phy.c 118 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2012 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "../wifi.h"
  30. #include "../pci.h"
  31. #include "../ps.h"
  32. #include "reg.h"
  33. #include "def.h"
  34. #include "phy.h"
  35. #include "rf.h"
  36. #include "dm.h"
  37. #include "table.h"
  38. #include "sw.h"
  39. #include "hw.h"
  40. #define MAX_RF_IMR_INDEX 12
  41. #define MAX_RF_IMR_INDEX_NORMAL 13
  42. #define RF_REG_NUM_FOR_C_CUT_5G 6
  43. #define RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA 7
  44. #define RF_REG_NUM_FOR_C_CUT_2G 5
  45. #define RF_CHNL_NUM_5G 19
  46. #define RF_CHNL_NUM_5G_40M 17
  47. #define TARGET_CHNL_NUM_5G 221
  48. #define TARGET_CHNL_NUM_2G 14
  49. #define CV_CURVE_CNT 64
  50. static u32 rf_reg_for_5g_swchnl_normal[MAX_RF_IMR_INDEX_NORMAL] = {
  51. 0, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x0
  52. };
  53. static u8 rf_reg_for_c_cut_5g[RF_REG_NUM_FOR_C_CUT_5G] = {
  54. RF_SYN_G1, RF_SYN_G2, RF_SYN_G3, RF_SYN_G4, RF_SYN_G5, RF_SYN_G6
  55. };
  56. static u8 rf_reg_for_c_cut_2g[RF_REG_NUM_FOR_C_CUT_2G] = {
  57. RF_SYN_G1, RF_SYN_G2, RF_SYN_G3, RF_SYN_G7, RF_SYN_G8
  58. };
  59. static u8 rf_for_c_cut_5g_internal_pa[RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA] = {
  60. 0x0B, 0x48, 0x49, 0x4B, 0x03, 0x04, 0x0E
  61. };
  62. static u32 rf_reg_mask_for_c_cut_2g[RF_REG_NUM_FOR_C_CUT_2G] = {
  63. BIT(19) | BIT(18) | BIT(17) | BIT(14) | BIT(1),
  64. BIT(10) | BIT(9),
  65. BIT(18) | BIT(17) | BIT(16) | BIT(1),
  66. BIT(2) | BIT(1),
  67. BIT(15) | BIT(14) | BIT(13) | BIT(12) | BIT(11)
  68. };
  69. static u8 rf_chnl_5g[RF_CHNL_NUM_5G] = {
  70. 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108,
  71. 112, 116, 120, 124, 128, 132, 136, 140
  72. };
  73. static u8 rf_chnl_5g_40m[RF_CHNL_NUM_5G_40M] = {
  74. 38, 42, 46, 50, 54, 58, 62, 102, 106, 110, 114,
  75. 118, 122, 126, 130, 134, 138
  76. };
  77. static u32 rf_reg_pram_c_5g[5][RF_REG_NUM_FOR_C_CUT_5G] = {
  78. {0xE43BE, 0xFC638, 0x77C0A, 0xDE471, 0xd7110, 0x8EB04},
  79. {0xE43BE, 0xFC078, 0xF7C1A, 0xE0C71, 0xD7550, 0xAEB04},
  80. {0xE43BF, 0xFF038, 0xF7C0A, 0xDE471, 0xE5550, 0xAEB04},
  81. {0xE43BF, 0xFF079, 0xF7C1A, 0xDE471, 0xE5550, 0xAEB04},
  82. {0xE43BF, 0xFF038, 0xF7C1A, 0xDE471, 0xd7550, 0xAEB04}
  83. };
  84. static u32 rf_reg_param_for_c_cut_2g[3][RF_REG_NUM_FOR_C_CUT_2G] = {
  85. {0x643BC, 0xFC038, 0x77C1A, 0x41289, 0x01840},
  86. {0x643BC, 0xFC038, 0x07C1A, 0x41289, 0x01840},
  87. {0x243BC, 0xFC438, 0x07C1A, 0x4128B, 0x0FC41}
  88. };
  89. static u32 rf_syn_g4_for_c_cut_2g = 0xD1C31 & 0x7FF;
  90. static u32 rf_pram_c_5g_int_pa[3][RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA] = {
  91. {0x01a00, 0x40443, 0x00eb5, 0x89bec, 0x94a12, 0x94a12, 0x94a12},
  92. {0x01800, 0xc0443, 0x00730, 0x896ee, 0x94a52, 0x94a52, 0x94a52},
  93. {0x01800, 0xc0443, 0x00730, 0x896ee, 0x94a12, 0x94a12, 0x94a12}
  94. };
  95. /* [mode][patha+b][reg] */
  96. static u32 rf_imr_param_normal[1][3][MAX_RF_IMR_INDEX_NORMAL] = {
  97. {
  98. /* channel 1-14. */
  99. {
  100. 0x70000, 0x00ff0, 0x4400f, 0x00ff0, 0x0, 0x0, 0x0,
  101. 0x0, 0x0, 0x64888, 0xe266c, 0x00090, 0x22fff
  102. },
  103. /* path 36-64 */
  104. {
  105. 0x70000, 0x22880, 0x4470f, 0x55880, 0x00070, 0x88000,
  106. 0x0, 0x88080, 0x70000, 0x64a82, 0xe466c, 0x00090,
  107. 0x32c9a
  108. },
  109. /* 100 -165 */
  110. {
  111. 0x70000, 0x44880, 0x4477f, 0x77880, 0x00070, 0x88000,
  112. 0x0, 0x880b0, 0x0, 0x64b82, 0xe466c, 0x00090, 0x32c9a
  113. }
  114. }
  115. };
  116. static u32 curveindex_5g[TARGET_CHNL_NUM_5G] = {0};
  117. static u32 curveindex_2g[TARGET_CHNL_NUM_2G] = {0};
  118. static u32 targetchnl_5g[TARGET_CHNL_NUM_5G] = {
  119. 25141, 25116, 25091, 25066, 25041,
  120. 25016, 24991, 24966, 24941, 24917,
  121. 24892, 24867, 24843, 24818, 24794,
  122. 24770, 24765, 24721, 24697, 24672,
  123. 24648, 24624, 24600, 24576, 24552,
  124. 24528, 24504, 24480, 24457, 24433,
  125. 24409, 24385, 24362, 24338, 24315,
  126. 24291, 24268, 24245, 24221, 24198,
  127. 24175, 24151, 24128, 24105, 24082,
  128. 24059, 24036, 24013, 23990, 23967,
  129. 23945, 23922, 23899, 23876, 23854,
  130. 23831, 23809, 23786, 23764, 23741,
  131. 23719, 23697, 23674, 23652, 23630,
  132. 23608, 23586, 23564, 23541, 23519,
  133. 23498, 23476, 23454, 23432, 23410,
  134. 23388, 23367, 23345, 23323, 23302,
  135. 23280, 23259, 23237, 23216, 23194,
  136. 23173, 23152, 23130, 23109, 23088,
  137. 23067, 23046, 23025, 23003, 22982,
  138. 22962, 22941, 22920, 22899, 22878,
  139. 22857, 22837, 22816, 22795, 22775,
  140. 22754, 22733, 22713, 22692, 22672,
  141. 22652, 22631, 22611, 22591, 22570,
  142. 22550, 22530, 22510, 22490, 22469,
  143. 22449, 22429, 22409, 22390, 22370,
  144. 22350, 22336, 22310, 22290, 22271,
  145. 22251, 22231, 22212, 22192, 22173,
  146. 22153, 22134, 22114, 22095, 22075,
  147. 22056, 22037, 22017, 21998, 21979,
  148. 21960, 21941, 21921, 21902, 21883,
  149. 21864, 21845, 21826, 21807, 21789,
  150. 21770, 21751, 21732, 21713, 21695,
  151. 21676, 21657, 21639, 21620, 21602,
  152. 21583, 21565, 21546, 21528, 21509,
  153. 21491, 21473, 21454, 21436, 21418,
  154. 21400, 21381, 21363, 21345, 21327,
  155. 21309, 21291, 21273, 21255, 21237,
  156. 21219, 21201, 21183, 21166, 21148,
  157. 21130, 21112, 21095, 21077, 21059,
  158. 21042, 21024, 21007, 20989, 20972,
  159. 25679, 25653, 25627, 25601, 25575,
  160. 25549, 25523, 25497, 25471, 25446,
  161. 25420, 25394, 25369, 25343, 25318,
  162. 25292, 25267, 25242, 25216, 25191,
  163. 25166
  164. };
  165. /* channel 1~14 */
  166. static u32 targetchnl_2g[TARGET_CHNL_NUM_2G] = {
  167. 26084, 26030, 25976, 25923, 25869, 25816, 25764,
  168. 25711, 25658, 25606, 25554, 25502, 25451, 25328
  169. };
  170. static u32 _rtl92d_phy_calculate_bit_shift(u32 bitmask)
  171. {
  172. u32 i;
  173. for (i = 0; i <= 31; i++) {
  174. if (((bitmask >> i) & 0x1) == 1)
  175. break;
  176. }
  177. return i;
  178. }
  179. u32 rtl92d_phy_query_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask)
  180. {
  181. struct rtl_priv *rtlpriv = rtl_priv(hw);
  182. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  183. u32 returnvalue, originalvalue, bitshift;
  184. u8 dbi_direct;
  185. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x)\n",
  186. regaddr, bitmask);
  187. if (rtlhal->during_mac1init_radioa || rtlhal->during_mac0init_radiob) {
  188. /* mac1 use phy0 read radio_b. */
  189. /* mac0 use phy1 read radio_b. */
  190. if (rtlhal->during_mac1init_radioa)
  191. dbi_direct = BIT(3);
  192. else if (rtlhal->during_mac0init_radiob)
  193. dbi_direct = BIT(3) | BIT(2);
  194. originalvalue = rtl92de_read_dword_dbi(hw, (u16)regaddr,
  195. dbi_direct);
  196. } else {
  197. originalvalue = rtl_read_dword(rtlpriv, regaddr);
  198. }
  199. bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
  200. returnvalue = (originalvalue & bitmask) >> bitshift;
  201. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  202. "BBR MASK=0x%x Addr[0x%x]=0x%x\n",
  203. bitmask, regaddr, originalvalue);
  204. return returnvalue;
  205. }
  206. void rtl92d_phy_set_bb_reg(struct ieee80211_hw *hw,
  207. u32 regaddr, u32 bitmask, u32 data)
  208. {
  209. struct rtl_priv *rtlpriv = rtl_priv(hw);
  210. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  211. u8 dbi_direct = 0;
  212. u32 originalvalue, bitshift;
  213. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  214. "regaddr(%#x), bitmask(%#x), data(%#x)\n",
  215. regaddr, bitmask, data);
  216. if (rtlhal->during_mac1init_radioa)
  217. dbi_direct = BIT(3);
  218. else if (rtlhal->during_mac0init_radiob)
  219. /* mac0 use phy1 write radio_b. */
  220. dbi_direct = BIT(3) | BIT(2);
  221. if (bitmask != BMASKDWORD) {
  222. if (rtlhal->during_mac1init_radioa ||
  223. rtlhal->during_mac0init_radiob)
  224. originalvalue = rtl92de_read_dword_dbi(hw,
  225. (u16) regaddr,
  226. dbi_direct);
  227. else
  228. originalvalue = rtl_read_dword(rtlpriv, regaddr);
  229. bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
  230. data = ((originalvalue & (~bitmask)) | (data << bitshift));
  231. }
  232. if (rtlhal->during_mac1init_radioa || rtlhal->during_mac0init_radiob)
  233. rtl92de_write_dword_dbi(hw, (u16) regaddr, data, dbi_direct);
  234. else
  235. rtl_write_dword(rtlpriv, regaddr, data);
  236. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  237. "regaddr(%#x), bitmask(%#x), data(%#x)\n",
  238. regaddr, bitmask, data);
  239. }
  240. static u32 _rtl92d_phy_rf_serial_read(struct ieee80211_hw *hw,
  241. enum radio_path rfpath, u32 offset)
  242. {
  243. struct rtl_priv *rtlpriv = rtl_priv(hw);
  244. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  245. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  246. u32 newoffset;
  247. u32 tmplong, tmplong2;
  248. u8 rfpi_enable = 0;
  249. u32 retvalue;
  250. newoffset = offset;
  251. tmplong = rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, BMASKDWORD);
  252. if (rfpath == RF90_PATH_A)
  253. tmplong2 = tmplong;
  254. else
  255. tmplong2 = rtl_get_bbreg(hw, pphyreg->rfhssi_para2, BMASKDWORD);
  256. tmplong2 = (tmplong2 & (~BLSSIREADADDRESS)) |
  257. (newoffset << 23) | BLSSIREADEDGE;
  258. rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, BMASKDWORD,
  259. tmplong & (~BLSSIREADEDGE));
  260. udelay(10);
  261. rtl_set_bbreg(hw, pphyreg->rfhssi_para2, BMASKDWORD, tmplong2);
  262. udelay(50);
  263. udelay(50);
  264. rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, BMASKDWORD,
  265. tmplong | BLSSIREADEDGE);
  266. udelay(10);
  267. if (rfpath == RF90_PATH_A)
  268. rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1,
  269. BIT(8));
  270. else if (rfpath == RF90_PATH_B)
  271. rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XB_HSSIPARAMETER1,
  272. BIT(8));
