events.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592
  1. /*
  2. * Xen event channels
  3. *
  4. * Xen models interrupts with abstract event channels. Because each
  5. * domain gets 1024 event channels, but NR_IRQ is not that large, we
  6. * must dynamically map irqs<->event channels. The event channels
  7. * interface with the rest of the kernel by defining a xen interrupt
  8. * chip. When an event is recieved, it is mapped to an irq and sent
  9. * through the normal interrupt processing path.
  10. *
  11. * There are four kinds of events which can be mapped to an event
  12. * channel:
  13. *
  14. * 1. Inter-domain notifications. This includes all the virtual
  15. * device events, since they're driven by front-ends in another domain
  16. * (typically dom0).
  17. * 2. VIRQs, typically used for timers. These are per-cpu events.
  18. * 3. IPIs.
  19. * 4. PIRQs - Hardware interrupts.
  20. *
  21. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  22. */
  23. #include <linux/linkage.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/irq.h>
  26. #include <linux/module.h>
  27. #include <linux/string.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/slab.h>
  30. #include <linux/irqnr.h>
  31. #include <linux/pci.h>
  32. #include <asm/desc.h>
  33. #include <asm/ptrace.h>
  34. #include <asm/irq.h>
  35. #include <asm/idle.h>
  36. #include <asm/io_apic.h>
  37. #include <asm/sync_bitops.h>
  38. #include <asm/xen/pci.h>
  39. #include <asm/xen/hypercall.h>
  40. #include <asm/xen/hypervisor.h>
  41. #include <xen/xen.h>
  42. #include <xen/hvm.h>
  43. #include <xen/xen-ops.h>
  44. #include <xen/events.h>
  45. #include <xen/interface/xen.h>
  46. #include <xen/interface/event_channel.h>
  47. #include <xen/interface/hvm/hvm_op.h>
  48. #include <xen/interface/hvm/params.h>
  49. /*
  50. * This lock protects updates to the following mapping and reference-count
  51. * arrays. The lock does not need to be acquired to read the mapping tables.
  52. */
  53. static DEFINE_SPINLOCK(irq_mapping_update_lock);
  54. /* IRQ <-> VIRQ mapping. */
  55. static DEFINE_PER_CPU(int [NR_VIRQS], virq_to_irq) = {[0 ... NR_VIRQS-1] = -1};
  56. /* IRQ <-> IPI mapping */
  57. static DEFINE_PER_CPU(int [XEN_NR_IPIS], ipi_to_irq) = {[0 ... XEN_NR_IPIS-1] = -1};
  58. /* Interrupt types. */
  59. enum xen_irq_type {
  60. IRQT_UNBOUND = 0,
  61. IRQT_PIRQ,
  62. IRQT_VIRQ,
  63. IRQT_IPI,
  64. IRQT_EVTCHN
  65. };
  66. /*
  67. * Packed IRQ information:
  68. * type - enum xen_irq_type
  69. * event channel - irq->event channel mapping
  70. * cpu - cpu this event channel is bound to
  71. * index - type-specific information:
  72. * PIRQ - vector, with MSB being "needs EIO", or physical IRQ of the HVM
  73. * guest, or GSI (real passthrough IRQ) of the device.
  74. * VIRQ - virq number
  75. * IPI - IPI vector
  76. * EVTCHN -
  77. */
  78. struct irq_info
  79. {
  80. enum xen_irq_type type; /* type */
  81. unsigned short evtchn; /* event channel */
  82. unsigned short cpu; /* cpu bound */
  83. union {
  84. unsigned short virq;
  85. enum ipi_vector ipi;
  86. struct {
  87. unsigned short pirq;
  88. unsigned short gsi;
  89. unsigned char vector;
  90. unsigned char flags;
  91. } pirq;
  92. } u;
  93. };
  94. #define PIRQ_NEEDS_EOI (1 << 0)
  95. #define PIRQ_SHAREABLE (1 << 1)
  96. static struct irq_info *irq_info;
  97. static int *pirq_to_irq;
  98. static int *evtchn_to_irq;
  99. struct cpu_evtchn_s {
  100. unsigned long bits[NR_EVENT_CHANNELS/BITS_PER_LONG];
  101. };
  102. static __initdata struct cpu_evtchn_s init_evtchn_mask = {
  103. .bits[0 ... (NR_EVENT_CHANNELS/BITS_PER_LONG)-1] = ~0ul,
  104. };
  105. static struct cpu_evtchn_s *cpu_evtchn_mask_p = &init_evtchn_mask;
  106. static inline unsigned long *cpu_evtchn_mask(int cpu)
  107. {
  108. return cpu_evtchn_mask_p[cpu].bits;
  109. }
  110. /* Xen will never allocate port zero for any purpose. */
  111. #define VALID_EVTCHN(chn) ((chn) != 0)
  112. static struct irq_chip xen_dynamic_chip;
  113. static struct irq_chip xen_percpu_chip;
  114. static struct irq_chip xen_pirq_chip;
  115. /* Constructor for packed IRQ information. */
  116. static struct irq_info mk_unbound_info(void)
  117. {
  118. return (struct irq_info) { .type = IRQT_UNBOUND };
  119. }
  120. static struct irq_info mk_evtchn_info(unsigned short evtchn)
  121. {
  122. return (struct irq_info) { .type = IRQT_EVTCHN, .evtchn = evtchn,
  123. .cpu = 0 };
  124. }
  125. static struct irq_info mk_ipi_info(unsigned short evtchn, enum ipi_vector ipi)
  126. {
  127. return (struct irq_info) { .type = IRQT_IPI, .evtchn = evtchn,
  128. .cpu = 0, .u.ipi = ipi };
  129. }
  130. static struct irq_info mk_virq_info(unsigned short evtchn, unsigned short virq)
  131. {
  132. return (struct irq_info) { .type = IRQT_VIRQ, .evtchn = evtchn,
  133. .cpu = 0, .u.virq = virq };
  134. }
  135. static struct irq_info mk_pirq_info(unsigned short evtchn, unsigned short pirq,
  136. unsigned short gsi, unsigned short vector)
  137. {
  138. return (struct irq_info) { .type = IRQT_PIRQ, .evtchn = evtchn,
  139. .cpu = 0,
  140. .u.pirq = { .pirq = pirq, .gsi = gsi, .vector = vector } };
  141. }
  142. /*
  143. * Accessors for packed IRQ information.
