init.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  6. * and Cort Dougan (PReP) (cort@cs.nmt.edu)
  7. * Copyright (C) 1996 Paul Mackerras
  8. * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
  9. *
  10. * Derived from "arch/i386/mm/init.c"
  11. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  12. *
  13. * Dave Engebretsen <engebret@us.ibm.com>
  14. * Rework for PPC64 port.
  15. *
  16. * This program is free software; you can redistribute it and/or
  17. * modify it under the terms of the GNU General Public License
  18. * as published by the Free Software Foundation; either version
  19. * 2 of the License, or (at your option) any later version.
  20. *
  21. */
  22. #include <linux/config.h>
  23. #include <linux/signal.h>
  24. #include <linux/sched.h>
  25. #include <linux/kernel.h>
  26. #include <linux/errno.h>
  27. #include <linux/string.h>
  28. #include <linux/types.h>
  29. #include <linux/mman.h>
  30. #include <linux/mm.h>
  31. #include <linux/swap.h>
  32. #include <linux/stddef.h>
  33. #include <linux/vmalloc.h>
  34. #include <linux/init.h>
  35. #include <linux/delay.h>
  36. #include <linux/bootmem.h>
  37. #include <linux/highmem.h>
  38. #include <linux/idr.h>
  39. #include <linux/nodemask.h>
  40. #include <linux/module.h>
  41. #include <asm/pgalloc.h>
  42. #include <asm/page.h>
  43. #include <asm/abs_addr.h>
  44. #include <asm/prom.h>
  45. #include <asm/lmb.h>
  46. #include <asm/rtas.h>
  47. #include <asm/io.h>
  48. #include <asm/mmu_context.h>
  49. #include <asm/pgtable.h>
  50. #include <asm/mmu.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/smp.h>
  53. #include <asm/machdep.h>
  54. #include <asm/tlb.h>
  55. #include <asm/eeh.h>
  56. #include <asm/processor.h>
  57. #include <asm/mmzone.h>
  58. #include <asm/cputable.h>
  59. #include <asm/ppcdebug.h>
  60. #include <asm/sections.h>
  61. #include <asm/system.h>
  62. #include <asm/iommu.h>
  63. #include <asm/abs_addr.h>
  64. #include <asm/vdso.h>
  65. #include <asm/imalloc.h>
  66. int mem_init_done;
  67. unsigned long ioremap_bot = IMALLOC_BASE;
  68. static unsigned long phbs_io_bot = PHBS_IO_BASE;
  69. extern pgd_t swapper_pg_dir[];
  70. extern struct task_struct *current_set[NR_CPUS];
  71. unsigned long klimit = (unsigned long)_end;
  72. unsigned long _SDR1=0;
  73. unsigned long _ASR=0;
  74. /* max amount of RAM to use */
  75. unsigned long __max_memory;
  76. /* info on what we think the IO hole is */
  77. unsigned long io_hole_start;
  78. unsigned long io_hole_size;
  79. void show_mem(void)
  80. {
  81. unsigned long total = 0, reserved = 0;
  82. unsigned long shared = 0, cached = 0;
  83. struct page *page;
  84. pg_data_t *pgdat;
  85. unsigned long i;
  86. printk("Mem-info:\n");
  87. show_free_areas();
  88. printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
  89. for_each_pgdat(pgdat) {
  90. for (i = 0; i < pgdat->node_spanned_pages; i++) {
  91. page = pgdat_page_nr(pgdat, i);
  92. total++;
  93. if (PageReserved(page))
  94. reserved++;
  95. else if (PageSwapCache(page))
  96. cached++;
  97. else if (page_count(page))
  98. shared += page_count(page) - 1;
