ntp.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995
  1. /*
  2. * NTP state machine interfaces and logic.
  3. *
  4. * This code was mainly moved from kernel/timer.c and kernel/time.c
  5. * Please see those files for relevant copyright info and historical
  6. * changelogs.
  7. */
  8. #include <linux/capability.h>
  9. #include <linux/clocksource.h>
  10. #include <linux/workqueue.h>
  11. #include <linux/hrtimer.h>
  12. #include <linux/jiffies.h>
  13. #include <linux/math64.h>
  14. #include <linux/timex.h>
  15. #include <linux/time.h>
  16. #include <linux/mm.h>
  17. #include <linux/module.h>
  18. #include <linux/rtc.h>
  19. #include "tick-internal.h"
  20. #include "ntp_internal.h"
  21. /*
  22. * NTP timekeeping variables:
  23. */
  24. DEFINE_RAW_SPINLOCK(ntp_lock);
  25. /* USER_HZ period (usecs): */
  26. unsigned long tick_usec = TICK_USEC;
  27. /* SHIFTED_HZ period (nsecs): */
  28. unsigned long tick_nsec;
  29. static u64 tick_length;
  30. static u64 tick_length_base;
  31. #define MAX_TICKADJ 500LL /* usecs */
  32. #define MAX_TICKADJ_SCALED \
  33. (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
  34. /*
  35. * phase-lock loop variables
  36. */
  37. /*
  38. * clock synchronization status
  39. *
  40. * (TIME_ERROR prevents overwriting the CMOS clock)
  41. */
  42. static int time_state = TIME_OK;
  43. /* clock status bits: */
  44. static int time_status = STA_UNSYNC;
  45. /* time adjustment (nsecs): */
  46. static s64 time_offset;
  47. /* pll time constant: */
  48. static long time_constant = 2;
  49. /* maximum error (usecs): */
  50. static long time_maxerror = NTP_PHASE_LIMIT;
  51. /* estimated error (usecs): */
  52. static long time_esterror = NTP_PHASE_LIMIT;
  53. /* frequency offset (scaled nsecs/secs): */
  54. static s64 time_freq;
  55. /* time at last adjustment (secs): */
  56. static long time_reftime;
  57. static long time_adjust;
  58. /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
  59. static s64 ntp_tick_adj;
  60. #ifdef CONFIG_NTP_PPS
  61. /*
  62. * The following variables are used when a pulse-per-second (PPS) signal
  63. * is available. They establish the engineering parameters of the clock
  64. * discipline loop when controlled by the PPS signal.
  65. */
  66. #define PPS_VALID 10 /* PPS signal watchdog max (s) */
  67. #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
  68. #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
  69. #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
  70. #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
  71. increase pps_shift or consecutive bad
  72. intervals to decrease it */
  73. #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
  74. static int pps_valid; /* signal watchdog counter */
  75. static long pps_tf[3]; /* phase median filter */
  76. static long pps_jitter; /* current jitter (ns) */
  77. static struct timespec pps_fbase; /* beginning of the last freq interval */
  78. static int pps_shift; /* current interval duration (s) (shift) */
  79. static int pps_intcnt; /* interval counter */
  80. static s64 pps_freq; /* frequency offset (scaled ns/s) */
  81. static long pps_stabil; /* current stability (scaled ns/s) */
  82. /*
  83. * PPS signal quality monitors
  84. */
  85. static long pps_calcnt; /* calibration intervals */
  86. static long pps_jitcnt; /* jitter limit exceeded */
  87. static long pps_stbcnt; /* stability limit exceeded */
  88. static long pps_errcnt; /* calibration errors */
  89. /* PPS kernel consumer compensates the whole phase error immediately.
  90. * Otherwise, reduce the offset by a fixed factor times the time constant.