  273. if (rfpi_enable)
  274. retvalue = rtl_get_bbreg(hw, pphyreg->rf_rbpi,
  275. BLSSIREADBACKDATA);
  276. else
  277. retvalue = rtl_get_bbreg(hw, pphyreg->rf_rb,
  278. BLSSIREADBACKDATA);
  279. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFR-%d Addr[0x%x] = 0x%x\n",
  280. rfpath, pphyreg->rf_rb, retvalue);
  281. return retvalue;
  282. }
  283. static void _rtl92d_phy_rf_serial_write(struct ieee80211_hw *hw,
  284. enum radio_path rfpath,
  285. u32 offset, u32 data)
  286. {
  287. u32 data_and_addr;
  288. u32 newoffset;
  289. struct rtl_priv *rtlpriv = rtl_priv(hw);
  290. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  291. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  292. newoffset = offset;
  293. /* T65 RF */
  294. data_and_addr = ((newoffset << 20) | (data & 0x000fffff)) & 0x0fffffff;
  295. rtl_set_bbreg(hw, pphyreg->rf3wire_offset, BMASKDWORD, data_and_addr);
  296. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFW-%d Addr[0x%x]=0x%x\n",
  297. rfpath, pphyreg->rf3wire_offset, data_and_addr);
  298. }
  299. u32 rtl92d_phy_query_rf_reg(struct ieee80211_hw *hw,
  300. enum radio_path rfpath, u32 regaddr, u32 bitmask)
  301. {
  302. struct rtl_priv *rtlpriv = rtl_priv(hw);
  303. u32 original_value, readback_value, bitshift;
  304. unsigned long flags;
  305. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  306. "regaddr(%#x), rfpath(%#x), bitmask(%#x)\n",
  307. regaddr, rfpath, bitmask);
  308. spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
  309. original_value = _rtl92d_phy_rf_serial_read(hw, rfpath, regaddr);
  310. bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
  311. readback_value = (original_value & bitmask) >> bitshift;
  312. spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
  313. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  314. "regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n",
  315. regaddr, rfpath, bitmask, original_value);
  316. return readback_value;
  317. }
  318. void rtl92d_phy_set_rf_reg(struct ieee80211_hw *hw, enum radio_path rfpath,
  319. u32 regaddr, u32 bitmask, u32 data)
  320. {
  321. struct rtl_priv *rtlpriv = rtl_priv(hw);
  322. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  323. u32 original_value, bitshift;
  324. unsigned long flags;
  325. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  326. "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
  327. regaddr, bitmask, data, rfpath);
  328. if (bitmask == 0)
  329. return;
  330. spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
  331. if (rtlphy->rf_mode != RF_OP_BY_FW) {
  332. if (bitmask != BRFREGOFFSETMASK) {
  333. original_value = _rtl92d_phy_rf_serial_read(hw,
  334. rfpath, regaddr);
  335. bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
  336. data = ((original_value & (~bitmask)) |
  337. (data << bitshift));
  338. }
  339. _rtl92d_phy_rf_serial_write(hw, rfpath, regaddr, data);
  340. }
  341. spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
  342. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  343. "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
  344. regaddr, bitmask, data, rfpath);
  345. }
  346. bool rtl92d_phy_mac_config(struct ieee80211_hw *hw)
  347. {
  348. struct rtl_priv *rtlpriv = rtl_priv(hw);
  349. u32 i;
  350. u32 arraylength;
  351. u32 *ptrarray;
  352. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Read Rtl819XMACPHY_Array\n");
  353. arraylength = MAC_2T_ARRAYLENGTH;
  354. ptrarray = rtl8192de_mac_2tarray;
  355. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Img:Rtl819XMAC_Array\n");
  356. for (i = 0; i < arraylength; i = i + 2)
  357. rtl_write_byte(rtlpriv, ptrarray[i], (u8) ptrarray[i + 1]);
  358. if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
  359. /* improve 2-stream TX EVM */
  360. /* rtl_write_byte(rtlpriv, 0x14,0x71); */
  361. /* AMPDU aggregation number 9 */
  362. /* rtl_write_word(rtlpriv, REG_MAX_AGGR_NUM, MAX_AGGR_NUM); */
  363. rtl_write_byte(rtlpriv, REG_MAX_AGGR_NUM, 0x0B);
  364. } else {
  365. /* 92D need to test to decide the num. */
  366. rtl_write_byte(rtlpriv, REG_MAX_AGGR_NUM, 0x07);
  367. }
  368. return true;
  369. }
  370. static void _rtl92d_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw)
  371. {
  372. struct rtl_priv *rtlpriv = rtl_priv(hw);
  373. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  374. /* RF Interface Sowrtware Control */
  375. /* 16 LSBs if read 32-bit from 0x870 */
  376. rtlphy->phyreg_def[RF90_PATH_A].rfintfs = RFPGA0_XAB_RFINTERFACESW;
  377. /* 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) */
  378. rtlphy->phyreg_def[RF90_PATH_B].rfintfs = RFPGA0_XAB_RFINTERFACESW;
  379. /* 16 LSBs if read 32-bit from 0x874 */
  380. rtlphy->phyreg_def[RF90_PATH_C].rfintfs = RFPGA0_XCD_RFINTERFACESW;
  381. /* 16 MSBs if read 32-bit from 0x874 (16-bit for 0x876) */
  382. rtlphy->phyreg_def[RF90_PATH_D].rfintfs = RFPGA0_XCD_RFINTERFACESW;
  383. /* RF Interface Readback Value */
  384. /* 16 LSBs if read 32-bit from 0x8E0 */
  385. rtlphy->phyreg_def[RF90_PATH_A].rfintfi = RFPGA0_XAB_RFINTERFACERB;
  386. /* 16 MSBs if read 32-bit from 0x8E0 (16-bit for 0x8E2) */
  387. rtlphy->phyreg_def[RF90_PATH_B].rfintfi = RFPGA0_XAB_RFINTERFACERB;
  388. /* 16 LSBs if read 32-bit from 0x8E4 */
  389. rtlphy->phyreg_def[RF90_PATH_C].rfintfi = RFPGA0_XCD_RFINTERFACERB;
  390. /* 16 MSBs if read 32-bit from 0x8E4 (16-bit for 0x8E6) */
  391. rtlphy->phyreg_def[RF90_PATH_D].rfintfi = RFPGA0_XCD_RFINTERFACERB;
  392. /* RF Interface Output (and Enable) */
  393. /* 16 LSBs if read 32-bit from 0x860 */
  394. rtlphy->phyreg_def[RF90_PATH_A].rfintfo = RFPGA0_XA_RFINTERFACEOE;
  395. /* 16 LSBs if read 32-bit from 0x864 */
  396. rtlphy->phyreg_def[RF90_PATH_B].rfintfo = RFPGA0_XB_RFINTERFACEOE;
  397. /* RF Interface (Output and) Enable */
  398. /* 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) */
  399. rtlphy->phyreg_def[RF90_PATH_A].rfintfe = RFPGA0_XA_RFINTERFACEOE;
  400. /* 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) */
  401. rtlphy->phyreg_def[RF90_PATH_B].rfintfe = RFPGA0_XB_RFINTERFACEOE;
  402. /* Addr of LSSI. Wirte RF register by driver */
  403. /* LSSI Parameter */
  404. rtlphy->phyreg_def[RF90_PATH_A].rf3wire_offset =
  405. RFPGA0_XA_LSSIPARAMETER;
  406. rtlphy->phyreg_def[RF90_PATH_B].rf3wire_offset =
  407. RFPGA0_XB_LSSIPARAMETER;
  408. /* RF parameter */
  409. /* BB Band Select */
  410. rtlphy->phyreg_def[RF90_PATH_A].rflssi_select = RFPGA0_XAB_RFPARAMETER;
  411. rtlphy->phyreg_def[RF90_PATH_B].rflssi_select = RFPGA0_XAB_RFPARAMETER;
  412. rtlphy->phyreg_def[RF90_PATH_C].rflssi_select = RFPGA0_XCD_RFPARAMETER;
  413. rtlphy->phyreg_def[RF90_PATH_D].rflssi_select = RFPGA0_XCD_RFPARAMETER;
  414. /* Tx AGC Gain Stage (same for all path. Should we remove this?) */
  415. /* Tx gain stage */
  416. rtlphy->phyreg_def[RF90_PATH_A].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  417. /* Tx gain stage */
  418. rtlphy->phyreg_def[RF90_PATH_B].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  419. /* Tx gain stage */
  420. rtlphy->phyreg_def[RF90_PATH_C].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  421. /* Tx gain stage */
  422. rtlphy->phyreg_def[RF90_PATH_D].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  423. /* Tranceiver A~D HSSI Parameter-1 */
  424. /* wire control parameter1 */
  425. rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para1 = RFPGA0_XA_HSSIPARAMETER1;
  426. /* wire control parameter1 */
  427. rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para1 = RFPGA0_XB_HSSIPARAMETER1;
  428. /* Tranceiver A~D HSSI Parameter-2 */
  429. /* wire control parameter2 */
  430. rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para2 = RFPGA0_XA_HSSIPARAMETER2;
  431. /* wire control parameter2 */
  432. rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para2 = RFPGA0_XB_HSSIPARAMETER2;
  433. /* RF switch Control */
  434. /* TR/Ant switch control */
  435. rtlphy->phyreg_def[RF90_PATH_A].rfsw_ctrl = RFPGA0_XAB_SWITCHCONTROL;
  436. rtlphy->phyreg_def[RF90_PATH_B].rfsw_ctrl = RFPGA0_XAB_SWITCHCONTROL;
  437. rtlphy->phyreg_def[RF90_PATH_C].rfsw_ctrl = RFPGA0_XCD_SWITCHCONTROL;
  438. rtlphy->phyreg_def[RF90_PATH_D].rfsw_ctrl = RFPGA0_XCD_SWITCHCONTROL;
  439. /* AGC control 1 */
  440. rtlphy->phyreg_def[RF90_PATH_A].rfagc_control1 = ROFDM0_XAAGCCORE1;
  441. rtlphy->phyreg_def[RF90_PATH_B].rfagc_control1 = ROFDM0_XBAGCCORE1;
  442. rtlphy->phyreg_def[RF90_PATH_C].rfagc_control1 = ROFDM0_XCAGCCORE1;
  443. rtlphy->phyreg_def[RF90_PATH_D].rfagc_control1 = ROFDM0_XDAGCCORE1;
  444. /* AGC control 2 */
  445. rtlphy->phyreg_def[RF90_PATH_A].rfagc_control2 = ROFDM0_XAAGCCORE2;
  446. rtlphy->phyreg_def[RF90_PATH_B].rfagc_control2 = ROFDM0_XBAGCCORE2;
  447. rtlphy->phyreg_def[RF90_PATH_C].rfagc_control2 = ROFDM0_XCAGCCORE2;
  448. rtlphy->phyreg_def[RF90_PATH_D].rfagc_control2 = ROFDM0_XDAGCCORE2;
  449. /* RX AFE control 1 */
  450. rtlphy->phyreg_def[RF90_PATH_A].rfrxiq_imbal = ROFDM0_XARXIQIMBALANCE;
  451. rtlphy->phyreg_def[RF90_PATH_B].rfrxiq_imbal = ROFDM0_XBRXIQIMBALANCE;
  452. rtlphy->phyreg_def[RF90_PATH_C].rfrxiq_imbal = ROFDM0_XCRXIQIMBALANCE;
  453. rtlphy->phyreg_def[RF90_PATH_D].rfrxiq_imbal = ROFDM0_XDRXIQIMBALANCE;
  454. /*RX AFE control 1 */
  455. rtlphy->phyreg_def[RF90_PATH_A].rfrx_afe = ROFDM0_XARXAFE;
  456. rtlphy->phyreg_def[RF90_PATH_B].rfrx_afe = ROFDM0_XBRXAFE;
  457. rtlphy->phyreg_def[RF90_PATH_C].rfrx_afe = ROFDM0_XCRXAFE;
  458. rtlphy->phyreg_def[RF90_PATH_D].rfrx_afe = ROFDM0_XDRXAFE;
  459. /* Tx AFE control 1 */
  460. rtlphy->phyreg_def[RF90_PATH_A].rftxiq_imbal = ROFDM0_XATxIQIMBALANCE;
  461. rtlphy->phyreg_def[RF90_PATH_B].rftxiq_imbal = ROFDM0_XBTxIQIMBALANCE;
  462. rtlphy->phyreg_def[RF90_PATH_C].rftxiq_imbal = ROFDM0_XCTxIQIMBALANCE;
