time.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641
  1. /* $Id: time.c,v 1.60 2002/01/23 14:33:55 davem Exp $
  2. * linux/arch/sparc/kernel/time.c
  3. *
  4. * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
  6. *
  7. * Chris Davis (cdavis@cois.on.ca) 03/27/1998
  8. * Added support for the intersil on the sun4/4200
  9. *
  10. * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998
  11. * Support for MicroSPARC-IIep, PCI CPU.
  12. *
  13. * This file handles the Sparc specific time handling details.
  14. *
  15. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  16. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  17. */
  18. #include <linux/config.h>
  19. #include <linux/errno.h>
  20. #include <linux/module.h>
  21. #include <linux/sched.h>
  22. #include <linux/kernel.h>
  23. #include <linux/param.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/time.h>
  28. #include <linux/timex.h>
  29. #include <linux/init.h>
  30. #include <linux/pci.h>
  31. #include <linux/ioport.h>
  32. #include <linux/profile.h>
  33. #include <asm/oplib.h>
  34. #include <asm/segment.h>
  35. #include <asm/timer.h>
  36. #include <asm/mostek.h>
  37. #include <asm/system.h>
  38. #include <asm/irq.h>
  39. #include <asm/io.h>
  40. #include <asm/idprom.h>
  41. #include <asm/machines.h>
  42. #include <asm/sun4paddr.h>
  43. #include <asm/page.h>
  44. #include <asm/pcic.h>
  45. extern unsigned long wall_jiffies;
  46. u64 jiffies_64 = INITIAL_JIFFIES;
  47. EXPORT_SYMBOL(jiffies_64);
  48. DEFINE_SPINLOCK(rtc_lock);
  49. enum sparc_clock_type sp_clock_typ;
  50. DEFINE_SPINLOCK(mostek_lock);
  51. void __iomem *mstk48t02_regs = NULL;
  52. static struct mostek48t08 *mstk48t08_regs = NULL;
  53. static int set_rtc_mmss(unsigned long);
  54. static int sbus_do_settimeofday(struct timespec *tv);
  55. #ifdef CONFIG_SUN4
  56. struct intersil *intersil_clock;
  57. #define intersil_cmd(intersil_reg, intsil_cmd) intersil_reg->int_cmd_reg = \
  58. (intsil_cmd)
  59. #define intersil_intr(intersil_reg, intsil_cmd) intersil_reg->int_intr_reg = \
  60. (intsil_cmd)
  61. #define intersil_start(intersil_reg) intersil_cmd(intersil_reg, \
  62. ( INTERSIL_START | INTERSIL_32K | INTERSIL_NORMAL | INTERSIL_24H |\
  63. INTERSIL_INTR_ENABLE))
  64. #define intersil_stop(intersil_reg) intersil_cmd(intersil_reg, \
  65. ( INTERSIL_STOP | INTERSIL_32K | INTERSIL_NORMAL | INTERSIL_24H |\
  66. INTERSIL_INTR_ENABLE))
  67. #define intersil_read_intr(intersil_reg, towhere) towhere = \
  68. intersil_reg->int_intr_reg
  69. #endif
  70. unsigned long profile_pc(struct pt_regs *regs)
  71. {
  72. extern char __copy_user_begin[], __copy_user_end[];
  73. extern char __atomic_begin[], __atomic_end[];
  74. extern char __bzero_begin[], __bzero_end[];
  75. extern char __bitops_begin[], __bitops_end[];
  76. unsigned long pc = regs->pc;
  77. if (in_lock_functions(pc) ||
  78. (pc >= (unsigned long) __copy_user_begin &&
  79. pc < (unsigned long) __copy_user_end) ||
  80. (pc >= (unsigned long) __atomic_begin &&
  81. pc < (unsigned long) __atomic_end) ||
  82. (pc >= (unsigned long) __bzero_begin &&
  83. pc < (unsigned long) __bzero_end) ||
  84. (pc >= (unsigned long) __bitops_begin &&
  85. pc < (unsigned long) __bitops_end))
  86. pc = regs->u_regs[UREG_RETPC];
  87. return pc;
  88. }
  89. __volatile__ unsigned int *master_l10_counter;
  90. __volatile__ unsigned int *master_l10_limit;
