process.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865
  1. /* $Id: process.c,v 1.131 2002/02/09 19:49:30 davem Exp $
  2. * arch/sparc64/kernel/process.c
  3. *
  4. * Copyright (C) 1995, 1996 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  6. * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7. */
  8. /*
  9. * This file handles the architecture-dependent parts of process handling..
  10. */
  11. #include <stdarg.h>
  12. #include <linux/config.h>
  13. #include <linux/errno.h>
  14. #include <linux/module.h>
  15. #include <linux/sched.h>
  16. #include <linux/kernel.h>
  17. #include <linux/kallsyms.h>
  18. #include <linux/mm.h>
  19. #include <linux/smp.h>
  20. #include <linux/smp_lock.h>
  21. #include <linux/stddef.h>
  22. #include <linux/ptrace.h>
  23. #include <linux/slab.h>
  24. #include <linux/user.h>
  25. #include <linux/a.out.h>
  26. #include <linux/config.h>
  27. #include <linux/reboot.h>
  28. #include <linux/delay.h>
  29. #include <linux/compat.h>
  30. #include <linux/init.h>
  31. #include <asm/oplib.h>
  32. #include <asm/uaccess.h>
  33. #include <asm/system.h>
  34. #include <asm/page.h>
  35. #include <asm/pgalloc.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/processor.h>
  38. #include <asm/pstate.h>
  39. #include <asm/elf.h>
  40. #include <asm/fpumacro.h>
  41. #include <asm/head.h>
  42. #include <asm/cpudata.h>
  43. #include <asm/unistd.h>
  44. /* #define VERBOSE_SHOWREGS */
  45. /*
  46. * Nothing special yet...
  47. */
  48. void default_idle(void)
  49. {
  50. }
  51. #ifndef CONFIG_SMP
  52. /*
  53. * the idle loop on a Sparc... ;)
  54. */
  55. void cpu_idle(void)
  56. {
  57. /* endless idle loop with no priority at all */
  58. for (;;) {
  59. /* If current->work.need_resched is zero we should really
  60. * setup for a system wakup event and execute a shutdown
  61. * instruction.
  62. *
  63. * But this requires writing back the contents of the
  64. * L2 cache etc. so implement this later. -DaveM
  65. */
  66. while (!need_resched())
  67. barrier();
  68. schedule();
  69. check_pgt_cache();
  70. }
  71. }
  72. #else
  73. /*
  74. * the idle loop on a UltraMultiPenguin...
  75. */
  76. #define idle_me_harder() (cpu_data(smp_processor_id()).idle_volume += 1)
  77. #define unidle_me() (cpu_data(smp_processor_id()).idle_volume = 0)
  78. void cpu_idle(void)
  79. {
  80. set_thread_flag(TIF_POLLING_NRFLAG);
  81. while(1) {
  82. if (need_resched()) {
  83. unidle_me();
  84. clear_thread_flag(TIF_POLLING_NRFLAG);
  85. schedule();
  86. set_thread_flag(TIF_POLLING_NRFLAG);
  87. check_pgt_cache();
  88. }
  89. idle_me_harder();
  90. /* The store ordering is so that IRQ handlers on
  91. * other cpus see our increasing idleness for the buddy
  92. * redistribution algorithm. -DaveM
  93. */
  94. membar("#StoreStore | #StoreLoad");
  95. }
  96. }
  97. #endif
  98. extern char reboot_command [];
  99. extern void (*prom_palette)(int);
  100. extern void (*prom_keyboard)(void);
  101. void machine_halt(void)
  102. {
  103. if (!serial_console && prom_palette)
  104. prom_palette (1);
  105. if (prom_keyboard)
  106. prom_keyboard();
  107. prom_halt();
  108. panic("Halt failed!");
  109. }
  110. EXPORT_SYMBOL(machine_halt);
  111. void machine_alt_power_off(void)
  112. {
  113. if (!serial_console && prom_palette)
  114. prom_palette(1);
  115. if (prom_keyboard)
  116. prom_keyboard();
  117. prom_halt_power_off();
  118. panic("Power-off failed!");
  119. }
  120. void machine_restart(char * cmd)
  121. {
  122. char *p;
  123. p = strchr (reboot_command, '\n');
  124. if (p) *p = 0;
  125. if (!serial_console && prom_palette)
  126. prom_palette (1);
  127. if (prom_keyboard)
  128. prom_keyboard();
  129. if (cmd)
  130. prom_reboot(cmd);
  131. if (*reboot_command)
  132. prom_reboot(reboot_command);
  133. prom_reboot("");
  134. panic("Reboot failed!");
