ssize_t store_up_threshold(struct cpufreq_policy *unused,
  138. const char *buf, size_t count)
  139. {
  140. unsigned int input;
  141. int ret;
  142. ret = sscanf (buf, "%u", &input);
  143. down(&dbs_sem);
  144. if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
  145. input < MIN_FREQUENCY_UP_THRESHOLD) {
  146. up(&dbs_sem);
  147. return -EINVAL;
  148. }
  149. dbs_tuners_ins.up_threshold = input;
  150. up(&dbs_sem);
  151. return count;
  152. }
  153. static ssize_t store_ignore_nice(struct cpufreq_policy *policy,
  154. const char *buf, size_t count)
  155. {
  156. unsigned int input;
  157. int ret;
  158. unsigned int j;
  159. ret = sscanf (buf, "%u", &input);
  160. if ( ret != 1 )
  161. return -EINVAL;
  162. if ( input > 1 )
  163. input = 1;
  164. down(&dbs_sem);
  165. if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
  166. up(&dbs_sem);
  167. return count;
  168. }
  169. dbs_tuners_ins.ignore_nice = input;
  170. /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
  171. for_each_online_cpu(j) {
  172. struct cpu_dbs_info_s *j_dbs_info;
  173. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  174. j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
  175. j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
  176. }
  177. up(&dbs_sem);
  178. return count;
  179. }
  180. #define define_one_rw(_name) \
  181. static struct freq_attr _name = \
  182. __ATTR(_name, 0644, show_##_name, store_##_name)
  183. define_one_rw(sampling_rate);
  184. define_one_rw(sampling_down_factor);
  185. define_one_rw(up_threshold);
  186. define_one_rw(ignore_nice);
  187. static struct attribute * dbs_attributes[] = {
  188. &sampling_rate_max.attr,
  189. &sampling_rate_min.attr,
  190. &sampling_rate.attr,
  191. &sampling_down_factor.attr,
  192. &up_threshold.attr,
  193. &ignore_nice.attr,
  194. NULL
  195. };
  196. static struct attribute_group dbs_attr_group = {
  197. .attrs = dbs_attributes,
  198. .name = "ondemand",
  199. };
  200. /************************** sysfs end ************************/
  201. static void dbs_check_cpu(int cpu)
  202. {
  203. unsigned int idle_ticks, up_idle_ticks, total_ticks;
  204. unsigned int freq_next;
  205. unsigned int freq_down_sampling_rate;
  206. static int down_skip[NR_CPUS];
  207. struct cpu_dbs_info_s *this_dbs_info;
  208. struct cpufreq_policy *policy;
  209. unsigned int j;
  210. this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
  211. if (!this_dbs_info->enable)
  212. return;
  213. policy = this_dbs_info->cur_policy;
  214. /*
  215. * Every sampling_rate, we check, if current idle time is less
  216. * than 20% (default), then we try to increase frequency
  217. * Every sampling_rate*sampling_down_factor, we look for a the lowest
  218. * frequency which can sustain the load while keeping idle time over
  219. * 30%. If such a frequency exist, we try to decrease to this frequency.
  220. *
  221. * Any frequency increase takes it to the maximum frequency.
  222. * Frequency reduction happens at minimum steps of
  223. * 5% (default) of current frequency
  224. */
  225. /* Check for frequency increase */
  226. idle_ticks = UINT_MAX;
  227. for_each_cpu_mask(j, policy->cpus) {
  228. unsigned int tmp_idle_ticks, total_idle_ticks;
  229. struct cpu_dbs_info_s *j_dbs_info;
  230. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  231. total_idle_ticks = get_cpu_idle_time(j);
  232. tmp_idle_ticks = total_idle_ticks -
  233. j_dbs_info->prev_cpu_idle_up;
  234. j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
  235. if (tmp_idle_ticks < idle_ticks)
  236. idle_ticks = tmp_idle_ticks;
  237. }
  238. /* Scale idle ticks by 100 and compare with up and down ticks */
  239. idle_ticks *= 100;
  240. up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
  241. usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  242. if (idle_ticks < up_idle_ticks) {
  243. down_skip[cpu] = 0;
  244. for_each_cpu_mask(j, policy->cpus) {
  245. struct cpu_dbs_info_s *j_dbs_info;
  246. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  247. j_dbs_info->prev_cpu_idle_down =
  248. j_dbs_info->prev_cpu_idle_up;
  249. }
  250. /* if we are already at full speed then break out early */
  251. if (policy->cur == policy->max)
  252. return;
  253. __cpufreq_driver_target(policy, policy->max,
  254. CPUFREQ_RELATION_H);
  255. return;
  256. }
  257. /* Check for frequency decrease */
  258. down_skip[cpu]++;
  259. if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
  260. return;
  261. idle_ticks = UINT_MAX;
  262. for_each_cpu_mask(j, policy->cpus) {
  263. unsigned int tmp_idle_ticks, total_idle_ticks;
  264. struct cpu_dbs_info_s *j_dbs_info;
  265. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  266. /* Check for frequency decrease */
  267. total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
  268. tmp_idle_ticks = total_idle_ticks -
  269. j_dbs_info->prev_cpu_idle_down;
  270. j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
  271. if (tmp_idle_ticks < idle_ticks)
  272. idle_ticks = tmp_idle_ticks;
  273. }
  274. down_skip[cpu] = 0;
  275. /* if we cannot reduce the frequency anymore, break out early */
  276. if (policy->cur == policy->min)
  277. return;
  278. /* Compute how many ticks there are between two measurements */
  279. freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
  280. dbs_tuners_ins.sampling_down_factor;
  281. total_ticks = usecs_to_jiffies(freq_down_sampling_rate);
  282. /*
  283. * The optimal frequency is the frequency that is the lowest that
  284. * can support the current CPU usage without triggering the up
  285. * policy. To be safe, we focus 10 points under the threshold.