  91. /*
  92. * timer_interrupt() needs to keep up the real-time clock,
  93. * as well as call the "do_timer()" routine every clocktick
  94. */
  95. #define TICK_SIZE (tick_nsec / 1000)
  96. irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs * regs)
  97. {
  98. /* last time the cmos clock got updated */
  99. static long last_rtc_update;
  100. #ifndef CONFIG_SMP
  101. profile_tick(CPU_PROFILING, regs);
  102. #endif
  103. /* Protect counter clear so that do_gettimeoffset works */
  104. write_seqlock(&xtime_lock);
  105. #ifdef CONFIG_SUN4
  106. if((idprom->id_machtype == (SM_SUN4 | SM_4_260)) ||
  107. (idprom->id_machtype == (SM_SUN4 | SM_4_110))) {
  108. int temp;
  109. intersil_read_intr(intersil_clock, temp);
  110. /* re-enable the irq */
  111. enable_pil_irq(10);
  112. }
  113. #endif
  114. clear_clock_irq();
  115. do_timer(regs);
  116. #ifndef CONFIG_SMP
  117. update_process_times(user_mode(regs));
  118. #endif
  119. /* Determine when to update the Mostek clock. */
  120. if ((time_status & STA_UNSYNC) == 0 &&
  121. xtime.tv_sec > last_rtc_update + 660 &&
  122. (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
  123. (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
  124. if (set_rtc_mmss(xtime.tv_sec) == 0)
  125. last_rtc_update = xtime.tv_sec;
  126. else
  127. last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
  128. }
  129. write_sequnlock(&xtime_lock);
  130. return IRQ_HANDLED;
  131. }
  132. /* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */
  133. static void __init kick_start_clock(void)
  134. {
  135. struct mostek48t02 *regs = (struct mostek48t02 *)mstk48t02_regs;
  136. unsigned char sec;
  137. int i, count;
  138. prom_printf("CLOCK: Clock was stopped. Kick start ");
  139. spin_lock_irq(&mostek_lock);
  140. /* Turn on the kick start bit to start the oscillator. */
  141. regs->creg |= MSTK_CREG_WRITE;
  142. regs->sec &= ~MSTK_STOP;
  143. regs->hour |= MSTK_KICK_START;
  144. regs->creg &= ~MSTK_CREG_WRITE;
  145. spin_unlock_irq(&mostek_lock);
  146. /* Delay to allow the clock oscillator to start. */
  147. sec = MSTK_REG_SEC(regs);
  148. for (i = 0; i < 3; i++) {
  149. while (sec == MSTK_REG_SEC(regs))
  150. for (count = 0; count < 100000; count++)
  151. /* nothing */ ;
  152. prom_printf(".");
  153. sec = regs->sec;
  154. }
  155. prom_printf("\n");
  156. spin_lock_irq(&mostek_lock);
  157. /* Turn off kick start and set a "valid" time and date. */
  158. regs->creg |= MSTK_CREG_WRITE;
  159. regs->hour &= ~MSTK_KICK_START;
  160. MSTK_SET_REG_SEC(regs,0);
  161. MSTK_SET_REG_MIN(regs,0);
  162. MSTK_SET_REG_HOUR(regs,0);
  163. MSTK_SET_REG_DOW(regs,5);
  164. MSTK_SET_REG_DOM(regs,1);
  165. MSTK_SET_REG_MONTH(regs,8);
  166. MSTK_SET_REG_YEAR(regs,1996 - MSTK_YEAR_ZERO);
  167. regs->creg &= ~MSTK_CREG_WRITE;
  168. spin_unlock_irq(&mostek_lock);
  169. /* Ensure the kick start bit is off. If it isn't, turn it off. */
  170. while (regs->hour & MSTK_KICK_START) {
  171. prom_printf("CLOCK: Kick start still on!\n");
  172. spin_lock_irq(&mostek_lock);
  173. regs->creg |= MSTK_CREG_WRITE;
  174. regs->hour &= ~MSTK_KICK_START;
  175. regs->creg &= ~MSTK_CREG_WRITE;
  176. spin_unlock_irq(&mostek_lock);
  177. }
  178. prom_printf("CLOCK: Kick start procedure successful.\n");
  179. }
  180. /* Return nonzero if the clock chip battery is low. */
  181. static __inline__ int has_low_battery(void)
