vmstat.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969
  1. /*
  2. * linux/mm/vmstat.c
  3. *
  4. * Manages VM statistics
  5. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  6. *
  7. * zoned VM statistics
  8. * Copyright (C) 2006 Silicon Graphics, Inc.,
  9. * Christoph Lameter <christoph@lameter.com>
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/mm.h>
  13. #include <linux/err.h>
  14. #include <linux/module.h>
  15. #include <linux/cpu.h>
  16. #include <linux/vmstat.h>
  17. #include <linux/sched.h>
  18. #ifdef CONFIG_VM_EVENT_COUNTERS
  19. DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
  20. EXPORT_PER_CPU_SYMBOL(vm_event_states);
  21. static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask)
  22. {
  23. int cpu;
  24. int i;
  25. memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
  26. for_each_cpu(cpu, cpumask) {
  27. struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
  28. for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
  29. ret[i] += this->event[i];
  30. }
  31. }
  32. /*
  33. * Accumulate the vm event counters across all CPUs.
  34. * The result is unavoidably approximate - it can change
  35. * during and after execution of this function.
  36. */
  37. void all_vm_events(unsigned long *ret)
  38. {
  39. get_online_cpus();
  40. sum_vm_events(ret, cpu_online_mask);
  41. put_online_cpus();
  42. }
  43. EXPORT_SYMBOL_GPL(all_vm_events);
  44. #ifdef CONFIG_HOTPLUG
  45. /*
  46. * Fold the foreign cpu events into our own.
  47. *
  48. * This is adding to the events on one processor
  49. * but keeps the global counts constant.
  50. */
  51. void vm_events_fold_cpu(int cpu)
  52. {
  53. struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
  54. int i;
  55. for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
  56. count_vm_events(i, fold_state->event[i]);
  57. fold_state->event[i] = 0;
  58. }
  59. }
  60. #endif /* CONFIG_HOTPLUG */
  61. #endif /* CONFIG_VM_EVENT_COUNTERS */
  62. /*
  63. * Manage combined zone based / global counters
  64. *
  65. * vm_stat contains the global counters
  66. */
  67. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  68. EXPORT_SYMBOL(vm_stat);
  69. #ifdef CONFIG_SMP
  70. static int calculate_threshold(struct zone *zone)
  71. {
  72. int threshold;
  73. int mem; /* memory in 128 MB units */
  74. /*
  75. * The threshold scales with the number of processors and the amount
  76. * of memory per zone. More memory means that we can defer updates for
  77. * longer, more processors could lead to more contention.
  78. * fls() is used to have a cheap way of logarithmic scaling.
  79. *
  80. * Some sample thresholds:
  81. *
  82. * Threshold Processors (fls) Zonesize fls(mem+1)
  83. * ------------------------------------------------------------------
  84. * 8 1 1 0.9-1 GB 4
  85. * 16 2 2 0.9-1 GB 4
  86. * 20 2 2 1-2 GB 5
  87. * 24 2 2 2-4 GB 6
  88. * 28 2 2 4-8 GB 7
  89. * 32 2 2 8-16 GB 8
  90. * 4 2 2 <128M 1
  91. * 30 4 3 2-4 GB 5
  92. * 48 4 3 8-16 GB 8
  93. * 32 8 4 1-2 GB 4
  94. * 32 8 4 0.9-1GB 4
  95. * 10 16 5 <128M 1
  96. * 40 16 5 900M 4
  97. * 70 64 7 2-4 GB 5
  98. * 84 64 7 4-8 GB 6
  99. * 108 512 9 4-8 GB 6
  100. * 125 1024 10 8-16 GB 8
  101. * 125 1024 10 16-32 GB 9
  102. */
  103. mem = zone->present_pages >> (27 - PAGE_SHIFT);
  104. threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
  105. /*
  106. * Maximum threshold is 125
  107. */
  108. threshold = min(125, threshold);
  109. return threshold;
  110. }
  111. /*
  112. * Refresh the thresholds for each zone.
  113. */
  114. static void refresh_zone_stat_thresholds(void)
  115. {
  116. struct zone *zone;
  117. int cpu;
  118. int threshold;
  119. for_each_zone(zone) {
  120. if (!zone->present_pages)
  121. continue;
  122. threshold = calculate_threshold(zone);
  123. for_each_online_cpu(cpu)
  124. zone_pcp(zone, cpu)->stat_threshold = threshold;
  125. }
  126. }
  127. /*
  128. * For use when we know that interrupts are disabled.