  144. */
  145. static struct irq_info *info_for_irq(unsigned irq)
  146. {
  147. return &irq_info[irq];
  148. }
  149. static unsigned int evtchn_from_irq(unsigned irq)
  150. {
  151. if (unlikely(WARN(irq < 0 || irq >= nr_irqs, "Invalid irq %d!\n", irq)))
  152. return 0;
  153. return info_for_irq(irq)->evtchn;
  154. }
  155. unsigned irq_from_evtchn(unsigned int evtchn)
  156. {
  157. return evtchn_to_irq[evtchn];
  158. }
  159. EXPORT_SYMBOL_GPL(irq_from_evtchn);
  160. static enum ipi_vector ipi_from_irq(unsigned irq)
  161. {
  162. struct irq_info *info = info_for_irq(irq);
  163. BUG_ON(info == NULL);
  164. BUG_ON(info->type != IRQT_IPI);
  165. return info->u.ipi;
  166. }
  167. static unsigned virq_from_irq(unsigned irq)
  168. {
  169. struct irq_info *info = info_for_irq(irq);
  170. BUG_ON(info == NULL);
  171. BUG_ON(info->type != IRQT_VIRQ);
  172. return info->u.virq;
  173. }
  174. static unsigned pirq_from_irq(unsigned irq)
  175. {
  176. struct irq_info *info = info_for_irq(irq);
  177. BUG_ON(info == NULL);
  178. BUG_ON(info->type != IRQT_PIRQ);
  179. return info->u.pirq.pirq;
  180. }
  181. static unsigned gsi_from_irq(unsigned irq)
  182. {
  183. struct irq_info *info = info_for_irq(irq);
  184. BUG_ON(info == NULL);
  185. BUG_ON(info->type != IRQT_PIRQ);
  186. return info->u.pirq.gsi;
  187. }
  188. static unsigned vector_from_irq(unsigned irq)
  189. {
  190. struct irq_info *info = info_for_irq(irq);
  191. BUG_ON(info == NULL);
  192. BUG_ON(info->type != IRQT_PIRQ);
  193. return info->u.pirq.vector;
  194. }
  195. static enum xen_irq_type type_from_irq(unsigned irq)
  196. {
  197. return info_for_irq(irq)->type;
  198. }
  199. static unsigned cpu_from_irq(unsigned irq)
  200. {
  201. return info_for_irq(irq)->cpu;
  202. }
  203. static unsigned int cpu_from_evtchn(unsigned int evtchn)
  204. {
  205. int irq = evtchn_to_irq[evtchn];
  206. unsigned ret = 0;
  207. if (irq != -1)
  208. ret = cpu_from_irq(irq);
  209. return ret;
  210. }
  211. static bool pirq_needs_eoi(unsigned irq)
  212. {
  213. struct irq_info *info = info_for_irq(irq);
  214. BUG_ON(info->type != IRQT_PIRQ);
  215. return info->u.pirq.flags & PIRQ_NEEDS_EOI;
  216. }
  217. static inline unsigned long active_evtchns(unsigned int cpu,
  218. struct shared_info *sh,
  219. unsigned int idx)
  220. {
  221. return (sh->evtchn_pending[idx] &
  222. cpu_evtchn_mask(cpu)[idx] &
  223. ~sh->evtchn_mask[idx]);
  224. }
  225. static void bind_evtchn_to_cpu(unsigned int chn, unsigned int cpu)
  226. {
  227. int irq = evtchn_to_irq[chn];
  228. BUG_ON(irq == -1);
  229. #ifdef CONFIG_SMP
  230. cpumask_copy(irq_to_desc(irq)->irq_data.affinity, cpumask_of(cpu));
  231. #endif
  232. clear_bit(chn, cpu_evtchn_mask(cpu_from_irq(irq)));
  233. set_bit(chn, cpu_evtchn_mask(cpu));
  234. irq_info[irq].cpu = cpu;
  235. }
  236. static void init_evtchn_cpu_bindings(void)
  237. {
  238. int i;
  239. #ifdef CONFIG_SMP
  240. struct irq_desc *desc;
  241. /* By default all event channels notify CPU#0. */
  242. for_each_irq_desc(i, desc) {
  243. cpumask_copy(desc->irq_data.affinity, cpumask_of(0));
  244. }
  245. #endif
  246. for_each_possible_cpu(i)
  247. memset(cpu_evtchn_mask(i),
  248. (i == 0) ? ~0 : 0, sizeof(struct cpu_evtchn_s));
  249. }
  250. static inline void clear_evtchn(int port)
  251. {
  252. struct shared_info *s = HYPERVISOR_shared_info;
  253. sync_clear_bit(port, &s->evtchn_pending[0]);
  254. }
  255. static inline void set_evtchn(int port)
  256. {
  257. struct shared_info *s = HYPERVISOR_shared_info;
  258. sync_set_bit(port, &s->evtchn_pending[0]);
  259. }
  260. static inline int test_evtchn(int port)
  261. {
  262. struct shared_info *s = HYPERVISOR_shared_info;
  263. return sync_test_bit(port, &s->evtchn_pending[0]);
  264. }
  265. /**
  266. * notify_remote_via_irq - send event to remote end of event channel via irq
  267. * @irq: irq of event channel to send event to
  268. *
  269. * Unlike notify_remote_via_evtchn(), this is safe to use across
  270. * save/restore. Notifications on a broken connection are silently
  271. * dropped.
  272. */
  273. void notify_remote_via_irq(int irq)
  274. {
  275. int evtchn = evtchn_from_irq(irq);
  276. if (VALID_EVTCHN(evtchn))
  277. notify_remote_via_evtchn(evtchn);
  278. }
  279. EXPORT_SYMBOL_GPL(notify_remote_via_irq);
  280. static void mask_evtchn(int port)
  281. {
  282. struct shared_info *s = HYPERVISOR_shared_info;
  283. sync_set_bit(port, &s->evtchn_mask[0]);
  284. }
  285. static void unmask_evtchn(int port)
  286. {
  287. struct shared_info *s = HYPERVISOR_shared_info;
  288. unsigned int cpu = get_cpu();
  289. BUG_ON(!irqs_disabled());
  290. /* Slow path (hypercall) if this is a non-local port. */
  291. if (unlikely(cpu != cpu_from_evtchn(port))) {
  292. struct evtchn_unmask unmask = { .port = port };
  293. (void)HYPERVISOR_event_channel_op(EVTCHNOP_unmask, &unmask);
  294. } else {
  295. struct vcpu_info *vcpu_info = __this_cpu_read(xen_vcpu);
  296. sync_clear_bit(port, &s->evtchn_mask[0]);
  297. /*
  298. * The following is basically the equivalent of
  299. * 'hw_resend_irq'. Just like a real IO-APIC we 'lose
  300. * the interrupt edge' if the channel is masked.
  301. */
  302. if (sync_test_bit(port, &s->evtchn_pending[0]) &&
  303. !sync_test_and_set_bit(port / BITS_PER_LONG,
  304. &vcpu_info->evtchn_pending_sel))
  305. vcpu_info->evtchn_upcall_pending = 1;
  306. }
  307. put_cpu();
  308. }
  309. static int xen_allocate_irq_dynamic(void)
  310. {
  311. int first = 0;
  312. int irq;
  313. #ifdef CONFIG_X86_IO_APIC
  314. /*
  315. * For an HVM guest or domain 0 which see "real" (emulated or
  316. * actual repectively) GSIs we allocate dynamic IRQs
  317. * e.g. those corresponding to event channels or MSIs
  318. * etc. from the range above those "real" GSIs to avoid
  319. * collisions.