  182. {
  183. struct mostek48t02 *regs = (struct mostek48t02 *)mstk48t02_regs;
  184. unsigned char data1, data2;
  185. spin_lock_irq(&mostek_lock);
  186. data1 = regs->eeprom[0]; /* Read some data. */
  187. regs->eeprom[0] = ~data1; /* Write back the complement. */
  188. data2 = regs->eeprom[0]; /* Read back the complement. */
  189. regs->eeprom[0] = data1; /* Restore the original value. */
  190. spin_unlock_irq(&mostek_lock);
  191. return (data1 == data2); /* Was the write blocked? */
  192. }
  193. /* Probe for the real time clock chip on Sun4 */
  194. static __inline__ void sun4_clock_probe(void)
  195. {
  196. #ifdef CONFIG_SUN4
  197. int temp;
  198. struct resource r;
  199. memset(&r, 0, sizeof(r));
  200. if( idprom->id_machtype == (SM_SUN4 | SM_4_330) ) {
  201. sp_clock_typ = MSTK48T02;
  202. r.start = sun4_clock_physaddr;
  203. mstk48t02_regs = sbus_ioremap(&r, 0,
  204. sizeof(struct mostek48t02), NULL);
  205. mstk48t08_regs = NULL; /* To catch weirdness */
  206. intersil_clock = NULL; /* just in case */
  207. /* Kick start the clock if it is completely stopped. */
  208. if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP)
  209. kick_start_clock();
  210. } else if( idprom->id_machtype == (SM_SUN4 | SM_4_260)) {
  211. /* intersil setup code */
  212. printk("Clock: INTERSIL at %8x ",sun4_clock_physaddr);
  213. sp_clock_typ = INTERSIL;
  214. r.start = sun4_clock_physaddr;
  215. intersil_clock = (struct intersil *)
  216. sbus_ioremap(&r, 0, sizeof(*intersil_clock), "intersil");
  217. mstk48t02_regs = 0; /* just be sure */
  218. mstk48t08_regs = NULL; /* ditto */
  219. /* initialise the clock */
  220. intersil_intr(intersil_clock,INTERSIL_INT_100HZ);
  221. intersil_start(intersil_clock);
  222. intersil_read_intr(intersil_clock, temp);
  223. while (!(temp & 0x80))
  224. intersil_read_intr(intersil_clock, temp);
  225. intersil_read_intr(intersil_clock, temp);
  226. while (!(temp & 0x80))
  227. intersil_read_intr(intersil_clock, temp);
  228. intersil_stop(intersil_clock);
  229. }
  230. #endif
  231. }
  232. /* Probe for the mostek real time clock chip. */
  233. static __inline__ void clock_probe(void)
  234. {
  235. struct linux_prom_registers clk_reg[2];
  236. char model[128];
  237. register int node, cpuunit, bootbus;
  238. struct resource r;
  239. cpuunit = bootbus = 0;
  240. memset(&r, 0, sizeof(r));
  241. /* Determine the correct starting PROM node for the probe. */
  242. node = prom_getchild(prom_root_node);
  243. switch (sparc_cpu_model) {
  244. case sun4c:
  245. break;
  246. case sun4m:
  247. node = prom_getchild(prom_searchsiblings(node, "obio"));
  248. break;
  249. case sun4d:
  250. node = prom_getchild(bootbus = prom_searchsiblings(prom_getchild(cpuunit = prom_searchsiblings(node, "cpu-unit")), "bootbus"));
  251. break;
  252. default:
  253. prom_printf("CLOCK: Unsupported architecture!\n");
  254. prom_halt();
  255. }
  256. /* Find the PROM node describing the real time clock. */
  257. sp_clock_typ = MSTK_INVALID;
  258. node = prom_searchsiblings(node,"eeprom");
  259. if (!node) {
  260. prom_printf("CLOCK: No clock found!\n");
  261. prom_halt();
  262. }
  263. /* Get the model name and setup everything up. */
  264. model[0] = '\0';
  265. prom_getstring(node, "model", model, sizeof(model));
  266. if (strcmp(model, "mk48t02") == 0) {
  267. sp_clock_typ = MSTK48T02;