  135. }
  136. EXPORT_SYMBOL(machine_restart);
  137. static void show_regwindow32(struct pt_regs *regs)
  138. {
  139. struct reg_window32 __user *rw;
  140. struct reg_window32 r_w;
  141. mm_segment_t old_fs;
  142. __asm__ __volatile__ ("flushw");
  143. rw = compat_ptr((unsigned)regs->u_regs[14]);
  144. old_fs = get_fs();
  145. set_fs (USER_DS);
  146. if (copy_from_user (&r_w, rw, sizeof(r_w))) {
  147. set_fs (old_fs);
  148. return;
  149. }
  150. set_fs (old_fs);
  151. printk("l0: %08x l1: %08x l2: %08x l3: %08x "
  152. "l4: %08x l5: %08x l6: %08x l7: %08x\n",
  153. r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
  154. r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
  155. printk("i0: %08x i1: %08x i2: %08x i3: %08x "
  156. "i4: %08x i5: %08x i6: %08x i7: %08x\n",
  157. r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
  158. r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
  159. }
  160. static void show_regwindow(struct pt_regs *regs)
  161. {
  162. struct reg_window __user *rw;
  163. struct reg_window *rwk;
  164. struct reg_window r_w;
  165. mm_segment_t old_fs;
  166. if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
  167. __asm__ __volatile__ ("flushw");
  168. rw = (struct reg_window __user *)
  169. (regs->u_regs[14] + STACK_BIAS);
  170. rwk = (struct reg_window *)
  171. (regs->u_regs[14] + STACK_BIAS);
  172. if (!(regs->tstate & TSTATE_PRIV)) {
  173. old_fs = get_fs();
  174. set_fs (USER_DS);
  175. if (copy_from_user (&r_w, rw, sizeof(r_w))) {
  176. set_fs (old_fs);
  177. return;
  178. }
  179. rwk = &r_w;
  180. set_fs (old_fs);
  181. }
  182. } else {
  183. show_regwindow32(regs);
  184. return;
  185. }
  186. printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
  187. rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
  188. printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
  189. rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
  190. printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
  191. rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
  192. printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
  193. rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
  194. if (regs->tstate & TSTATE_PRIV)
  195. print_symbol("I7: <%s>\n", rwk->ins[7]);
  196. }
  197. void show_stackframe(struct sparc_stackf *sf)
  198. {
  199. unsigned long size;
  200. unsigned long *stk;
  201. int i;
  202. printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n"
  203. "l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
  204. sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3],
  205. sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]);
  206. printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n"
  207. "i4: %016lx i5: %016lx fp: %016lx ret_pc: %016lx\n",
  208. sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3],
  209. sf->ins[4], sf->ins[5], (unsigned long)sf->fp, sf->callers_pc);
  210. printk("sp: %016lx x0: %016lx x1: %016lx x2: %016lx\n"
  211. "x3: %016lx x4: %016lx x5: %016lx xx: %016lx\n",
  212. (unsigned long)sf->structptr, sf->xargs[0], sf->xargs[1],
  213. sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5],
  214. sf->xxargs[0]);
  215. size = ((unsigned long)sf->fp) - ((unsigned long)sf);
  216. size -= STACKFRAME_SZ;
  217. stk = (unsigned long *)((unsigned long)sf + STACKFRAME_SZ);
  218. i = 0;
  219. do {
  220. printk("s%d: %016lx\n", i++, *stk++);
  221. } while ((size -= sizeof(unsigned long)));
  222. }
  223. void show_stackframe32(struct sparc_stackf32 *sf)
  224. {
  225. unsigned long size;
  226. unsigned *stk;
  227. int i;
  228. printk("l0: %08x l1: %08x l2: %08x l3: %08x\n",
  229. sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3]);
  230. printk("l4: %08x l5: %08x l6: %08x l7: %08x\n",
  231. sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]);