  320. */
  321. if (xen_initial_domain() || xen_hvm_domain())
  322. first = get_nr_irqs_gsi();
  323. #endif
  324. retry:
  325. irq = irq_alloc_desc_from(first, -1);
  326. if (irq == -ENOMEM && first > NR_IRQS_LEGACY) {
  327. printk(KERN_ERR "Out of dynamic IRQ space and eating into GSI space. You should increase nr_irqs\n");
  328. first = max(NR_IRQS_LEGACY, first - NR_IRQS_LEGACY);
  329. goto retry;
  330. }
  331. if (irq < 0)
  332. panic("No available IRQ to bind to: increase nr_irqs!\n");
  333. return irq;
  334. }
  335. static int xen_allocate_irq_gsi(unsigned gsi)
  336. {
  337. int irq;
  338. /*
  339. * A PV guest has no concept of a GSI (since it has no ACPI
  340. * nor access to/knowledge of the physical APICs). Therefore
  341. * all IRQs are dynamically allocated from the entire IRQ
  342. * space.
  343. */
  344. if (xen_pv_domain() && !xen_initial_domain())
  345. return xen_allocate_irq_dynamic();
  346. /* Legacy IRQ descriptors are already allocated by the arch. */
  347. if (gsi < NR_IRQS_LEGACY)
  348. return gsi;
  349. irq = irq_alloc_desc_at(gsi, -1);
  350. if (irq < 0)
  351. panic("Unable to allocate to IRQ%d (%d)\n", gsi, irq);
  352. return irq;
  353. }
  354. static void xen_free_irq(unsigned irq)
  355. {
  356. /* Legacy IRQ descriptors are managed by the arch. */
  357. if (irq < NR_IRQS_LEGACY)
  358. return;
  359. irq_free_desc(irq);
  360. }
  361. static void pirq_unmask_notify(int irq)
  362. {
  363. struct physdev_eoi eoi = { .irq = pirq_from_irq(irq) };
  364. if (unlikely(pirq_needs_eoi(irq))) {
  365. int rc = HYPERVISOR_physdev_op(PHYSDEVOP_eoi, &eoi);
  366. WARN_ON(rc);
  367. }
  368. }
  369. static void pirq_query_unmask(int irq)
  370. {
  371. struct physdev_irq_status_query irq_status;
  372. struct irq_info *info = info_for_irq(irq);
  373. BUG_ON(info->type != IRQT_PIRQ);
  374. irq_status.irq = pirq_from_irq(irq);
  375. if (HYPERVISOR_physdev_op(PHYSDEVOP_irq_status_query, &irq_status))
  376. irq_status.flags = 0;
  377. info->u.pirq.flags &= ~PIRQ_NEEDS_EOI;
  378. if (irq_status.flags & XENIRQSTAT_needs_eoi)
  379. info->u.pirq.flags |= PIRQ_NEEDS_EOI;
  380. }
  381. static bool probing_irq(int irq)
  382. {
  383. struct irq_desc *desc = irq_to_desc(irq);
  384. return desc && desc->action == NULL;
  385. }
  386. static unsigned int __startup_pirq(unsigned int irq)
  387. {
  388. struct evtchn_bind_pirq bind_pirq;
  389. struct irq_info *info = info_for_irq(irq);
  390. int evtchn = evtchn_from_irq(irq);
  391. int rc;
  392. BUG_ON(info->type != IRQT_PIRQ);
  393. if (VALID_EVTCHN(evtchn))
  394. goto out;
  395. bind_pirq.pirq = pirq_from_irq(irq);
  396. /* NB. We are happy to share unless we are probing. */
  397. bind_pirq.flags = info->u.pirq.flags & PIRQ_SHAREABLE ?
  398. BIND_PIRQ__WILL_SHARE : 0;
  399. rc = HYPERVISOR_event_channel_op(EVTCHNOP_bind_pirq, &bind_pirq);
  400. if (rc != 0) {
  401. if (!probing_irq(irq))
  402. printk(KERN_INFO "Failed to obtain physical IRQ %d\n",
  403. irq);
  404. return 0;
  405. }
  406. evtchn = bind_pirq.port;
  407. pirq_query_unmask(irq);
  408. evtchn_to_irq[evtchn] = irq;
  409. bind_evtchn_to_cpu(evtchn, 0);
  410. info->evtchn = evtchn;
  411. out:
  412. unmask_evtchn(evtchn);
  413. pirq_unmask_notify(irq);
  414. return 0;
  415. }
  416. static unsigned int startup_pirq(struct irq_data *data)
  417. {
  418. return __startup_pirq(data->irq);
  419. }
  420. static void shutdown_pirq(struct irq_data *data)
  421. {
  422. struct evtchn_close close;
  423. unsigned int irq = data->irq;
  424. struct irq_info *info = info_for_irq(irq);
  425. int evtchn = evtchn_from_irq(irq);
  426. BUG_ON(info->type != IRQT_PIRQ);
  427. if (!VALID_EVTCHN(evtchn))
  428. return;
  429. mask_evtchn(evtchn);
  430. close.port = evtchn;
  431. if (HYPERVISOR_event_channel_op(EVTCHNOP_close, &close) != 0)
  432. BUG();
  433. bind_evtchn_to_cpu(evtchn, 0);
  434. evtchn_to_irq[evtchn] = -1;
  435. info->evtchn = 0;
  436. }
  437. static void enable_pirq(struct irq_data *data)
  438. {
  439. startup_pirq(data);
  440. }
  441. static void disable_pirq(struct irq_data *data)
  442. {
  443. }
  444. static void ack_pirq(struct irq_data *data)
  445. {
  446. int evtchn = evtchn_from_irq(data->irq);
  447. move_native_irq(data->irq);
  448. if (VALID_EVTCHN(evtchn)) {
  449. mask_evtchn(evtchn);
  450. clear_evtchn(evtchn);
  451. }
  452. }
  453. static int find_irq_by_gsi(unsigned gsi)
  454. {
  455. int irq;
  456. for (irq = 0; irq < nr_irqs; irq++) {
  457. struct irq_info *info = info_for_irq(irq);
  458. if (info == NULL || info->type != IRQT_PIRQ)
  459. continue;
  460. if (gsi_from_irq(irq) == gsi)
  461. return irq;
  462. }
  463. return -1;
  464. }
  465. int xen_allocate_pirq(unsigned gsi, int shareable, char *name)
  466. {
  467. return xen_map_pirq_gsi(gsi, gsi, shareable, name);
  468. }
  469. /* xen_map_pirq_gsi might allocate irqs from the top down, as a
  470. * consequence don't assume that the irq number returned has a low value
  471. * or can be used as a pirq number unless you know otherwise.
  472. *
  473. * One notable exception is when xen_map_pirq_gsi is called passing an
  474. * hardware gsi as argument, in that case the irq number returned
  475. * matches the gsi number passed as second argument.
  476. *
  477. * Note: We don't assign an event channel until the irq actually started
  478. * up. Return an existing irq if we've already got one for the gsi.