  268. if (prom_getproperty(node, "reg", (char *) clk_reg, sizeof(clk_reg)) == -1) {
  269. prom_printf("clock_probe: FAILED!\n");
  270. prom_halt();
  271. }
  272. if (sparc_cpu_model == sun4d)
  273. prom_apply_generic_ranges (bootbus, cpuunit, clk_reg, 1);
  274. else
  275. prom_apply_obio_ranges(clk_reg, 1);
  276. /* Map the clock register io area read-only */
  277. r.flags = clk_reg[0].which_io;
  278. r.start = clk_reg[0].phys_addr;
  279. mstk48t02_regs = sbus_ioremap(&r, 0,
  280. sizeof(struct mostek48t02), "mk48t02");
  281. mstk48t08_regs = NULL; /* To catch weirdness */
  282. } else if (strcmp(model, "mk48t08") == 0) {
  283. sp_clock_typ = MSTK48T08;
  284. if(prom_getproperty(node, "reg", (char *) clk_reg,
  285. sizeof(clk_reg)) == -1) {
  286. prom_printf("clock_probe: FAILED!\n");
  287. prom_halt();
  288. }
  289. if (sparc_cpu_model == sun4d)
  290. prom_apply_generic_ranges (bootbus, cpuunit, clk_reg, 1);
  291. else
  292. prom_apply_obio_ranges(clk_reg, 1);
  293. /* Map the clock register io area read-only */
  294. /* XXX r/o attribute is somewhere in r.flags */
  295. r.flags = clk_reg[0].which_io;
  296. r.start = clk_reg[0].phys_addr;
  297. mstk48t08_regs = (struct mostek48t08 *) sbus_ioremap(&r, 0,
  298. sizeof(struct mostek48t08), "mk48t08");
  299. mstk48t02_regs = &mstk48t08_regs->regs;
  300. } else {
  301. prom_printf("CLOCK: Unknown model name '%s'\n",model);
  302. prom_halt();
  303. }
  304. /* Report a low battery voltage condition. */
  305. if (has_low_battery())
  306. printk(KERN_CRIT "NVRAM: Low battery voltage!\n");
  307. /* Kick start the clock if it is completely stopped. */
  308. if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP)
  309. kick_start_clock();
  310. }
  311. void __init sbus_time_init(void)
  312. {
  313. unsigned int year, mon, day, hour, min, sec;
  314. struct mostek48t02 *mregs;
  315. #ifdef CONFIG_SUN4
  316. int temp;
  317. struct intersil *iregs;
  318. #endif
  319. BTFIXUPSET_CALL(bus_do_settimeofday, sbus_do_settimeofday, BTFIXUPCALL_NORM);
  320. btfixup();
  321. if (ARCH_SUN4)
  322. sun4_clock_probe();
  323. else
  324. clock_probe();
  325. sparc_init_timers(timer_interrupt);
  326. #ifdef CONFIG_SUN4
  327. if(idprom->id_machtype == (SM_SUN4 | SM_4_330)) {
  328. #endif
  329. mregs = (struct mostek48t02 *)mstk48t02_regs;
  330. if(!mregs) {
  331. prom_printf("Something wrong, clock regs not mapped yet.\n");
  332. prom_halt();
  333. }
  334. spin_lock_irq(&mostek_lock);
  335. mregs->creg |= MSTK_CREG_READ;
  336. sec = MSTK_REG_SEC(mregs);
  337. min = MSTK_REG_MIN(mregs);
  338. hour = MSTK_REG_HOUR(mregs);
  339. day = MSTK_REG_DOM(mregs);
  340. mon = MSTK_REG_MONTH(mregs);
  341. year = MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs) );
  342. xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
  343. xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
  344. set_normalized_timespec(&wall_to_monotonic,
  345. -xtime.tv_sec, -xtime.tv_nsec);
  346. mregs->creg &= ~MSTK_CREG_READ;
  347. spin_unlock_irq(&mostek_lock);
  348. #ifdef CONFIG_SUN4
  349. } else if(idprom->id_machtype == (SM_SUN4 | SM_4_260) ) {
  350. /* initialise the intersil on sun4 */
  351. iregs=intersil_clock;
  352. if(!iregs) {
  353. prom_printf("Something wrong, clock regs not mapped yet.\n");
  354. prom_halt();
  355. }
  356. intersil_intr(intersil_clock,INTERSIL_INT_100HZ);
  357. disable_pil_irq(10);
  358. intersil_stop(iregs);
