time_32.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385
  1. /* linux/arch/sparc/kernel/time.c
  2. *
  3. * Copyright (C) 1995 David S. Miller (davem@davemloft.net)
  4. * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
  5. *
  6. * Chris Davis (cdavis@cois.on.ca) 03/27/1998
  7. * Added support for the intersil on the sun4/4200
  8. *
  9. * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998
  10. * Support for MicroSPARC-IIep, PCI CPU.
  11. *
  12. * This file handles the Sparc specific time handling details.
  13. *
  14. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  15. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  16. */
  17. #include <linux/errno.h>
  18. #include <linux/module.h>
  19. #include <linux/sched.h>
  20. #include <linux/kernel.h>
  21. #include <linux/param.h>
  22. #include <linux/string.h>
  23. #include <linux/mm.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/time.h>
  26. #include <linux/rtc.h>
  27. #include <linux/rtc/m48t59.h>
  28. #include <linux/timex.h>
  29. #include <linux/clocksource.h>
  30. #include <linux/clockchips.h>
  31. #include <linux/init.h>
  32. #include <linux/pci.h>
  33. #include <linux/ioport.h>
  34. #include <linux/profile.h>
  35. #include <linux/of.h>
  36. #include <linux/of_device.h>
  37. #include <linux/platform_device.h>
  38. #include <asm/oplib.h>
  39. #include <asm/timex.h>
  40. #include <asm/timer.h>
  41. #include <asm/irq.h>
  42. #include <asm/io.h>
  43. #include <asm/idprom.h>
  44. #include <asm/machines.h>
  45. #include <asm/page.h>
  46. #include <asm/pcic.h>
  47. #include <asm/irq_regs.h>
  48. #include <asm/setup.h>
  49. #include "irq.h"
  50. static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock);
  51. static __volatile__ u64 timer_cs_internal_counter = 0;
  52. static char timer_cs_enabled = 0;
  53. static struct clock_event_device timer_ce;
  54. static char timer_ce_enabled = 0;
  55. #ifdef CONFIG_SMP
  56. DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent);
  57. #endif
  58. DEFINE_SPINLOCK(rtc_lock);
  59. EXPORT_SYMBOL(rtc_lock);
  60. static int set_rtc_mmss(unsigned long);
  61. unsigned long profile_pc(struct pt_regs *regs)
  62. {
  63. extern char __copy_user_begin[], __copy_user_end[];
  64. extern char __atomic_begin[], __atomic_end[];
  65. extern char __bzero_begin[], __bzero_end[];
  66. unsigned long pc = regs->pc;
  67. if (in_lock_functions(pc) ||
  68. (pc >= (unsigned long) __copy_user_begin &&
  69. pc < (unsigned long) __copy_user_end) ||
  70. (pc >= (unsigned long) __atomic_begin &&
  71. pc < (unsigned long) __atomic_end) ||
  72. (pc >= (unsigned long) __bzero_begin &&
  73. pc < (unsigned long) __bzero_end))
  74. pc = regs->u_regs[UREG_RETPC];
  75. return pc;
  76. }
  77. EXPORT_SYMBOL(profile_pc);
  78. __volatile__ unsigned int *master_l10_counter;
  79. int update_persistent_clock(struct timespec now)
  80. {
  81. return set_rtc_mmss(now.tv_sec);
  82. }
  83. irqreturn_t notrace timer_interrupt(int dummy, void *dev_id)
  84. {
  85. if (timer_cs_enabled) {
  86. write_seqlock(&timer_cs_lock);
  87. timer_cs_internal_counter++;
  88. clear_clock_irq();
  89. write_sequnlock(&timer_cs_lock);
  90. } else {
  91. clear_clock_irq();
  92. }
  93. if (timer_ce_enabled)
  94. timer_ce.event_handler(&timer_ce);
  95. return IRQ_HANDLED;
  96. }
  97. static void timer_ce_set_mode(enum clock_event_mode mode,
  98. struct clock_event_device *evt)
  99. {
  100. switch (mode) {
  101. case CLOCK_EVT_MODE_PERIODIC:
  102. case CLOCK_EVT_MODE_RESUME:
  103. timer_ce_enabled = 1;
  104. break;
  105. case CLOCK_EVT_MODE_SHUTDOWN:
  106. timer_ce_enabled = 0;
  107. break;
  108. default:
  109. break;
  110. }
  111. smp_mb();
  112. }
  113. static __init void setup_timer_ce(void)
  114. {
  115. struct clock_event_device *ce = &timer_ce;
  116. BUG_ON(smp_processor_id() != boot_cpu_id);
  117. ce->name = "timer_ce";
  118. ce->rating = 100;
  119. ce->features = CLOCK_EVT_FEAT_PERIODIC;
  120. ce->set_mode = timer_ce_set_mode;
  121. ce->cpumask = cpu_possible_mask;
  122. ce->shift = 32;
  123. ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
  124. ce->shift);
  125. clockevents_register_device(ce);
  126. }
  127. static unsigned int sbus_cycles_offset(void)
  128. {
  129. unsigned int val, offset;
  130. val = *master_l10_counter;
  131. offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK;
  132. /* Limit hit? */
  133. if (val & TIMER_LIMIT_BIT)
  134. offset += sparc_config.cs_period;
  135. return offset;
  136. }
  137. static cycle_t timer_cs_read(struct clocksource *cs)
  138. {
  139. unsigned int seq, offset;
  140. u64 cycles;
  141. do {
  142. seq = read_seqbegin(&timer_cs_lock);
  143. cycles = timer_cs_internal_counter;
  144. offset = sparc_config.get_cycles_offset();
  145. } while (read_seqretry(&timer_cs_lock, seq));
  146. /* Count absolute cycles */
  147. cycles *= sparc_config.cs_period;
  148. cycles += offset;
  149. return cycles;
  150. }
  151. static struct clocksource timer_cs = {
  152. .name = "timer_cs",
  153. .rating = 100,
  154. .read = timer_cs_read,
  155. .mask = CLOCKSOURCE_MASK(64),
  156. .shift = 2,
  157. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  158. };
  159. static __init int setup_timer_cs(void)
  160. {
  161. timer_cs_enabled = 1;
  162. timer_cs.mult = clocksource_hz2mult(sparc_config.clock_rate,
  163. timer_cs.shift);
  164. return clocksource_register(&timer_cs);
  165. }
  166. #ifdef CONFIG_SMP
  167. static void percpu_ce_setup(enum clock_event_mode mode,
  168. struct clock_event_device *evt)
  169. {
  170. int cpu = __first_cpu(evt->cpumask);
  171. switch (mode) {
  172. case CLOCK_EVT_MODE_PERIODIC:
  173. load_profile_irq(cpu, SBUS_CLOCK_RATE / HZ);
  174. break;
  175. case CLOCK_EVT_MODE_ONESHOT:
  176. case CLOCK_EVT_MODE_SHUTDOWN:
  177. case CLOCK_EVT_MODE_UNUSED:
  178. load_profile_irq(cpu, 0);
  179. break;
  180. default:
  181. break;
  182. }
  183. }
  184. static int percpu_ce_set_next_event(unsigned long delta,
  185. struct clock_event_device *evt)
  186. {
  187. int cpu = __first_cpu(evt->cpumask);
  188. unsigned int next = (unsigned int)delta;
  189. load_profile_irq(cpu, next);
  190. return 0;
  191. }
  192. void register_percpu_ce(int cpu)
  193. {
  194. struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu);
  195. unsigned int features = CLOCK_EVT_FEAT_PERIODIC;
  196. if (sparc_config.features & FEAT_L14_ONESHOT)
  197. features |= CLOCK_EVT_FEAT_ONESHOT;
  198. ce->name = "percpu_ce";
  199. ce->rating = 200;
  200. ce->features = features;
  201. ce->set_mode = percpu_ce_setup;
  202. ce->set_next_event = percpu_ce_set_next_event;
  203. ce->cpumask = cpumask_of(cpu);
  204. ce->shift = 32;
  205. ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
  206. ce->shift);
  207. ce->max_delta_ns = clockevent_delta2ns(sparc_config.clock_rate, ce);
  208. ce->min_delta_ns = clockevent_delta2ns(100, ce);
  209. clockevents_register_device(ce);
  210. }
  211. #endif
  212. static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
