efi.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639
  1. /*
  2. * Extensible Firmware Interface
  3. *
  4. * Based on Extensible Firmware Interface Specification version 1.0
  5. *
  6. * Copyright (C) 1999 VA Linux Systems
  7. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  8. * Copyright (C) 1999-2002 Hewlett-Packard Co.
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. * Stephane Eranian <eranian@hpl.hp.com>
  11. *
  12. * All EFI Runtime Services are not implemented yet as EFI only
  13. * supports physical mode addressing on SoftSDV. This is to be fixed
  14. * in a future version. --drummond 1999-07-20
  15. *
  16. * Implemented EFI runtime services and virtual mode calls. --davidm
  17. *
  18. * Goutham Rao: <goutham.rao@intel.com>
  19. * Skip non-WB memory and ignore empty memory ranges.
  20. */
  21. #include <linux/config.h>
  22. #include <linux/kernel.h>
  23. #include <linux/init.h>
  24. #include <linux/mm.h>
  25. #include <linux/types.h>
  26. #include <linux/time.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/ioport.h>
  30. #include <linux/module.h>
  31. #include <linux/efi.h>
  32. #include <linux/kexec.h>
  33. #include <asm/setup.h>
  34. #include <asm/io.h>
  35. #include <asm/page.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/processor.h>
  38. #include <asm/desc.h>
  39. #include <asm/tlbflush.h>
  40. #define EFI_DEBUG 0
  41. #define PFX "EFI: "
  42. extern efi_status_t asmlinkage efi_call_phys(void *, ...);
  43. struct efi efi;
  44. EXPORT_SYMBOL(efi);
  45. static struct efi efi_phys;
  46. struct efi_memory_map memmap;
  47. /*
  48. * We require an early boot_ioremap mapping mechanism initially
  49. */
  50. extern void * boot_ioremap(unsigned long, unsigned long);
  51. /*
  52. * To make EFI call EFI runtime service in physical addressing mode we need
  53. * prelog/epilog before/after the invocation to disable interrupt, to
  54. * claim EFI runtime service handler exclusively and to duplicate a memory in
  55. * low memory space say 0 - 3G.
  56. */
  57. static unsigned long efi_rt_eflags;
  58. static DEFINE_SPINLOCK(efi_rt_lock);
  59. static pgd_t efi_bak_pg_dir_pointer[2];
  60. static void efi_call_phys_prelog(void)
  61. {
  62. unsigned long cr4;
  63. unsigned long temp;
  64. spin_lock(&efi_rt_lock);
  65. local_irq_save(efi_rt_eflags);
  66. /*
  67. * If I don't have PSE, I should just duplicate two entries in page
  68. * directory. If I have PSE, I just need to duplicate one entry in
  69. * page directory.
  70. */
  71. __asm__ __volatile__("movl %%cr4, %0":"=r"(cr4));
  72. if (cr4 & X86_CR4_PSE) {
  73. efi_bak_pg_dir_pointer[0].pgd =
  74. swapper_pg_dir[pgd_index(0)].pgd;
  75. swapper_pg_dir[0].pgd =
  76. swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
  77. } else {
  78. efi_bak_pg_dir_pointer[0].pgd =
  79. swapper_pg_dir[pgd_index(0)].pgd;
  80. efi_bak_pg_dir_pointer[1].pgd =
  81. swapper_pg_dir[pgd_index(0x400000)].pgd;
  82. swapper_pg_dir[pgd_index(0)].pgd =
  83. swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
  84. temp = PAGE_OFFSET + 0x400000;
  85. swapper_pg_dir[pgd_index(0x400000)].pgd =
  86. swapper_pg_dir[pgd_index(temp)].pgd;
  87. }
  88. /*
  89. * After the lock is released, the original page table is restored.
  90. */
  91. local_flush_tlb();
  92. cpu_gdt_descr[0].address = __pa(cpu_gdt_descr[0].address);
  93. __asm__ __volatile__("lgdt %0":"=m"
  94. (*(struct Xgt_desc_struct *) __pa(&cpu_gdt_descr[0])));
  95. }
  96. static void efi_call_phys_epilog(void)
  97. {
  98. unsigned long cr4;
  99. cpu_gdt_descr[0].address =
  100. (unsigned long) __va(cpu_gdt_descr[0].address);
  101. __asm__ __volatile__("lgdt %0":"=m"(cpu_gdt_descr));
  102. __asm__ __volatile__("movl %%cr4, %0":"=r"(cr4));
  103. if (cr4 & X86_CR4_PSE) {
  104. swapper_pg_dir[pgd_index(0)].pgd =
  105. efi_bak_pg_dir_pointer[0].pgd;
  106. } else {
  107. swapper_pg_dir[pgd_index(0)].pgd =
  108. efi_bak_pg_dir_pointer[0].pgd;
  109. swapper_pg_dir[pgd_index(0x400000)].pgd =
  110. efi_bak_pg_dir_pointer[1].pgd;
  111. }
  112. /*
  113. * After the lock is released, the original page table is restored.