  129. */
  130. void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
  131. int delta)
  132. {
  133. struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
  134. s8 *p = pcp->vm_stat_diff + item;
  135. long x;
  136. x = delta + *p;
  137. if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
  138. zone_page_state_add(x, zone, item);
  139. x = 0;
  140. }
  141. *p = x;
  142. }
  143. EXPORT_SYMBOL(__mod_zone_page_state);
  144. /*
  145. * For an unknown interrupt state
  146. */
  147. void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
  148. int delta)
  149. {
  150. unsigned long flags;
  151. local_irq_save(flags);
  152. __mod_zone_page_state(zone, item, delta);
  153. local_irq_restore(flags);
  154. }
  155. EXPORT_SYMBOL(mod_zone_page_state);
  156. /*
  157. * Optimized increment and decrement functions.
  158. *
  159. * These are only for a single page and therefore can take a struct page *
  160. * argument instead of struct zone *. This allows the inclusion of the code
  161. * generated for page_zone(page) into the optimized functions.
  162. *
  163. * No overflow check is necessary and therefore the differential can be
  164. * incremented or decremented in place which may allow the compilers to
  165. * generate better code.
  166. * The increment or decrement is known and therefore one boundary check can
  167. * be omitted.
  168. *
  169. * NOTE: These functions are very performance sensitive. Change only
  170. * with care.
  171. *
  172. * Some processors have inc/dec instructions that are atomic vs an interrupt.
  173. * However, the code must first determine the differential location in a zone
  174. * based on the processor number and then inc/dec the counter. There is no
  175. * guarantee without disabling preemption that the processor will not change
  176. * in between and therefore the atomicity vs. interrupt cannot be exploited
  177. * in a useful way here.
  178. */
  179. void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
  180. {
  181. struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
  182. s8 *p = pcp->vm_stat_diff + item;
  183. (*p)++;
  184. if (unlikely(*p > pcp->stat_threshold)) {
  185. int overstep = pcp->stat_threshold / 2;
  186. zone_page_state_add(*p + overstep, zone, item);
  187. *p = -overstep;
  188. }
  189. }
  190. void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
  191. {
  192. __inc_zone_state(page_zone(page), item);
  193. }
  194. EXPORT_SYMBOL(__inc_zone_page_state);
  195. void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
  196. {
  197. struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
  198. s8 *p = pcp->vm_stat_diff + item;
  199. (*p)--;
  200. if (unlikely(*p < - pcp->stat_threshold)) {
  201. int overstep = pcp->stat_threshold / 2;
  202. zone_page_state_add(*p - overstep, zone, item);
  203. *p = overstep;
  204. }
  205. }
  206. void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
  207. {
  208. __dec_zone_state(page_zone(page), item);
  209. }
  210. EXPORT_SYMBOL(__dec_zone_page_state);
  211. void inc_zone_state(struct zone *zone, enum zone_stat_item item)
  212. {
  213. unsigned long flags;
  214. local_irq_save(flags);
  215. __inc_zone_state(zone, item);
  216. local_irq_restore(flags);
  217. }
  218. void inc_zone_page_state(struct page *page, enum zone_stat_item item)
  219. {
  220. unsigned long flags;
  221. struct zone *zone;
  222. zone = page_zone(page);
  223. local_irq_save(flags);
  224. __inc_zone_state(zone, item);
  225. local_irq_restore(flags);
  226. }
  227. EXPORT_SYMBOL(inc_zone_page_state);
  228. void dec_zone_page_state(struct page *page, enum zone_stat_item item)
  229. {
  230. unsigned long flags;
  231. local_irq_save(flags);
  232. __dec_zone_page_state(page, item);
  233. local_irq_restore(flags);
  234. }
  235. EXPORT_SYMBOL(dec_zone_page_state);
  236. /*
  237. * Update the zone counters for one cpu.
  238. *
  239. * The cpu specified must be either the current cpu or a processor that
  240. * is not online. If it is the current cpu then the execution thread must
  241. * be pinned to the current cpu.