  91. */
  92. static inline s64 ntp_offset_chunk(s64 offset)
  93. {
  94. if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
  95. return offset;
  96. else
  97. return shift_right(offset, SHIFT_PLL + time_constant);
  98. }
  99. static inline void pps_reset_freq_interval(void)
  100. {
  101. /* the PPS calibration interval may end
  102. surprisingly early */
  103. pps_shift = PPS_INTMIN;
  104. pps_intcnt = 0;
  105. }
  106. /**
  107. * pps_clear - Clears the PPS state variables
  108. *
  109. * Must be called while holding a write on the ntp_lock
  110. */
  111. static inline void pps_clear(void)
  112. {
  113. pps_reset_freq_interval();
  114. pps_tf[0] = 0;
  115. pps_tf[1] = 0;
  116. pps_tf[2] = 0;
  117. pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
  118. pps_freq = 0;
  119. }
  120. /* Decrease pps_valid to indicate that another second has passed since
  121. * the last PPS signal. When it reaches 0, indicate that PPS signal is
  122. * missing.
  123. *
  124. * Must be called while holding a write on the ntp_lock
  125. */
  126. static inline void pps_dec_valid(void)
  127. {
  128. if (pps_valid > 0)
  129. pps_valid--;
  130. else {
  131. time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
  132. STA_PPSWANDER | STA_PPSERROR);
  133. pps_clear();
  134. }
  135. }
  136. static inline void pps_set_freq(s64 freq)
  137. {
  138. pps_freq = freq;
  139. }
  140. static inline int is_error_status(int status)
  141. {
  142. return (time_status & (STA_UNSYNC|STA_CLOCKERR))
  143. /* PPS signal lost when either PPS time or
  144. * PPS frequency synchronization requested
  145. */
  146. || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
  147. && !(time_status & STA_PPSSIGNAL))
  148. /* PPS jitter exceeded when
  149. * PPS time synchronization requested */
  150. || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
  151. == (STA_PPSTIME|STA_PPSJITTER))
  152. /* PPS wander exceeded or calibration error when
  153. * PPS frequency synchronization requested
  154. */
  155. || ((time_status & STA_PPSFREQ)
  156. && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
  157. }
  158. static inline void pps_fill_timex(struct timex *txc)
  159. {
  160. txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
  161. PPM_SCALE_INV, NTP_SCALE_SHIFT);
  162. txc->jitter = pps_jitter;
  163. if (!(time_status & STA_NANO))
  164. txc->jitter /= NSEC_PER_USEC;
  165. txc->shift = pps_shift;
  166. txc->stabil = pps_stabil;
  167. txc->jitcnt = pps_jitcnt;
  168. txc->calcnt = pps_calcnt;
  169. txc->errcnt = pps_errcnt;
  170. txc->stbcnt = pps_stbcnt;
  171. }
  172. #else /* !CONFIG_NTP_PPS */
  173. static inline s64 ntp_offset_chunk(s64 offset)
  174. {
  175. return shift_right(offset, SHIFT_PLL + time_constant);
  176. }
  177. static inline void pps_reset_freq_interval(void) {}
  178. static inline void pps_clear(void) {}
  179. static inline void pps_dec_valid(void) {}
  180. static inline void pps_set_freq(s64 freq) {}
  181. static inline int is_error_status(int status)
  182. {
  183. return status & (STA_UNSYNC|STA_CLOCKERR);
  184. }
  185. static inline void pps_fill_timex(struct timex *txc)
  186. {
  187. /* PPS is not implemented, so these are zero */
  188. txc->ppsfreq = 0;
  189. txc->jitter = 0;
  190. txc->shift = 0;
  191. txc->stabil = 0;
  192. txc->jitcnt = 0;
  193. txc->calcnt = 0;
  194. txc->errcnt = 0;
  195. txc->stbcnt = 0;
  196. }
  197. #endif /* CONFIG_NTP_PPS */
  198. /**
  199. * ntp_synced - Returns 1 if the NTP status is not UNSYNC
  200. *
  201. */
  202. static inline int ntp_synced(void)
  203. {