  114. */
  115. local_flush_tlb();
  116. local_irq_restore(efi_rt_eflags);
  117. spin_unlock(&efi_rt_lock);
  118. }
  119. static efi_status_t
  120. phys_efi_set_virtual_address_map(unsigned long memory_map_size,
  121. unsigned long descriptor_size,
  122. u32 descriptor_version,
  123. efi_memory_desc_t *virtual_map)
  124. {
  125. efi_status_t status;
  126. efi_call_phys_prelog();
  127. status = efi_call_phys(efi_phys.set_virtual_address_map,
  128. memory_map_size, descriptor_size,
  129. descriptor_version, virtual_map);
  130. efi_call_phys_epilog();
  131. return status;
  132. }
  133. static efi_status_t
  134. phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
  135. {
  136. efi_status_t status;
  137. efi_call_phys_prelog();
  138. status = efi_call_phys(efi_phys.get_time, tm, tc);
  139. efi_call_phys_epilog();
  140. return status;
  141. }
  142. inline int efi_set_rtc_mmss(unsigned long nowtime)
  143. {
  144. int real_seconds, real_minutes;
  145. efi_status_t status;
  146. efi_time_t eft;
  147. efi_time_cap_t cap;
  148. spin_lock(&efi_rt_lock);
  149. status = efi.get_time(&eft, &cap);
  150. spin_unlock(&efi_rt_lock);
  151. if (status != EFI_SUCCESS)
  152. panic("Ooops, efitime: can't read time!\n");
  153. real_seconds = nowtime % 60;
  154. real_minutes = nowtime / 60;
  155. if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
  156. real_minutes += 30;
  157. real_minutes %= 60;
  158. eft.minute = real_minutes;
  159. eft.second = real_seconds;
  160. if (status != EFI_SUCCESS) {
  161. printk("Ooops: efitime: can't read time!\n");
  162. return -1;
  163. }
  164. return 0;
  165. }
  166. /*
  167. * This should only be used during kernel init and before runtime
  168. * services have been remapped, therefore, we'll need to call in physical
  169. * mode. Note, this call isn't used later, so mark it __init.
  170. */
  171. inline unsigned long __init efi_get_time(void)
  172. {
  173. efi_status_t status;
  174. efi_time_t eft;
  175. efi_time_cap_t cap;
  176. status = phys_efi_get_time(&eft, &cap);
  177. if (status != EFI_SUCCESS)
  178. printk("Oops: efitime: can't read time status: 0x%lx\n",status);
  179. return mktime(eft.year, eft.month, eft.day, eft.hour,
  180. eft.minute, eft.second);
  181. }
  182. int is_available_memory(efi_memory_desc_t * md)
  183. {
  184. if (!(md->attribute & EFI_MEMORY_WB))
  185. return 0;
  186. switch (md->type) {
  187. case EFI_LOADER_CODE:
  188. case EFI_LOADER_DATA:
  189. case EFI_BOOT_SERVICES_CODE:
  190. case EFI_BOOT_SERVICES_DATA:
  191. case EFI_CONVENTIONAL_MEMORY:
  192. return 1;
  193. }
  194. return 0;
  195. }
  196. /*
  197. * We need to map the EFI memory map again after paging_init().
  198. */
  199. void __init efi_map_memmap(void)
  200. {
  201. memmap.map = NULL;
  202. memmap.map = (efi_memory_desc_t *)
  203. bt_ioremap((unsigned long) memmap.phys_map,
  204. (memmap.nr_map * sizeof(efi_memory_desc_t)));
  205. if (memmap.map == NULL)
  206. printk(KERN_ERR PFX "Could not remap the EFI memmap!\n");
  207. }
  208. #if EFI_DEBUG
  209. static void __init print_efi_memmap(void)
  210. {
  211. efi_memory_desc_t *md;
  212. int i;
  213. for (i = 0; i < memmap.nr_map; i++) {
  214. md = &memmap.map[i];
  215. printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, "
  216. "range=[0x%016llx-0x%016llx) (%lluMB)\n",
  217. i, md->type, md->attribute, md->phys_addr,
  218. md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
  219. (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
  220. }
  221. }
  222. #endif /* EFI_DEBUG */
  223. /*
  224. * Walks the EFI memory map and calls CALLBACK once for each EFI
  225. * memory descriptor that has memory that is available for kernel use.