  463. rtlphy->phyreg_def[RF90_PATH_D].rftxiq_imbal = ROFDM0_XDTxIQIMBALANCE;
  464. /* Tx AFE control 2 */
  465. rtlphy->phyreg_def[RF90_PATH_A].rftx_afe = ROFDM0_XATxAFE;
  466. rtlphy->phyreg_def[RF90_PATH_B].rftx_afe = ROFDM0_XBTxAFE;
  467. rtlphy->phyreg_def[RF90_PATH_C].rftx_afe = ROFDM0_XCTxAFE;
  468. rtlphy->phyreg_def[RF90_PATH_D].rftx_afe = ROFDM0_XDTxAFE;
  469. /* Tranceiver LSSI Readback SI mode */
  470. rtlphy->phyreg_def[RF90_PATH_A].rf_rb = RFPGA0_XA_LSSIREADBACK;
  471. rtlphy->phyreg_def[RF90_PATH_B].rf_rb = RFPGA0_XB_LSSIREADBACK;
  472. rtlphy->phyreg_def[RF90_PATH_C].rf_rb = RFPGA0_XC_LSSIREADBACK;
  473. rtlphy->phyreg_def[RF90_PATH_D].rf_rb = RFPGA0_XD_LSSIREADBACK;
  474. /* Tranceiver LSSI Readback PI mode */
  475. rtlphy->phyreg_def[RF90_PATH_A].rf_rbpi = TRANSCEIVERA_HSPI_READBACK;
  476. rtlphy->phyreg_def[RF90_PATH_B].rf_rbpi = TRANSCEIVERB_HSPI_READBACK;
  477. }
  478. static bool _rtl92d_phy_config_bb_with_headerfile(struct ieee80211_hw *hw,
  479. u8 configtype)
  480. {
  481. int i;
  482. u32 *phy_regarray_table;
  483. u32 *agctab_array_table = NULL;
  484. u32 *agctab_5garray_table;
  485. u16 phy_reg_arraylen, agctab_arraylen = 0, agctab_5garraylen;
  486. struct rtl_priv *rtlpriv = rtl_priv(hw);
  487. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  488. /* Normal chip,Mac0 use AGC_TAB.txt for 2G and 5G band. */
  489. if (rtlhal->interfaceindex == 0) {
  490. agctab_arraylen = AGCTAB_ARRAYLENGTH;
  491. agctab_array_table = rtl8192de_agctab_array;
  492. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  493. " ===> phy:MAC0, Rtl819XAGCTAB_Array\n");
  494. } else {
  495. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  496. agctab_arraylen = AGCTAB_2G_ARRAYLENGTH;
  497. agctab_array_table = rtl8192de_agctab_2garray;
  498. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  499. " ===> phy:MAC1, Rtl819XAGCTAB_2GArray\n");
  500. } else {
  501. agctab_5garraylen = AGCTAB_5G_ARRAYLENGTH;
  502. agctab_5garray_table = rtl8192de_agctab_5garray;
  503. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  504. " ===> phy:MAC1, Rtl819XAGCTAB_5GArray\n");
  505. }
  506. }
  507. phy_reg_arraylen = PHY_REG_2T_ARRAYLENGTH;
  508. phy_regarray_table = rtl8192de_phy_reg_2tarray;
  509. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  510. " ===> phy:Rtl819XPHY_REG_Array_PG\n");
  511. if (configtype == BASEBAND_CONFIG_PHY_REG) {
  512. for (i = 0; i < phy_reg_arraylen; i = i + 2) {
  513. if (phy_regarray_table[i] == 0xfe)
  514. mdelay(50);
  515. else if (phy_regarray_table[i] == 0xfd)
  516. mdelay(5);
  517. else if (phy_regarray_table[i] == 0xfc)
  518. mdelay(1);
  519. else if (phy_regarray_table[i] == 0xfb)
  520. udelay(50);
  521. else if (phy_regarray_table[i] == 0xfa)
  522. udelay(5);
  523. else if (phy_regarray_table[i] == 0xf9)
  524. udelay(1);
  525. rtl_set_bbreg(hw, phy_regarray_table[i], BMASKDWORD,
  526. phy_regarray_table[i + 1]);
  527. udelay(1);
  528. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  529. "The phy_regarray_table[0] is %x Rtl819XPHY_REGArray[1] is %x\n",
  530. phy_regarray_table[i],
  531. phy_regarray_table[i + 1]);
  532. }
  533. } else if (configtype == BASEBAND_CONFIG_AGC_TAB) {
  534. if (rtlhal->interfaceindex == 0) {
  535. for (i = 0; i < agctab_arraylen; i = i + 2) {
  536. rtl_set_bbreg(hw, agctab_array_table[i],
  537. BMASKDWORD,
  538. agctab_array_table[i + 1]);
  539. /* Add 1us delay between BB/RF register
  540. * setting. */
  541. udelay(1);
  542. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  543. "The Rtl819XAGCTAB_Array_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n",
  544. agctab_array_table[i],
  545. agctab_array_table[i + 1]);
  546. }
  547. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  548. "Normal Chip, MAC0, load Rtl819XAGCTAB_Array\n");
  549. } else {
  550. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  551. for (i = 0; i < agctab_arraylen; i = i + 2) {
  552. rtl_set_bbreg(hw, agctab_array_table[i],
  553. BMASKDWORD,
  554. agctab_array_table[i + 1]);
  555. /* Add 1us delay between BB/RF register
  556. * setting. */
  557. udelay(1);
  558. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  559. "The Rtl819XAGCTAB_Array_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n",
  560. agctab_array_table[i],
  561. agctab_array_table[i + 1]);
  562. }
  563. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  564. "Load Rtl819XAGCTAB_2GArray\n");
  565. } else {
  566. for (i = 0; i < agctab_5garraylen; i = i + 2) {
  567. rtl_set_bbreg(hw,
  568. agctab_5garray_table[i],
  569. BMASKDWORD,
  570. agctab_5garray_table[i + 1]);
  571. /* Add 1us delay between BB/RF registeri
  572. * setting. */
  573. udelay(1);
  574. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  575. "The Rtl819XAGCTAB_5GArray_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n",
  576. agctab_5garray_table[i],
  577. agctab_5garray_table[i + 1]);
  578. }
  579. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  580. "Load Rtl819XAGCTAB_5GArray\n");
  581. }
  582. }
  583. }
  584. return true;
  585. }
  586. static void _rtl92d_store_pwrindex_diffrate_offset(struct ieee80211_hw *hw,
  587. u32 regaddr, u32 bitmask,
  588. u32 data)
  589. {
  590. struct rtl_priv *rtlpriv = rtl_priv(hw);
  591. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  592. int index;
  593. if (regaddr == RTXAGC_A_RATE18_06)
  594. index = 0;
  595. else if (regaddr == RTXAGC_A_RATE54_24)
  596. index = 1;
  597. else if (regaddr == RTXAGC_A_CCK1_MCS32)
  598. index = 6;
  599. else if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0xffffff00)
  600. index = 7;
  601. else if (regaddr == RTXAGC_A_MCS03_MCS00)
  602. index = 2;
  603. else if (regaddr == RTXAGC_A_MCS07_MCS04)
  604. index = 3;
  605. else if (regaddr == RTXAGC_A_MCS11_MCS08)
  606. index = 4;
  607. else if (regaddr == RTXAGC_A_MCS15_MCS12)
  608. index = 5;
  609. else if (regaddr == RTXAGC_B_RATE18_06)
  610. index = 8;
  611. else if (regaddr == RTXAGC_B_RATE54_24)
  612. index = 9;
  613. else if (regaddr == RTXAGC_B_CCK1_55_MCS32)
  614. index = 14;
  615. else if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0x000000ff)
  616. index = 15;
  617. else if (regaddr == RTXAGC_B_MCS03_MCS00)
  618. index = 10;
  619. else if (regaddr == RTXAGC_B_MCS07_MCS04)
  620. index = 11;
  621. else if (regaddr == RTXAGC_B_MCS11_MCS08)
  622. index = 12;
  623. else if (regaddr == RTXAGC_B_MCS15_MCS12)
  624. index = 13;
  625. else
  626. return;
  627. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][index] = data;
  628. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  629. "MCSTxPowerLevelOriginalOffset[%d][%d] = 0x%ulx\n",
  630. rtlphy->pwrgroup_cnt, index,
  631. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][index]);
  632. if (index == 13)
  633. rtlphy->pwrgroup_cnt++;
  634. }
  635. static bool _rtl92d_phy_config_bb_with_pgheaderfile(struct ieee80211_hw *hw,
  636. u8 configtype)
  637. {
  638. struct rtl_priv *rtlpriv = rtl_priv(hw);
  639. int i;
  640. u32 *phy_regarray_table_pg;
  641. u16 phy_regarray_pg_len;
  642. phy_regarray_pg_len = PHY_REG_ARRAY_PG_LENGTH;
  643. phy_regarray_table_pg = rtl8192de_phy_reg_array_pg;
  644. if (configtype == BASEBAND_CONFIG_PHY_REG) {
  645. for (i = 0; i < phy_regarray_pg_len; i = i + 3) {
  646. if (phy_regarray_table_pg[i] == 0xfe)
  647. mdelay(50);
  648. else if (phy_regarray_table_pg[i] == 0xfd)
  649. mdelay(5);
  650. else if (phy_regarray_table_pg[i] == 0xfc)
  651. mdelay(1);
  652. else if (phy_regarray_table_pg[i] == 0xfb)
  653. udelay(50);
  654. else if (phy_regarray_table_pg[i] == 0xfa)
  655. udelay(5);
  656. else if (phy_regarray_table_pg[i] == 0xf9)
  657. udelay(1);
  658. _rtl92d_store_pwrindex_diffrate_offset(hw,
  659. phy_regarray_table_pg[i],
  660. phy_regarray_table_pg[i + 1],
  661. phy_regarray_table_pg[i + 2]);
  662. }
  663. } else {
  664. RT_TRACE(rtlpriv, COMP_SEND, DBG_TRACE,
  665. "configtype != BaseBand_Config_PHY_REG\n");
  666. }
  667. return true;
  668. }
  669. static bool _rtl92d_phy_bb_config(struct ieee80211_hw *hw)
  670. {
  671. struct rtl_priv *rtlpriv = rtl_priv(hw);
  672. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  673. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  674. bool rtstatus = true;
  675. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "==>\n");
  676. rtstatus = _rtl92d_phy_config_bb_with_headerfile(hw,
  677. BASEBAND_CONFIG_PHY_REG);
  678. if (!rtstatus) {
  679. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Write BB Reg Fail!!\n");
  680. return false;
  681. }
  682. /* if (rtlphy->rf_type == RF_1T2R) {
  683. * _rtl92c_phy_bb_config_1t(hw);
  684. * RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Config to 1T!!\n");
  685. *} */
  686. if (rtlefuse->autoload_failflag == false) {
  687. rtlphy->pwrgroup_cnt = 0;
  688. rtstatus = _rtl92d_phy_config_bb_with_pgheaderfile(hw,
  689. BASEBAND_CONFIG_PHY_REG);
  690. }
  691. if (!rtstatus) {
  692. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "BB_PG Reg Fail!!\n");
  693. return false;
  694. }
  695. rtstatus = _rtl92d_phy_config_bb_with_headerfile(hw,
  696. BASEBAND_CONFIG_AGC_TAB);
  697. if (!rtstatus) {
  698. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "AGC Table Fail\n");
  699. return false;
  700. }
  701. rtlphy->cck_high_power = (bool) (rtl_get_bbreg(hw,
  702. RFPGA0_XA_HSSIPARAMETER2, 0x200));
  703. return true;
  704. }
  705. bool rtl92d_phy_bb_config(struct ieee80211_hw *hw)
  706. {
  707. struct rtl_priv *rtlpriv = rtl_priv(hw);
  708. u16 regval;
  709. u32 regvaldw;
  710. u8 value;
  711. _rtl92d_phy_init_bb_rf_register_definition(hw);
  712. regval = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  713. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN,
  714. regval | BIT(13) | BIT(0) | BIT(1));