  204. return !(time_status & STA_UNSYNC);
  205. }
  206. /*
  207. * NTP methods:
  208. */
  209. /*
  210. * Update (tick_length, tick_length_base, tick_nsec), based
  211. * on (tick_usec, ntp_tick_adj, time_freq):
  212. */
  213. static void ntp_update_frequency(void)
  214. {
  215. u64 second_length;
  216. u64 new_base;
  217. second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
  218. << NTP_SCALE_SHIFT;
  219. second_length += ntp_tick_adj;
  220. second_length += time_freq;
  221. tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
  222. new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
  223. /*
  224. * Don't wait for the next second_overflow, apply
  225. * the change to the tick length immediately:
  226. */
  227. tick_length += new_base - tick_length_base;
  228. tick_length_base = new_base;
  229. }
  230. static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
  231. {
  232. time_status &= ~STA_MODE;
  233. if (secs < MINSEC)
  234. return 0;
  235. if (!(time_status & STA_FLL) && (secs <= MAXSEC))
  236. return 0;
  237. time_status |= STA_MODE;
  238. return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
  239. }
  240. static void ntp_update_offset(long offset)
  241. {
  242. s64 freq_adj;
  243. s64 offset64;
  244. long secs;
  245. if (!(time_status & STA_PLL))
  246. return;
  247. if (!(time_status & STA_NANO))
  248. offset *= NSEC_PER_USEC;
  249. /*
  250. * Scale the phase adjustment and
  251. * clamp to the operating range.
  252. */
  253. offset = min(offset, MAXPHASE);
  254. offset = max(offset, -MAXPHASE);
  255. /*
  256. * Select how the frequency is to be controlled
  257. * and in which mode (PLL or FLL).
  258. */
  259. secs = get_seconds() - time_reftime;
  260. if (unlikely(time_status & STA_FREQHOLD))
  261. secs = 0;
  262. time_reftime = get_seconds();
  263. offset64 = offset;
  264. freq_adj = ntp_update_offset_fll(offset64, secs);
  265. /*
  266. * Clamp update interval to reduce PLL gain with low
  267. * sampling rate (e.g. intermittent network connection)
  268. * to avoid instability.
  269. */
  270. if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
  271. secs = 1 << (SHIFT_PLL + 1 + time_constant);
  272. freq_adj += (offset64 * secs) <<
  273. (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
  274. freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
  275. time_freq = max(freq_adj, -MAXFREQ_SCALED);
  276. time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
  277. }
  278. /**
  279. * ntp_clear - Clears the NTP state variables
  280. */
  281. void ntp_clear(void)
  282. {
  283. unsigned long flags;
  284. raw_spin_lock_irqsave(&ntp_lock, flags);
  285. time_adjust = 0; /* stop active adjtime() */
  286. time_status |= STA_UNSYNC;
  287. time_maxerror = NTP_PHASE_LIMIT;
  288. time_esterror = NTP_PHASE_LIMIT;
  289. ntp_update_frequency();
  290. tick_length = tick_length_base;
  291. time_offset = 0;
  292. /* Clear PPS state variables */
  293. pps_clear();
  294. raw_spin_unlock_irqrestore(&ntp_lock, flags);
  295. }
  296. u64 ntp_tick_length(void)
  297. {
  298. unsigned long flags;
  299. s64 ret;
  300. raw_spin_lock_irqsave(&ntp_lock, flags);
  301. ret = tick_length;
  302. raw_spin_unlock_irqrestore(&ntp_lock, flags);
  303. return ret;
  304. }
  305. /*
  306. * this routine handles the overflow of the microsecond field
  307. *
  308. * The tricky bits of code to handle the accurate clock support
  309. * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
  310. * They were originally developed for SUN and DEC kernels.
  311. * All the kudos should go to Dave for this stuff.