  232. printk("i0: %08x i1: %08x i2: %08x i3: %08x\n",
  233. sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3]);
  234. printk("i4: %08x i5: %08x fp: %08x ret_pc: %08x\n",
  235. sf->ins[4], sf->ins[5], sf->fp, sf->callers_pc);
  236. printk("sp: %08x x0: %08x x1: %08x x2: %08x\n"
  237. "x3: %08x x4: %08x x5: %08x xx: %08x\n",
  238. sf->structptr, sf->xargs[0], sf->xargs[1],
  239. sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5],
  240. sf->xxargs[0]);
  241. size = ((unsigned long)sf->fp) - ((unsigned long)sf);
  242. size -= STACKFRAME32_SZ;
  243. stk = (unsigned *)((unsigned long)sf + STACKFRAME32_SZ);
  244. i = 0;
  245. do {
  246. printk("s%d: %08x\n", i++, *stk++);
  247. } while ((size -= sizeof(unsigned)));
  248. }
  249. #ifdef CONFIG_SMP
  250. static DEFINE_SPINLOCK(regdump_lock);
  251. #endif
  252. void __show_regs(struct pt_regs * regs)
  253. {
  254. #ifdef CONFIG_SMP
  255. unsigned long flags;
  256. /* Protect against xcall ipis which might lead to livelock on the lock */
  257. __asm__ __volatile__("rdpr %%pstate, %0\n\t"
  258. "wrpr %0, %1, %%pstate"
  259. : "=r" (flags)
  260. : "i" (PSTATE_IE));
  261. spin_lock(&regdump_lock);
  262. #endif
  263. printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
  264. regs->tpc, regs->tnpc, regs->y, print_tainted());
  265. print_symbol("TPC: <%s>\n", regs->tpc);
  266. printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
  267. regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
  268. regs->u_regs[3]);
  269. printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
  270. regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
  271. regs->u_regs[7]);
  272. printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
  273. regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
  274. regs->u_regs[11]);
  275. printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
  276. regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
  277. regs->u_regs[15]);
  278. print_symbol("RPC: <%s>\n", regs->u_regs[15]);
  279. show_regwindow(regs);
  280. #ifdef CONFIG_SMP
  281. spin_unlock(&regdump_lock);
  282. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  283. : : "r" (flags));
  284. #endif
  285. }
  286. #ifdef VERBOSE_SHOWREGS
  287. static void idump_from_user (unsigned int *pc)
  288. {
  289. int i;
  290. int code;
  291. if((((unsigned long) pc) & 3))
  292. return;
  293. pc -= 3;
  294. for(i = -3; i < 6; i++) {
  295. get_user(code, pc);
  296. printk("%c%08x%c",i?' ':'<',code,i?' ':'>');
  297. pc++;
  298. }
  299. printk("\n");
  300. }
  301. #endif
  302. void show_regs(struct pt_regs *regs)
  303. {
  304. #ifdef VERBOSE_SHOWREGS
  305. extern long etrap, etraptl1;
  306. #endif
  307. __show_regs(regs);
  308. #ifdef CONFIG_SMP
  309. {
  310. extern void smp_report_regs(void);
  311. smp_report_regs();
  312. }
  313. #endif
  314. #ifdef VERBOSE_SHOWREGS
  315. if (regs->tpc >= &etrap && regs->tpc < &etraptl1 &&
  316. regs->u_regs[14] >= (long)current - PAGE_SIZE &&
  317. regs->u_regs[14] < (long)current + 6 * PAGE_SIZE) {
  318. printk ("*********parent**********\n");
  319. __show_regs((struct pt_regs *)(regs->u_regs[14] + PTREGS_OFF));
  320. idump_from_user(((struct pt_regs *)(regs->u_regs[14] + PTREGS_OFF))->tpc);
  321. printk ("*********endpar**********\n");
  322. }
  323. #endif
  324. }
  325. void show_regs32(struct pt_regs32 *regs)
  326. {
  327. printk("PSR: %08x PC: %08x NPC: %08x Y: %08x %s\n", regs->psr,
  328. regs->pc, regs->npc, regs->y, print_tainted());
  329. printk("g0: %08x g1: %08x g2: %08x g3: %08x ",
  330. regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
  331. regs->u_regs[3]);
  332. printk("g4: %08x g5: %08x g6: %08x g7: %08x\n",
  333. regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
  334. regs->u_regs[7]);
  335. printk("o0: %08x o1: %08x o2: %08x o3: %08x ",