  242. *
  243. * Note that refresh_cpu_vm_stats strives to only access
  244. * node local memory. The per cpu pagesets on remote zones are placed
  245. * in the memory local to the processor using that pageset. So the
  246. * loop over all zones will access a series of cachelines local to
  247. * the processor.
  248. *
  249. * The call to zone_page_state_add updates the cachelines with the
  250. * statistics in the remote zone struct as well as the global cachelines
  251. * with the global counters. These could cause remote node cache line
  252. * bouncing and will have to be only done when necessary.
  253. */
  254. void refresh_cpu_vm_stats(int cpu)
  255. {
  256. struct zone *zone;
  257. int i;
  258. int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
  259. for_each_zone(zone) {
  260. struct per_cpu_pageset *p;
  261. if (!populated_zone(zone))
  262. continue;
  263. p = zone_pcp(zone, cpu);
  264. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  265. if (p->vm_stat_diff[i]) {
  266. unsigned long flags;
  267. int v;
  268. local_irq_save(flags);
  269. v = p->vm_stat_diff[i];
  270. p->vm_stat_diff[i] = 0;
  271. local_irq_restore(flags);
  272. atomic_long_add(v, &zone->vm_stat[i]);
  273. global_diff[i] += v;
  274. #ifdef CONFIG_NUMA
  275. /* 3 seconds idle till flush */
  276. p->expire = 3;
  277. #endif
  278. }
  279. cond_resched();
  280. #ifdef CONFIG_NUMA
  281. /*
  282. * Deal with draining the remote pageset of this
  283. * processor
  284. *
  285. * Check if there are pages remaining in this pageset
  286. * if not then there is nothing to expire.
  287. */
  288. if (!p->expire || !p->pcp.count)
  289. continue;
  290. /*
  291. * We never drain zones local to this processor.
  292. */
  293. if (zone_to_nid(zone) == numa_node_id()) {
  294. p->expire = 0;
  295. continue;
  296. }
  297. p->expire--;
  298. if (p->expire)
  299. continue;
  300. if (p->pcp.count)
  301. drain_zone_pages(zone, &p->pcp);
  302. #endif
  303. }
  304. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  305. if (global_diff[i])
  306. atomic_long_add(global_diff[i], &vm_stat[i]);
  307. }
  308. #endif
  309. #ifdef CONFIG_NUMA
  310. /*
  311. * zonelist = the list of zones passed to the allocator
  312. * z = the zone from which the allocation occurred.
  313. *
  314. * Must be called with interrupts disabled.
  315. */
  316. void zone_statistics(struct zone *preferred_zone, struct zone *z)
  317. {
  318. if (z->zone_pgdat == preferred_zone->zone_pgdat) {
  319. __inc_zone_state(z, NUMA_HIT);
  320. } else {
  321. __inc_zone_state(z, NUMA_MISS);
  322. __inc_zone_state(preferred_zone, NUMA_FOREIGN);
  323. }
  324. if (z->node == numa_node_id())
  325. __inc_zone_state(z, NUMA_LOCAL);
  326. else
  327. __inc_zone_state(z, NUMA_OTHER);
  328. }
  329. #endif
  330. #ifdef CONFIG_PROC_FS
  331. #include <linux/proc_fs.h>
  332. #include <linux/seq_file.h>
  333. static char * const migratetype_names[MIGRATE_TYPES] = {
  334. "Unmovable",
  335. "Reclaimable",
  336. "Movable",
  337. "Reserve",
  338. "Isolate",
  339. };
  340. static void *frag_start(struct seq_file *m, loff_t *pos)
  341. {
  342. pg_data_t *pgdat;
  343. loff_t node = *pos;
  344. for (pgdat = first_online_pgdat();
  345. pgdat && node;
  346. pgdat = next_online_pgdat(pgdat))
  347. --node;
  348. return pgdat;
  349. }
  350. static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
  351. {
  352. pg_data_t *pgdat = (pg_data_t *)arg;
  353. (*pos)++;
  354. return next_online_pgdat(pgdat);
  355. }
  356. static void frag_stop(struct seq_file *m, void *arg)
  357. {
  358. }
  359. /* Walk all the zones in a node and print using a callback */
  360. static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
  361. void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
  362. {
  363. struct zone *zone;
  364. struct zone *node_zones = pgdat->node_zones;
  365. unsigned long flags;
  366. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
  367. if (!populated_zone(zone))
  368. continue;
  369. spin_lock_irqsave(&zone->lock, flags);
  370. print(m, pgdat, zone);
  371. spin_unlock_irqrestore(&zone->lock, flags);
  372. }
  373. }
  374. static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
  375. struct zone *zone)
  376. {
  377. int order;
  378. seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
  379. for (order = 0; order < MAX_ORDER; ++order)
  380. seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
  381. seq_putc(m, '\n');
  382. }
  383. /*
  384. * This walks the free areas for each zone.