  312. *
  313. * Also handles leap second processing, and returns leap offset
  314. */
  315. int second_overflow(unsigned long secs)
  316. {
  317. s64 delta;
  318. int leap = 0;
  319. unsigned long flags;
  320. raw_spin_lock_irqsave(&ntp_lock, flags);
  321. /*
  322. * Leap second processing. If in leap-insert state at the end of the
  323. * day, the system clock is set back one second; if in leap-delete
  324. * state, the system clock is set ahead one second.
  325. */
  326. switch (time_state) {
  327. case TIME_OK:
  328. if (time_status & STA_INS)
  329. time_state = TIME_INS;
  330. else if (time_status & STA_DEL)
  331. time_state = TIME_DEL;
  332. break;
  333. case TIME_INS:
  334. if (!(time_status & STA_INS))
  335. time_state = TIME_OK;
  336. else if (secs % 86400 == 0) {
  337. leap = -1;
  338. time_state = TIME_OOP;
  339. printk(KERN_NOTICE
  340. "Clock: inserting leap second 23:59:60 UTC\n");
  341. }
  342. break;
  343. case TIME_DEL:
  344. if (!(time_status & STA_DEL))
  345. time_state = TIME_OK;
  346. else if ((secs + 1) % 86400 == 0) {
  347. leap = 1;
  348. time_state = TIME_WAIT;
  349. printk(KERN_NOTICE
  350. "Clock: deleting leap second 23:59:59 UTC\n");
  351. }
  352. break;
  353. case TIME_OOP:
  354. time_state = TIME_WAIT;
  355. break;
  356. case TIME_WAIT:
  357. if (!(time_status & (STA_INS | STA_DEL)))
  358. time_state = TIME_OK;
  359. break;
  360. }
  361. /* Bump the maxerror field */
  362. time_maxerror += MAXFREQ / NSEC_PER_USEC;
  363. if (time_maxerror > NTP_PHASE_LIMIT) {
  364. time_maxerror = NTP_PHASE_LIMIT;
  365. time_status |= STA_UNSYNC;
  366. }
  367. /* Compute the phase adjustment for the next second */
  368. tick_length = tick_length_base;
  369. delta = ntp_offset_chunk(time_offset);
  370. time_offset -= delta;
  371. tick_length += delta;
  372. /* Check PPS signal */
  373. pps_dec_valid();
  374. if (!time_adjust)
  375. goto out;
  376. if (time_adjust > MAX_TICKADJ) {
  377. time_adjust -= MAX_TICKADJ;
  378. tick_length += MAX_TICKADJ_SCALED;
  379. goto out;
  380. }
  381. if (time_adjust < -MAX_TICKADJ) {
  382. time_adjust += MAX_TICKADJ;
  383. tick_length -= MAX_TICKADJ_SCALED;
  384. goto out;
  385. }
  386. tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
  387. << NTP_SCALE_SHIFT;
  388. time_adjust = 0;
  389. out:
  390. raw_spin_unlock_irqrestore(&ntp_lock, flags);
  391. return leap;
  392. }
  393. #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
  394. static void sync_cmos_clock(struct work_struct *work);
  395. static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
  396. static void sync_cmos_clock(struct work_struct *work)
  397. {
  398. struct timespec now, next;
  399. int fail = 1;
  400. /*
  401. * If we have an externally synchronized Linux clock, then update
  402. * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
  403. * called as close as possible to 500 ms before the new second starts.
  404. * This code is run on a timer. If the clock is set, that timer
  405. * may not expire at the correct time. Thus, we adjust...
  406. */
  407. if (!ntp_synced()) {
  408. /*
  409. * Not synced, exit, do not restart a timer (if one is
  410. * running, let it run out).