  336. regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
  337. regs->u_regs[11]);
  338. printk("o4: %08x o5: %08x sp: %08x ret_pc: %08x\n",
  339. regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
  340. regs->u_regs[15]);
  341. }
  342. unsigned long thread_saved_pc(struct task_struct *tsk)
  343. {
  344. struct thread_info *ti = tsk->thread_info;
  345. unsigned long ret = 0xdeadbeefUL;
  346. if (ti && ti->ksp) {
  347. unsigned long *sp;
  348. sp = (unsigned long *)(ti->ksp + STACK_BIAS);
  349. if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
  350. sp[14]) {
  351. unsigned long *fp;
  352. fp = (unsigned long *)(sp[14] + STACK_BIAS);
  353. if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
  354. ret = fp[15];
  355. }
  356. }
  357. return ret;
  358. }
  359. /* Free current thread data structures etc.. */
  360. void exit_thread(void)
  361. {
  362. struct thread_info *t = current_thread_info();
  363. if (t->utraps) {
  364. if (t->utraps[0] < 2)
  365. kfree (t->utraps);
  366. else
  367. t->utraps[0]--;
  368. }
  369. if (test_and_clear_thread_flag(TIF_PERFCTR)) {
  370. t->user_cntd0 = t->user_cntd1 = NULL;
  371. t->pcr_reg = 0;
  372. write_pcr(0);
  373. }
  374. }
  375. void flush_thread(void)
  376. {
  377. struct thread_info *t = current_thread_info();
  378. if (t->flags & _TIF_ABI_PENDING)
  379. t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
  380. if (t->task->mm) {
  381. unsigned long pgd_cache = 0UL;
  382. if (test_thread_flag(TIF_32BIT)) {
  383. struct mm_struct *mm = t->task->mm;
  384. pgd_t *pgd0 = &mm->pgd[0];
  385. pud_t *pud0 = pud_offset(pgd0, 0);
  386. if (pud_none(*pud0)) {
  387. pmd_t *page = pmd_alloc_one(mm, 0);
  388. pud_set(pud0, page);
  389. }
  390. pgd_cache = get_pgd_cache(pgd0);
  391. }
  392. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  393. "membar #Sync"
  394. : /* no outputs */
  395. : "r" (pgd_cache),
  396. "r" (TSB_REG),
  397. "i" (ASI_DMMU));
  398. }
  399. set_thread_wsaved(0);
  400. /* Turn off performance counters if on. */
  401. if (test_and_clear_thread_flag(TIF_PERFCTR)) {
  402. t->user_cntd0 = t->user_cntd1 = NULL;
  403. t->pcr_reg = 0;
  404. write_pcr(0);
  405. }
  406. /* Clear FPU register state. */
  407. t->fpsaved[0] = 0;
  408. if (get_thread_current_ds() != ASI_AIUS)
  409. set_fs(USER_DS);
  410. /* Init new signal delivery disposition. */
  411. clear_thread_flag(TIF_NEWSIGNALS);
  412. }
  413. /* It's a bit more tricky when 64-bit tasks are involved... */
  414. static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
  415. {
  416. unsigned long fp, distance, rval;
  417. if (!(test_thread_flag(TIF_32BIT))) {
  418. csp += STACK_BIAS;
  419. psp += STACK_BIAS;
  420. __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
  421. fp += STACK_BIAS;
  422. } else
  423. __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
  424. /* Now 8-byte align the stack as this is mandatory in the
  425. * Sparc ABI due to how register windows work. This hides
  426. * the restriction from thread libraries etc. -DaveM
  427. */
  428. csp &= ~7UL;
  429. distance = fp - psp;
  430. rval = (csp - distance);
  431. if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
  432. rval = 0;
  433. else if (test_thread_flag(TIF_32BIT)) {
  434. if (put_user(((u32)csp),
  435. &(((struct reg_window32 __user *)rval)->ins[6])))
  436. rval = 0;
  437. } else {
  438. if (put_user(((u64)csp - STACK_BIAS),
  439. &(((struct reg_window __user *)rval)->ins[6])))
  440. rval = 0;
  441. else
  442. rval = rval - STACK_BIAS;
  443. }
  444. return rval;
  445. }
  446. /* Standard stuff. */
  447. static inline void shift_window_buffer(int first_win, int last_win,
  448. struct thread_info *t)
  449. {
  450. int i;
  451. for (i = first_win; i < last_win; i++) {
  452. t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