  715. rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x83);
  716. rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL + 1, 0xdb);
  717. /* 0x1f bit7 bit6 represent for mac0/mac1 driver ready */
  718. value = rtl_read_byte(rtlpriv, REG_RF_CTRL);
  719. rtl_write_byte(rtlpriv, REG_RF_CTRL, value | RF_EN | RF_RSTB |
  720. RF_SDMRSTB);
  721. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, FEN_PPLL | FEN_PCIEA |
  722. FEN_DIO_PCIE | FEN_BB_GLB_RSTn | FEN_BBRSTB);
  723. rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL + 1, 0x80);
  724. if (!(IS_92D_SINGLEPHY(rtlpriv->rtlhal.version))) {
  725. regvaldw = rtl_read_dword(rtlpriv, REG_LEDCFG0);
  726. rtl_write_dword(rtlpriv, REG_LEDCFG0, regvaldw | BIT(23));
  727. }
  728. return _rtl92d_phy_bb_config(hw);
  729. }
  730. bool rtl92d_phy_rf_config(struct ieee80211_hw *hw)
  731. {
  732. return rtl92d_phy_rf6052_config(hw);
  733. }
  734. bool rtl92d_phy_config_rf_with_headerfile(struct ieee80211_hw *hw,
  735. enum rf_content content,
  736. enum radio_path rfpath)
  737. {
  738. int i;
  739. u32 *radioa_array_table;
  740. u32 *radiob_array_table;
  741. u16 radioa_arraylen, radiob_arraylen;
  742. struct rtl_priv *rtlpriv = rtl_priv(hw);
  743. radioa_arraylen = RADIOA_2T_ARRAYLENGTH;
  744. radioa_array_table = rtl8192de_radioa_2tarray;
  745. radiob_arraylen = RADIOB_2T_ARRAYLENGTH;
  746. radiob_array_table = rtl8192de_radiob_2tarray;
  747. if (rtlpriv->efuse.internal_pa_5g[0]) {
  748. radioa_arraylen = RADIOA_2T_INT_PA_ARRAYLENGTH;
  749. radioa_array_table = rtl8192de_radioa_2t_int_paarray;
  750. }
  751. if (rtlpriv->efuse.internal_pa_5g[1]) {
  752. radiob_arraylen = RADIOB_2T_INT_PA_ARRAYLENGTH;
  753. radiob_array_table = rtl8192de_radiob_2t_int_paarray;
  754. }
  755. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  756. "PHY_ConfigRFWithHeaderFile() Radio_A:Rtl819XRadioA_1TArray\n");
  757. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  758. "PHY_ConfigRFWithHeaderFile() Radio_B:Rtl819XRadioB_1TArray\n");
  759. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Radio No %x\n", rfpath);
  760. /* this only happens when DMDP, mac0 start on 2.4G,
  761. * mac1 start on 5G, mac 0 has to set phy0&phy1
  762. * pathA or mac1 has to set phy0&phy1 pathA */
  763. if ((content == radiob_txt) && (rfpath == RF90_PATH_A)) {
  764. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  765. " ===> althougth Path A, we load radiob.txt\n");
  766. radioa_arraylen = radiob_arraylen;
  767. radioa_array_table = radiob_array_table;
  768. }
  769. switch (rfpath) {
  770. case RF90_PATH_A:
  771. for (i = 0; i < radioa_arraylen; i = i + 2) {
  772. if (radioa_array_table[i] == 0xfe) {
  773. mdelay(50);
  774. } else if (radioa_array_table[i] == 0xfd) {
  775. /* delay_ms(5); */
  776. mdelay(5);
  777. } else if (radioa_array_table[i] == 0xfc) {
  778. /* delay_ms(1); */
  779. mdelay(1);
  780. } else if (radioa_array_table[i] == 0xfb) {
  781. udelay(50);
  782. } else if (radioa_array_table[i] == 0xfa) {
  783. udelay(5);
  784. } else if (radioa_array_table[i] == 0xf9) {
  785. udelay(1);
  786. } else {
  787. rtl_set_rfreg(hw, rfpath, radioa_array_table[i],
  788. BRFREGOFFSETMASK,
  789. radioa_array_table[i + 1]);
  790. /* Add 1us delay between BB/RF register set. */
  791. udelay(1);
  792. }
  793. }
  794. break;
  795. case RF90_PATH_B:
  796. for (i = 0; i < radiob_arraylen; i = i + 2) {
  797. if (radiob_array_table[i] == 0xfe) {
  798. /* Delay specific ms. Only RF configuration
  799. * requires delay. */
  800. mdelay(50);
  801. } else if (radiob_array_table[i] == 0xfd) {
  802. /* delay_ms(5); */
  803. mdelay(5);
  804. } else if (radiob_array_table[i] == 0xfc) {
  805. /* delay_ms(1); */
  806. mdelay(1);
  807. } else if (radiob_array_table[i] == 0xfb) {
  808. udelay(50);
  809. } else if (radiob_array_table[i] == 0xfa) {
  810. udelay(5);
  811. } else if (radiob_array_table[i] == 0xf9) {
  812. udelay(1);
  813. } else {
  814. rtl_set_rfreg(hw, rfpath, radiob_array_table[i],
  815. BRFREGOFFSETMASK,
  816. radiob_array_table[i + 1]);
  817. /* Add 1us delay between BB/RF register set. */
  818. udelay(1);
  819. }
  820. }
  821. break;
  822. case RF90_PATH_C:
  823. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  824. "switch case not processed\n");
  825. break;
  826. case RF90_PATH_D:
  827. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  828. "switch case not processed\n");
  829. break;
  830. }
  831. return true;
  832. }
  833. void rtl92d_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw)
  834. {
  835. struct rtl_priv *rtlpriv = rtl_priv(hw);
  836. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  837. rtlphy->default_initialgain[0] =
  838. (u8) rtl_get_bbreg(hw, ROFDM0_XAAGCCORE1, BMASKBYTE0);
  839. rtlphy->default_initialgain[1] =
  840. (u8) rtl_get_bbreg(hw, ROFDM0_XBAGCCORE1, BMASKBYTE0);
  841. rtlphy->default_initialgain[2] =
  842. (u8) rtl_get_bbreg(hw, ROFDM0_XCAGCCORE1, BMASKBYTE0);
  843. rtlphy->default_initialgain[3] =
  844. (u8) rtl_get_bbreg(hw, ROFDM0_XDAGCCORE1, BMASKBYTE0);
  845. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  846. "Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x\n",
  847. rtlphy->default_initialgain[0],
  848. rtlphy->default_initialgain[1],
  849. rtlphy->default_initialgain[2],
  850. rtlphy->default_initialgain[3]);
  851. rtlphy->framesync = (u8)rtl_get_bbreg(hw, ROFDM0_RXDETECTOR3,
  852. BMASKBYTE0);
  853. rtlphy->framesync_c34 = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR2,
  854. BMASKDWORD);
  855. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  856. "Default framesync (0x%x) = 0x%x\n",
  857. ROFDM0_RXDETECTOR3, rtlphy->framesync);
  858. }
  859. static void _rtl92d_get_txpower_index(struct ieee80211_hw *hw, u8 channel,
  860. u8 *cckpowerlevel, u8 *ofdmpowerlevel)
  861. {
  862. struct rtl_priv *rtlpriv = rtl_priv(hw);
  863. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  864. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  865. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  866. u8 index = (channel - 1);
  867. /* 1. CCK */
  868. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  869. /* RF-A */
  870. cckpowerlevel[RF90_PATH_A] =
  871. rtlefuse->txpwrlevel_cck[RF90_PATH_A][index];
  872. /* RF-B */
  873. cckpowerlevel[RF90_PATH_B] =
  874. rtlefuse->txpwrlevel_cck[RF90_PATH_B][index];
  875. } else {
  876. cckpowerlevel[RF90_PATH_A] = 0;
  877. cckpowerlevel[RF90_PATH_B] = 0;
  878. }
  879. /* 2. OFDM for 1S or 2S */
  880. if (rtlphy->rf_type == RF_1T2R || rtlphy->rf_type == RF_1T1R) {
  881. /* Read HT 40 OFDM TX power */
  882. ofdmpowerlevel[RF90_PATH_A] =
  883. rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index];
  884. ofdmpowerlevel[RF90_PATH_B] =
  885. rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_B][index];
  886. } else if (rtlphy->rf_type == RF_2T2R) {
  887. /* Read HT 40 OFDM TX power */
  888. ofdmpowerlevel[RF90_PATH_A] =
  889. rtlefuse->txpwrlevel_ht40_2s[RF90_PATH_A][index];
  890. ofdmpowerlevel[RF90_PATH_B] =
  891. rtlefuse->txpwrlevel_ht40_2s[RF90_PATH_B][index];
  892. }
  893. }
  894. static void _rtl92d_ccxpower_index_check(struct ieee80211_hw *hw,
  895. u8 channel, u8 *cckpowerlevel, u8 *ofdmpowerlevel)
  896. {
  897. struct rtl_priv *rtlpriv = rtl_priv(hw);
  898. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  899. rtlphy->cur_cck_txpwridx = cckpowerlevel[0];
  900. rtlphy->cur_ofdm24g_txpwridx = ofdmpowerlevel[0];
  901. }
  902. static u8 _rtl92c_phy_get_rightchnlplace(u8 chnl)
  903. {
  904. u8 channel_5g[59] = {
  905. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  906. 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
  907. 60, 62, 64, 100, 102, 104, 106, 108, 110, 112,
  908. 114, 116, 118, 120, 122, 124, 126, 128,
  909. 130, 132, 134, 136, 138, 140, 149, 151,
  910. 153, 155, 157, 159, 161, 163, 165
  911. };
  912. u8 place = chnl;
  913. if (chnl > 14) {
  914. for (place = 14; place < sizeof(channel_5g); place++) {
  915. if (channel_5g[place] == chnl) {
  916. place++;
  917. break;
  918. }
  919. }
  920. }
  921. return place;
  922. }
  923. void rtl92d_phy_set_txpower_level(struct ieee80211_hw *hw, u8 channel)
  924. {
  925. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  926. struct rtl_priv *rtlpriv = rtl_priv(hw);
  927. u8 cckpowerlevel[2], ofdmpowerlevel[2];
  928. if (!rtlefuse->txpwr_fromeprom)
  929. return;
  930. channel = _rtl92c_phy_get_rightchnlplace(channel);
  931. _rtl92d_get_txpower_index(hw, channel, &cckpowerlevel[0],
  932. &ofdmpowerlevel[0]);
  933. if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G)
  934. _rtl92d_ccxpower_index_check(hw, channel, &cckpowerlevel[0],
  935. &ofdmpowerlevel[0]);
  936. if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G)
  937. rtl92d_phy_rf6052_set_cck_txpower(hw, &cckpowerlevel[0]);
  938. rtl92d_phy_rf6052_set_ofdm_txpower(hw, &ofdmpowerlevel[0], channel);
  939. }
  940. void rtl92d_phy_set_bw_mode(struct ieee80211_hw *hw,
  941. enum nl80211_channel_type ch_type)
  942. {
  943. struct rtl_priv *rtlpriv = rtl_priv(hw);
  944. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  945. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  946. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  947. unsigned long flag = 0;
  948. u8 reg_prsr_rsc;
  949. u8 reg_bw_opmode;
  950. if (rtlphy->set_bwmode_inprogress)
  951. return;
  952. if ((is_hal_stop(rtlhal)) || (RT_CANNOT_IO(hw))) {
  953. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  954. "FALSE driver sleep or unload\n");
  955. return;
  956. }
  957. rtlphy->set_bwmode_inprogress = true;
  958. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "Switch to %s bandwidth\n",
  959. rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ?