  359. intersil_read_intr(intersil_clock, temp);
  360. temp = iregs->clk.int_csec;
  361. sec = iregs->clk.int_sec;
  362. min = iregs->clk.int_min;
  363. hour = iregs->clk.int_hour;
  364. day = iregs->clk.int_day;
  365. mon = iregs->clk.int_month;
  366. year = MSTK_CVT_YEAR(iregs->clk.int_year);
  367. enable_pil_irq(10);
  368. intersil_start(iregs);
  369. xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
  370. xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
  371. set_normalized_timespec(&wall_to_monotonic,
  372. -xtime.tv_sec, -xtime.tv_nsec);
  373. printk("%u/%u/%u %u:%u:%u\n",day,mon,year,hour,min,sec);
  374. }
  375. #endif
  376. /* Now that OBP ticker has been silenced, it is safe to enable IRQ. */
  377. local_irq_enable();
  378. }
  379. void __init time_init(void)
  380. {
  381. #ifdef CONFIG_PCI
  382. extern void pci_time_init(void);
  383. if (pcic_present()) {
  384. pci_time_init();
  385. return;
  386. }
  387. #endif
  388. sbus_time_init();
  389. }
  390. extern __inline__ unsigned long do_gettimeoffset(void)
  391. {
  392. return (*master_l10_counter >> 10) & 0x1fffff;
  393. }
  394. /*
  395. * Returns nanoseconds
  396. * XXX This is a suboptimal implementation.
  397. */
  398. unsigned long long sched_clock(void)
  399. {
  400. return (unsigned long long)jiffies * (1000000000 / HZ);
  401. }
  402. /* Ok, my cute asm atomicity trick doesn't work anymore.
  403. * There are just too many variables that need to be protected
  404. * now (both members of xtime, wall_jiffies, et al.)
  405. */
  406. void do_gettimeofday(struct timeval *tv)
  407. {
  408. unsigned long flags;
  409. unsigned long seq;
  410. unsigned long usec, sec;
  411. unsigned long max_ntp_tick = tick_usec - tickadj;
  412. do {
  413. unsigned long lost;
  414. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  415. usec = do_gettimeoffset();
  416. lost = jiffies - wall_jiffies;
  417. /*
  418. * If time_adjust is negative then NTP is slowing the clock
  419. * so make sure not to go into next possible interval.
  420. * Better to lose some accuracy than have time go backwards..
  421. */
  422. if (unlikely(time_adjust < 0)) {
  423. usec = min(usec, max_ntp_tick);
  424. if (lost)
  425. usec += lost * max_ntp_tick;
  426. }
  427. else if (unlikely(lost))
  428. usec += lost * tick_usec;
  429. sec = xtime.tv_sec;
  430. usec += (xtime.tv_nsec / 1000);
  431. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  432. while (usec >= 1000000) {
  433. usec -= 1000000;
  434. sec++;
  435. }
  436. tv->tv_sec = sec;
  437. tv->tv_usec = usec;
  438. }
  439. EXPORT_SYMBOL(do_gettimeofday);
  440. int do_settimeofday(struct timespec *tv)
  441. {
  442. int ret;
  443. write_seqlock_irq(&xtime_lock);
  444. ret = bus_do_settimeofday(tv);
  445. write_sequnlock_irq(&xtime_lock);
  446. clock_was_set();
  447. return ret;
  448. }
  449. EXPORT_SYMBOL(do_settimeofday);
  450. static int sbus_do_settimeofday(struct timespec *tv)
  451. {
  452. time_t wtm_sec, sec = tv->tv_sec;
  453. long wtm_nsec, nsec = tv->tv_nsec;
  454. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  455. return -EINVAL;
  456. /*
  457. * This is revolting. We need to set "xtime" correctly. However, the
  458. * value in this location is the value at the most recent update of
  459. * wall time. Discover what correction gettimeofday() would have
  460. * made, and then undo it!