  226. */
  227. void efi_memmap_walk(efi_freemem_callback_t callback, void *arg)
  228. {
  229. int prev_valid = 0;
  230. struct range {
  231. unsigned long start;
  232. unsigned long end;
  233. } prev, curr;
  234. efi_memory_desc_t *md;
  235. unsigned long start, end;
  236. int i;
  237. for (i = 0; i < memmap.nr_map; i++) {
  238. md = &memmap.map[i];
  239. if ((md->num_pages == 0) || (!is_available_memory(md)))
  240. continue;
  241. curr.start = md->phys_addr;
  242. curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);
  243. if (!prev_valid) {
  244. prev = curr;
  245. prev_valid = 1;
  246. } else {
  247. if (curr.start < prev.start)
  248. printk(KERN_INFO PFX "Unordered memory map\n");
  249. if (prev.end == curr.start)
  250. prev.end = curr.end;
  251. else {
  252. start =
  253. (unsigned long) (PAGE_ALIGN(prev.start));
  254. end = (unsigned long) (prev.end & PAGE_MASK);
  255. if ((end > start)
  256. && (*callback) (start, end, arg) < 0)
  257. return;
  258. prev = curr;
  259. }
  260. }
  261. }
  262. if (prev_valid) {
  263. start = (unsigned long) PAGE_ALIGN(prev.start);
  264. end = (unsigned long) (prev.end & PAGE_MASK);
  265. if (end > start)
  266. (*callback) (start, end, arg);
  267. }
  268. }
  269. void __init efi_init(void)
  270. {
  271. efi_config_table_t *config_tables;
  272. efi_runtime_services_t *runtime;
  273. efi_char16_t *c16;
  274. char vendor[100] = "unknown";
  275. unsigned long num_config_tables;
  276. int i = 0;
  277. memset(&efi, 0, sizeof(efi) );
  278. memset(&efi_phys, 0, sizeof(efi_phys));
  279. efi_phys.systab = EFI_SYSTAB;
  280. memmap.phys_map = EFI_MEMMAP;
  281. memmap.nr_map = EFI_MEMMAP_SIZE/EFI_MEMDESC_SIZE;
  282. memmap.desc_version = EFI_MEMDESC_VERSION;
  283. efi.systab = (efi_system_table_t *)
  284. boot_ioremap((unsigned long) efi_phys.systab,
  285. sizeof(efi_system_table_t));
  286. /*
  287. * Verify the EFI Table
  288. */
  289. if (efi.systab == NULL)
  290. printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n");
  291. if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
  292. printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n");
  293. if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
  294. printk(KERN_ERR PFX
  295. "Warning: EFI system table major version mismatch: "
  296. "got %d.%02d, expected %d.%02d\n",
  297. efi.systab->hdr.revision >> 16,
  298. efi.systab->hdr.revision & 0xffff,
  299. EFI_SYSTEM_TABLE_REVISION >> 16,
  300. EFI_SYSTEM_TABLE_REVISION & 0xffff);
  301. /*
  302. * Grab some details from the system table
  303. */
  304. num_config_tables = efi.systab->nr_tables;
  305. config_tables = (efi_config_table_t *)efi.systab->tables;
  306. runtime = efi.systab->runtime;
  307. /*
  308. * Show what we know for posterity
  309. */
  310. c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2);
  311. if (c16) {
  312. for (i = 0; i < sizeof(vendor) && *c16; ++i)
  313. vendor[i] = *c16++;
  314. vendor[i] = '\0';
  315. } else
  316. printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
  317. printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n",
  318. efi.systab->hdr.revision >> 16,
  319. efi.systab->hdr.revision & 0xffff, vendor);
  320. /*
  321. * Let's see what config tables the firmware passed to us.