  960. "20MHz" : "40MHz");
  961. reg_bw_opmode = rtl_read_byte(rtlpriv, REG_BWOPMODE);
  962. reg_prsr_rsc = rtl_read_byte(rtlpriv, REG_RRSR + 2);
  963. switch (rtlphy->current_chan_bw) {
  964. case HT_CHANNEL_WIDTH_20:
  965. reg_bw_opmode |= BW_OPMODE_20MHZ;
  966. rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
  967. break;
  968. case HT_CHANNEL_WIDTH_20_40:
  969. reg_bw_opmode &= ~BW_OPMODE_20MHZ;
  970. rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
  971. reg_prsr_rsc = (reg_prsr_rsc & 0x90) |
  972. (mac->cur_40_prime_sc << 5);
  973. rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_prsr_rsc);
  974. break;
  975. default:
  976. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  977. "unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
  978. break;
  979. }
  980. switch (rtlphy->current_chan_bw) {
  981. case HT_CHANNEL_WIDTH_20:
  982. rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0);
  983. rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0);
  984. /* SET BIT10 BIT11 for receive cck */
  985. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
  986. BIT(11), 3);
  987. break;
  988. case HT_CHANNEL_WIDTH_20_40:
  989. rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1);
  990. rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1);
  991. /* Set Control channel to upper or lower.
  992. * These settings are required only for 40MHz */
  993. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  994. rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag);
  995. rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCKSIDEBAND,
  996. (mac->cur_40_prime_sc >> 1));
  997. rtl92d_release_cckandrw_pagea_ctl(hw, &flag);
  998. }
  999. rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc);
  1000. /* SET BIT10 BIT11 for receive cck */
  1001. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
  1002. BIT(11), 0);
  1003. rtl_set_bbreg(hw, 0x818, (BIT(26) | BIT(27)),
  1004. (mac->cur_40_prime_sc ==
  1005. HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
  1006. break;
  1007. default:
  1008. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1009. "unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
  1010. break;
  1011. }
  1012. rtl92d_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw);
  1013. rtlphy->set_bwmode_inprogress = false;
  1014. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n");
  1015. }
  1016. static void _rtl92d_phy_stop_trx_before_changeband(struct ieee80211_hw *hw)
  1017. {
  1018. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0);
  1019. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0);
  1020. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKBYTE0, 0x00);
  1021. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x0);
  1022. }
  1023. static void rtl92d_phy_switch_wirelessband(struct ieee80211_hw *hw, u8 band)
  1024. {
  1025. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1026. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1027. u8 value8;
  1028. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==>\n");
  1029. rtlhal->bandset = band;
  1030. rtlhal->current_bandtype = band;
  1031. if (IS_92D_SINGLEPHY(rtlhal->version))
  1032. rtlhal->bandset = BAND_ON_BOTH;
  1033. /* stop RX/Tx */
  1034. _rtl92d_phy_stop_trx_before_changeband(hw);
  1035. /* reconfig BB/RF according to wireless mode */
  1036. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  1037. /* BB & RF Config */
  1038. RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "====>2.4G\n");
  1039. if (rtlhal->interfaceindex == 1)
  1040. _rtl92d_phy_config_bb_with_headerfile(hw,
  1041. BASEBAND_CONFIG_AGC_TAB);
  1042. } else {
  1043. /* 5G band */
  1044. RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "====>5G\n");
  1045. if (rtlhal->interfaceindex == 1)
  1046. _rtl92d_phy_config_bb_with_headerfile(hw,
  1047. BASEBAND_CONFIG_AGC_TAB);
  1048. }
  1049. rtl92d_update_bbrf_configuration(hw);
  1050. if (rtlhal->current_bandtype == BAND_ON_2_4G)
  1051. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
  1052. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
  1053. /* 20M BW. */
  1054. /* rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1); */
  1055. rtlhal->reloadtxpowerindex = true;
  1056. /* notice fw know band status 0x81[1]/0x53[1] = 0: 5G, 1: 2G */
  1057. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  1058. value8 = rtl_read_byte(rtlpriv, (rtlhal->interfaceindex ==
  1059. 0 ? REG_MAC0 : REG_MAC1));
  1060. value8 |= BIT(1);
  1061. rtl_write_byte(rtlpriv, (rtlhal->interfaceindex ==
  1062. 0 ? REG_MAC0 : REG_MAC1), value8);
  1063. } else {
  1064. value8 = rtl_read_byte(rtlpriv, (rtlhal->interfaceindex ==
  1065. 0 ? REG_MAC0 : REG_MAC1));
  1066. value8 &= (~BIT(1));
  1067. rtl_write_byte(rtlpriv, (rtlhal->interfaceindex ==
  1068. 0 ? REG_MAC0 : REG_MAC1), value8);
  1069. }
  1070. mdelay(1);
  1071. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<==Switch Band OK\n");
  1072. }
  1073. static void _rtl92d_phy_reload_imr_setting(struct ieee80211_hw *hw,
  1074. u8 channel, u8 rfpath)
  1075. {
  1076. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1077. u32 imr_num = MAX_RF_IMR_INDEX;
  1078. u32 rfmask = BRFREGOFFSETMASK;
  1079. u8 group, i;
  1080. unsigned long flag = 0;
  1081. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>path %d\n", rfpath);
  1082. if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G) {
  1083. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>5G\n");
  1084. rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(25) | BIT(24), 0);
  1085. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
  1086. /* fc area 0xd2c */
  1087. if (channel > 99)
  1088. rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(13) |
  1089. BIT(14), 2);
  1090. else
  1091. rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(13) |
  1092. BIT(14), 1);
  1093. /* leave 0 for channel1-14. */
  1094. group = channel <= 64 ? 1 : 2;
  1095. imr_num = MAX_RF_IMR_INDEX_NORMAL;
  1096. for (i = 0; i < imr_num; i++)
  1097. rtl_set_rfreg(hw, (enum radio_path)rfpath,
  1098. rf_reg_for_5g_swchnl_normal[i], rfmask,
  1099. rf_imr_param_normal[0][group][i]);
  1100. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
  1101. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 1);
  1102. } else {
  1103. /* G band. */
  1104. RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
  1105. "Load RF IMR parameters for G band. IMR already setting %d\n",
  1106. rtlpriv->rtlhal.load_imrandiqk_setting_for2g);
  1107. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>2.4G\n");
  1108. if (!rtlpriv->rtlhal.load_imrandiqk_setting_for2g) {
  1109. RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
  1110. "Load RF IMR parameters for G band. %d\n",
  1111. rfpath);
  1112. rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag);
  1113. rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(25) | BIT(24), 0);
  1114. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4,
  1115. 0x00f00000, 0xf);
  1116. imr_num = MAX_RF_IMR_INDEX_NORMAL;
  1117. for (i = 0; i < imr_num; i++) {
  1118. rtl_set_rfreg(hw, (enum radio_path)rfpath,
  1119. rf_reg_for_5g_swchnl_normal[i],
  1120. BRFREGOFFSETMASK,
  1121. rf_imr_param_normal[0][0][i]);
  1122. }
  1123. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4,
  1124. 0x00f00000, 0);
  1125. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN | BCCKEN, 3);
  1126. rtl92d_release_cckandrw_pagea_ctl(hw, &flag);
  1127. }
  1128. }
  1129. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
  1130. }
  1131. static void _rtl92d_phy_enable_rf_env(struct ieee80211_hw *hw,
  1132. u8 rfpath, u32 *pu4_regval)
  1133. {
  1134. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1135. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1136. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  1137. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "====>\n");
  1138. /*----Store original RFENV control type----*/
  1139. switch (rfpath) {
  1140. case RF90_PATH_A:
  1141. case RF90_PATH_C:
  1142. *pu4_regval = rtl_get_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV);
  1143. break;
  1144. case RF90_PATH_B:
  1145. case RF90_PATH_D:
  1146. *pu4_regval =
  1147. rtl_get_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV << 16);
  1148. break;
  1149. }
  1150. /*----Set RF_ENV enable----*/
  1151. rtl_set_bbreg(hw, pphyreg->rfintfe, BRFSI_RFENV << 16, 0x1);
  1152. udelay(1);
  1153. /*----Set RF_ENV output high----*/
  1154. rtl_set_bbreg(hw, pphyreg->rfintfo, BRFSI_RFENV, 0x1);
  1155. udelay(1);
  1156. /* Set bit number of Address and Data for RF register */
  1157. /* Set 1 to 4 bits for 8255 */
  1158. rtl_set_bbreg(hw, pphyreg->rfhssi_para2, B3WIREADDRESSLENGTH, 0x0);
  1159. udelay(1);
  1160. /*Set 0 to 12 bits for 8255 */
  1161. rtl_set_bbreg(hw, pphyreg->rfhssi_para2, B3WIREDATALENGTH, 0x0);
  1162. udelay(1);
  1163. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<====\n");
  1164. }
  1165. static void _rtl92d_phy_restore_rf_env(struct ieee80211_hw *hw, u8 rfpath,
  1166. u32 *pu4_regval)
  1167. {
  1168. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1169. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1170. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  1171. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "=====>\n");
  1172. /*----Restore RFENV control type----*/
  1173. switch (rfpath) {
  1174. case RF90_PATH_A:
  1175. case RF90_PATH_C:
  1176. rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV, *pu4_regval);
  1177. break;
  1178. case RF90_PATH_B:
  1179. case RF90_PATH_D:
  1180. rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV << 16,
  1181. *pu4_regval);
  1182. break;
  1183. }
  1184. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<=====\n");
  1185. }
  1186. static void _rtl92d_phy_switch_rf_setting(struct ieee80211_hw *hw, u8 channel)
  1187. {
  1188. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1189. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1190. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  1191. u8 path = rtlhal->current_bandtype ==
  1192. BAND_ON_5G ? RF90_PATH_A : RF90_PATH_B;
  1193. u8 index = 0, i = 0, rfpath = RF90_PATH_A;
  1194. bool need_pwr_down = false, internal_pa = false;
  1195. u32 u4regvalue, mask = 0x1C000, value = 0, u4tmp, u4tmp2;