  213. {
  214. struct platform_device *pdev = to_platform_device(dev);
  215. struct m48t59_plat_data *pdata = pdev->dev.platform_data;
  216. return readb(pdata->ioaddr + ofs);
  217. }
  218. static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
  219. {
  220. struct platform_device *pdev = to_platform_device(dev);
  221. struct m48t59_plat_data *pdata = pdev->dev.platform_data;
  222. writeb(val, pdata->ioaddr + ofs);
  223. }
  224. static struct m48t59_plat_data m48t59_data = {
  225. .read_byte = mostek_read_byte,
  226. .write_byte = mostek_write_byte,
  227. };
  228. /* resource is set at runtime */
  229. static struct platform_device m48t59_rtc = {
  230. .name = "rtc-m48t59",
  231. .id = 0,
  232. .num_resources = 1,
  233. .dev = {
  234. .platform_data = &m48t59_data,
  235. },
  236. };
  237. static int __devinit clock_probe(struct platform_device *op)
  238. {
  239. struct device_node *dp = op->dev.of_node;
  240. const char *model = of_get_property(dp, "model", NULL);
  241. if (!model)
  242. return -ENODEV;
  243. /* Only the primary RTC has an address property */
  244. if (!of_find_property(dp, "address", NULL))
  245. return -ENODEV;
  246. m48t59_rtc.resource = &op->resource[0];
  247. if (!strcmp(model, "mk48t02")) {
  248. /* Map the clock register io area read-only */
  249. m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
  250. 2048, "rtc-m48t59");
  251. m48t59_data.type = M48T59RTC_TYPE_M48T02;
  252. } else if (!strcmp(model, "mk48t08")) {
  253. m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
  254. 8192, "rtc-m48t59");
  255. m48t59_data.type = M48T59RTC_TYPE_M48T08;
  256. } else
  257. return -ENODEV;
  258. if (platform_device_register(&m48t59_rtc) < 0)
  259. printk(KERN_ERR "Registering RTC device failed\n");
  260. return 0;
  261. }
  262. static struct of_device_id clock_match[] = {
  263. {
  264. .name = "eeprom",
  265. },
  266. {},
  267. };
  268. static struct platform_driver clock_driver = {
  269. .probe = clock_probe,
  270. .driver = {
  271. .name = "rtc",
  272. .owner = THIS_MODULE,
  273. .of_match_table = clock_match,
  274. },
  275. };
  276. /* Probe for the mostek real time clock chip. */
  277. static int __init clock_init(void)
  278. {
  279. return platform_driver_register(&clock_driver);
  280. }
  281. /* Must be after subsys_initcall() so that busses are probed. Must
  282. * be before device_initcall() because things like the RTC driver
  283. * need to see the clock registers.
  284. */
  285. fs_initcall(clock_init);
  286. static void __init sparc32_late_time_init(void)
  287. {
  288. if (sparc_config.features & FEAT_L10_CLOCKEVENT)
  289. setup_timer_ce();
  290. if (sparc_config.features & FEAT_L10_CLOCKSOURCE)
  291. setup_timer_cs();
  292. #ifdef CONFIG_SMP
  293. register_percpu_ce(smp_processor_id());
  294. #endif
  295. }
  296. static void __init sbus_time_init(void)
  297. {
  298. sparc_config.get_cycles_offset = sbus_cycles_offset;
  299. sparc_config.init_timers();
  300. }
  301. void __init time_init(void)
  302. {
  303. btfixup();
  304. sparc_config.features = 0;
  305. late_time_init = sparc32_late_time_init;
  306. if (pcic_present())
  307. pci_time_init();
  308. else
  309. sbus_time_init();
  310. }
  311. static int set_rtc_mmss(unsigned long secs)
  312. {
  313. struct rtc_device *rtc = rtc_class_open("rtc0");
  314. int err = -1;
  315. if (rtc) {
  316. err = rtc_set_mmss(rtc, secs);
  317. rtc_class_close(rtc);
  318. }
  319. return err;
  320. }