  411. */
  412. return;
  413. }
  414. getnstimeofday(&now);
  415. if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) {
  416. struct timespec adjust = now;
  417. fail = -ENODEV;
  418. if (persistent_clock_is_local)
  419. adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
  420. #ifdef CONFIG_GENERIC_CMOS_UPDATE
  421. fail = update_persistent_clock(adjust);
  422. #endif
  423. #ifdef CONFIG_RTC_SYSTOHC
  424. if (fail == -ENODEV)
  425. fail = rtc_set_ntp_time(adjust);
  426. #endif
  427. }
  428. next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
  429. if (next.tv_nsec <= 0)
  430. next.tv_nsec += NSEC_PER_SEC;
  431. if (!fail || fail == -ENODEV)
  432. next.tv_sec = 659;
  433. else
  434. next.tv_sec = 0;
  435. if (next.tv_nsec >= NSEC_PER_SEC) {
  436. next.tv_sec++;
  437. next.tv_nsec -= NSEC_PER_SEC;
  438. }
  439. schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
  440. }
  441. static void notify_cmos_timer(void)
  442. {
  443. schedule_delayed_work(&sync_cmos_work, 0);
  444. }
  445. #else
  446. static inline void notify_cmos_timer(void) { }
  447. #endif
  448. /*
  449. * Propagate a new txc->status value into the NTP state:
  450. */
  451. static inline void process_adj_status(struct timex *txc, struct timespec *ts)
  452. {
  453. if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
  454. time_state = TIME_OK;
  455. time_status = STA_UNSYNC;
  456. /* restart PPS frequency calibration */
  457. pps_reset_freq_interval();
  458. }
  459. /*
  460. * If we turn on PLL adjustments then reset the
  461. * reference time to current time.
  462. */
  463. if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
  464. time_reftime = get_seconds();
  465. /* only set allowed bits */
  466. time_status &= STA_RONLY;
  467. time_status |= txc->status & ~STA_RONLY;
  468. }
  469. /*
  470. * Called with ntp_lock held, so we can access and modify
  471. * all the global NTP state:
  472. */
  473. static inline void process_adjtimex_modes(struct timex *txc,
  474. struct timespec *ts,
  475. s32 *time_tai)
  476. {
  477. if (txc->modes & ADJ_STATUS)
  478. process_adj_status(txc, ts);
  479. if (txc->modes & ADJ_NANO)
  480. time_status |= STA_NANO;
  481. if (txc->modes & ADJ_MICRO)
  482. time_status &= ~STA_NANO;
  483. if (txc->modes & ADJ_FREQUENCY) {
  484. time_freq = txc->freq * PPM_SCALE;
  485. time_freq = min(time_freq, MAXFREQ_SCALED);
  486. time_freq = max(time_freq, -MAXFREQ_SCALED);
  487. /* update pps_freq */
  488. pps_set_freq(time_freq);
  489. }
  490. if (txc->modes & ADJ_MAXERROR)
  491. time_maxerror = txc->maxerror;
  492. if (txc->modes & ADJ_ESTERROR)
  493. time_esterror = txc->esterror;
  494. if (txc->modes & ADJ_TIMECONST) {
  495. time_constant = txc->constant;
  496. if (!(time_status & STA_NANO))
  497. time_constant += 4;
  498. time_constant = min(time_constant, (long)MAXTC);
  499. time_constant = max(time_constant, 0l);
  500. }
  501. if (txc->modes & ADJ_TAI && txc->constant > 0)
  502. *time_tai = txc->constant;
  503. if (txc->modes & ADJ_OFFSET)
  504. ntp_update_offset(txc->offset);
  505. if (txc->modes & ADJ_TICK)
  506. tick_usec = txc->tick;
  507. if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
  508. ntp_update_frequency();
  509. }
  510. /**
  511. * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
  512. */
  513. int ntp_validate_timex(struct timex *txc)
  514. {
  515. if (txc->modes & ADJ_ADJTIME) {
  516. /* singleshot must not be used with any other mode bits */
  517. if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
  518. return -EINVAL;
  519. if (!(txc->modes & ADJ_OFFSET_READONLY) &&
  520. !capable(CAP_SYS_TIME))
  521. return -EPERM;
  522. } else {
  523. /* In order to modify anything, you gotta be super-user! */
  524. if (txc->modes && !capable(CAP_SYS_TIME))
  525. return -EPERM;
  526. /*
  527. * if the quartz is off by more than 10% then
  528. * something is VERY wrong!