  99. }
  100. }
  101. printk("%ld pages of RAM\n", total);
  102. printk("%ld reserved pages\n", reserved);
  103. printk("%ld pages shared\n", shared);
  104. printk("%ld pages swap cached\n", cached);
  105. }
  106. #ifdef CONFIG_PPC_ISERIES
  107. void __iomem *ioremap(unsigned long addr, unsigned long size)
  108. {
  109. return (void __iomem *)addr;
  110. }
  111. extern void __iomem *__ioremap(unsigned long addr, unsigned long size,
  112. unsigned long flags)
  113. {
  114. return (void __iomem *)addr;
  115. }
  116. void iounmap(volatile void __iomem *addr)
  117. {
  118. return;
  119. }
  120. #else
  121. /*
  122. * map_io_page currently only called by __ioremap
  123. * map_io_page adds an entry to the ioremap page table
  124. * and adds an entry to the HPT, possibly bolting it
  125. */
  126. static int map_io_page(unsigned long ea, unsigned long pa, int flags)
  127. {
  128. pgd_t *pgdp;
  129. pud_t *pudp;
  130. pmd_t *pmdp;
  131. pte_t *ptep;
  132. unsigned long vsid;
  133. if (mem_init_done) {
  134. spin_lock(&init_mm.page_table_lock);
  135. pgdp = pgd_offset_k(ea);
  136. pudp = pud_alloc(&init_mm, pgdp, ea);
  137. if (!pudp)
  138. return -ENOMEM;
  139. pmdp = pmd_alloc(&init_mm, pudp, ea);
  140. if (!pmdp)
  141. return -ENOMEM;
  142. ptep = pte_alloc_kernel(&init_mm, pmdp, ea);
  143. if (!ptep)
  144. return -ENOMEM;
  145. pa = abs_to_phys(pa);
  146. set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
  147. __pgprot(flags)));
  148. spin_unlock(&init_mm.page_table_lock);
  149. } else {
  150. unsigned long va, vpn, hash, hpteg;
  151. /*
  152. * If the mm subsystem is not fully up, we cannot create a
  153. * linux page table entry for this mapping. Simply bolt an
  154. * entry in the hardware page table.
  155. */
  156. vsid = get_kernel_vsid(ea);
  157. va = (vsid << 28) | (ea & 0xFFFFFFF);
  158. vpn = va >> PAGE_SHIFT;
  159. hash = hpt_hash(vpn, 0);
  160. hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
  161. /* Panic if a pte grpup is full */
  162. if (ppc_md.hpte_insert(hpteg, va, pa >> PAGE_SHIFT, 0,
  163. _PAGE_NO_CACHE|_PAGE_GUARDED|PP_RWXX,
  164. 1, 0) == -1) {
  165. panic("map_io_page: could not insert mapping");
  166. }
  167. }
  168. return 0;
  169. }
  170. static void __iomem * __ioremap_com(unsigned long addr, unsigned long pa,
  171. unsigned long ea, unsigned long size,
  172. unsigned long flags)
  173. {
  174. unsigned long i;
  175. if ((flags & _PAGE_PRESENT) == 0)
  176. flags |= pgprot_val(PAGE_KERNEL);
  177. for (i = 0; i < size; i += PAGE_SIZE)
  178. if (map_io_page(ea+i, pa+i, flags))
  179. return NULL;
  180. return (void __iomem *) (ea + (addr & ~PAGE_MASK));
  181. }
  182. void __iomem *
  183. ioremap(unsigned long addr, unsigned long size)
  184. {
  185. return __ioremap(addr, size, _PAGE_NO_CACHE | _PAGE_GUARDED);
  186. }
  187. void __iomem * __ioremap(unsigned long addr, unsigned long size,
  188. unsigned long flags)
  189. {
  190. unsigned long pa, ea;
  191. void __iomem *ret;
  192. /*
  193. * Choose an address to map it to.
  194. * Once the imalloc system is running, we use it.