  479. */
  480. int xen_map_pirq_gsi(unsigned pirq, unsigned gsi, int shareable, char *name)
  481. {
  482. int irq = 0;
  483. struct physdev_irq irq_op;
  484. spin_lock(&irq_mapping_update_lock);
  485. if ((pirq > nr_irqs) || (gsi > nr_irqs)) {
  486. printk(KERN_WARNING "xen_map_pirq_gsi: %s %s is incorrect!\n",
  487. pirq > nr_irqs ? "pirq" :"",
  488. gsi > nr_irqs ? "gsi" : "");
  489. goto out;
  490. }
  491. irq = find_irq_by_gsi(gsi);
  492. if (irq != -1) {
  493. printk(KERN_INFO "xen_map_pirq_gsi: returning irq %d for gsi %u\n",
  494. irq, gsi);
  495. goto out; /* XXX need refcount? */
  496. }
  497. irq = xen_allocate_irq_gsi(gsi);
  498. set_irq_chip_and_handler_name(irq, &xen_pirq_chip,
  499. handle_level_irq, name);
  500. irq_op.irq = irq;
  501. irq_op.vector = 0;
  502. /* Only the privileged domain can do this. For non-priv, the pcifront
  503. * driver provides a PCI bus that does the call to do exactly
  504. * this in the priv domain. */
  505. if (xen_initial_domain() &&
  506. HYPERVISOR_physdev_op(PHYSDEVOP_alloc_irq_vector, &irq_op)) {
  507. xen_free_irq(irq);
  508. irq = -ENOSPC;
  509. goto out;
  510. }
  511. irq_info[irq] = mk_pirq_info(0, pirq, gsi, irq_op.vector);
  512. irq_info[irq].u.pirq.flags |= shareable ? PIRQ_SHAREABLE : 0;
  513. pirq_to_irq[pirq] = irq;
  514. out:
  515. spin_unlock(&irq_mapping_update_lock);
  516. return irq;
  517. }
  518. #ifdef CONFIG_PCI_MSI
  519. #include <linux/msi.h>
  520. #include "../pci/msi.h"
  521. static int find_unbound_pirq(int type)
  522. {
  523. int rc, i;
  524. struct physdev_get_free_pirq op_get_free_pirq;
  525. op_get_free_pirq.type = type;
  526. rc = HYPERVISOR_physdev_op(PHYSDEVOP_get_free_pirq, &op_get_free_pirq);
  527. if (!rc)
  528. return op_get_free_pirq.pirq;
  529. for (i = 0; i < nr_irqs; i++) {
  530. if (pirq_to_irq[i] < 0)
  531. return i;
  532. }
  533. return -1;
  534. }
  535. void xen_allocate_pirq_msi(char *name, int *irq, int *pirq, int alloc)
  536. {
  537. spin_lock(&irq_mapping_update_lock);
  538. if (alloc & XEN_ALLOC_IRQ) {
  539. *irq = xen_allocate_irq_dynamic();
  540. if (*irq == -1)
  541. goto out;
  542. }
  543. if (alloc & XEN_ALLOC_PIRQ) {
  544. *pirq = find_unbound_pirq(MAP_PIRQ_TYPE_MSI);
  545. if (*pirq == -1)
  546. goto out;
  547. }
  548. set_irq_chip_and_handler_name(*irq, &xen_pirq_chip,
  549. handle_level_irq, name);
  550. irq_info[*irq] = mk_pirq_info(0, *pirq, 0, 0);
  551. pirq_to_irq[*pirq] = *irq;
  552. out:
  553. spin_unlock(&irq_mapping_update_lock);
  554. }
  555. int xen_create_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int type)
  556. {
  557. int irq = -1;
  558. struct physdev_map_pirq map_irq;
  559. int rc;
  560. int pos;
  561. u32 table_offset, bir;
  562. memset(&map_irq, 0, sizeof(map_irq));
  563. map_irq.domid = DOMID_SELF;
  564. map_irq.type = MAP_PIRQ_TYPE_MSI;
  565. map_irq.index = -1;
  566. map_irq.pirq = -1;
  567. map_irq.bus = dev->bus->number;
  568. map_irq.devfn = dev->devfn;
  569. if (type == PCI_CAP_ID_MSIX) {
  570. pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
  571. pci_read_config_dword(dev, msix_table_offset_reg(pos),
  572. &table_offset);
  573. bir = (u8)(table_offset & PCI_MSIX_FLAGS_BIRMASK);
  574. map_irq.table_base = pci_resource_start(dev, bir);
  575. map_irq.entry_nr = msidesc->msi_attrib.entry_nr;
  576. }
  577. spin_lock(&irq_mapping_update_lock);
  578. irq = xen_allocate_irq_dynamic();
  579. if (irq == -1)
  580. goto out;
  581. rc = HYPERVISOR_physdev_op(PHYSDEVOP_map_pirq, &map_irq);
  582. if (rc) {
  583. printk(KERN_WARNING "xen map irq failed %d\n", rc);
  584. xen_free_irq(irq);
  585. irq = -1;
  586. goto out;
  587. }
  588. irq_info[irq] = mk_pirq_info(0, map_irq.pirq, 0, map_irq.index);
  589. set_irq_chip_and_handler_name(irq, &xen_pirq_chip,
  590. handle_level_irq,
  591. (type == PCI_CAP_ID_MSIX) ? "msi-x":"msi");
  592. out:
  593. spin_unlock(&irq_mapping_update_lock);
  594. return irq;
  595. }
  596. #endif
  597. int xen_destroy_irq(int irq)
  598. {
  599. struct irq_desc *desc;
  600. struct physdev_unmap_pirq unmap_irq;
  601. struct irq_info *info = info_for_irq(irq);
  602. int rc = -ENOENT;
  603. spin_lock(&irq_mapping_update_lock);
  604. desc = irq_to_desc(irq);
  605. if (!desc)
  606. goto out;
  607. if (xen_initial_domain()) {
  608. unmap_irq.pirq = info->u.pirq.pirq;
  609. unmap_irq.domid = DOMID_SELF;
  610. rc = HYPERVISOR_physdev_op(PHYSDEVOP_unmap_pirq, &unmap_irq);
  611. if (rc) {
  612. printk(KERN_WARNING "unmap irq failed %d\n", rc);
  613. goto out;
  614. }
  615. pirq_to_irq[info->u.pirq.pirq] = -1;
  616. }
  617. irq_info[irq] = mk_unbound_info();
  618. xen_free_irq(irq);
  619. out:
  620. spin_unlock(&irq_mapping_update_lock);
  621. return rc;
  622. }
  623. int xen_vector_from_irq(unsigned irq)
  624. {
  625. return vector_from_irq(irq);
  626. }
  627. int xen_gsi_from_irq(unsigned irq)
  628. {
  629. return gsi_from_irq(irq);
  630. }
  631. int xen_irq_from_pirq(unsigned pirq)
  632. {
  633. return pirq_to_irq[pirq];
  634. }
  635. int bind_evtchn_to_irq(unsigned int evtchn)
  636. {
  637. int irq;
  638. spin_lock(&irq_mapping_update_lock);
  639. irq = evtchn_to_irq[evtchn];
  640. if (irq == -1) {
  641. irq = xen_allocate_irq_dynamic();
  642. set_irq_chip_and_handler_name(irq, &xen_dynamic_chip,
  643. handle_fasteoi_irq, "event");
  644. evtchn_to_irq[evtchn] = irq;
  645. irq_info[irq] = mk_evtchn_info(evtchn);
  646. }
  647. spin_unlock(&irq_mapping_update_lock);
  648. return irq;
  649. }
  650. EXPORT_SYMBOL_GPL(bind_evtchn_to_irq);