  1196. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>\n");
  1197. /* config path A for 5G */
  1198. if (rtlhal->current_bandtype == BAND_ON_5G) {
  1199. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>5G\n");
  1200. u4tmp = curveindex_5g[channel - 1];
  1201. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1202. "ver 1 set RF-A, 5G, 0x28 = 0x%x !!\n", u4tmp);
  1203. for (i = 0; i < RF_CHNL_NUM_5G; i++) {
  1204. if (channel == rf_chnl_5g[i] && channel <= 140)
  1205. index = 0;
  1206. }
  1207. for (i = 0; i < RF_CHNL_NUM_5G_40M; i++) {
  1208. if (channel == rf_chnl_5g_40m[i] && channel <= 140)
  1209. index = 1;
  1210. }
  1211. if (channel == 149 || channel == 155 || channel == 161)
  1212. index = 2;
  1213. else if (channel == 151 || channel == 153 || channel == 163
  1214. || channel == 165)
  1215. index = 3;
  1216. else if (channel == 157 || channel == 159)
  1217. index = 4;
  1218. if (rtlhal->macphymode == DUALMAC_DUALPHY
  1219. && rtlhal->interfaceindex == 1) {
  1220. need_pwr_down = rtl92d_phy_enable_anotherphy(hw, false);
  1221. rtlhal->during_mac1init_radioa = true;
  1222. /* asume no this case */
  1223. if (need_pwr_down)
  1224. _rtl92d_phy_enable_rf_env(hw, path,
  1225. &u4regvalue);
  1226. }
  1227. for (i = 0; i < RF_REG_NUM_FOR_C_CUT_5G; i++) {
  1228. if (i == 0 && (rtlhal->macphymode == DUALMAC_DUALPHY)) {
  1229. rtl_set_rfreg(hw, (enum radio_path)path,
  1230. rf_reg_for_c_cut_5g[i],
  1231. BRFREGOFFSETMASK, 0xE439D);
  1232. } else if (rf_reg_for_c_cut_5g[i] == RF_SYN_G4) {
  1233. u4tmp2 = (rf_reg_pram_c_5g[index][i] &
  1234. 0x7FF) | (u4tmp << 11);
  1235. if (channel == 36)
  1236. u4tmp2 &= ~(BIT(7) | BIT(6));
  1237. rtl_set_rfreg(hw, (enum radio_path)path,
  1238. rf_reg_for_c_cut_5g[i],
  1239. BRFREGOFFSETMASK, u4tmp2);
  1240. } else {
  1241. rtl_set_rfreg(hw, (enum radio_path)path,
  1242. rf_reg_for_c_cut_5g[i],
  1243. BRFREGOFFSETMASK,
  1244. rf_reg_pram_c_5g[index][i]);
  1245. }
  1246. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  1247. "offset 0x%x value 0x%x path %d index %d readback 0x%x\n",
  1248. rf_reg_for_c_cut_5g[i],
  1249. rf_reg_pram_c_5g[index][i],
  1250. path, index,
  1251. rtl_get_rfreg(hw, (enum radio_path)path,
  1252. rf_reg_for_c_cut_5g[i],
  1253. BRFREGOFFSETMASK));
  1254. }
  1255. if (need_pwr_down)
  1256. _rtl92d_phy_restore_rf_env(hw, path, &u4regvalue);
  1257. if (rtlhal->during_mac1init_radioa)
  1258. rtl92d_phy_powerdown_anotherphy(hw, false);
  1259. if (channel < 149)
  1260. value = 0x07;
  1261. else if (channel >= 149)
  1262. value = 0x02;
  1263. if (channel >= 36 && channel <= 64)
  1264. index = 0;
  1265. else if (channel >= 100 && channel <= 140)
  1266. index = 1;
  1267. else
  1268. index = 2;
  1269. for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath;
  1270. rfpath++) {
  1271. if (rtlhal->macphymode == DUALMAC_DUALPHY &&
  1272. rtlhal->interfaceindex == 1) /* MAC 1 5G */
  1273. internal_pa = rtlpriv->efuse.internal_pa_5g[1];
  1274. else
  1275. internal_pa =
  1276. rtlpriv->efuse.internal_pa_5g[rfpath];
  1277. if (internal_pa) {
  1278. for (i = 0;
  1279. i < RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA;
  1280. i++) {
  1281. rtl_set_rfreg(hw, rfpath,
  1282. rf_for_c_cut_5g_internal_pa[i],
  1283. BRFREGOFFSETMASK,
  1284. rf_pram_c_5g_int_pa[index][i]);
  1285. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD,
  1286. "offset 0x%x value 0x%x path %d index %d\n",
  1287. rf_for_c_cut_5g_internal_pa[i],
  1288. rf_pram_c_5g_int_pa[index][i],
  1289. rfpath, index);
  1290. }
  1291. } else {
  1292. rtl_set_rfreg(hw, (enum radio_path)rfpath, 0x0B,
  1293. mask, value);
  1294. }
  1295. }
  1296. } else if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  1297. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>2.4G\n");
  1298. u4tmp = curveindex_2g[channel - 1];
  1299. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1300. "ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n", u4tmp);
  1301. if (channel == 1 || channel == 2 || channel == 4 || channel == 9
  1302. || channel == 10 || channel == 11 || channel == 12)
  1303. index = 0;
  1304. else if (channel == 3 || channel == 13 || channel == 14)
  1305. index = 1;
  1306. else if (channel >= 5 && channel <= 8)
  1307. index = 2;
  1308. if (rtlhal->macphymode == DUALMAC_DUALPHY) {
  1309. path = RF90_PATH_A;
  1310. if (rtlhal->interfaceindex == 0) {
  1311. need_pwr_down =
  1312. rtl92d_phy_enable_anotherphy(hw, true);
  1313. rtlhal->during_mac0init_radiob = true;
  1314. if (need_pwr_down)
  1315. _rtl92d_phy_enable_rf_env(hw, path,
  1316. &u4regvalue);
  1317. }
  1318. }
  1319. for (i = 0; i < RF_REG_NUM_FOR_C_CUT_2G; i++) {
  1320. if (rf_reg_for_c_cut_2g[i] == RF_SYN_G7)
  1321. rtl_set_rfreg(hw, (enum radio_path)path,
  1322. rf_reg_for_c_cut_2g[i],
  1323. BRFREGOFFSETMASK,
  1324. (rf_reg_param_for_c_cut_2g[index][i] |
  1325. BIT(17)));
  1326. else
  1327. rtl_set_rfreg(hw, (enum radio_path)path,
  1328. rf_reg_for_c_cut_2g[i],
  1329. BRFREGOFFSETMASK,
  1330. rf_reg_param_for_c_cut_2g
  1331. [index][i]);
  1332. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  1333. "offset 0x%x value 0x%x mak 0x%x path %d index %d readback 0x%x\n",
  1334. rf_reg_for_c_cut_2g[i],
  1335. rf_reg_param_for_c_cut_2g[index][i],
  1336. rf_reg_mask_for_c_cut_2g[i], path, index,
  1337. rtl_get_rfreg(hw, (enum radio_path)path,
  1338. rf_reg_for_c_cut_2g[i],
  1339. BRFREGOFFSETMASK));
  1340. }
  1341. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1342. "cosa ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n",
  1343. rf_syn_g4_for_c_cut_2g | (u4tmp << 11));
  1344. rtl_set_rfreg(hw, (enum radio_path)path, RF_SYN_G4,
  1345. BRFREGOFFSETMASK,
  1346. rf_syn_g4_for_c_cut_2g | (u4tmp << 11));
  1347. if (need_pwr_down)
  1348. _rtl92d_phy_restore_rf_env(hw, path, &u4regvalue);
  1349. if (rtlhal->during_mac0init_radiob)
  1350. rtl92d_phy_powerdown_anotherphy(hw, true);
  1351. }
  1352. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
  1353. }
  1354. u8 rtl92d_get_rightchnlplace_for_iqk(u8 chnl)
  1355. {
  1356. u8 channel_all[59] = {
  1357. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  1358. 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
  1359. 60, 62, 64, 100, 102, 104, 106, 108, 110, 112,
  1360. 114, 116, 118, 120, 122, 124, 126, 128, 130,
  1361. 132, 134, 136, 138, 140, 149, 151, 153, 155,
  1362. 157, 159, 161, 163, 165
  1363. };
  1364. u8 place = chnl;
  1365. if (chnl > 14) {
  1366. for (place = 14; place < sizeof(channel_all); place++) {
  1367. if (channel_all[place] == chnl)
  1368. return place - 13;
  1369. }
  1370. }
  1371. return 0;
  1372. }
  1373. #define MAX_TOLERANCE 5
  1374. #define IQK_DELAY_TIME 1 /* ms */
  1375. #define MAX_TOLERANCE_92D 3
  1376. /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
  1377. static u8 _rtl92d_phy_patha_iqk(struct ieee80211_hw *hw, bool configpathb)
  1378. {
  1379. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1380. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1381. u32 regeac, rege94, rege9c, regea4;
  1382. u8 result = 0;
  1383. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK!\n");
  1384. /* path-A IQK setting */
  1385. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A IQK setting!\n");
  1386. if (rtlhal->interfaceindex == 0) {
  1387. rtl_set_bbreg(hw, 0xe30, BMASKDWORD, 0x10008c1f);
  1388. rtl_set_bbreg(hw, 0xe34, BMASKDWORD, 0x10008c1f);
  1389. } else {
  1390. rtl_set_bbreg(hw, 0xe30, BMASKDWORD, 0x10008c22);
  1391. rtl_set_bbreg(hw, 0xe34, BMASKDWORD, 0x10008c22);
  1392. }
  1393. rtl_set_bbreg(hw, 0xe38, BMASKDWORD, 0x82140102);
  1394. rtl_set_bbreg(hw, 0xe3c, BMASKDWORD, 0x28160206);
  1395. /* path-B IQK setting */
  1396. if (configpathb) {
  1397. rtl_set_bbreg(hw, 0xe50, BMASKDWORD, 0x10008c22);
  1398. rtl_set_bbreg(hw, 0xe54, BMASKDWORD, 0x10008c22);
  1399. rtl_set_bbreg(hw, 0xe58, BMASKDWORD, 0x82140102);
  1400. rtl_set_bbreg(hw, 0xe5c, BMASKDWORD, 0x28160206);
  1401. }
  1402. /* LO calibration setting */
  1403. RTPRINT(rtlpriv, FINIT, INIT_IQK, "LO calibration setting!\n");
  1404. rtl_set_bbreg(hw, 0xe4c, BMASKDWORD, 0x00462911);
  1405. /* One shot, path A LOK & IQK */
  1406. RTPRINT(rtlpriv, FINIT, INIT_IQK, "One shot, path A LOK & IQK!\n");
  1407. rtl_set_bbreg(hw, 0xe48, BMASKDWORD, 0xf9000000);
  1408. rtl_set_bbreg(hw, 0xe48, BMASKDWORD, 0xf8000000);
  1409. /* delay x ms */
  1410. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1411. "Delay %d ms for One shot, path A LOK & IQK\n",
  1412. IQK_DELAY_TIME);
  1413. mdelay(IQK_DELAY_TIME);
  1414. /* Check failed */
  1415. regeac = rtl_get_bbreg(hw, 0xeac, BMASKDWORD);
  1416. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
  1417. rege94 = rtl_get_bbreg(hw, 0xe94, BMASKDWORD);
  1418. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe94 = 0x%x\n", rege94);
  1419. rege9c = rtl_get_bbreg(hw, 0xe9c, BMASKDWORD);
  1420. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe9c = 0x%x\n", rege9c);
  1421. regea4 = rtl_get_bbreg(hw, 0xea4, BMASKDWORD);
  1422. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xea4 = 0x%x\n", regea4);
  1423. if (!(regeac & BIT(28)) && (((rege94 & 0x03FF0000) >> 16) != 0x142) &&
  1424. (((rege9c & 0x03FF0000) >> 16) != 0x42))
  1425. result |= 0x01;
  1426. else /* if Tx not OK, ignore Rx */
  1427. return result;
  1428. /* if Tx is OK, check whether Rx is OK */
  1429. if (!(regeac & BIT(27)) && (((regea4 & 0x03FF0000) >> 16) != 0x132) &&
  1430. (((regeac & 0x03FF0000) >> 16) != 0x36))
  1431. result |= 0x02;
  1432. else
  1433. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A Rx IQK fail!!\n");
  1434. return result;
  1435. }
  1436. /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
  1437. static u8 _rtl92d_phy_patha_iqk_5g_normal(struct ieee80211_hw *hw,
  1438. bool configpathb)
  1439. {
  1440. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1441. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1442. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1443. u32 regeac, rege94, rege9c, regea4;
  1444. u8 result = 0;
  1445. u8 i;
  1446. u8 retrycount = 2;
  1447. u32 TxOKBit = BIT(28), RxOKBit = BIT(27);
  1448. if (rtlhal->interfaceindex == 1) { /* PHY1 */
  1449. TxOKBit = BIT(31);
  1450. RxOKBit = BIT(30);