  195. * Before that, we map using addresses going
  196. * up from ioremap_bot. imalloc will use
  197. * the addresses from ioremap_bot through
  198. * IMALLOC_END (0xE000001fffffffff)
  199. *
  200. */
  201. pa = addr & PAGE_MASK;
  202. size = PAGE_ALIGN(addr + size) - pa;
  203. if (size == 0)
  204. return NULL;
  205. if (mem_init_done) {
  206. struct vm_struct *area;
  207. area = im_get_free_area(size);
  208. if (area == NULL)
  209. return NULL;
  210. ea = (unsigned long)(area->addr);
  211. ret = __ioremap_com(addr, pa, ea, size, flags);
  212. if (!ret)
  213. im_free(area->addr);
  214. } else {
  215. ea = ioremap_bot;
  216. ret = __ioremap_com(addr, pa, ea, size, flags);
  217. if (ret)
  218. ioremap_bot += size;
  219. }
  220. return ret;
  221. }
  222. #define IS_PAGE_ALIGNED(_val) ((_val) == ((_val) & PAGE_MASK))
  223. int __ioremap_explicit(unsigned long pa, unsigned long ea,
  224. unsigned long size, unsigned long flags)
  225. {
  226. struct vm_struct *area;
  227. void __iomem *ret;
  228. /* For now, require page-aligned values for pa, ea, and size */
  229. if (!IS_PAGE_ALIGNED(pa) || !IS_PAGE_ALIGNED(ea) ||
  230. !IS_PAGE_ALIGNED(size)) {
  231. printk(KERN_ERR "unaligned value in %s\n", __FUNCTION__);
  232. return 1;
  233. }
  234. if (!mem_init_done) {
  235. /* Two things to consider in this case:
  236. * 1) No records will be kept (imalloc, etc) that the region
  237. * has been remapped
  238. * 2) It won't be easy to iounmap() the region later (because
  239. * of 1)
  240. */
  241. ;
  242. } else {
  243. area = im_get_area(ea, size,
  244. IM_REGION_UNUSED|IM_REGION_SUBSET|IM_REGION_EXISTS);
  245. if (area == NULL) {
  246. /* Expected when PHB-dlpar is in play */
  247. return 1;
  248. }
  249. if (ea != (unsigned long) area->addr) {
  250. printk(KERN_ERR "unexpected addr return from "
  251. "im_get_area\n");
  252. return 1;
  253. }
  254. }
  255. ret = __ioremap_com(pa, pa, ea, size, flags);
  256. if (ret == NULL) {
  257. printk(KERN_ERR "ioremap_explicit() allocation failure !\n");
  258. return 1;
  259. }
  260. if (ret != (void *) ea) {
  261. printk(KERN_ERR "__ioremap_com() returned unexpected addr\n");
  262. return 1;
  263. }
  264. return 0;
  265. }
  266. /*
  267. * Unmap an IO region and remove it from imalloc'd list.
  268. * Access to IO memory should be serialized by driver.
  269. * This code is modeled after vmalloc code - unmap_vm_area()
  270. *
  271. * XXX what about calls before mem_init_done (ie python_countermeasures())
  272. */
  273. void iounmap(volatile void __iomem *token)
  274. {
  275. void *addr;
  276. if (!mem_init_done)
  277. return;
  278. addr = (void *) ((unsigned long __force) token & PAGE_MASK);
  279. im_free(addr);
  280. }
  281. static int iounmap_subset_regions(unsigned long addr, unsigned long size)
  282. {
  283. struct vm_struct *area;
  284. /* Check whether subsets of this region exist */
  285. area = im_get_area(addr, size, IM_REGION_SUPERSET);
  286. if (area == NULL)
  287. return 1;
  288. while (area) {
  289. iounmap((void __iomem *) area->addr);
  290. area = im_get_area(addr, size,
  291. IM_REGION_SUPERSET);
  292. }
  293. return 0;
  294. }
  295. int iounmap_explicit(volatile void __iomem *start, unsigned long size)
  296. {
  297. struct vm_struct *area;
  298. unsigned long addr;
  299. int rc;
  300. addr = (unsigned long __force) start & PAGE_MASK;