  286. */
  287. freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks;
  288. freq_next = (freq_next * policy->cur) /
  289. (dbs_tuners_ins.up_threshold - 10);
  290. if (freq_next <= ((policy->cur * 95) / 100))
  291. __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
  292. }
  293. static void do_dbs_timer(void *data)
  294. {
  295. int i;
  296. down(&dbs_sem);
  297. for_each_online_cpu(i)
  298. dbs_check_cpu(i);
  299. schedule_delayed_work(&dbs_work,
  300. usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
  301. up(&dbs_sem);
  302. }
  303. static inline void dbs_timer_init(void)
  304. {
  305. INIT_WORK(&dbs_work, do_dbs_timer, NULL);
  306. schedule_delayed_work(&dbs_work,
  307. usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
  308. return;
  309. }
  310. static inline void dbs_timer_exit(void)
  311. {
  312. cancel_delayed_work(&dbs_work);
  313. return;
  314. }
  315. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  316. unsigned int event)
  317. {
  318. unsigned int cpu = policy->cpu;
  319. struct cpu_dbs_info_s *this_dbs_info;
  320. unsigned int j;
  321. this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
  322. switch (event) {
  323. case CPUFREQ_GOV_START:
  324. if ((!cpu_online(cpu)) ||
  325. (!policy->cur))
  326. return -EINVAL;
  327. if (policy->cpuinfo.transition_latency >
  328. (TRANSITION_LATENCY_LIMIT * 1000))
  329. return -EINVAL;
  330. if (this_dbs_info->enable) /* Already enabled */
  331. break;
  332. down(&dbs_sem);
  333. for_each_cpu_mask(j, policy->cpus) {
  334. struct cpu_dbs_info_s *j_dbs_info;
  335. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  336. j_dbs_info->cur_policy = policy;
  337. j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
  338. j_dbs_info->prev_cpu_idle_down
  339. = j_dbs_info->prev_cpu_idle_up;
  340. }
  341. this_dbs_info->enable = 1;
  342. sysfs_create_group(&policy->kobj, &dbs_attr_group);
  343. dbs_enable++;
  344. /*
  345. * Start the timerschedule work, when this governor
  346. * is used for first time
  347. */
  348. if (dbs_enable == 1) {
  349. unsigned int latency;
  350. /* policy latency is in nS. Convert it to uS first */
  351. latency = policy->cpuinfo.transition_latency;
  352. if (latency < 1000)
  353. latency = 1000;
  354. def_sampling_rate = (latency / 1000) *
  355. DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
  356. dbs_tuners_ins.sampling_rate = def_sampling_rate;
  357. dbs_tuners_ins.ignore_nice = 0;
  358. dbs_timer_init();
  359. }
  360. up(&dbs_sem);
  361. break;
  362. case CPUFREQ_GOV_STOP:
  363. down(&dbs_sem);
  364. this_dbs_info->enable = 0;
  365. sysfs_remove_group(&policy->kobj, &dbs_attr_group);
  366. dbs_enable--;
  367. /*
  368. * Stop the timerschedule work, when this governor
  369. * is used for first time
  370. */
  371. if (dbs_enable == 0)
  372. dbs_timer_exit();
  373. up(&dbs_sem);
  374. break;
  375. case CPUFREQ_GOV_LIMITS:
  376. down(&dbs_sem);
  377. if (policy->max < this_dbs_info->cur_policy->cur)
  378. __cpufreq_driver_target(
  379. this_dbs_info->cur_policy,
  380. policy->max, CPUFREQ_RELATION_H);
  381. else if (policy->min > this_dbs_info->cur_policy->cur)
  382. __cpufreq_driver_target(
  383. this_dbs_info->cur_policy,
  384. policy->min, CPUFREQ_RELATION_L);
  385. up(&dbs_sem);
  386. break;
  387. }
  388. return 0;
  389. }
  390. static struct cpufreq_governor cpufreq_gov_dbs = {
  391. .name = "ondemand",
  392. .governor = cpufreq_governor_dbs,
  393. .owner = THIS_MODULE,
  394. };
  395. static int __init cpufreq_gov_dbs_init(void)
  396. {
  397. return cpufreq_register_governor(&cpufreq_gov_dbs);
  398. }
  399. static void __exit cpufreq_gov_dbs_exit(void)
  400. {
  401. /* Make sure that the scheduled work is indeed not running */
  402. flush_scheduled_work();
  403. cpufreq_unregister_governor(&cpufreq_gov_dbs);
  404. }
  405. MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
  406. MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for "
  407. "Low Latency Frequency Transition capable processors");
  408. MODULE_LICENSE ("GPL");
  409. module_init(cpufreq_gov_dbs_init);
  410. module_exit(cpufreq_gov_dbs_exit);