  385. */
  386. static int frag_show(struct seq_file *m, void *arg)
  387. {
  388. pg_data_t *pgdat = (pg_data_t *)arg;
  389. walk_zones_in_node(m, pgdat, frag_show_print);
  390. return 0;
  391. }
  392. static void pagetypeinfo_showfree_print(struct seq_file *m,
  393. pg_data_t *pgdat, struct zone *zone)
  394. {
  395. int order, mtype;
  396. for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
  397. seq_printf(m, "Node %4d, zone %8s, type %12s ",
  398. pgdat->node_id,
  399. zone->name,
  400. migratetype_names[mtype]);
  401. for (order = 0; order < MAX_ORDER; ++order) {
  402. unsigned long freecount = 0;
  403. struct free_area *area;
  404. struct list_head *curr;
  405. area = &(zone->free_area[order]);
  406. list_for_each(curr, &area->free_list[mtype])
  407. freecount++;
  408. seq_printf(m, "%6lu ", freecount);
  409. }
  410. seq_putc(m, '\n');
  411. }
  412. }
  413. /* Print out the free pages at each order for each migatetype */
  414. static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
  415. {
  416. int order;
  417. pg_data_t *pgdat = (pg_data_t *)arg;
  418. /* Print header */
  419. seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
  420. for (order = 0; order < MAX_ORDER; ++order)
  421. seq_printf(m, "%6d ", order);
  422. seq_putc(m, '\n');
  423. walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
  424. return 0;
  425. }
  426. static void pagetypeinfo_showblockcount_print(struct seq_file *m,
  427. pg_data_t *pgdat, struct zone *zone)
  428. {
  429. int mtype;
  430. unsigned long pfn;
  431. unsigned long start_pfn = zone->zone_start_pfn;
  432. unsigned long end_pfn = start_pfn + zone->spanned_pages;
  433. unsigned long count[MIGRATE_TYPES] = { 0, };
  434. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  435. struct page *page;
  436. if (!pfn_valid(pfn))
  437. continue;
  438. page = pfn_to_page(pfn);
  439. #ifdef CONFIG_ARCH_FLATMEM_HAS_HOLES
  440. /*
  441. * Ordinarily, memory holes in flatmem still have a valid
  442. * memmap for the PFN range. However, an architecture for
  443. * embedded systems (e.g. ARM) can free up the memmap backing
  444. * holes to save memory on the assumption the memmap is
  445. * never used. The page_zone linkages are then broken even
  446. * though pfn_valid() returns true. Skip the page if the
  447. * linkages are broken. Even if this test passed, the impact
  448. * is that the counters for the movable type are off but
  449. * fragmentation monitoring is likely meaningless on small
  450. * systems.
  451. */
  452. if (page_zone(page) != zone)
  453. continue;
  454. #endif
  455. mtype = get_pageblock_migratetype(page);
  456. if (mtype < MIGRATE_TYPES)
  457. count[mtype]++;
  458. }
  459. /* Print counts */
  460. seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
  461. for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
  462. seq_printf(m, "%12lu ", count[mtype]);
  463. seq_putc(m, '\n');
  464. }
  465. /* Print out the free pages at each order for each migratetype */
  466. static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
  467. {
  468. int mtype;
  469. pg_data_t *pgdat = (pg_data_t *)arg;
  470. seq_printf(m, "\n%-23s", "Number of blocks type ");
  471. for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
  472. seq_printf(m, "%12s ", migratetype_names[mtype]);
  473. seq_putc(m, '\n');
  474. walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
  475. return 0;
  476. }
  477. /*
  478. * This prints out statistics in relation to grouping pages by mobility.
  479. * It is expensive to collect so do not constantly read the file.