  301. /* Verify that the region either exists or is a subset of an existing
  302. * region. In the latter case, split the parent region to create
  303. * the exact region
  304. */
  305. area = im_get_area(addr, size,
  306. IM_REGION_EXISTS | IM_REGION_SUBSET);
  307. if (area == NULL) {
  308. /* Determine whether subset regions exist. If so, unmap */
  309. rc = iounmap_subset_regions(addr, size);
  310. if (rc) {
  311. printk(KERN_ERR
  312. "%s() cannot unmap nonexistent range 0x%lx\n",
  313. __FUNCTION__, addr);
  314. return 1;
  315. }
  316. } else {
  317. iounmap((void __iomem *) area->addr);
  318. }
  319. /*
  320. * FIXME! This can't be right:
  321. iounmap(area->addr);
  322. * Maybe it should be "iounmap(area);"
  323. */
  324. return 0;
  325. }
  326. #endif
  327. EXPORT_SYMBOL(ioremap);
  328. EXPORT_SYMBOL(__ioremap);
  329. EXPORT_SYMBOL(iounmap);
  330. void free_initmem(void)
  331. {
  332. unsigned long addr;
  333. addr = (unsigned long)__init_begin;
  334. for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) {
  335. ClearPageReserved(virt_to_page(addr));
  336. set_page_count(virt_to_page(addr), 1);
  337. free_page(addr);
  338. totalram_pages++;
  339. }
  340. printk ("Freeing unused kernel memory: %luk freed\n",
  341. ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10);
  342. }
  343. #ifdef CONFIG_BLK_DEV_INITRD
  344. void free_initrd_mem(unsigned long start, unsigned long end)
  345. {
  346. if (start < end)
  347. printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
  348. for (; start < end; start += PAGE_SIZE) {
  349. ClearPageReserved(virt_to_page(start));
  350. set_page_count(virt_to_page(start), 1);
  351. free_page(start);
  352. totalram_pages++;
  353. }
  354. }
  355. #endif
  356. static DEFINE_SPINLOCK(mmu_context_lock);
  357. static DEFINE_IDR(mmu_context_idr);
  358. int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
  359. {
  360. int index;
  361. int err;
  362. #ifdef CONFIG_HUGETLB_PAGE
  363. /* We leave htlb_segs as it was, but for a fork, we need to
  364. * clear the huge_pgdir. */
  365. mm->context.huge_pgdir = NULL;
  366. #endif
  367. again:
  368. if (!idr_pre_get(&mmu_context_idr, GFP_KERNEL))
  369. return -ENOMEM;
  370. spin_lock(&mmu_context_lock);
  371. err = idr_get_new_above(&mmu_context_idr, NULL, 1, &index);
  372. spin_unlock(&mmu_context_lock);
  373. if (err == -EAGAIN)
  374. goto again;
  375. else if (err)
  376. return err;
  377. if (index > MAX_CONTEXT) {
  378. idr_remove(&mmu_context_idr, index);
  379. return -ENOMEM;
  380. }
  381. mm->context.id = index;
  382. return 0;
  383. }
  384. void destroy_context(struct mm_struct *mm)
  385. {
  386. spin_lock(&mmu_context_lock);
  387. idr_remove(&mmu_context_idr, mm->context.id);
  388. spin_unlock(&mmu_context_lock);
  389. mm->context.id = NO_CONTEXT;
  390. hugetlb_mm_free_pgd(mm);
  391. }
  392. /*
  393. * Do very early mm setup.
  394. */
  395. void __init mm_init_ppc64(void)
  396. {
  397. #ifndef CONFIG_PPC_ISERIES
  398. unsigned long i;
  399. #endif
  400. ppc64_boot_msg(0x100, "MM Init");
  401. /* This is the story of the IO hole... please, keep seated,
  402. * unfortunately, we are out of oxygen masks at the moment.
  403. * So we need some rough way to tell where your big IO hole
  404. * is. On pmac, it's between 2G and 4G, on POWER3, it's around
  405. * that area as well, on POWER4 we don't have one, etc...