  529. */
  530. if (txc->modes & ADJ_TICK &&
  531. (txc->tick < 900000/USER_HZ ||
  532. txc->tick > 1100000/USER_HZ))
  533. return -EINVAL;
  534. }
  535. if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
  536. return -EPERM;
  537. return 0;
  538. }
  539. /*
  540. * adjtimex mainly allows reading (and writing, if superuser) of
  541. * kernel time-keeping variables. used by xntpd.
  542. */
  543. int __do_adjtimex(struct timex *txc)
  544. {
  545. struct timespec ts;
  546. u32 time_tai, orig_tai;
  547. int result;
  548. /* Validate the data before disabling interrupts */
  549. result = ntp_validate_timex(txc);
  550. if (result)
  551. return result;
  552. if (txc->modes & ADJ_SETOFFSET) {
  553. struct timespec delta;
  554. delta.tv_sec = txc->time.tv_sec;
  555. delta.tv_nsec = txc->time.tv_usec;
  556. if (!(txc->modes & ADJ_NANO))
  557. delta.tv_nsec *= 1000;
  558. result = timekeeping_inject_offset(&delta);
  559. if (result)
  560. return result;
  561. }
  562. getnstimeofday(&ts);
  563. orig_tai = time_tai = timekeeping_get_tai_offset();
  564. raw_spin_lock_irq(&ntp_lock);
  565. if (txc->modes & ADJ_ADJTIME) {
  566. long save_adjust = time_adjust;
  567. if (!(txc->modes & ADJ_OFFSET_READONLY)) {
  568. /* adjtime() is independent from ntp_adjtime() */
  569. time_adjust = txc->offset;
  570. ntp_update_frequency();
  571. }
  572. txc->offset = save_adjust;
  573. } else {
  574. /* If there are input parameters, then process them: */
  575. if (txc->modes)
  576. process_adjtimex_modes(txc, &ts, &time_tai);
  577. txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
  578. NTP_SCALE_SHIFT);
  579. if (!(time_status & STA_NANO))
  580. txc->offset /= NSEC_PER_USEC;
  581. }
  582. result = time_state; /* mostly `TIME_OK' */
  583. /* check for errors */
  584. if (is_error_status(time_status))
  585. result = TIME_ERROR;
  586. txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
  587. PPM_SCALE_INV, NTP_SCALE_SHIFT);
  588. txc->maxerror = time_maxerror;
  589. txc->esterror = time_esterror;
  590. txc->status = time_status;
  591. txc->constant = time_constant;
  592. txc->precision = 1;
  593. txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
  594. txc->tick = tick_usec;
  595. txc->tai = time_tai;
  596. /* fill PPS status fields */
  597. pps_fill_timex(txc);
  598. raw_spin_unlock_irq(&ntp_lock);
  599. if (time_tai != orig_tai)
  600. timekeeping_set_tai_offset(time_tai);
  601. txc->time.tv_sec = ts.tv_sec;
  602. txc->time.tv_usec = ts.tv_nsec;
  603. if (!(time_status & STA_NANO))
  604. txc->time.tv_usec /= NSEC_PER_USEC;
  605. notify_cmos_timer();
  606. return result;
  607. }
  608. #ifdef CONFIG_NTP_PPS
  609. /* actually struct pps_normtime is good old struct timespec, but it is
  610. * semantically different (and it is the reason why it was invented):
  611. * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
  612. * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
  613. struct pps_normtime {
  614. __kernel_time_t sec; /* seconds */
  615. long nsec; /* nanoseconds */
  616. };
  617. /* normalize the timestamp so that nsec is in the
  618. ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
  619. static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
  620. {
  621. struct pps_normtime norm = {
  622. .sec = ts.tv_sec,
  623. .nsec = ts.tv_nsec
  624. };
  625. if (norm.nsec > (NSEC_PER_SEC >> 1)) {
  626. norm.nsec -= NSEC_PER_SEC;
  627. norm.sec++;
  628. }
  629. return norm;
  630. }
  631. /* get current phase correction and jitter */
  632. static inline long pps_phase_filter_get(long *jitter)
  633. {
  634. *jitter = pps_tf[0] - pps_tf[1];
  635. if (*jitter < 0)
  636. *jitter = -*jitter;
  637. /* TODO: test various filters */
  638. return pps_tf[0];
  639. }
  640. /* add the sample to the phase filter */
  641. static inline void pps_phase_filter_add(long err)
  642. {
  643. pps_tf[2] = pps_tf[1];
  644. pps_tf[1] = pps_tf[0];
  645. pps_tf[0] = err;
  646. }
  647. /* decrease frequency calibration interval length.