  480. */
  481. static int pagetypeinfo_show(struct seq_file *m, void *arg)
  482. {
  483. pg_data_t *pgdat = (pg_data_t *)arg;
  484. /* check memoryless node */
  485. if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
  486. return 0;
  487. seq_printf(m, "Page block order: %d\n", pageblock_order);
  488. seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
  489. seq_putc(m, '\n');
  490. pagetypeinfo_showfree(m, pgdat);
  491. pagetypeinfo_showblockcount(m, pgdat);
  492. return 0;
  493. }
  494. static const struct seq_operations fragmentation_op = {
  495. .start = frag_start,
  496. .next = frag_next,
  497. .stop = frag_stop,
  498. .show = frag_show,
  499. };
  500. static int fragmentation_open(struct inode *inode, struct file *file)
  501. {
  502. return seq_open(file, &fragmentation_op);
  503. }
  504. static const struct file_operations fragmentation_file_operations = {
  505. .open = fragmentation_open,
  506. .read = seq_read,
  507. .llseek = seq_lseek,
  508. .release = seq_release,
  509. };
  510. static const struct seq_operations pagetypeinfo_op = {
  511. .start = frag_start,
  512. .next = frag_next,
  513. .stop = frag_stop,
  514. .show = pagetypeinfo_show,
  515. };
  516. static int pagetypeinfo_open(struct inode *inode, struct file *file)
  517. {
  518. return seq_open(file, &pagetypeinfo_op);
  519. }
  520. static const struct file_operations pagetypeinfo_file_ops = {
  521. .open = pagetypeinfo_open,
  522. .read = seq_read,
  523. .llseek = seq_lseek,
  524. .release = seq_release,
  525. };
  526. #ifdef CONFIG_ZONE_DMA
  527. #define TEXT_FOR_DMA(xx) xx "_dma",
  528. #else
  529. #define TEXT_FOR_DMA(xx)
  530. #endif
  531. #ifdef CONFIG_ZONE_DMA32
  532. #define TEXT_FOR_DMA32(xx) xx "_dma32",
  533. #else
  534. #define TEXT_FOR_DMA32(xx)
  535. #endif
  536. #ifdef CONFIG_HIGHMEM
  537. #define TEXT_FOR_HIGHMEM(xx) xx "_high",
  538. #else
  539. #define TEXT_FOR_HIGHMEM(xx)
  540. #endif
  541. #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
  542. TEXT_FOR_HIGHMEM(xx) xx "_movable",
  543. static const char * const vmstat_text[] = {
  544. /* Zoned VM counters */
  545. "nr_free_pages",
  546. "nr_inactive_anon",
  547. "nr_active_anon",
  548. "nr_inactive_file",
  549. "nr_active_file",
  550. #ifdef CONFIG_UNEVICTABLE_LRU
  551. "nr_unevictable",
  552. "nr_mlock",
  553. #endif
  554. "nr_anon_pages",
  555. "nr_mapped",
  556. "nr_file_pages",
  557. "nr_dirty",
  558. "nr_writeback",
  559. "nr_slab_reclaimable",
  560. "nr_slab_unreclaimable",
  561. "nr_page_table_pages",
  562. "nr_unstable",
  563. "nr_bounce",
  564. "nr_vmscan_write",
  565. "nr_writeback_temp",
  566. #ifdef CONFIG_NUMA
  567. "numa_hit",
  568. "numa_miss",
  569. "numa_foreign",
  570. "numa_interleave",
  571. "numa_local",
  572. "numa_other",
  573. #endif
  574. #ifdef CONFIG_VM_EVENT_COUNTERS
  575. "pgpgin",
  576. "pgpgout",