  453. memcpy(&t->reg_window[i], &t->reg_window[i+1],
  454. sizeof(struct reg_window));
  455. }
  456. }
  457. void synchronize_user_stack(void)
  458. {
  459. struct thread_info *t = current_thread_info();
  460. unsigned long window;
  461. flush_user_windows();
  462. if ((window = get_thread_wsaved()) != 0) {
  463. int winsize = sizeof(struct reg_window);
  464. int bias = 0;
  465. if (test_thread_flag(TIF_32BIT))
  466. winsize = sizeof(struct reg_window32);
  467. else
  468. bias = STACK_BIAS;
  469. window -= 1;
  470. do {
  471. unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
  472. struct reg_window *rwin = &t->reg_window[window];
  473. if (!copy_to_user((char __user *)sp, rwin, winsize)) {
  474. shift_window_buffer(window, get_thread_wsaved() - 1, t);
  475. set_thread_wsaved(get_thread_wsaved() - 1);
  476. }
  477. } while (window--);
  478. }
  479. }
  480. void fault_in_user_windows(void)
  481. {
  482. struct thread_info *t = current_thread_info();
  483. unsigned long window;
  484. int winsize = sizeof(struct reg_window);
  485. int bias = 0;
  486. if (test_thread_flag(TIF_32BIT))
  487. winsize = sizeof(struct reg_window32);
  488. else
  489. bias = STACK_BIAS;
  490. flush_user_windows();
  491. window = get_thread_wsaved();
  492. if (window != 0) {
  493. window -= 1;
  494. do {
  495. unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
  496. struct reg_window *rwin = &t->reg_window[window];
  497. if (copy_to_user((char __user *)sp, rwin, winsize))
  498. goto barf;
  499. } while (window--);
  500. }
  501. set_thread_wsaved(0);
  502. return;
  503. barf:
  504. set_thread_wsaved(window + 1);
  505. do_exit(SIGILL);
  506. }
  507. asmlinkage long sparc_do_fork(unsigned long clone_flags,
  508. unsigned long stack_start,
  509. struct pt_regs *regs,
  510. unsigned long stack_size)
  511. {
  512. int __user *parent_tid_ptr, *child_tid_ptr;
  513. #ifdef CONFIG_COMPAT
  514. if (test_thread_flag(TIF_32BIT)) {
  515. parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
  516. child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
  517. } else
  518. #endif
  519. {
  520. parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
  521. child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
  522. }
  523. return do_fork(clone_flags, stack_start,
  524. regs, stack_size,
  525. parent_tid_ptr, child_tid_ptr);
  526. }
  527. /* Copy a Sparc thread. The fork() return value conventions
  528. * under SunOS are nothing short of bletcherous:
  529. * Parent --> %o0 == childs pid, %o1 == 0
  530. * Child --> %o0 == parents pid, %o1 == 1
  531. */
  532. int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
  533. unsigned long unused,
  534. struct task_struct *p, struct pt_regs *regs)
  535. {
  536. struct thread_info *t = p->thread_info;
  537. char *child_trap_frame;
  538. #ifdef CONFIG_DEBUG_SPINLOCK
  539. p->thread.smp_lock_count = 0;
  540. p->thread.smp_lock_pc = 0;
  541. #endif
  542. /* Calculate offset to stack_frame & pt_regs */
  543. child_trap_frame = ((char *)t) + (THREAD_SIZE - (TRACEREG_SZ+STACKFRAME_SZ));
  544. memcpy(child_trap_frame, (((struct sparc_stackf *)regs)-1), (TRACEREG_SZ+STACKFRAME_SZ));
  545. t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) | (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
  546. _TIF_NEWCHILD |
  547. (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
  548. t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
  549. t->kregs = (struct pt_regs *)(child_trap_frame+sizeof(struct sparc_stackf));
  550. t->fpsaved[0] = 0;
  551. if (regs->tstate & TSTATE_PRIV) {
  552. /* Special case, if we are spawning a kernel thread from
  553. * a userspace task (via KMOD, NFS, or similar) we must
  554. * disable performance counters in the child because the
  555. * address space and protection realm are changing.
