time.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755
  1. /*
  2. * Copyright 2001 MontaVista Software Inc.
  3. * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
  4. * Copyright (c) 2003, 2004 Maciej W. Rozycki
  5. *
  6. * Common time service routines for MIPS machines. See
  7. * Documentation/mips/time.README.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the
  11. * Free Software Foundation; either version 2 of the License, or (at your
  12. * option) any later version.
  13. */
  14. #include <linux/types.h>
  15. #include <linux/kernel.h>
  16. #include <linux/init.h>
  17. #include <linux/sched.h>
  18. #include <linux/param.h>
  19. #include <linux/time.h>
  20. #include <linux/timex.h>
  21. #include <linux/smp.h>
  22. #include <linux/kernel_stat.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/module.h>
  26. #include <asm/bootinfo.h>
  27. #include <asm/compiler.h>
  28. #include <asm/cpu.h>
  29. #include <asm/cpu-features.h>
  30. #include <asm/div64.h>
  31. #include <asm/sections.h>
  32. #include <asm/time.h>
  33. /*
  34. * The integer part of the number of usecs per jiffy is taken from tick,
  35. * but the fractional part is not recorded, so we calculate it using the
  36. * initial value of HZ. This aids systems where tick isn't really an
  37. * integer (e.g. for HZ = 128).
  38. */
  39. #define USECS_PER_JIFFY TICK_SIZE
  40. #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
  41. #define TICK_SIZE (tick_nsec / 1000)
  42. u64 jiffies_64 = INITIAL_JIFFIES;
  43. EXPORT_SYMBOL(jiffies_64);
  44. /*
  45. * forward reference
  46. */
  47. extern volatile unsigned long wall_jiffies;
  48. DEFINE_SPINLOCK(rtc_lock);
  49. /*
  50. * By default we provide the null RTC ops
  51. */
  52. static unsigned long null_rtc_get_time(void)
  53. {
  54. return mktime(2000, 1, 1, 0, 0, 0);
  55. }
  56. static int null_rtc_set_time(unsigned long sec)
  57. {
  58. return 0;
  59. }
  60. unsigned long (*rtc_get_time)(void) = null_rtc_get_time;
  61. int (*rtc_set_time)(unsigned long) = null_rtc_set_time;
  62. int (*rtc_set_mmss)(unsigned long);
  63. /* usecs per counter cycle, shifted to left by 32 bits */
  64. static unsigned int sll32_usecs_per_cycle;
  65. /* how many counter cycles in a jiffy */
  66. static unsigned long cycles_per_jiffy;
  67. /* Cycle counter value at the previous timer interrupt.. */
  68. static unsigned int timerhi, timerlo;
  69. /* expirelo is the count value for next CPU timer interrupt */
  70. static unsigned int expirelo;
  71. /*
  72. * Null timer ack for systems not needing one (e.g. i8254).
  73. */
  74. static void null_timer_ack(void) { /* nothing */ }
  75. /*
  76. * Null high precision timer functions for systems lacking one.
  77. */
  78. static unsigned int null_hpt_read(void)
  79. {
  80. return 0;
  81. }
  82. static void null_hpt_init(unsigned int count) { /* nothing */ }
  83. /*
  84. * Timer ack for an R4k-compatible timer of a known frequency.
  85. */
  86. static void c0_timer_ack(void)
  87. {
  88. unsigned int count;
  89. /* Ack this timer interrupt and set the next one. */
  90. expirelo += cycles_per_jiffy;
  91. write_c0_compare(expirelo);
  92. /* Check to see if we have missed any timer interrupts. */
  93. count = read_c0_count();
  94. if ((count - expirelo) < 0x7fffffff) {
  95. /* missed_timer_count++; */
  96. expirelo = count + cycles_per_jiffy;
  97. write_c0_compare(expirelo);
  98. }
  99. }
  100. /*
  101. * High precision timer functions for a R4k-compatible timer.