  577. "pswpin",
  578. "pswpout",
  579. TEXTS_FOR_ZONES("pgalloc")
  580. "pgfree",
  581. "pgactivate",
  582. "pgdeactivate",
  583. "pgfault",
  584. "pgmajfault",
  585. TEXTS_FOR_ZONES("pgrefill")
  586. TEXTS_FOR_ZONES("pgsteal")
  587. TEXTS_FOR_ZONES("pgscan_kswapd")
  588. TEXTS_FOR_ZONES("pgscan_direct")
  589. "pginodesteal",
  590. "slabs_scanned",
  591. "kswapd_steal",
  592. "kswapd_inodesteal",
  593. "pageoutrun",
  594. "allocstall",
  595. "pgrotated",
  596. #ifdef CONFIG_HUGETLB_PAGE
  597. "htlb_buddy_alloc_success",
  598. "htlb_buddy_alloc_fail",
  599. #endif
  600. #ifdef CONFIG_UNEVICTABLE_LRU
  601. "unevictable_pgs_culled",
  602. "unevictable_pgs_scanned",
  603. "unevictable_pgs_rescued",
  604. "unevictable_pgs_mlocked",
  605. "unevictable_pgs_munlocked",
  606. "unevictable_pgs_cleared",
  607. "unevictable_pgs_stranded",
  608. "unevictable_pgs_mlockfreed",
  609. #endif
  610. #endif
  611. };
  612. static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
  613. struct zone *zone)
  614. {
  615. int i;
  616. seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
  617. seq_printf(m,
  618. "\n pages free %lu"
  619. "\n min %lu"
  620. "\n low %lu"
  621. "\n high %lu"
  622. "\n scanned %lu (aa: %lu ia: %lu af: %lu if: %lu)"
  623. "\n spanned %lu"
  624. "\n present %lu",
  625. zone_page_state(zone, NR_FREE_PAGES),
  626. zone->pages_min,
  627. zone->pages_low,
  628. zone->pages_high,
  629. zone->pages_scanned,
  630. zone->lru[LRU_ACTIVE_ANON].nr_scan,
  631. zone->lru[LRU_INACTIVE_ANON].nr_scan,
  632. zone->lru[LRU_ACTIVE_FILE].nr_scan,
  633. zone->lru[LRU_INACTIVE_FILE].nr_scan,
  634. zone->spanned_pages,
  635. zone->present_pages);
  636. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  637. seq_printf(m, "\n %-12s %lu", vmstat_text[i],
  638. zone_page_state(zone, i));
  639. seq_printf(m,
  640. "\n protection: (%lu",
  641. zone->lowmem_reserve[0]);
  642. for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
  643. seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
  644. seq_printf(m,
  645. ")"
  646. "\n pagesets");
  647. for_each_online_cpu(i) {
  648. struct per_cpu_pageset *pageset;
  649. pageset = zone_pcp(zone, i);
  650. seq_printf(m,
  651. "\n cpu: %i"
  652. "\n count: %i"
  653. "\n high: %i"
  654. "\n batch: %i",
  655. i,
  656. pageset->pcp.count,
  657. pageset->pcp.high,
  658. pageset->pcp.batch);
  659. #ifdef CONFIG_SMP
  660. seq_printf(m, "\n vm stats threshold: %d",
  661. pageset->stat_threshold);
  662. #endif
  663. }
  664. seq_printf(m,
  665. "\n all_unreclaimable: %u"
  666. "\n prev_priority: %i"
  667. "\n start_pfn: %lu"
  668. "\n inactive_ratio: %u",
  669. zone_is_all_unreclaimable(zone),
  670. zone->prev_priority,
  671. zone->zone_start_pfn,
  672. zone->inactive_ratio);
  673. seq_putc(m, '\n');
  674. }
  675. /*
  676. * Output information about zones in @pgdat.