  1451. }
  1452. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK!\n");
  1453. /* path-A IQK setting */
  1454. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A IQK setting!\n");
  1455. rtl_set_bbreg(hw, 0xe30, BMASKDWORD, 0x18008c1f);
  1456. rtl_set_bbreg(hw, 0xe34, BMASKDWORD, 0x18008c1f);
  1457. rtl_set_bbreg(hw, 0xe38, BMASKDWORD, 0x82140307);
  1458. rtl_set_bbreg(hw, 0xe3c, BMASKDWORD, 0x68160960);
  1459. /* path-B IQK setting */
  1460. if (configpathb) {
  1461. rtl_set_bbreg(hw, 0xe50, BMASKDWORD, 0x18008c2f);
  1462. rtl_set_bbreg(hw, 0xe54, BMASKDWORD, 0x18008c2f);
  1463. rtl_set_bbreg(hw, 0xe58, BMASKDWORD, 0x82110000);
  1464. rtl_set_bbreg(hw, 0xe5c, BMASKDWORD, 0x68110000);
  1465. }
  1466. /* LO calibration setting */
  1467. RTPRINT(rtlpriv, FINIT, INIT_IQK, "LO calibration setting!\n");
  1468. rtl_set_bbreg(hw, 0xe4c, BMASKDWORD, 0x00462911);
  1469. /* path-A PA on */
  1470. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BMASKDWORD, 0x07000f60);
  1471. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BMASKDWORD, 0x66e60e30);
  1472. for (i = 0; i < retrycount; i++) {
  1473. /* One shot, path A LOK & IQK */
  1474. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1475. "One shot, path A LOK & IQK!\n");
  1476. rtl_set_bbreg(hw, 0xe48, BMASKDWORD, 0xf9000000);
  1477. rtl_set_bbreg(hw, 0xe48, BMASKDWORD, 0xf8000000);
  1478. /* delay x ms */
  1479. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1480. "Delay %d ms for One shot, path A LOK & IQK.\n",
  1481. IQK_DELAY_TIME);
  1482. mdelay(IQK_DELAY_TIME * 10);
  1483. /* Check failed */
  1484. regeac = rtl_get_bbreg(hw, 0xeac, BMASKDWORD);
  1485. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
  1486. rege94 = rtl_get_bbreg(hw, 0xe94, BMASKDWORD);
  1487. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe94 = 0x%x\n", rege94);
  1488. rege9c = rtl_get_bbreg(hw, 0xe9c, BMASKDWORD);
  1489. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe9c = 0x%x\n", rege9c);
  1490. regea4 = rtl_get_bbreg(hw, 0xea4, BMASKDWORD);
  1491. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xea4 = 0x%x\n", regea4);
  1492. if (!(regeac & TxOKBit) &&
  1493. (((rege94 & 0x03FF0000) >> 16) != 0x142)) {
  1494. result |= 0x01;
  1495. } else { /* if Tx not OK, ignore Rx */
  1496. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1497. "Path A Tx IQK fail!!\n");
  1498. continue;
  1499. }
  1500. /* if Tx is OK, check whether Rx is OK */
  1501. if (!(regeac & RxOKBit) &&
  1502. (((regea4 & 0x03FF0000) >> 16) != 0x132)) {
  1503. result |= 0x02;
  1504. break;
  1505. } else {
  1506. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1507. "Path A Rx IQK fail!!\n");
  1508. }
  1509. }
  1510. /* path A PA off */
  1511. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BMASKDWORD,
  1512. rtlphy->iqk_bb_backup[0]);
  1513. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BMASKDWORD,
  1514. rtlphy->iqk_bb_backup[1]);
  1515. return result;
  1516. }
  1517. /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
  1518. static u8 _rtl92d_phy_pathb_iqk(struct ieee80211_hw *hw)
  1519. {
  1520. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1521. u32 regeac, regeb4, regebc, regec4, regecc;
  1522. u8 result = 0;
  1523. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQK!\n");
  1524. /* One shot, path B LOK & IQK */
  1525. RTPRINT(rtlpriv, FINIT, INIT_IQK, "One shot, path A LOK & IQK!\n");
  1526. rtl_set_bbreg(hw, 0xe60, BMASKDWORD, 0x00000002);
  1527. rtl_set_bbreg(hw, 0xe60, BMASKDWORD, 0x00000000);
  1528. /* delay x ms */
  1529. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1530. "Delay %d ms for One shot, path B LOK & IQK\n", IQK_DELAY_TIME);
  1531. mdelay(IQK_DELAY_TIME);
  1532. /* Check failed */
  1533. regeac = rtl_get_bbreg(hw, 0xeac, BMASKDWORD);
  1534. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
  1535. regeb4 = rtl_get_bbreg(hw, 0xeb4, BMASKDWORD);
  1536. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeb4 = 0x%x\n", regeb4);
  1537. regebc = rtl_get_bbreg(hw, 0xebc, BMASKDWORD);
  1538. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xebc = 0x%x\n", regebc);
  1539. regec4 = rtl_get_bbreg(hw, 0xec4, BMASKDWORD);
  1540. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xec4 = 0x%x\n", regec4);
  1541. regecc = rtl_get_bbreg(hw, 0xecc, BMASKDWORD);
  1542. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xecc = 0x%x\n", regecc);
  1543. if (!(regeac & BIT(31)) && (((regeb4 & 0x03FF0000) >> 16) != 0x142) &&
  1544. (((regebc & 0x03FF0000) >> 16) != 0x42))
  1545. result |= 0x01;
  1546. else
  1547. return result;
  1548. if (!(regeac & BIT(30)) && (((regec4 & 0x03FF0000) >> 16) != 0x132) &&
  1549. (((regecc & 0x03FF0000) >> 16) != 0x36))
  1550. result |= 0x02;
  1551. else
  1552. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B Rx IQK fail!!\n");
  1553. return result;
  1554. }
  1555. /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
  1556. static u8 _rtl92d_phy_pathb_iqk_5g_normal(struct ieee80211_hw *hw)
  1557. {
  1558. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1559. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1560. u32 regeac, regeb4, regebc, regec4, regecc;
  1561. u8 result = 0;
  1562. u8 i;
  1563. u8 retrycount = 2;
  1564. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQK!\n");
  1565. /* path-A IQK setting */
  1566. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A IQK setting!\n");
  1567. rtl_set_bbreg(hw, 0xe30, BMASKDWORD, 0x18008c1f);
  1568. rtl_set_bbreg(hw, 0xe34, BMASKDWORD, 0x18008c1f);
  1569. rtl_set_bbreg(hw, 0xe38, BMASKDWORD, 0x82110000);
  1570. rtl_set_bbreg(hw, 0xe3c, BMASKDWORD, 0x68110000);
  1571. /* path-B IQK setting */
  1572. rtl_set_bbreg(hw, 0xe50, BMASKDWORD, 0x18008c2f);
  1573. rtl_set_bbreg(hw, 0xe54, BMASKDWORD, 0x18008c2f);
  1574. rtl_set_bbreg(hw, 0xe58, BMASKDWORD, 0x82140307);
  1575. rtl_set_bbreg(hw, 0xe5c, BMASKDWORD, 0x68160960);
  1576. /* LO calibration setting */
  1577. RTPRINT(rtlpriv, FINIT, INIT_IQK, "LO calibration setting!\n");
  1578. rtl_set_bbreg(hw, 0xe4c, BMASKDWORD, 0x00462911);
  1579. /* path-B PA on */
  1580. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BMASKDWORD, 0x0f600700);
  1581. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BMASKDWORD, 0x061f0d30);
  1582. for (i = 0; i < retrycount; i++) {
  1583. /* One shot, path B LOK & IQK */
  1584. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1585. "One shot, path A LOK & IQK!\n");
  1586. rtl_set_bbreg(hw, 0xe48, BMASKDWORD, 0xfa000000);
  1587. rtl_set_bbreg(hw, 0xe48, BMASKDWORD, 0xf8000000);
  1588. /* delay x ms */
  1589. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1590. "Delay %d ms for One shot, path B LOK & IQK.\n", 10);
  1591. mdelay(IQK_DELAY_TIME * 10);
  1592. /* Check failed */
  1593. regeac = rtl_get_bbreg(hw, 0xeac, BMASKDWORD);
  1594. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
  1595. regeb4 = rtl_get_bbreg(hw, 0xeb4, BMASKDWORD);
  1596. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeb4 = 0x%x\n", regeb4);
  1597. regebc = rtl_get_bbreg(hw, 0xebc, BMASKDWORD);
  1598. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xebc = 0x%x\n", regebc);
  1599. regec4 = rtl_get_bbreg(hw, 0xec4, BMASKDWORD);
  1600. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xec4 = 0x%x\n", regec4);
  1601. regecc = rtl_get_bbreg(hw, 0xecc, BMASKDWORD);
  1602. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xecc = 0x%x\n", regecc);
  1603. if (!(regeac & BIT(31)) &&
  1604. (((regeb4 & 0x03FF0000) >> 16) != 0x142))
  1605. result |= 0x01;
  1606. else
  1607. continue;
  1608. if (!(regeac & BIT(30)) &&
  1609. (((regec4 & 0x03FF0000) >> 16) != 0x132)) {
  1610. result |= 0x02;
  1611. break;
  1612. } else {
  1613. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1614. "Path B Rx IQK fail!!\n");
  1615. }
  1616. }
  1617. /* path B PA off */
  1618. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BMASKDWORD,
  1619. rtlphy->iqk_bb_backup[0]);
  1620. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BMASKDWORD,
  1621. rtlphy->iqk_bb_backup[2]);
  1622. return result;
  1623. }
  1624. static void _rtl92d_phy_save_adda_registers(struct ieee80211_hw *hw,
  1625. u32 *adda_reg, u32 *adda_backup,
  1626. u32 regnum)
  1627. {
  1628. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1629. u32 i;
  1630. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Save ADDA parameters.\n");
  1631. for (i = 0; i < regnum; i++)
  1632. adda_backup[i] = rtl_get_bbreg(hw, adda_reg[i], BMASKDWORD);
  1633. }
  1634. static void _rtl92d_phy_save_mac_registers(struct ieee80211_hw *hw,
  1635. u32 *macreg, u32 *macbackup)
  1636. {
  1637. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1638. u32 i;
  1639. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Save MAC parameters.\n");
  1640. for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
  1641. macbackup[i] = rtl_read_byte(rtlpriv, macreg[i]);
  1642. macbackup[i] = rtl_read_dword(rtlpriv, macreg[i]);
  1643. }
  1644. static void _rtl92d_phy_reload_adda_registers(struct ieee80211_hw *hw,
  1645. u32 *adda_reg, u32 *adda_backup,
  1646. u32 regnum)
  1647. {
  1648. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1649. u32 i;
  1650. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1651. "Reload ADDA power saving parameters !\n");
  1652. for (i = 0; i < regnum; i++)
  1653. rtl_set_bbreg(hw, adda_reg[i], BMASKDWORD, adda_backup[i]);
  1654. }
  1655. static void _rtl92d_phy_reload_mac_registers(struct ieee80211_hw *hw,
  1656. u32 *macreg, u32 *macbackup)
  1657. {
  1658. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1659. u32 i;
  1660. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Reload MAC parameters !\n");
  1661. for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
  1662. rtl_write_byte(rtlpriv, macreg[i], (u8) macbackup[i]);
  1663. rtl_write_byte(rtlpriv, macreg[i], macbackup[i]);
  1664. }
  1665. static void _rtl92d_phy_path_adda_on(struct ieee80211_hw *hw,
  1666. u32 *adda_reg, bool patha_on, bool is2t)
  1667. {
  1668. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1669. u32 pathon;
  1670. u32 i;
  1671. RTPRINT(rtlpriv, FINIT, INIT_IQK, "ADDA ON.\n");
  1672. pathon = patha_on ? 0x04db25a4 : 0x0b1b25a4;
  1673. if (patha_on)
  1674. pathon = rtlpriv->rtlhal.interfaceindex == 0 ?