  102. */
  103. static unsigned int c0_hpt_read(void)
  104. {
  105. return read_c0_count();
  106. }
  107. /* For use solely as a high precision timer. */
  108. static void c0_hpt_init(unsigned int count)
  109. {
  110. write_c0_count(read_c0_count() - count);
  111. }
  112. /* For use both as a high precision timer and an interrupt source. */
  113. static void c0_hpt_timer_init(unsigned int count)
  114. {
  115. count = read_c0_count() - count;
  116. expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
  117. write_c0_count(expirelo - cycles_per_jiffy);
  118. write_c0_compare(expirelo);
  119. write_c0_count(count);
  120. }
  121. int (*mips_timer_state)(void);
  122. void (*mips_timer_ack)(void);
  123. unsigned int (*mips_hpt_read)(void);
  124. void (*mips_hpt_init)(unsigned int);
  125. /*
  126. * This version of gettimeofday has microsecond resolution and better than
  127. * microsecond precision on fast machines with cycle counter.
  128. */
  129. void do_gettimeofday(struct timeval *tv)
  130. {
  131. unsigned long seq;
  132. unsigned long lost;
  133. unsigned long usec, sec;
  134. unsigned long max_ntp_tick = tick_usec - tickadj;
  135. do {
  136. seq = read_seqbegin(&xtime_lock);
  137. usec = do_gettimeoffset();
  138. lost = jiffies - wall_jiffies;
  139. /*
  140. * If time_adjust is negative then NTP is slowing the clock
  141. * so make sure not to go into next possible interval.
  142. * Better to lose some accuracy than have time go backwards..
  143. */
  144. if (unlikely(time_adjust < 0)) {
  145. usec = min(usec, max_ntp_tick);
  146. if (lost)
  147. usec += lost * max_ntp_tick;
  148. } else if (unlikely(lost))
  149. usec += lost * tick_usec;
  150. sec = xtime.tv_sec;
  151. usec += (xtime.tv_nsec / 1000);
  152. } while (read_seqretry(&xtime_lock, seq));
  153. while (usec >= 1000000) {
  154. usec -= 1000000;
  155. sec++;
  156. }
  157. tv->tv_sec = sec;
  158. tv->tv_usec = usec;
  159. }
  160. EXPORT_SYMBOL(do_gettimeofday);
  161. int do_settimeofday(struct timespec *tv)
  162. {
  163. time_t wtm_sec, sec = tv->tv_sec;
  164. long wtm_nsec, nsec = tv->tv_nsec;
  165. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  166. return -EINVAL;
  167. write_seqlock_irq(&xtime_lock);
  168. /*
  169. * This is revolting. We need to set "xtime" correctly. However,
  170. * the value in this location is the value at the most recent update
  171. * of wall time. Discover what correction gettimeofday() would have
  172. * made, and then undo it!
  173. */
  174. nsec -= do_gettimeoffset() * NSEC_PER_USEC;
  175. nsec -= (jiffies - wall_jiffies) * tick_nsec;
  176. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  177. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  178. set_normalized_timespec(&xtime, sec, nsec);
  179. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  180. time_adjust = 0; /* stop active adjtime() */
  181. time_status |= STA_UNSYNC;
  182. time_maxerror = NTP_PHASE_LIMIT;
  183. time_esterror = NTP_PHASE_LIMIT;
  184. write_sequnlock_irq(&xtime_lock);
  185. clock_was_set();
  186. return 0;
  187. }
  188. EXPORT_SYMBOL(do_settimeofday);
  189. /*
  190. * Gettimeoffset routines. These routines returns the time duration
  191. * since last timer interrupt in usecs.
  192. *
  193. * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
  194. * Otherwise use calibrate_gettimeoffset()
  195. *
  196. * If the CPU does not have the counter register, you can either supply
  197. * your own gettimeoffset() routine, or use null_gettimeoffset(), which
  198. * gives the same resolution as HZ.