  651. static int bind_ipi_to_irq(unsigned int ipi, unsigned int cpu)
  652. {
  653. struct evtchn_bind_ipi bind_ipi;
  654. int evtchn, irq;
  655. spin_lock(&irq_mapping_update_lock);
  656. irq = per_cpu(ipi_to_irq, cpu)[ipi];
  657. if (irq == -1) {
  658. irq = xen_allocate_irq_dynamic();
  659. if (irq < 0)
  660. goto out;
  661. set_irq_chip_and_handler_name(irq, &xen_percpu_chip,
  662. handle_percpu_irq, "ipi");
  663. bind_ipi.vcpu = cpu;
  664. if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi,
  665. &bind_ipi) != 0)
  666. BUG();
  667. evtchn = bind_ipi.port;
  668. evtchn_to_irq[evtchn] = irq;
  669. irq_info[irq] = mk_ipi_info(evtchn, ipi);
  670. per_cpu(ipi_to_irq, cpu)[ipi] = irq;
  671. bind_evtchn_to_cpu(evtchn, cpu);
  672. }
  673. out:
  674. spin_unlock(&irq_mapping_update_lock);
  675. return irq;
  676. }
  677. int bind_virq_to_irq(unsigned int virq, unsigned int cpu)
  678. {
  679. struct evtchn_bind_virq bind_virq;
  680. int evtchn, irq;
  681. spin_lock(&irq_mapping_update_lock);
  682. irq = per_cpu(virq_to_irq, cpu)[virq];
  683. if (irq == -1) {
  684. irq = xen_allocate_irq_dynamic();
  685. set_irq_chip_and_handler_name(irq, &xen_percpu_chip,
  686. handle_percpu_irq, "virq");
  687. bind_virq.virq = virq;
  688. bind_virq.vcpu = cpu;
  689. if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq,
  690. &bind_virq) != 0)
  691. BUG();
  692. evtchn = bind_virq.port;
  693. evtchn_to_irq[evtchn] = irq;
  694. irq_info[irq] = mk_virq_info(evtchn, virq);
  695. per_cpu(virq_to_irq, cpu)[virq] = irq;
  696. bind_evtchn_to_cpu(evtchn, cpu);
  697. }
  698. spin_unlock(&irq_mapping_update_lock);
  699. return irq;
  700. }
  701. static void unbind_from_irq(unsigned int irq)
  702. {
  703. struct evtchn_close close;
  704. int evtchn = evtchn_from_irq(irq);
  705. spin_lock(&irq_mapping_update_lock);
  706. if (VALID_EVTCHN(evtchn)) {
  707. close.port = evtchn;
  708. if (HYPERVISOR_event_channel_op(EVTCHNOP_close, &close) != 0)
  709. BUG();
  710. switch (type_from_irq(irq)) {
  711. case IRQT_VIRQ:
  712. per_cpu(virq_to_irq, cpu_from_evtchn(evtchn))
  713. [virq_from_irq(irq)] = -1;
  714. break;
  715. case IRQT_IPI:
  716. per_cpu(ipi_to_irq, cpu_from_evtchn(evtchn))
  717. [ipi_from_irq(irq)] = -1;
  718. break;
  719. default:
  720. break;
  721. }
  722. /* Closed ports are implicitly re-bound to VCPU0. */
  723. bind_evtchn_to_cpu(evtchn, 0);
  724. evtchn_to_irq[evtchn] = -1;
  725. }
  726. if (irq_info[irq].type != IRQT_UNBOUND) {
  727. irq_info[irq] = mk_unbound_info();
  728. xen_free_irq(irq);
  729. }
  730. spin_unlock(&irq_mapping_update_lock);
  731. }
  732. int bind_evtchn_to_irqhandler(unsigned int evtchn,
  733. irq_handler_t handler,
  734. unsigned long irqflags,
  735. const char *devname, void *dev_id)
  736. {
  737. unsigned int irq;
  738. int retval;
  739. irq = bind_evtchn_to_irq(evtchn);
  740. retval = request_irq(irq, handler, irqflags, devname, dev_id);
  741. if (retval != 0) {
  742. unbind_from_irq(irq);
  743. return retval;
  744. }
  745. return irq;
  746. }
  747. EXPORT_SYMBOL_GPL(bind_evtchn_to_irqhandler);
  748. int bind_virq_to_irqhandler(unsigned int virq, unsigned int cpu,
  749. irq_handler_t handler,
  750. unsigned long irqflags, const char *devname, void *dev_id)
  751. {
  752. unsigned int irq;
  753. int retval;
  754. irq = bind_virq_to_irq(virq, cpu);
  755. retval = request_irq(irq, handler, irqflags, devname, dev_id);
  756. if (retval != 0) {
  757. unbind_from_irq(irq);
  758. return retval;
  759. }
  760. return irq;
  761. }
  762. EXPORT_SYMBOL_GPL(bind_virq_to_irqhandler);
  763. int bind_ipi_to_irqhandler(enum ipi_vector ipi,
  764. unsigned int cpu,
  765. irq_handler_t handler,
  766. unsigned long irqflags,
  767. const char *devname,
  768. void *dev_id)
  769. {
  770. int irq, retval;
  771. irq = bind_ipi_to_irq(ipi, cpu);
  772. if (irq < 0)
  773. return irq;
  774. irqflags |= IRQF_NO_SUSPEND;
  775. retval = request_irq(irq, handler, irqflags, devname, dev_id);
  776. if (retval != 0) {
  777. unbind_from_irq(irq);
  778. return retval;
  779. }
  780. return irq;
  781. }
  782. void unbind_from_irqhandler(unsigned int irq, void *dev_id)
  783. {
  784. free_irq(irq, dev_id);
  785. unbind_from_irq(irq);
  786. }
  787. EXPORT_SYMBOL_GPL(unbind_from_irqhandler);
  788. void xen_send_IPI_one(unsigned int cpu, enum ipi_vector vector)
  789. {
  790. int irq = per_cpu(ipi_to_irq, cpu)[vector];
  791. BUG_ON(irq < 0);
  792. notify_remote_via_irq(irq);
  793. }
  794. irqreturn_t xen_debug_interrupt(int irq, void *dev_id)
  795. {
  796. struct shared_info *sh = HYPERVISOR_shared_info;
  797. int cpu = smp_processor_id();
  798. unsigned long *cpu_evtchn = cpu_evtchn_mask(cpu);
  799. int i;
  800. unsigned long flags;
  801. static DEFINE_SPINLOCK(debug_lock);
  802. struct vcpu_info *v;
  803. spin_lock_irqsave(&debug_lock, flags);
  804. printk("\nvcpu %d\n ", cpu);
  805. for_each_online_cpu(i) {
  806. int pending;
  807. v = per_cpu(xen_vcpu, i);
  808. pending = (get_irq_regs() && i == cpu)
  809. ? xen_irqs_disabled(get_irq_regs())
  810. : v->evtchn_upcall_mask;
  811. printk("%d: masked=%d pending=%d event_sel %0*lx\n ", i,
  812. pending, v->evtchn_upcall_pending,
  813. (int)(sizeof(v->evtchn_pending_sel)*2),
  814. v->evtchn_pending_sel);
  815. }
  816. v = per_cpu(xen_vcpu, cpu);
  817. printk("\npending:\n ");
  818. for (i = ARRAY_SIZE(sh->evtchn_pending)-1; i >= 0; i--)
  819. printk("%0*lx%s", (int)sizeof(sh->evtchn_pending[0])*2,
  820. sh->evtchn_pending[i],
  821. i % 8 == 0 ? "\n " : " ");