  461. */
  462. nsec -= 1000 * (do_gettimeoffset() +
  463. (jiffies - wall_jiffies) * (USEC_PER_SEC / HZ));
  464. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  465. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  466. set_normalized_timespec(&xtime, sec, nsec);
  467. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  468. time_adjust = 0; /* stop active adjtime() */
  469. time_status |= STA_UNSYNC;
  470. time_maxerror = NTP_PHASE_LIMIT;
  471. time_esterror = NTP_PHASE_LIMIT;
  472. return 0;
  473. }
  474. /*
  475. * BUG: This routine does not handle hour overflow properly; it just
  476. * sets the minutes. Usually you won't notice until after reboot!
  477. */
  478. static int set_rtc_mmss(unsigned long nowtime)
  479. {
  480. int real_seconds, real_minutes, mostek_minutes;
  481. struct mostek48t02 *regs = (struct mostek48t02 *)mstk48t02_regs;
  482. unsigned long flags;
  483. #ifdef CONFIG_SUN4
  484. struct intersil *iregs = intersil_clock;
  485. int temp;
  486. #endif
  487. /* Not having a register set can lead to trouble. */
  488. if (!regs) {
  489. #ifdef CONFIG_SUN4
  490. if(!iregs)
  491. return -1;
  492. else {
  493. temp = iregs->clk.int_csec;
  494. mostek_minutes = iregs->clk.int_min;
  495. real_seconds = nowtime % 60;
  496. real_minutes = nowtime / 60;
  497. if (((abs(real_minutes - mostek_minutes) + 15)/30) & 1)
  498. real_minutes += 30; /* correct for half hour time zone */
  499. real_minutes %= 60;
  500. if (abs(real_minutes - mostek_minutes) < 30) {
  501. intersil_stop(iregs);
  502. iregs->clk.int_sec=real_seconds;
  503. iregs->clk.int_min=real_minutes;
  504. intersil_start(iregs);
  505. } else {
  506. printk(KERN_WARNING
  507. "set_rtc_mmss: can't update from %d to %d\n",
  508. mostek_minutes, real_minutes);
  509. return -1;
  510. }
  511. return 0;
  512. }
  513. #endif
  514. }
  515. spin_lock_irqsave(&mostek_lock, flags);
  516. /* Read the current RTC minutes. */
  517. regs->creg |= MSTK_CREG_READ;
  518. mostek_minutes = MSTK_REG_MIN(regs);
  519. regs->creg &= ~MSTK_CREG_READ;
  520. /*
  521. * since we're only adjusting minutes and seconds,
  522. * don't interfere with hour overflow. This avoids
  523. * messing with unknown time zones but requires your
  524. * RTC not to be off by more than 15 minutes
  525. */
  526. real_seconds = nowtime % 60;
  527. real_minutes = nowtime / 60;
  528. if (((abs(real_minutes - mostek_minutes) + 15)/30) & 1)
  529. real_minutes += 30; /* correct for half hour time zone */
  530. real_minutes %= 60;
  531. if (abs(real_minutes - mostek_minutes) < 30) {
  532. regs->creg |= MSTK_CREG_WRITE;
  533. MSTK_SET_REG_SEC(regs,real_seconds);
  534. MSTK_SET_REG_MIN(regs,real_minutes);
  535. regs->creg &= ~MSTK_CREG_WRITE;
  536. spin_unlock_irqrestore(&mostek_lock, flags);
  537. return 0;
  538. } else {
  539. spin_unlock_irqrestore(&mostek_lock, flags);
  540. return -1;
  541. }
  542. }