  322. */
  323. config_tables = (efi_config_table_t *)
  324. boot_ioremap((unsigned long) config_tables,
  325. num_config_tables * sizeof(efi_config_table_t));
  326. if (config_tables == NULL)
  327. printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n");
  328. for (i = 0; i < num_config_tables; i++) {
  329. if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
  330. efi.mps = (void *)config_tables[i].table;
  331. printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table);
  332. } else
  333. if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
  334. efi.acpi20 = __va(config_tables[i].table);
  335. printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table);
  336. } else
  337. if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
  338. efi.acpi = __va(config_tables[i].table);
  339. printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table);
  340. } else
  341. if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
  342. efi.smbios = (void *) config_tables[i].table;
  343. printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table);
  344. } else
  345. if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
  346. efi.hcdp = (void *)config_tables[i].table;
  347. printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table);
  348. } else
  349. if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) {
  350. efi.uga = (void *)config_tables[i].table;
  351. printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table);
  352. }
  353. }
  354. printk("\n");
  355. /*
  356. * Check out the runtime services table. We need to map
  357. * the runtime services table so that we can grab the physical
  358. * address of several of the EFI runtime functions, needed to
  359. * set the firmware into virtual mode.
  360. */
  361. runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long)
  362. runtime,
  363. sizeof(efi_runtime_services_t));
  364. if (runtime != NULL) {
  365. /*
  366. * We will only need *early* access to the following
  367. * two EFI runtime services before set_virtual_address_map
  368. * is invoked.
  369. */
  370. efi_phys.get_time = (efi_get_time_t *) runtime->get_time;
  371. efi_phys.set_virtual_address_map =
  372. (efi_set_virtual_address_map_t *)
  373. runtime->set_virtual_address_map;
  374. } else
  375. printk(KERN_ERR PFX "Could not map the runtime service table!\n");
  376. /* Map the EFI memory map for use until paging_init() */
  377. memmap.map = (efi_memory_desc_t *)
  378. boot_ioremap((unsigned long) EFI_MEMMAP, EFI_MEMMAP_SIZE);
  379. if (memmap.map == NULL)
  380. printk(KERN_ERR PFX "Could not map the EFI memory map!\n");
  381. if (EFI_MEMDESC_SIZE != sizeof(efi_memory_desc_t)) {
  382. printk(KERN_WARNING PFX "Warning! Kernel-defined memdesc doesn't "
  383. "match the one from EFI!\n");
  384. }
  385. #if EFI_DEBUG
  386. print_efi_memmap();
  387. #endif
  388. }
  389. /*
  390. * This function will switch the EFI runtime services to virtual mode.
  391. * Essentially, look through the EFI memmap and map every region that
  392. * has the runtime attribute bit set in its memory descriptor and update
  393. * that memory descriptor with the virtual address obtained from ioremap().
  394. * This enables the runtime services to be called without having to
  395. * thunk back into physical mode for every invocation.
  396. */
  397. void __init efi_enter_virtual_mode(void)
  398. {
  399. efi_memory_desc_t *md;
  400. efi_status_t status;
  401. int i;
  402. efi.systab = NULL;
  403. for (i = 0; i < memmap.nr_map; i++) {
  404. md = &memmap.map[i];
  405. if (md->attribute & EFI_MEMORY_RUNTIME) {
  406. md->virt_addr =
  407. (unsigned long)ioremap(md->phys_addr,
  408. md->num_pages << EFI_PAGE_SHIFT);
  409. if (!(unsigned long)md->virt_addr) {
  410. printk(KERN_ERR PFX "ioremap of 0x%lX failed\n",
  411. (unsigned long)md->phys_addr);
  412. }
  413. if (((unsigned long)md->phys_addr <=
  414. (unsigned long)efi_phys.systab) &&
  415. ((unsigned long)efi_phys.systab <
  416. md->phys_addr +
  417. ((unsigned long)md->num_pages <<
  418. EFI_PAGE_SHIFT))) {
  419. unsigned long addr;
  420. addr = md->virt_addr - md->phys_addr +
  421. (unsigned long)efi_phys.systab;
  422. efi.systab = (efi_system_table_t *)addr;
  423. }
  424. }
  425. }
  426. if (!efi.systab)
  427. BUG();
  428. status = phys_efi_set_virtual_address_map(
  429. sizeof(efi_memory_desc_t) * memmap.nr_map,
  430. sizeof(efi_memory_desc_t),
  431. memmap.desc_version,
  432. memmap.phys_map);
  433. if (status != EFI_SUCCESS) {
  434. printk (KERN_ALERT "You are screwed! "
  435. "Unable to switch EFI into virtual mode "
  436. "(status=%lx)\n", status);
  437. panic("EFI call to SetVirtualAddressMap() failed!");
  438. }
  439. /*
  440. * Now that EFI is in virtual mode, update the function
  441. * pointers in the runtime service table to the new virtual addresses.