  406. * We need that as a "hint" when sizing the TCE table on POWER3
  407. * So far, the simplest way that seem work well enough for us it
  408. * to just assume that the first discontinuity in our physical
  409. * RAM layout is the IO hole. That may not be correct in the future
  410. * (and isn't on iSeries but then we don't care ;)
  411. */
  412. #ifndef CONFIG_PPC_ISERIES
  413. for (i = 1; i < lmb.memory.cnt; i++) {
  414. unsigned long base, prevbase, prevsize;
  415. prevbase = lmb.memory.region[i-1].physbase;
  416. prevsize = lmb.memory.region[i-1].size;
  417. base = lmb.memory.region[i].physbase;
  418. if (base > (prevbase + prevsize)) {
  419. io_hole_start = prevbase + prevsize;
  420. io_hole_size = base - (prevbase + prevsize);
  421. break;
  422. }
  423. }
  424. #endif /* CONFIG_PPC_ISERIES */
  425. if (io_hole_start)
  426. printk("IO Hole assumed to be %lx -> %lx\n",
  427. io_hole_start, io_hole_start + io_hole_size - 1);
  428. ppc64_boot_msg(0x100, "MM Init Done");
  429. }
  430. /*
  431. * This is called by /dev/mem to know if a given address has to
  432. * be mapped non-cacheable or not
  433. */
  434. int page_is_ram(unsigned long pfn)
  435. {
  436. int i;
  437. unsigned long paddr = (pfn << PAGE_SHIFT);
  438. for (i=0; i < lmb.memory.cnt; i++) {
  439. unsigned long base;
  440. #ifdef CONFIG_MSCHUNKS
  441. base = lmb.memory.region[i].physbase;
  442. #else
  443. base = lmb.memory.region[i].base;
  444. #endif
  445. if ((paddr >= base) &&
  446. (paddr < (base + lmb.memory.region[i].size))) {
  447. return 1;
  448. }
  449. }
  450. return 0;
  451. }
  452. EXPORT_SYMBOL(page_is_ram);
  453. /*
  454. * Initialize the bootmem system and give it all the memory we
  455. * have available.
  456. */
  457. #ifndef CONFIG_NEED_MULTIPLE_NODES
  458. void __init do_init_bootmem(void)
  459. {
  460. unsigned long i;
  461. unsigned long start, bootmap_pages;
  462. unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
  463. int boot_mapsize;
  464. /*
  465. * Find an area to use for the bootmem bitmap. Calculate the size of
  466. * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
  467. * Add 1 additional page in case the address isn't page-aligned.
  468. */
  469. bootmap_pages = bootmem_bootmap_pages(total_pages);
  470. start = abs_to_phys(lmb_alloc(bootmap_pages<<PAGE_SHIFT, PAGE_SIZE));
  471. BUG_ON(!start);
  472. boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
  473. max_pfn = max_low_pfn;
  474. /* Add all physical memory to the bootmem map, mark each area
  475. * present.
  476. */
  477. for (i=0; i < lmb.memory.cnt; i++) {
  478. unsigned long physbase, size;
  479. unsigned long start_pfn, end_pfn;
  480. physbase = lmb.memory.region[i].physbase;
  481. size = lmb.memory.region[i].size;
  482. start_pfn = physbase >> PAGE_SHIFT;
  483. end_pfn = start_pfn + (size >> PAGE_SHIFT);
  484. memory_present(0, start_pfn, end_pfn);
  485. free_bootmem(physbase, size);
  486. }
  487. /* reserve the sections we're already using */
  488. for (i=0; i < lmb.reserved.cnt; i++) {
  489. unsigned long physbase = lmb.reserved.region[i].physbase;
  490. unsigned long size = lmb.reserved.region[i].size;
  491. reserve_bootmem(physbase, size);
  492. }
  493. }
  494. /*
  495. * paging_init() sets up the page tables - in fact we've already done this.
  496. */
  497. void __init paging_init(void)
  498. {
  499. unsigned long zones_size[MAX_NR_ZONES];
  500. unsigned long zholes_size[MAX_NR_ZONES];
  501. unsigned long total_ram = lmb_phys_mem_size();
  502. unsigned long top_of_ram = lmb_end_of_DRAM();
  503. printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
  504. top_of_ram, total_ram);
  505. printk(KERN_INFO "Memory hole size: %ldMB\n",
  506. (top_of_ram - total_ram) >> 20);
  507. /*
  508. * All pages are DMA-able so we put them all in the DMA zone.