  199. */
  200. static unsigned long null_gettimeoffset(void)
  201. {
  202. return 0;
  203. }
  204. /* The function pointer to one of the gettimeoffset funcs. */
  205. unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
  206. static unsigned long fixed_rate_gettimeoffset(void)
  207. {
  208. u32 count;
  209. unsigned long res;
  210. /* Get last timer tick in absolute kernel time */
  211. count = mips_hpt_read();
  212. /* .. relative to previous jiffy (32 bits is enough) */
  213. count -= timerlo;
  214. __asm__("multu %1,%2"
  215. : "=h" (res)
  216. : "r" (count), "r" (sll32_usecs_per_cycle)
  217. : "lo", GCC_REG_ACCUM);
  218. /*
  219. * Due to possible jiffies inconsistencies, we need to check
  220. * the result so that we'll get a timer that is monotonic.
  221. */
  222. if (res >= USECS_PER_JIFFY)
  223. res = USECS_PER_JIFFY - 1;
  224. return res;
  225. }
  226. /*
  227. * Cached "1/(clocks per usec) * 2^32" value.
  228. * It has to be recalculated once each jiffy.
  229. */
  230. static unsigned long cached_quotient;
  231. /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
  232. static unsigned long last_jiffies;
  233. /*
  234. * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
  235. */
  236. static unsigned long calibrate_div32_gettimeoffset(void)
  237. {
  238. u32 count;
  239. unsigned long res, tmp;
  240. unsigned long quotient;
  241. tmp = jiffies;
  242. quotient = cached_quotient;
  243. if (last_jiffies != tmp) {
  244. last_jiffies = tmp;
  245. if (last_jiffies != 0) {
  246. unsigned long r0;
  247. do_div64_32(r0, timerhi, timerlo, tmp);
  248. do_div64_32(quotient, USECS_PER_JIFFY,
  249. USECS_PER_JIFFY_FRAC, r0);
  250. cached_quotient = quotient;
  251. }
  252. }
  253. /* Get last timer tick in absolute kernel time */
  254. count = mips_hpt_read();
  255. /* .. relative to previous jiffy (32 bits is enough) */
  256. count -= timerlo;
  257. __asm__("multu %1,%2"
  258. : "=h" (res)
  259. : "r" (count), "r" (quotient)
  260. : "lo", GCC_REG_ACCUM);
  261. /*
  262. * Due to possible jiffies inconsistencies, we need to check
  263. * the result so that we'll get a timer that is monotonic.
  264. */
  265. if (res >= USECS_PER_JIFFY)
  266. res = USECS_PER_JIFFY - 1;
  267. return res;
  268. }
  269. static unsigned long calibrate_div64_gettimeoffset(void)
  270. {
  271. u32 count;
  272. unsigned long res, tmp;
  273. unsigned long quotient;
  274. tmp = jiffies;
  275. quotient = cached_quotient;
  276. if (last_jiffies != tmp) {
  277. last_jiffies = tmp;
  278. if (last_jiffies) {
  279. unsigned long r0;
  280. __asm__(".set push\n\t"
  281. ".set mips3\n\t"
  282. "lwu %0,%3\n\t"
  283. "dsll32 %1,%2,0\n\t"
  284. "or %1,%1,%0\n\t"
  285. "ddivu $0,%1,%4\n\t"
  286. "mflo %1\n\t"
  287. "dsll32 %0,%5,0\n\t"
  288. "or %0,%0,%6\n\t"
  289. "ddivu $0,%0,%1\n\t"
  290. "mflo %0\n\t"
  291. ".set pop"
  292. : "=&r" (quotient), "=&r" (r0)
  293. : "r" (timerhi), "m" (timerlo),
  294. "r" (tmp), "r" (USECS_PER_JIFFY),
  295. "r" (USECS_PER_JIFFY_FRAC)
  296. : "hi", "lo", GCC_REG_ACCUM);
  297. cached_quotient = quotient;
  298. }
  299. }
  300. /* Get last timer tick in absolute kernel time */
  301. count = mips_hpt_read();
  302. /* .. relative to previous jiffy (32 bits is enough) */
  303. count -= timerlo;
  304. __asm__("multu %1,%2"
  305. : "=h" (res)
  306. : "r" (count), "r" (quotient)
  307. : "lo", GCC_REG_ACCUM);
  308. /*
  309. * Due to possible jiffies inconsistencies, we need to check
  310. * the result so that we'll get a timer that is monotonic.