  442. */
  443. efi.get_time = (efi_get_time_t *) efi.systab->runtime->get_time;
  444. efi.set_time = (efi_set_time_t *) efi.systab->runtime->set_time;
  445. efi.get_wakeup_time = (efi_get_wakeup_time_t *)
  446. efi.systab->runtime->get_wakeup_time;
  447. efi.set_wakeup_time = (efi_set_wakeup_time_t *)
  448. efi.systab->runtime->set_wakeup_time;
  449. efi.get_variable = (efi_get_variable_t *)
  450. efi.systab->runtime->get_variable;
  451. efi.get_next_variable = (efi_get_next_variable_t *)
  452. efi.systab->runtime->get_next_variable;
  453. efi.set_variable = (efi_set_variable_t *)
  454. efi.systab->runtime->set_variable;
  455. efi.get_next_high_mono_count = (efi_get_next_high_mono_count_t *)
  456. efi.systab->runtime->get_next_high_mono_count;
  457. efi.reset_system = (efi_reset_system_t *)
  458. efi.systab->runtime->reset_system;
  459. }
  460. void __init
  461. efi_initialize_iomem_resources(struct resource *code_resource,
  462. struct resource *data_resource)
  463. {
  464. struct resource *res;
  465. efi_memory_desc_t *md;
  466. int i;
  467. for (i = 0; i < memmap.nr_map; i++) {
  468. md = &memmap.map[i];
  469. if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >
  470. 0x100000000ULL)
  471. continue;
  472. res = alloc_bootmem_low(sizeof(struct resource));
  473. switch (md->type) {
  474. case EFI_RESERVED_TYPE:
  475. res->name = "Reserved Memory";
  476. break;
  477. case EFI_LOADER_CODE:
  478. res->name = "Loader Code";
  479. break;
  480. case EFI_LOADER_DATA:
  481. res->name = "Loader Data";
  482. break;
  483. case EFI_BOOT_SERVICES_DATA:
  484. res->name = "BootServices Data";
  485. break;
  486. case EFI_BOOT_SERVICES_CODE:
  487. res->name = "BootServices Code";
  488. break;
  489. case EFI_RUNTIME_SERVICES_CODE:
  490. res->name = "Runtime Service Code";
  491. break;
  492. case EFI_RUNTIME_SERVICES_DATA:
  493. res->name = "Runtime Service Data";
  494. break;
  495. case EFI_CONVENTIONAL_MEMORY:
  496. res->name = "Conventional Memory";
  497. break;
  498. case EFI_UNUSABLE_MEMORY:
  499. res->name = "Unusable Memory";
  500. break;
  501. case EFI_ACPI_RECLAIM_MEMORY:
  502. res->name = "ACPI Reclaim";
  503. break;
  504. case EFI_ACPI_MEMORY_NVS:
  505. res->name = "ACPI NVS";
  506. break;
  507. case EFI_MEMORY_MAPPED_IO:
  508. res->name = "Memory Mapped IO";
  509. break;
  510. case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
  511. res->name = "Memory Mapped IO Port Space";
  512. break;
  513. default:
  514. res->name = "Reserved";
  515. break;
  516. }
  517. res->start = md->phys_addr;
  518. res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1);
  519. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  520. if (request_resource(&iomem_resource, res) < 0)
  521. printk(KERN_ERR PFX "Failed to allocate res %s : 0x%lx-0x%lx\n",
  522. res->name, res->start, res->end);
  523. /*
  524. * We don't know which region contains kernel data so we try
  525. * it repeatedly and let the resource manager test it.
  526. */
  527. if (md->type == EFI_CONVENTIONAL_MEMORY) {
  528. request_resource(res, code_resource);
  529. request_resource(res, data_resource);
  530. #ifdef CONFIG_KEXEC
  531. request_resource(res, &crashk_res);
  532. #endif
  533. }
  534. }
  535. }
  536. /*
  537. * Convenience functions to obtain memory types and attributes
  538. */
  539. u32 efi_mem_type(unsigned long phys_addr)
  540. {
  541. efi_memory_desc_t *md;
  542. int i;
  543. for (i = 0; i < memmap.nr_map; i++) {
  544. md = &memmap.map[i];
  545. if ((md->phys_addr <= phys_addr) && (phys_addr <
  546. (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
  547. return md->type;
  548. }
  549. return 0;
  550. }
  551. u64 efi_mem_attributes(unsigned long phys_addr)
  552. {
  553. efi_memory_desc_t *md;
  554. int i;
  555. for (i = 0; i < memmap.nr_map; i++) {
  556. md = &memmap.map[i];
  557. if ((md->phys_addr <= phys_addr) && (phys_addr <
  558. (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
  559. return md->attribute;
  560. }
  561. return 0;
  562. }