  509. */
  510. memset(zones_size, 0, sizeof(zones_size));
  511. memset(zholes_size, 0, sizeof(zholes_size));
  512. zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
  513. zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
  514. free_area_init_node(0, NODE_DATA(0), zones_size,
  515. __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
  516. }
  517. #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
  518. static struct kcore_list kcore_vmem;
  519. static int __init setup_kcore(void)
  520. {
  521. int i;
  522. for (i=0; i < lmb.memory.cnt; i++) {
  523. unsigned long physbase, size;
  524. struct kcore_list *kcore_mem;
  525. physbase = lmb.memory.region[i].physbase;
  526. size = lmb.memory.region[i].size;
  527. /* GFP_ATOMIC to avoid might_sleep warnings during boot */
  528. kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC);
  529. if (!kcore_mem)
  530. panic("mem_init: kmalloc failed\n");
  531. kclist_add(kcore_mem, __va(physbase), size);
  532. }
  533. kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
  534. return 0;
  535. }
  536. module_init(setup_kcore);
  537. void __init mem_init(void)
  538. {
  539. #ifdef CONFIG_NEED_MULTIPLE_NODES
  540. int nid;
  541. #endif
  542. pg_data_t *pgdat;
  543. unsigned long i;
  544. struct page *page;
  545. unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
  546. num_physpages = max_low_pfn; /* RAM is assumed contiguous */
  547. high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
  548. #ifdef CONFIG_NEED_MULTIPLE_NODES
  549. for_each_online_node(nid) {
  550. if (NODE_DATA(nid)->node_spanned_pages != 0) {
  551. printk("freeing bootmem node %x\n", nid);
  552. totalram_pages +=
  553. free_all_bootmem_node(NODE_DATA(nid));
  554. }
  555. }
  556. #else
  557. max_mapnr = num_physpages;
  558. totalram_pages += free_all_bootmem();
  559. #endif
  560. for_each_pgdat(pgdat) {
  561. for (i = 0; i < pgdat->node_spanned_pages; i++) {
  562. page = pgdat_page_nr(pgdat, i);
  563. if (PageReserved(page))
  564. reservedpages++;
  565. }
  566. }
  567. codesize = (unsigned long)&_etext - (unsigned long)&_stext;
  568. initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
  569. datasize = (unsigned long)&_edata - (unsigned long)&__init_end;
  570. bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
  571. printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
  572. "%luk reserved, %luk data, %luk bss, %luk init)\n",
  573. (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
  574. num_physpages << (PAGE_SHIFT-10),
  575. codesize >> 10,
  576. reservedpages << (PAGE_SHIFT-10),
  577. datasize >> 10,
  578. bsssize >> 10,
  579. initsize >> 10);
  580. mem_init_done = 1;
  581. #ifdef CONFIG_PPC_ISERIES
  582. iommu_vio_init();
  583. #endif
  584. /* Initialize the vDSO */
  585. vdso_init();
  586. }
  587. /*
  588. * This is called when a page has been modified by the kernel.
  589. * It just marks the page as not i-cache clean. We do the i-cache
  590. * flush later when the page is given to a user process, if necessary.
  591. */
  592. void flush_dcache_page(struct page *page)
  593. {
  594. if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
  595. return;
  596. /* avoid an atomic op if possible */
  597. if (test_bit(PG_arch_1, &page->flags))
  598. clear_bit(PG_arch_1, &page->flags);
  599. }
  600. EXPORT_SYMBOL(flush_dcache_page);
  601. void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
  602. {
  603. clear_page(page);
  604. if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
  605. return;
  606. /*
  607. * We shouldnt have to do this, but some versions of glibc
  608. * require it (ld.so assumes zero filled pages are icache clean)
  609. * - Anton
  610. */
  611. /* avoid an atomic op if possible */
  612. if (test_bit(PG_arch_1, &pg->flags))
  613. clear_bit(PG_arch_1, &pg->flags);
  614. }
  615. EXPORT_SYMBOL(clear_user_page);
  616. void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
  617. struct page *pg)
  618. {
  619. copy_page(vto, vfrom);
  620. /*
  621. * We should be able to use the following optimisation, however
  622. * there are two problems.
  623. * Firstly a bug in some versions of binutils meant PLT sections
  624. * were not marked executable.