  311. */
  312. if (res >= USECS_PER_JIFFY)
  313. res = USECS_PER_JIFFY - 1;
  314. return res;
  315. }
  316. /* last time when xtime and rtc are sync'ed up */
  317. static long last_rtc_update;
  318. /*
  319. * local_timer_interrupt() does profiling and process accounting
  320. * on a per-CPU basis.
  321. *
  322. * In UP mode, it is invoked from the (global) timer_interrupt.
  323. *
  324. * In SMP mode, it might invoked by per-CPU timer interrupt, or
  325. * a broadcasted inter-processor interrupt which itself is triggered
  326. * by the global timer interrupt.
  327. */
  328. void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  329. {
  330. if (current->pid)
  331. profile_tick(CPU_PROFILING, regs);
  332. update_process_times(user_mode(regs));
  333. }
  334. /*
  335. * High-level timer interrupt service routines. This function
  336. * is set as irqaction->handler and is invoked through do_IRQ.
  337. */
  338. irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  339. {
  340. unsigned long j;
  341. unsigned int count;
  342. count = mips_hpt_read();
  343. mips_timer_ack();
  344. /* Update timerhi/timerlo for intra-jiffy calibration. */
  345. timerhi += count < timerlo; /* Wrap around */
  346. timerlo = count;
  347. /*
  348. * call the generic timer interrupt handling
  349. */
  350. do_timer(regs);
  351. /*
  352. * If we have an externally synchronized Linux clock, then update
  353. * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be
  354. * called as close as possible to 500 ms before the new second starts.
  355. */
  356. write_seqlock(&xtime_lock);
  357. if ((time_status & STA_UNSYNC) == 0 &&
  358. xtime.tv_sec > last_rtc_update + 660 &&
  359. (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
  360. (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
  361. if (rtc_set_mmss(xtime.tv_sec) == 0) {
  362. last_rtc_update = xtime.tv_sec;
  363. } else {
  364. /* do it again in 60 s */
  365. last_rtc_update = xtime.tv_sec - 600;
  366. }
  367. }
  368. write_sequnlock(&xtime_lock);
  369. /*
  370. * If jiffies has overflown in this timer_interrupt, we must
  371. * update the timer[hi]/[lo] to make fast gettimeoffset funcs
  372. * quotient calc still valid. -arca
  373. *
  374. * The first timer interrupt comes late as interrupts are
  375. * enabled long after timers are initialized. Therefore the
  376. * high precision timer is fast, leading to wrong gettimeoffset()
  377. * calculations. We deal with it by setting it based on the
  378. * number of its ticks between the second and the third interrupt.
  379. * That is still somewhat imprecise, but it's a good estimate.
  380. * --macro
  381. */
  382. j = jiffies;
  383. if (j < 4) {
  384. static unsigned int prev_count;
  385. static int hpt_initialized;
  386. switch (j) {
  387. case 0:
  388. timerhi = timerlo = 0;
  389. mips_hpt_init(count);
  390. break;
  391. case 2:
  392. prev_count = count;
  393. break;
  394. case 3:
  395. if (!hpt_initialized) {
  396. unsigned int c3 = 3 * (count - prev_count);
  397. timerhi = 0;
  398. timerlo = c3;
  399. mips_hpt_init(count - c3);
  400. hpt_initialized = 1;
  401. }
  402. break;
  403. default:
  404. break;
  405. }
  406. }
  407. /*
  408. * In UP mode, we call local_timer_interrupt() to do profiling
  409. * and process accouting.
  410. *
  411. * In SMP mode, local_timer_interrupt() is invoked by appropriate
  412. * low-level local timer interrupt handler.