  556. */
  557. if (t->flags & _TIF_PERFCTR) {
  558. t->user_cntd0 = t->user_cntd1 = NULL;
  559. t->pcr_reg = 0;
  560. t->flags &= ~_TIF_PERFCTR;
  561. }
  562. t->kregs->u_regs[UREG_FP] = t->ksp;
  563. t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
  564. flush_register_windows();
  565. memcpy((void *)(t->ksp + STACK_BIAS),
  566. (void *)(regs->u_regs[UREG_FP] + STACK_BIAS),
  567. sizeof(struct sparc_stackf));
  568. t->kregs->u_regs[UREG_G6] = (unsigned long) t;
  569. t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
  570. } else {
  571. if (t->flags & _TIF_32BIT) {
  572. sp &= 0x00000000ffffffffUL;
  573. regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
  574. }
  575. t->kregs->u_regs[UREG_FP] = sp;
  576. t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
  577. if (sp != regs->u_regs[UREG_FP]) {
  578. unsigned long csp;
  579. csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
  580. if (!csp)
  581. return -EFAULT;
  582. t->kregs->u_regs[UREG_FP] = csp;
  583. }
  584. if (t->utraps)
  585. t->utraps[0]++;
  586. }
  587. /* Set the return value for the child. */
  588. t->kregs->u_regs[UREG_I0] = current->pid;
  589. t->kregs->u_regs[UREG_I1] = 1;
  590. /* Set the second return value for the parent. */
  591. regs->u_regs[UREG_I1] = 0;
  592. if (clone_flags & CLONE_SETTLS)
  593. t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
  594. return 0;
  595. }
  596. /*
  597. * This is the mechanism for creating a new kernel thread.
  598. *
  599. * NOTE! Only a kernel-only process(ie the swapper or direct descendants
  600. * who haven't done an "execve()") should use this: it will work within
  601. * a system call from a "real" process, but the process memory space will
  602. * not be free'd until both the parent and the child have exited.
  603. */
  604. pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  605. {
  606. long retval;
  607. /* If the parent runs before fn(arg) is called by the child,
  608. * the input registers of this function can be clobbered.
  609. * So we stash 'fn' and 'arg' into global registers which
  610. * will not be modified by the parent.
  611. */
  612. __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
  613. "mov %5, %%g3\n\t" /* Save ARG into global */
  614. "mov %1, %%g1\n\t" /* Clone syscall nr. */
  615. "mov %2, %%o0\n\t" /* Clone flags. */
  616. "mov 0, %%o1\n\t" /* usp arg == 0 */
  617. "t 0x6d\n\t" /* Linux/Sparc clone(). */
  618. "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
  619. " mov %%o0, %0\n\t"
  620. "jmpl %%g2, %%o7\n\t" /* Call the function. */
  621. " mov %%g3, %%o0\n\t" /* Set arg in delay. */
  622. "mov %3, %%g1\n\t"
  623. "t 0x6d\n\t" /* Linux/Sparc exit(). */
  624. /* Notreached by child. */
  625. "1:" :
  626. "=r" (retval) :
  627. "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
  628. "i" (__NR_exit), "r" (fn), "r" (arg) :
  629. "g1", "g2", "g3", "o0", "o1", "memory", "cc");
  630. return retval;
  631. }
  632. /*
  633. * fill in the user structure for a core dump..
  634. */
  635. void dump_thread(struct pt_regs * regs, struct user * dump)
  636. {
  637. /* Only should be used for SunOS and ancient a.out
  638. * SparcLinux binaries... Not worth implementing.
  639. */
  640. memset(dump, 0, sizeof(struct user));
  641. }
  642. typedef struct {
  643. union {
  644. unsigned int pr_regs[32];
  645. unsigned long pr_dregs[16];
  646. } pr_fr;
  647. unsigned int __unused;
  648. unsigned int pr_fsr;
  649. unsigned char pr_qcnt;
  650. unsigned char pr_q_entrysize;
  651. unsigned char pr_en;
  652. unsigned int pr_q[64];
  653. } elf_fpregset_t32;
  654. /*
  655. * fill in the fpu structure for a core dump.