  625. * Secondly the first word in the GOT section is blrl, used
  626. * to establish the GOT address. Until recently the GOT was
  627. * not marked executable.
  628. * - Anton
  629. */
  630. #if 0
  631. if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
  632. return;
  633. #endif
  634. if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
  635. return;
  636. /* avoid an atomic op if possible */
  637. if (test_bit(PG_arch_1, &pg->flags))
  638. clear_bit(PG_arch_1, &pg->flags);
  639. }
  640. void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
  641. unsigned long addr, int len)
  642. {
  643. unsigned long maddr;
  644. maddr = (unsigned long)page_address(page) + (addr & ~PAGE_MASK);
  645. flush_icache_range(maddr, maddr + len);
  646. }
  647. EXPORT_SYMBOL(flush_icache_user_range);
  648. /*
  649. * This is called at the end of handling a user page fault, when the
  650. * fault has been handled by updating a PTE in the linux page tables.
  651. * We use it to preload an HPTE into the hash table corresponding to
  652. * the updated linux PTE.
  653. *
  654. * This must always be called with the mm->page_table_lock held
  655. */
  656. void update_mmu_cache(struct vm_area_struct *vma, unsigned long ea,
  657. pte_t pte)
  658. {
  659. unsigned long vsid;
  660. void *pgdir;
  661. pte_t *ptep;
  662. int local = 0;
  663. cpumask_t tmp;
  664. unsigned long flags;
  665. /* handle i-cache coherency */
  666. if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
  667. !cpu_has_feature(CPU_FTR_NOEXECUTE)) {
  668. unsigned long pfn = pte_pfn(pte);
  669. if (pfn_valid(pfn)) {
  670. struct page *page = pfn_to_page(pfn);
  671. if (!PageReserved(page)
  672. && !test_bit(PG_arch_1, &page->flags)) {
  673. __flush_dcache_icache(page_address(page));
  674. set_bit(PG_arch_1, &page->flags);
  675. }
  676. }
  677. }
  678. /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
  679. if (!pte_young(pte))
  680. return;
  681. pgdir = vma->vm_mm->pgd;
  682. if (pgdir == NULL)
  683. return;
  684. ptep = find_linux_pte(pgdir, ea);
  685. if (!ptep)
  686. return;
  687. vsid = get_vsid(vma->vm_mm->context.id, ea);
  688. local_irq_save(flags);
  689. tmp = cpumask_of_cpu(smp_processor_id());
  690. if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
  691. local = 1;
  692. __hash_page(ea, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep,
  693. 0x300, local);
  694. local_irq_restore(flags);
  695. }
  696. void __iomem * reserve_phb_iospace(unsigned long size)
  697. {
  698. void __iomem *virt_addr;
  699. if (phbs_io_bot >= IMALLOC_BASE)
  700. panic("reserve_phb_iospace(): phb io space overflow\n");
  701. virt_addr = (void __iomem *) phbs_io_bot;
  702. phbs_io_bot += size;
  703. return virt_addr;
  704. }
  705. kmem_cache_t *zero_cache;
  706. static void zero_ctor(void *pte, kmem_cache_t *cache, unsigned long flags)
  707. {
  708. memset(pte, 0, PAGE_SIZE);
  709. }
  710. void pgtable_cache_init(void)
  711. {
  712. zero_cache = kmem_cache_create("zero",
  713. PAGE_SIZE,
  714. 0,
  715. SLAB_HWCACHE_ALIGN | SLAB_MUST_HWCACHE_ALIGN,
  716. zero_ctor,
  717. NULL);
  718. if (!zero_cache)
  719. panic("pgtable_cache_init(): could not create zero_cache!\n");
  720. }
  721. pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
  722. unsigned long size, pgprot_t vma_prot)
  723. {
  724. if (ppc_md.phys_mem_access_prot)
  725. return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot);
  726. if (!page_is_ram(addr >> PAGE_SHIFT))
  727. vma_prot = __pgprot(pgprot_val(vma_prot)
  728. | _PAGE_GUARDED | _PAGE_NO_CACHE);
  729. return vma_prot;
  730. }
  731. EXPORT_SYMBOL(phys_mem_access_prot);