  677. */
  678. static int zoneinfo_show(struct seq_file *m, void *arg)
  679. {
  680. pg_data_t *pgdat = (pg_data_t *)arg;
  681. walk_zones_in_node(m, pgdat, zoneinfo_show_print);
  682. return 0;
  683. }
  684. static const struct seq_operations zoneinfo_op = {
  685. .start = frag_start, /* iterate over all zones. The same as in
  686. * fragmentation. */
  687. .next = frag_next,
  688. .stop = frag_stop,
  689. .show = zoneinfo_show,
  690. };
  691. static int zoneinfo_open(struct inode *inode, struct file *file)
  692. {
  693. return seq_open(file, &zoneinfo_op);
  694. }
  695. static const struct file_operations proc_zoneinfo_file_operations = {
  696. .open = zoneinfo_open,
  697. .read = seq_read,
  698. .llseek = seq_lseek,
  699. .release = seq_release,
  700. };
  701. static void *vmstat_start(struct seq_file *m, loff_t *pos)
  702. {
  703. unsigned long *v;
  704. #ifdef CONFIG_VM_EVENT_COUNTERS
  705. unsigned long *e;
  706. #endif
  707. int i;
  708. if (*pos >= ARRAY_SIZE(vmstat_text))
  709. return NULL;
  710. #ifdef CONFIG_VM_EVENT_COUNTERS
  711. v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
  712. + sizeof(struct vm_event_state), GFP_KERNEL);
  713. #else
  714. v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
  715. GFP_KERNEL);
  716. #endif
  717. m->private = v;
  718. if (!v)
  719. return ERR_PTR(-ENOMEM);
  720. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  721. v[i] = global_page_state(i);
  722. #ifdef CONFIG_VM_EVENT_COUNTERS
  723. e = v + NR_VM_ZONE_STAT_ITEMS;
  724. all_vm_events(e);
  725. e[PGPGIN] /= 2; /* sectors -> kbytes */
  726. e[PGPGOUT] /= 2;
  727. #endif
  728. return v + *pos;
  729. }
  730. static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
  731. {
  732. (*pos)++;
  733. if (*pos >= ARRAY_SIZE(vmstat_text))
  734. return NULL;
  735. return (unsigned long *)m->private + *pos;
  736. }
  737. static int vmstat_show(struct seq_file *m, void *arg)
  738. {
  739. unsigned long *l = arg;
  740. unsigned long off = l - (unsigned long *)m->private;
  741. seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
  742. return 0;
  743. }
  744. static void vmstat_stop(struct seq_file *m, void *arg)
  745. {
  746. kfree(m->private);
  747. m->private = NULL;
  748. }
  749. static const struct seq_operations vmstat_op = {
  750. .start = vmstat_start,
  751. .next = vmstat_next,
  752. .stop = vmstat_stop,
  753. .show = vmstat_show,
  754. };
  755. static int vmstat_open(struct inode *inode, struct file *file)
  756. {
  757. return seq_open(file, &vmstat_op);
  758. }
  759. static const struct file_operations proc_vmstat_file_operations = {
  760. .open = vmstat_open,
  761. .read = seq_read,
  762. .llseek = seq_lseek,
  763. .release = seq_release,
  764. };
  765. #endif /* CONFIG_PROC_FS */
  766. #ifdef CONFIG_SMP
  767. static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
  768. int sysctl_stat_interval __read_mostly = HZ;
  769. static void vmstat_update(struct work_struct *w)
  770. {
  771. refresh_cpu_vm_stats(smp_processor_id());
  772. schedule_delayed_work(&__get_cpu_var(vmstat_work),
  773. sysctl_stat_interval);
  774. }
  775. static void __cpuinit start_cpu_timer(int cpu)
  776. {
  777. struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);
  778. INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update);
  779. schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
  780. }
  781. /*
  782. * Use the cpu notifier to insure that the thresholds are recalculated
  783. * when necessary.
  784. */
  785. static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
  786. unsigned long action,
  787. void *hcpu)
  788. {
  789. long cpu = (long)hcpu;
  790. switch (action) {
  791. case CPU_ONLINE:
  792. case CPU_ONLINE_FROZEN:
  793. start_cpu_timer(cpu);
  794. break;
  795. case CPU_DOWN_PREPARE:
  796. case CPU_DOWN_PREPARE_FROZEN:
  797. cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
  798. per_cpu(vmstat_work, cpu).work.func = NULL;
  799. break;
  800. case CPU_DOWN_FAILED:
  801. case CPU_DOWN_FAILED_FROZEN:
  802. start_cpu_timer(cpu);
  803. break;
  804. case CPU_DEAD:
  805. case CPU_DEAD_FROZEN:
  806. refresh_zone_stat_thresholds();
  807. break;
  808. default:
  809. break;
  810. }
  811. return NOTIFY_OK;
  812. }
  813. static struct notifier_block __cpuinitdata vmstat_notifier =
  814. { &vmstat_cpuup_callback, NULL, 0 };
  815. #endif
  816. static int __init setup_vmstat(void)
  817. {
  818. #ifdef CONFIG_SMP
  819. int cpu;
  820. refresh_zone_stat_thresholds();
  821. register_cpu_notifier(&vmstat_notifier);
  822. for_each_online_cpu(cpu)
  823. start_cpu_timer(cpu);
  824. #endif
  825. #ifdef CONFIG_PROC_FS
  826. proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
  827. proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
  828. proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
  829. proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
  830. #endif
  831. return 0;
  832. }
  833. module_init(setup_vmstat)