  648. * It is halved after four consecutive unstable intervals.
  649. */
  650. static inline void pps_dec_freq_interval(void)
  651. {
  652. if (--pps_intcnt <= -PPS_INTCOUNT) {
  653. pps_intcnt = -PPS_INTCOUNT;
  654. if (pps_shift > PPS_INTMIN) {
  655. pps_shift--;
  656. pps_intcnt = 0;
  657. }
  658. }
  659. }
  660. /* increase frequency calibration interval length.
  661. * It is doubled after four consecutive stable intervals.
  662. */
  663. static inline void pps_inc_freq_interval(void)
  664. {
  665. if (++pps_intcnt >= PPS_INTCOUNT) {
  666. pps_intcnt = PPS_INTCOUNT;
  667. if (pps_shift < PPS_INTMAX) {
  668. pps_shift++;
  669. pps_intcnt = 0;
  670. }
  671. }
  672. }
  673. /* update clock frequency based on MONOTONIC_RAW clock PPS signal
  674. * timestamps
  675. *
  676. * At the end of the calibration interval the difference between the
  677. * first and last MONOTONIC_RAW clock timestamps divided by the length
  678. * of the interval becomes the frequency update. If the interval was
  679. * too long, the data are discarded.
  680. * Returns the difference between old and new frequency values.
  681. */
  682. static long hardpps_update_freq(struct pps_normtime freq_norm)
  683. {
  684. long delta, delta_mod;
  685. s64 ftemp;
  686. /* check if the frequency interval was too long */
  687. if (freq_norm.sec > (2 << pps_shift)) {
  688. time_status |= STA_PPSERROR;
  689. pps_errcnt++;
  690. pps_dec_freq_interval();
  691. pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
  692. freq_norm.sec);
  693. return 0;
  694. }
  695. /* here the raw frequency offset and wander (stability) is
  696. * calculated. If the wander is less than the wander threshold
  697. * the interval is increased; otherwise it is decreased.
  698. */
  699. ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
  700. freq_norm.sec);
  701. delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
  702. pps_freq = ftemp;
  703. if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
  704. pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
  705. time_status |= STA_PPSWANDER;
  706. pps_stbcnt++;
  707. pps_dec_freq_interval();
  708. } else { /* good sample */
  709. pps_inc_freq_interval();
  710. }
  711. /* the stability metric is calculated as the average of recent
  712. * frequency changes, but is used only for performance
  713. * monitoring
  714. */
  715. delta_mod = delta;
  716. if (delta_mod < 0)
  717. delta_mod = -delta_mod;
  718. pps_stabil += (div_s64(((s64)delta_mod) <<
  719. (NTP_SCALE_SHIFT - SHIFT_USEC),
  720. NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
  721. /* if enabled, the system clock frequency is updated */
  722. if ((time_status & STA_PPSFREQ) != 0 &&
  723. (time_status & STA_FREQHOLD) == 0) {
  724. time_freq = pps_freq;
  725. ntp_update_frequency();
  726. }
  727. return delta;
  728. }
  729. /* correct REALTIME clock phase error against PPS signal */
  730. static void hardpps_update_phase(long error)
  731. {
  732. long correction = -error;
  733. long jitter;
  734. /* add the sample to the median filter */
  735. pps_phase_filter_add(correction);
  736. correction = pps_phase_filter_get(&jitter);
  737. /* Nominal jitter is due to PPS signal noise. If it exceeds the
  738. * threshold, the sample is discarded; otherwise, if so enabled,
  739. * the time offset is updated.