  413. */
  414. local_timer_interrupt(irq, dev_id, regs);
  415. return IRQ_HANDLED;
  416. }
  417. asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
  418. {
  419. irq_enter();
  420. kstat_this_cpu.irqs[irq]++;
  421. /* we keep interrupt disabled all the time */
  422. timer_interrupt(irq, NULL, regs);
  423. irq_exit();
  424. }
  425. asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
  426. {
  427. irq_enter();
  428. if (smp_processor_id() != 0)
  429. kstat_this_cpu.irqs[irq]++;
  430. /* we keep interrupt disabled all the time */
  431. local_timer_interrupt(irq, NULL, regs);
  432. irq_exit();
  433. }
  434. /*
  435. * time_init() - it does the following things.
  436. *
  437. * 1) board_time_init() -
  438. * a) (optional) set up RTC routines,
  439. * b) (optional) calibrate and set the mips_hpt_frequency
  440. * (only needed if you intended to use fixed_rate_gettimeoffset
  441. * or use cpu counter as timer interrupt source)
  442. * 2) setup xtime based on rtc_get_time().
  443. * 3) choose a appropriate gettimeoffset routine.
  444. * 4) calculate a couple of cached variables for later usage
  445. * 5) board_timer_setup() -
  446. * a) (optional) over-write any choices made above by time_init().
  447. * b) machine specific code should setup the timer irqaction.
  448. * c) enable the timer interrupt
  449. */
  450. void (*board_time_init)(void);
  451. void (*board_timer_setup)(struct irqaction *irq);
  452. unsigned int mips_hpt_frequency;
  453. static struct irqaction timer_irqaction = {
  454. .handler = timer_interrupt,
  455. .flags = SA_INTERRUPT,
  456. .name = "timer",
  457. };
  458. static unsigned int __init calibrate_hpt(void)
  459. {
  460. u64 frequency;
  461. u32 hpt_start, hpt_end, hpt_count, hz;
  462. const int loops = HZ / 10;
  463. int log_2_loops = 0;
  464. int i;
  465. /*
  466. * We want to calibrate for 0.1s, but to avoid a 64-bit
  467. * division we round the number of loops up to the nearest
  468. * power of 2.
  469. */
  470. while (loops > 1 << log_2_loops)
  471. log_2_loops++;
  472. i = 1 << log_2_loops;
  473. /*
  474. * Wait for a rising edge of the timer interrupt.
  475. */
  476. while (mips_timer_state());
  477. while (!mips_timer_state());
  478. /*
  479. * Now see how many high precision timer ticks happen
  480. * during the calculated number of periods between timer
  481. * interrupts.
  482. */
  483. hpt_start = mips_hpt_read();
  484. do {
  485. while (mips_timer_state());
  486. while (!mips_timer_state());
  487. } while (--i);
  488. hpt_end = mips_hpt_read();
  489. hpt_count = hpt_end - hpt_start;
  490. hz = HZ;
  491. frequency = (u64)hpt_count * (u64)hz;
  492. return frequency >> log_2_loops;
  493. }
  494. void __init time_init(void)
  495. {
  496. if (board_time_init)
  497. board_time_init();
  498. if (!rtc_set_mmss)
  499. rtc_set_mmss = rtc_set_time;
  500. xtime.tv_sec = rtc_get_time();
  501. xtime.tv_nsec = 0;
  502. set_normalized_timespec(&wall_to_monotonic,
  503. -xtime.tv_sec, -xtime.tv_nsec);
  504. /* Choose appropriate high precision timer routines. */
  505. if (!cpu_has_counter && !mips_hpt_read) {
  506. /* No high precision timer -- sorry. */
  507. mips_hpt_read = null_hpt_read;
  508. mips_hpt_init = null_hpt_init;
  509. } else if (!mips_hpt_frequency && !mips_timer_state) {
  510. /* A high precision timer of unknown frequency. */
  511. if (!mips_hpt_read) {
  512. /* No external high precision timer -- use R4k. */
  513. mips_hpt_read = c0_hpt_read;
  514. mips_hpt_init = c0_hpt_init;
  515. }
  516. if ((current_cpu_data.isa_level == MIPS_CPU_ISA_M32) ||
  517. (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
  518. (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
  519. /*
  520. * We need to calibrate the counter but we don't have
  521. * 64-bit division.