  656. */
  657. int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
  658. {
  659. unsigned long *kfpregs = current_thread_info()->fpregs;
  660. unsigned long fprs = current_thread_info()->fpsaved[0];
  661. if (test_thread_flag(TIF_32BIT)) {
  662. elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
  663. if (fprs & FPRS_DL)
  664. memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
  665. sizeof(unsigned int) * 32);
  666. else
  667. memset(&fpregs32->pr_fr.pr_regs[0], 0,
  668. sizeof(unsigned int) * 32);
  669. fpregs32->pr_qcnt = 0;
  670. fpregs32->pr_q_entrysize = 8;
  671. memset(&fpregs32->pr_q[0], 0,
  672. (sizeof(unsigned int) * 64));
  673. if (fprs & FPRS_FEF) {
  674. fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
  675. fpregs32->pr_en = 1;
  676. } else {
  677. fpregs32->pr_fsr = 0;
  678. fpregs32->pr_en = 0;
  679. }
  680. } else {
  681. if(fprs & FPRS_DL)
  682. memcpy(&fpregs->pr_regs[0], kfpregs,
  683. sizeof(unsigned int) * 32);
  684. else
  685. memset(&fpregs->pr_regs[0], 0,
  686. sizeof(unsigned int) * 32);
  687. if(fprs & FPRS_DU)
  688. memcpy(&fpregs->pr_regs[16], kfpregs+16,
  689. sizeof(unsigned int) * 32);
  690. else
  691. memset(&fpregs->pr_regs[16], 0,
  692. sizeof(unsigned int) * 32);
  693. if(fprs & FPRS_FEF) {
  694. fpregs->pr_fsr = current_thread_info()->xfsr[0];
  695. fpregs->pr_gsr = current_thread_info()->gsr[0];
  696. } else {
  697. fpregs->pr_fsr = fpregs->pr_gsr = 0;
  698. }
  699. fpregs->pr_fprs = fprs;
  700. }
  701. return 1;
  702. }
  703. /*
  704. * sparc_execve() executes a new program after the asm stub has set
  705. * things up for us. This should basically do what I want it to.
  706. */
  707. asmlinkage int sparc_execve(struct pt_regs *regs)
  708. {
  709. int error, base = 0;
  710. char *filename;
  711. /* User register window flush is done by entry.S */
  712. /* Check for indirect call. */
  713. if (regs->u_regs[UREG_G1] == 0)
  714. base = 1;
  715. filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
  716. error = PTR_ERR(filename);
  717. if (IS_ERR(filename))
  718. goto out;
  719. error = do_execve(filename,
  720. (char __user * __user *)
  721. regs->u_regs[base + UREG_I1],
  722. (char __user * __user *)
  723. regs->u_regs[base + UREG_I2], regs);
  724. putname(filename);
  725. if (!error) {
  726. fprs_write(0);
  727. current_thread_info()->xfsr[0] = 0;
  728. current_thread_info()->fpsaved[0] = 0;
  729. regs->tstate &= ~TSTATE_PEF;
  730. task_lock(current);
  731. current->ptrace &= ~PT_DTRACE;
  732. task_unlock(current);
  733. }
  734. out:
  735. return error;
  736. }
  737. unsigned long get_wchan(struct task_struct *task)
  738. {
  739. unsigned long pc, fp, bias = 0;
  740. unsigned long thread_info_base;
  741. struct reg_window *rw;
  742. unsigned long ret = 0;
  743. int count = 0;
  744. if (!task || task == current ||
  745. task->state == TASK_RUNNING)
  746. goto out;
  747. thread_info_base = (unsigned long) task->thread_info;
  748. bias = STACK_BIAS;
  749. fp = task->thread_info->ksp + bias;
  750. do {
  751. /* Bogus frame pointer? */
  752. if (fp < (thread_info_base + sizeof(struct thread_info)) ||
  753. fp >= (thread_info_base + THREAD_SIZE))
  754. break;
  755. rw = (struct reg_window *) fp;
  756. pc = rw->ins[7];
  757. if (!in_sched_functions(pc)) {
  758. ret = pc;
  759. goto out;
  760. }
  761. fp = rw->ins[6] + bias;
  762. } while (++count < 16);
  763. out:
  764. return ret;
  765. }