  822. printk("\nglobal mask:\n ");
  823. for (i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--)
  824. printk("%0*lx%s",
  825. (int)(sizeof(sh->evtchn_mask[0])*2),
  826. sh->evtchn_mask[i],
  827. i % 8 == 0 ? "\n " : " ");
  828. printk("\nglobally unmasked:\n ");
  829. for (i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--)
  830. printk("%0*lx%s", (int)(sizeof(sh->evtchn_mask[0])*2),
  831. sh->evtchn_pending[i] & ~sh->evtchn_mask[i],
  832. i % 8 == 0 ? "\n " : " ");
  833. printk("\nlocal cpu%d mask:\n ", cpu);
  834. for (i = (NR_EVENT_CHANNELS/BITS_PER_LONG)-1; i >= 0; i--)
  835. printk("%0*lx%s", (int)(sizeof(cpu_evtchn[0])*2),
  836. cpu_evtchn[i],
  837. i % 8 == 0 ? "\n " : " ");
  838. printk("\nlocally unmasked:\n ");
  839. for (i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--) {
  840. unsigned long pending = sh->evtchn_pending[i]
  841. & ~sh->evtchn_mask[i]
  842. & cpu_evtchn[i];
  843. printk("%0*lx%s", (int)(sizeof(sh->evtchn_mask[0])*2),
  844. pending, i % 8 == 0 ? "\n " : " ");
  845. }
  846. printk("\npending list:\n");
  847. for (i = 0; i < NR_EVENT_CHANNELS; i++) {
  848. if (sync_test_bit(i, sh->evtchn_pending)) {
  849. int word_idx = i / BITS_PER_LONG;
  850. printk(" %d: event %d -> irq %d%s%s%s\n",
  851. cpu_from_evtchn(i), i,
  852. evtchn_to_irq[i],
  853. sync_test_bit(word_idx, &v->evtchn_pending_sel)
  854. ? "" : " l2-clear",
  855. !sync_test_bit(i, sh->evtchn_mask)
  856. ? "" : " globally-masked",
  857. sync_test_bit(i, cpu_evtchn)
  858. ? "" : " locally-masked");
  859. }
  860. }
  861. spin_unlock_irqrestore(&debug_lock, flags);
  862. return IRQ_HANDLED;
  863. }
  864. static DEFINE_PER_CPU(unsigned, xed_nesting_count);
  865. /*
  866. * Search the CPUs pending events bitmasks. For each one found, map
  867. * the event number to an irq, and feed it into do_IRQ() for
  868. * handling.
  869. *
  870. * Xen uses a two-level bitmap to speed searching. The first level is
  871. * a bitset of words which contain pending event bits. The second
  872. * level is a bitset of pending events themselves.
  873. */
  874. static void __xen_evtchn_do_upcall(void)
  875. {
  876. int cpu = get_cpu();
  877. struct shared_info *s = HYPERVISOR_shared_info;
  878. struct vcpu_info *vcpu_info = __this_cpu_read(xen_vcpu);
  879. unsigned count;
  880. do {
  881. unsigned long pending_words;
  882. vcpu_info->evtchn_upcall_pending = 0;
  883. if (__this_cpu_inc_return(xed_nesting_count) - 1)
  884. goto out;
  885. #ifndef CONFIG_X86 /* No need for a barrier -- XCHG is a barrier on x86. */
  886. /* Clear master flag /before/ clearing selector flag. */
  887. wmb();
  888. #endif
  889. pending_words = xchg(&vcpu_info->evtchn_pending_sel, 0);
  890. while (pending_words != 0) {
  891. unsigned long pending_bits;
  892. int word_idx = __ffs(pending_words);
  893. pending_words &= ~(1UL << word_idx);
  894. while ((pending_bits = active_evtchns(cpu, s, word_idx)) != 0) {
  895. int bit_idx = __ffs(pending_bits);
  896. int port = (word_idx * BITS_PER_LONG) + bit_idx;
  897. int irq = evtchn_to_irq[port];
  898. struct irq_desc *desc;
  899. mask_evtchn(port);
  900. clear_evtchn(port);
  901. if (irq != -1) {
  902. desc = irq_to_desc(irq);
  903. if (desc)
  904. generic_handle_irq_desc(irq, desc);
  905. }
  906. }
  907. }
  908. BUG_ON(!irqs_disabled());
  909. count = __this_cpu_read(xed_nesting_count);
  910. __this_cpu_write(xed_nesting_count, 0);
  911. } while (count != 1 || vcpu_info->evtchn_upcall_pending);
  912. out:
  913. put_cpu();
  914. }
  915. void xen_evtchn_do_upcall(struct pt_regs *regs)
  916. {
  917. struct pt_regs *old_regs = set_irq_regs(regs);
  918. exit_idle();
  919. irq_enter();
  920. __xen_evtchn_do_upcall();
  921. irq_exit();
  922. set_irq_regs(old_regs);
  923. }
  924. void xen_hvm_evtchn_do_upcall(void)
  925. {
  926. __xen_evtchn_do_upcall();
  927. }
  928. EXPORT_SYMBOL_GPL(xen_hvm_evtchn_do_upcall);
  929. /* Rebind a new event channel to an existing irq. */
  930. void rebind_evtchn_irq(int evtchn, int irq)
  931. {
  932. struct irq_info *info = info_for_irq(irq);
  933. /* Make sure the irq is masked, since the new event channel
  934. will also be masked. */
  935. disable_irq(irq);
  936. spin_lock(&irq_mapping_update_lock);
  937. /* After resume the irq<->evtchn mappings are all cleared out */
  938. BUG_ON(evtchn_to_irq[evtchn] != -1);
  939. /* Expect irq to have been bound before,
  940. so there should be a proper type */
  941. BUG_ON(info->type == IRQT_UNBOUND);
  942. evtchn_to_irq[evtchn] = irq;
  943. irq_info[irq] = mk_evtchn_info(evtchn);
  944. spin_unlock(&irq_mapping_update_lock);
  945. /* new event channels are always bound to cpu 0 */
  946. irq_set_affinity(irq, cpumask_of(0));
  947. /* Unmask the event channel. */
  948. enable_irq(irq);
  949. }
  950. /* Rebind an evtchn so that it gets delivered to a specific cpu */
  951. static int rebind_irq_to_cpu(unsigned irq, unsigned tcpu)
  952. {
  953. struct evtchn_bind_vcpu bind_vcpu;
  954. int evtchn = evtchn_from_irq(irq);
  955. /* events delivered via platform PCI interrupts are always
  956. * routed to vcpu 0 */
  957. if (!VALID_EVTCHN(evtchn) ||
  958. (xen_hvm_domain() && !xen_have_vector_callback))
  959. return -1;
  960. /* Send future instances of this interrupt to other vcpu. */
  961. bind_vcpu.port = evtchn;
  962. bind_vcpu.vcpu = tcpu;
  963. /*
  964. * If this fails, it usually just indicates that we're dealing with a
  965. * virq or IPI channel, which don't actually need to be rebound. Ignore
  966. * it, but don't do the xenlinux-level rebind in that case.