  522. */
  523. do_gettimeoffset = calibrate_div32_gettimeoffset;
  524. else
  525. /*
  526. * We need to calibrate the counter but we *do* have
  527. * 64-bit division.
  528. */
  529. do_gettimeoffset = calibrate_div64_gettimeoffset;
  530. } else {
  531. /* We know counter frequency. Or we can get it. */
  532. if (!mips_hpt_read) {
  533. /* No external high precision timer -- use R4k. */
  534. mips_hpt_read = c0_hpt_read;
  535. if (mips_timer_state)
  536. mips_hpt_init = c0_hpt_init;
  537. else {
  538. /* No external timer interrupt -- use R4k. */
  539. mips_hpt_init = c0_hpt_timer_init;
  540. mips_timer_ack = c0_timer_ack;
  541. }
  542. }
  543. if (!mips_hpt_frequency)
  544. mips_hpt_frequency = calibrate_hpt();
  545. do_gettimeoffset = fixed_rate_gettimeoffset;
  546. /* Calculate cache parameters. */
  547. cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
  548. /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */
  549. do_div64_32(sll32_usecs_per_cycle,
  550. 1000000, mips_hpt_frequency / 2,
  551. mips_hpt_frequency);
  552. /* Report the high precision timer rate for a reference. */
  553. printk("Using %u.%03u MHz high precision timer.\n",
  554. ((mips_hpt_frequency + 500) / 1000) / 1000,
  555. ((mips_hpt_frequency + 500) / 1000) % 1000);
  556. }
  557. if (!mips_timer_ack)
  558. /* No timer interrupt ack (e.g. i8254). */
  559. mips_timer_ack = null_timer_ack;
  560. /* This sets up the high precision timer for the first interrupt. */
  561. mips_hpt_init(mips_hpt_read());
  562. /*
  563. * Call board specific timer interrupt setup.
  564. *
  565. * this pointer must be setup in machine setup routine.
  566. *
  567. * Even if a machine chooses to use a low-level timer interrupt,
  568. * it still needs to setup the timer_irqaction.
  569. * In that case, it might be better to set timer_irqaction.handler
  570. * to be NULL function so that we are sure the high-level code
  571. * is not invoked accidentally.
  572. */
  573. board_timer_setup(&timer_irqaction);
  574. }
  575. #define FEBRUARY 2
  576. #define STARTOFTIME 1970
  577. #define SECDAY 86400L
  578. #define SECYR (SECDAY * 365)
  579. #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
  580. #define days_in_year(y) (leapyear(y) ? 366 : 365)
  581. #define days_in_month(m) (month_days[(m) - 1])
  582. static int month_days[12] = {
  583. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  584. };
  585. void to_tm(unsigned long tim, struct rtc_time *tm)
  586. {
  587. long hms, day, gday;
  588. int i;
  589. gday = day = tim / SECDAY;
  590. hms = tim % SECDAY;
  591. /* Hours, minutes, seconds are easy */
  592. tm->tm_hour = hms / 3600;
  593. tm->tm_min = (hms % 3600) / 60;
  594. tm->tm_sec = (hms % 3600) % 60;
  595. /* Number of years in days */
  596. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  597. day -= days_in_year(i);
  598. tm->tm_year = i;
  599. /* Number of months in days left */
  600. if (leapyear(tm->tm_year))
  601. days_in_month(FEBRUARY) = 29;
  602. for (i = 1; day >= days_in_month(i); i++)
  603. day -= days_in_month(i);
  604. days_in_month(FEBRUARY) = 28;
  605. tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */
  606. /* Days are what is left over (+1) from all that. */
  607. tm->tm_mday = day + 1;
  608. /*
  609. * Determine the day of week
  610. */
  611. tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
  612. }
  613. EXPORT_SYMBOL(rtc_lock);
  614. EXPORT_SYMBOL(to_tm);
  615. EXPORT_SYMBOL(rtc_set_time);
  616. EXPORT_SYMBOL(rtc_get_time);
  617. unsigned long long sched_clock(void)
  618. {
  619. return (unsigned long long)jiffies*(1000000000/HZ);
  620. }