  740. */
  741. if (jitter > (pps_jitter << PPS_POPCORN)) {
  742. pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
  743. jitter, (pps_jitter << PPS_POPCORN));
  744. time_status |= STA_PPSJITTER;
  745. pps_jitcnt++;
  746. } else if (time_status & STA_PPSTIME) {
  747. /* correct the time using the phase offset */
  748. time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
  749. NTP_INTERVAL_FREQ);
  750. /* cancel running adjtime() */
  751. time_adjust = 0;
  752. }
  753. /* update jitter */
  754. pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
  755. }
  756. /*
  757. * __hardpps() - discipline CPU clock oscillator to external PPS signal
  758. *
  759. * This routine is called at each PPS signal arrival in order to
  760. * discipline the CPU clock oscillator to the PPS signal. It takes two
  761. * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
  762. * is used to correct clock phase error and the latter is used to
  763. * correct the frequency.
  764. *
  765. * This code is based on David Mills's reference nanokernel
  766. * implementation. It was mostly rewritten but keeps the same idea.
  767. */
  768. void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
  769. {
  770. struct pps_normtime pts_norm, freq_norm;
  771. unsigned long flags;
  772. pts_norm = pps_normalize_ts(*phase_ts);
  773. raw_spin_lock_irqsave(&ntp_lock, flags);
  774. /* clear the error bits, they will be set again if needed */
  775. time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
  776. /* indicate signal presence */
  777. time_status |= STA_PPSSIGNAL;
  778. pps_valid = PPS_VALID;
  779. /* when called for the first time,
  780. * just start the frequency interval */
  781. if (unlikely(pps_fbase.tv_sec == 0)) {
  782. pps_fbase = *raw_ts;
  783. raw_spin_unlock_irqrestore(&ntp_lock, flags);
  784. return;
  785. }
  786. /* ok, now we have a base for frequency calculation */
  787. freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
  788. /* check that the signal is in the range
  789. * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
  790. if ((freq_norm.sec == 0) ||
  791. (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
  792. (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
  793. time_status |= STA_PPSJITTER;
  794. /* restart the frequency calibration interval */
  795. pps_fbase = *raw_ts;
  796. raw_spin_unlock_irqrestore(&ntp_lock, flags);
  797. pr_err("hardpps: PPSJITTER: bad pulse\n");
  798. return;
  799. }
  800. /* signal is ok */
  801. /* check if the current frequency interval is finished */
  802. if (freq_norm.sec >= (1 << pps_shift)) {
  803. pps_calcnt++;
  804. /* restart the frequency calibration interval */
  805. pps_fbase = *raw_ts;
  806. hardpps_update_freq(freq_norm);
  807. }
  808. hardpps_update_phase(pts_norm.nsec);
  809. raw_spin_unlock_irqrestore(&ntp_lock, flags);
  810. }
  811. #endif /* CONFIG_NTP_PPS */
  812. static int __init ntp_tick_adj_setup(char *str)
  813. {
  814. ntp_tick_adj = simple_strtol(str, NULL, 0);
  815. ntp_tick_adj <<= NTP_SCALE_SHIFT;
  816. return 1;
  817. }
  818. __setup("ntp_tick_adj=", ntp_tick_adj_setup);
  819. void __init ntp_init(void)
  820. {
  821. ntp_clear();
  822. }