  967. */
  968. if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_vcpu, &bind_vcpu) >= 0)
  969. bind_evtchn_to_cpu(evtchn, tcpu);
  970. return 0;
  971. }
  972. static int set_affinity_irq(struct irq_data *data, const struct cpumask *dest,
  973. bool force)
  974. {
  975. unsigned tcpu = cpumask_first(dest);
  976. return rebind_irq_to_cpu(data->irq, tcpu);
  977. }
  978. int resend_irq_on_evtchn(unsigned int irq)
  979. {
  980. int masked, evtchn = evtchn_from_irq(irq);
  981. struct shared_info *s = HYPERVISOR_shared_info;
  982. if (!VALID_EVTCHN(evtchn))
  983. return 1;
  984. masked = sync_test_and_set_bit(evtchn, s->evtchn_mask);
  985. sync_set_bit(evtchn, s->evtchn_pending);
  986. if (!masked)
  987. unmask_evtchn(evtchn);
  988. return 1;
  989. }
  990. static void enable_dynirq(struct irq_data *data)
  991. {
  992. int evtchn = evtchn_from_irq(data->irq);
  993. if (VALID_EVTCHN(evtchn))
  994. unmask_evtchn(evtchn);
  995. }
  996. static void disable_dynirq(struct irq_data *data)
  997. {
  998. int evtchn = evtchn_from_irq(data->irq);
  999. if (VALID_EVTCHN(evtchn))
  1000. mask_evtchn(evtchn);
  1001. }
  1002. static void ack_dynirq(struct irq_data *data)
  1003. {
  1004. int evtchn = evtchn_from_irq(data->irq);
  1005. move_masked_irq(data->irq);
  1006. if (VALID_EVTCHN(evtchn))
  1007. unmask_evtchn(evtchn);
  1008. }
  1009. static int retrigger_dynirq(struct irq_data *data)
  1010. {
  1011. int evtchn = evtchn_from_irq(data->irq);
  1012. struct shared_info *sh = HYPERVISOR_shared_info;
  1013. int ret = 0;
  1014. if (VALID_EVTCHN(evtchn)) {
  1015. int masked;
  1016. masked = sync_test_and_set_bit(evtchn, sh->evtchn_mask);
  1017. sync_set_bit(evtchn, sh->evtchn_pending);
  1018. if (!masked)
  1019. unmask_evtchn(evtchn);
  1020. ret = 1;
  1021. }
  1022. return ret;
  1023. }
  1024. static void restore_cpu_pirqs(void)
  1025. {
  1026. int pirq, rc, irq, gsi;
  1027. struct physdev_map_pirq map_irq;
  1028. for (pirq = 0; pirq < nr_irqs; pirq++) {
  1029. irq = pirq_to_irq[pirq];
  1030. if (irq == -1)
  1031. continue;
  1032. /* save/restore of PT devices doesn't work, so at this point the
  1033. * only devices present are GSI based emulated devices */
  1034. gsi = gsi_from_irq(irq);
  1035. if (!gsi)
  1036. continue;
  1037. map_irq.domid = DOMID_SELF;
  1038. map_irq.type = MAP_PIRQ_TYPE_GSI;
  1039. map_irq.index = gsi;
  1040. map_irq.pirq = pirq;
  1041. rc = HYPERVISOR_physdev_op(PHYSDEVOP_map_pirq, &map_irq);
  1042. if (rc) {
  1043. printk(KERN_WARNING "xen map irq failed gsi=%d irq=%d pirq=%d rc=%d\n",
  1044. gsi, irq, pirq, rc);
  1045. irq_info[irq] = mk_unbound_info();
  1046. pirq_to_irq[pirq] = -1;
  1047. continue;
  1048. }
  1049. printk(KERN_DEBUG "xen: --> irq=%d, pirq=%d\n", irq, map_irq.pirq);
  1050. __startup_pirq(irq);
  1051. }
  1052. }
  1053. static void restore_cpu_virqs(unsigned int cpu)
  1054. {
  1055. struct evtchn_bind_virq bind_virq;
  1056. int virq, irq, evtchn;
  1057. for (virq = 0; virq < NR_VIRQS; virq++) {
  1058. if ((irq = per_cpu(virq_to_irq, cpu)[virq]) == -1)
  1059. continue;
  1060. BUG_ON(virq_from_irq(irq) != virq);
  1061. /* Get a new binding from Xen. */
  1062. bind_virq.virq = virq;
  1063. bind_virq.vcpu = cpu;
  1064. if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq,
  1065. &bind_virq) != 0)
  1066. BUG();
  1067. evtchn = bind_virq.port;
  1068. /* Record the new mapping. */
  1069. evtchn_to_irq[evtchn] = irq;
  1070. irq_info[irq] = mk_virq_info(evtchn, virq);
  1071. bind_evtchn_to_cpu(evtchn, cpu);
  1072. }
  1073. }
  1074. static void restore_cpu_ipis(unsigned int cpu)
  1075. {
  1076. struct evtchn_bind_ipi bind_ipi;
  1077. int ipi, irq, evtchn;
  1078. for (ipi = 0; ipi < XEN_NR_IPIS; ipi++) {
  1079. if ((irq = per_cpu(ipi_to_irq, cpu)[ipi]) == -1)
  1080. continue;
  1081. BUG_ON(ipi_from_irq(irq) != ipi);
  1082. /* Get a new binding from Xen. */
  1083. bind_ipi.vcpu = cpu;
  1084. if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi,
  1085. &bind_ipi) != 0)
  1086. BUG();
  1087. evtchn = bind_ipi.port;
  1088. /* Record the new mapping. */
  1089. evtchn_to_irq[evtchn] = irq;
  1090. irq_info[irq] = mk_ipi_info(evtchn, ipi);
  1091. bind_evtchn_to_cpu(evtchn, cpu);
  1092. }
  1093. }
  1094. /* Clear an irq's pending state, in preparation for polling on it */
  1095. void xen_clear_irq_pending(int irq)
  1096. {
  1097. int evtchn = evtchn_from_irq(irq);
  1098. if (VALID_EVTCHN(evtchn))
  1099. clear_evtchn(evtchn);
  1100. }
  1101. EXPORT_SYMBOL(xen_clear_irq_pending);
  1102. void xen_set_irq_pending(int irq)
  1103. {
  1104. int evtchn = evtchn_from_irq(irq);
  1105. if (VALID_EVTCHN(evtchn))
  1106. set_evtchn(evtchn);
  1107. }
  1108. bool xen_test_irq_pending(int irq)
  1109. {
  1110. int evtchn = evtchn_from_irq(irq);
  1111. bool ret = false;
  1112. if (VALID_EVTCHN(evtchn))
  1113. ret = test_evtchn(evtchn);
  1114. return ret;
  1115. }
  1116. /* Poll waiting for an irq to become pending with timeout. In the usual case,
  1117. * the irq will be disabled so it won't deliver an interrupt. */
  1118. void xen_poll_irq_timeout(int irq, u64 timeout)
  1119. {
  1120. evtchn_port_t evtchn = evtchn_from_irq(irq);
  1121. if (VALID_EVTCHN(evtchn)) {
  1122. struct sched_poll poll;
  1123. poll.nr_ports = 1;
  1124. poll.timeout = timeout;
  1125. set_xen_guest_handle(poll.ports, &evtchn);
  1126. if (HYPERVISOR_sched_op(SCHEDOP_poll, &poll) != 0)
  1127. BUG();
  1128. }
  1129. }
  1130. EXPORT_SYMBOL(xen_poll_irq_timeout);
  1131. /* Poll waiting for an irq to become pending. In the usual case, the
  1132. * irq will be disabled so it won't deliver an interrupt. */
  1133. void xen_poll_irq(int irq)
  1134. {
  1135. xen_poll_irq_timeout(irq, 0 /* no timeout */);
  1136. }
  1137. void xen_irq_resume(void)
  1138. {
  1139. unsigned int cpu, irq, evtchn;
  1140. struct irq_desc *desc;
  1141. init_evtchn_cpu_bindings();
  1142. /* New event-channel space is not 'live' yet. */
  1143. for (evtchn = 0; evtchn < NR_EVENT_CHANNELS; evtchn++)
  1144. mask_evtchn(evtchn);
  1145. /* No IRQ <-> event-channel mappings. */
  1146. for (irq = 0; irq < nr_irqs; irq++)
  1147. irq_info[irq].evtchn = 0; /* zap event-channel binding */
  1148. for (evtchn = 0; evtchn < NR_EVENT_CHANNELS; evtchn++)
  1149. evtchn_to_irq[evtchn] = -1;
  1150. for_each_possible_cpu(cpu) {
  1151. restore_cpu_virqs(cpu);
  1152. restore_cpu_ipis(cpu);
  1153. }
  1154. /*
  1155. * Unmask any IRQF_NO_SUSPEND IRQs which are enabled. These
  1156. * are not handled by the IRQ core.
  1157. */
  1158. for_each_irq_desc(irq, desc) {
  1159. if (!desc->action || !(desc->action->flags & IRQF_NO_SUSPEND))
  1160. continue;
  1161. if (desc->status & IRQ_DISABLED)
  1162. continue;
  1163. evtchn = evtchn_from_irq(irq);
  1164. if (evtchn == -1)
  1165. continue;
  1166. unmask_evtchn(evtchn);
  1167. }
  1168. restore_cpu_pirqs();
  1169. }
  1170. static struct irq_chip xen_dynamic_chip __read_mostly = {
  1171. .name = "xen-dyn",
  1172. .irq_disable = disable_dynirq,
  1173. .irq_mask = disable_dynirq,
  1174. .irq_unmask = enable_dynirq,
  1175. .irq_eoi = ack_dynirq,
  1176. .irq_set_affinity = set_affinity_irq,
  1177. .irq_retrigger = retrigger_dynirq,
  1178. };
  1179. static struct irq_chip xen_pirq_chip __read_mostly = {
  1180. .name = "xen-pirq",
  1181. .irq_startup = startup_pirq,
  1182. .irq_shutdown = shutdown_pirq,
  1183. .irq_enable = enable_pirq,
  1184. .irq_unmask = enable_pirq,
  1185. .irq_disable = disable_pirq,
  1186. .irq_mask = disable_pirq,
  1187. .irq_ack = ack_pirq,
  1188. .irq_set_affinity = set_affinity_irq,
  1189. .irq_retrigger = retrigger_dynirq,
  1190. };
  1191. static struct irq_chip xen_percpu_chip __read_mostly = {
  1192. .name = "xen-percpu",
  1193. .irq_disable = disable_dynirq,
  1194. .irq_mask = disable_dynirq,
  1195. .irq_unmask = enable_dynirq,
  1196. .irq_ack = ack_dynirq,
  1197. };
  1198. int xen_set_callback_via(uint64_t via)
  1199. {
  1200. struct xen_hvm_param a;
  1201. a.domid = DOMID_SELF;
  1202. a.index = HVM_PARAM_CALLBACK_IRQ;
  1203. a.value = via;
  1204. return HYPERVISOR_hvm_op(HVMOP_set_param, &a);
  1205. }
  1206. EXPORT_SYMBOL_GPL(xen_set_callback_via);
  1207. #ifdef CONFIG_XEN_PVHVM
  1208. /* Vector callbacks are better than PCI interrupts to receive event
  1209. * channel notifications because we can receive vector callbacks on any
  1210. * vcpu and we don't need PCI support or APIC interactions. */
  1211. void xen_callback_vector(void)
  1212. {
  1213. int rc;
  1214. uint64_t callback_via;
  1215. if (xen_have_vector_callback) {
  1216. callback_via = HVM_CALLBACK_VECTOR(XEN_HVM_EVTCHN_CALLBACK);
  1217. rc = xen_set_callback_via(callback_via);
  1218. if (rc) {
  1219. printk(KERN_ERR "Request for Xen HVM callback vector"
  1220. " failed.\n");
  1221. xen_have_vector_callback = 0;
  1222. return;
  1223. }
  1224. printk(KERN_INFO "Xen HVM callback vector for event delivery is "
  1225. "enabled\n");
  1226. /* in the restore case the vector has already been allocated */
  1227. if (!test_bit(XEN_HVM_EVTCHN_CALLBACK, used_vectors))
  1228. alloc_intr_gate(XEN_HVM_EVTCHN_CALLBACK, xen_hvm_callback_vector);
  1229. }
  1230. }
  1231. #else
  1232. void xen_callback_vector(void) {}
  1233. #endif
  1234. void __init xen_init_IRQ(void)
  1235. {
  1236. int i;
  1237. cpu_evtchn_mask_p = kcalloc(nr_cpu_ids, sizeof(struct cpu_evtchn_s),
  1238. GFP_KERNEL);
  1239. irq_info = kcalloc(nr_irqs, sizeof(*irq_info), GFP_KERNEL);
  1240. /* We are using nr_irqs as the maximum number of pirq available but
  1241. * that number is actually chosen by Xen and we don't know exactly
  1242. * what it is. Be careful choosing high pirq numbers. */
  1243. pirq_to_irq = kcalloc(nr_irqs, sizeof(*pirq_to_irq), GFP_KERNEL);
  1244. for (i = 0; i < nr_irqs; i++)
  1245. pirq_to_irq[i] = -1;
  1246. evtchn_to_irq = kcalloc(NR_EVENT_CHANNELS, sizeof(*evtchn_to_irq),
  1247. GFP_KERNEL);
  1248. for (i = 0; i < NR_EVENT_CHANNELS; i++)
  1249. evtchn_to_irq[i] = -1;
  1250. init_evtchn_cpu_bindings();
  1251. /* No event channels are 'live' right now. */
  1252. for (i = 0; i < NR_EVENT_CHANNELS; i++)
  1253. mask_evtchn(i);
  1254. if (xen_hvm_domain()) {
  1255. xen_callback_vector();
  1256. native_init_IRQ();
  1257. /* pci_xen_hvm_init must be called after native_init_IRQ so that
  1258. * __acpi_register_gsi can point at the right function */
  1259. pci_xen_hvm_init();
  1260. } else {
  1261. irq_ctx_init(smp_processor_id());
  1262. if (xen_initial_domain())
  1263. xen_setup_pirqs();
  1264. }
  1265. }