  1675. 0x04db25a4 : 0x0b1b25a4;
  1676. for (i = 0; i < IQK_ADDA_REG_NUM; i++)
  1677. rtl_set_bbreg(hw, adda_reg[i], BMASKDWORD, pathon);
  1678. }
  1679. static void _rtl92d_phy_mac_setting_calibration(struct ieee80211_hw *hw,
  1680. u32 *macreg, u32 *macbackup)
  1681. {
  1682. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1683. u32 i;
  1684. RTPRINT(rtlpriv, FINIT, INIT_IQK, "MAC settings for Calibration.\n");
  1685. rtl_write_byte(rtlpriv, macreg[0], 0x3F);
  1686. for (i = 1; i < (IQK_MAC_REG_NUM - 1); i++)
  1687. rtl_write_byte(rtlpriv, macreg[i], (u8)(macbackup[i] &
  1688. (~BIT(3))));
  1689. rtl_write_byte(rtlpriv, macreg[i], (u8) (macbackup[i] & (~BIT(5))));
  1690. }
  1691. static void _rtl92d_phy_patha_standby(struct ieee80211_hw *hw)
  1692. {
  1693. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1694. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A standby mode!\n");
  1695. rtl_set_bbreg(hw, 0xe28, BMASKDWORD, 0x0);
  1696. rtl_set_bbreg(hw, RFPGA0_XA_LSSIPARAMETER, BMASKDWORD, 0x00010000);
  1697. rtl_set_bbreg(hw, 0xe28, BMASKDWORD, 0x80800000);
  1698. }
  1699. static void _rtl92d_phy_pimode_switch(struct ieee80211_hw *hw, bool pi_mode)
  1700. {
  1701. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1702. u32 mode;
  1703. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1704. "BB Switch to %s mode!\n", pi_mode ? "PI" : "SI");
  1705. mode = pi_mode ? 0x01000100 : 0x01000000;
  1706. rtl_set_bbreg(hw, 0x820, BMASKDWORD, mode);
  1707. rtl_set_bbreg(hw, 0x828, BMASKDWORD, mode);
  1708. }
  1709. static void _rtl92d_phy_iq_calibrate(struct ieee80211_hw *hw, long result[][8],
  1710. u8 t, bool is2t)
  1711. {
  1712. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1713. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1714. u32 i;
  1715. u8 patha_ok, pathb_ok;
  1716. static u32 adda_reg[IQK_ADDA_REG_NUM] = {
  1717. RFPGA0_XCD_SWITCHCONTROL, 0xe6c, 0xe70, 0xe74,
  1718. 0xe78, 0xe7c, 0xe80, 0xe84,
  1719. 0xe88, 0xe8c, 0xed0, 0xed4,
  1720. 0xed8, 0xedc, 0xee0, 0xeec
  1721. };
  1722. static u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
  1723. 0x522, 0x550, 0x551, 0x040
  1724. };
  1725. static u32 iqk_bb_reg[IQK_BB_REG_NUM] = {
  1726. RFPGA0_XAB_RFINTERFACESW, RFPGA0_XA_RFINTERFACEOE,
  1727. RFPGA0_XB_RFINTERFACEOE, ROFDM0_TRMUXPAR,
  1728. RFPGA0_XCD_RFINTERFACESW, ROFDM0_TRXPATHENABLE,
  1729. RFPGA0_RFMOD, RFPGA0_ANALOGPARAMETER4,
  1730. ROFDM0_XAAGCCORE1, ROFDM0_XBAGCCORE1
  1731. };
  1732. const u32 retrycount = 2;
  1733. u32 bbvalue;
  1734. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK for 2.4G :Start!!!\n");
  1735. if (t == 0) {
  1736. bbvalue = rtl_get_bbreg(hw, RFPGA0_RFMOD, BMASKDWORD);
  1737. RTPRINT(rtlpriv, FINIT, INIT_IQK, "==>0x%08x\n", bbvalue);
  1738. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQ Calibration for %s\n",
  1739. is2t ? "2T2R" : "1T1R");
  1740. /* Save ADDA parameters, turn Path A ADDA on */
  1741. _rtl92d_phy_save_adda_registers(hw, adda_reg,
  1742. rtlphy->adda_backup, IQK_ADDA_REG_NUM);
  1743. _rtl92d_phy_save_mac_registers(hw, iqk_mac_reg,
  1744. rtlphy->iqk_mac_backup);
  1745. _rtl92d_phy_save_adda_registers(hw, iqk_bb_reg,
  1746. rtlphy->iqk_bb_backup, IQK_BB_REG_NUM);
  1747. }
  1748. _rtl92d_phy_path_adda_on(hw, adda_reg, true, is2t);
  1749. if (t == 0)
  1750. rtlphy->rfpi_enable = (u8) rtl_get_bbreg(hw,
  1751. RFPGA0_XA_HSSIPARAMETER1, BIT(8));
  1752. /* Switch BB to PI mode to do IQ Calibration. */
  1753. if (!rtlphy->rfpi_enable)
  1754. _rtl92d_phy_pimode_switch(hw, true);
  1755. rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(24), 0x00);
  1756. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKDWORD, 0x03a05600);
  1757. rtl_set_bbreg(hw, ROFDM0_TRMUXPAR, BMASKDWORD, 0x000800e4);
  1758. rtl_set_bbreg(hw, RFPGA0_XCD_RFINTERFACESW, BMASKDWORD, 0x22204000);
  1759. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xf00000, 0x0f);
  1760. if (is2t) {
  1761. rtl_set_bbreg(hw, RFPGA0_XA_LSSIPARAMETER, BMASKDWORD,
  1762. 0x00010000);
  1763. rtl_set_bbreg(hw, RFPGA0_XB_LSSIPARAMETER, BMASKDWORD,
  1764. 0x00010000);
  1765. }
  1766. /* MAC settings */
  1767. _rtl92d_phy_mac_setting_calibration(hw, iqk_mac_reg,
  1768. rtlphy->iqk_mac_backup);
  1769. /* Page B init */
  1770. rtl_set_bbreg(hw, 0xb68, BMASKDWORD, 0x0f600000);
  1771. if (is2t)
  1772. rtl_set_bbreg(hw, 0xb6c, BMASKDWORD, 0x0f600000);
  1773. /* IQ calibration setting */
  1774. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK setting!\n");
  1775. rtl_set_bbreg(hw, 0xe28, BMASKDWORD, 0x80800000);
  1776. rtl_set_bbreg(hw, 0xe40, BMASKDWORD, 0x01007c00);
  1777. rtl_set_bbreg(hw, 0xe44, BMASKDWORD, 0x01004800);
  1778. for (i = 0; i < retrycount; i++) {
  1779. patha_ok = _rtl92d_phy_patha_iqk(hw, is2t);
  1780. if (patha_ok == 0x03) {
  1781. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1782. "Path A IQK Success!!\n");
  1783. result[t][0] = (rtl_get_bbreg(hw, 0xe94, BMASKDWORD) &
  1784. 0x3FF0000) >> 16;
  1785. result[t][1] = (rtl_get_bbreg(hw, 0xe9c, BMASKDWORD) &
  1786. 0x3FF0000) >> 16;
  1787. result[t][2] = (rtl_get_bbreg(hw, 0xea4, BMASKDWORD) &
  1788. 0x3FF0000) >> 16;
  1789. result[t][3] = (rtl_get_bbreg(hw, 0xeac, BMASKDWORD) &
  1790. 0x3FF0000) >> 16;
  1791. break;
  1792. } else if (i == (retrycount - 1) && patha_ok == 0x01) {
  1793. /* Tx IQK OK */
  1794. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1795. "Path A IQK Only Tx Success!!\n");
  1796. result[t][0] = (rtl_get_bbreg(hw, 0xe94, BMASKDWORD) &
  1797. 0x3FF0000) >> 16;
  1798. result[t][1] = (rtl_get_bbreg(hw, 0xe9c, BMASKDWORD) &
  1799. 0x3FF0000) >> 16;
  1800. }
  1801. }
  1802. if (0x00 == patha_ok)
  1803. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK failed!!\n");
  1804. if (is2t) {
  1805. _rtl92d_phy_patha_standby(hw);
  1806. /* Turn Path B ADDA on */
  1807. _rtl92d_phy_path_adda_on(hw, adda_reg, false, is2t);
  1808. for (i = 0; i < retrycount; i++) {
  1809. pathb_ok = _rtl92d_phy_pathb_iqk(hw);
  1810. if (pathb_ok == 0x03) {
  1811. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1812. "Path B IQK Success!!\n");
  1813. result[t][4] = (rtl_get_bbreg(hw, 0xeb4,
  1814. BMASKDWORD) & 0x3FF0000) >> 16;
  1815. result[t][5] = (rtl_get_bbreg(hw, 0xebc,
  1816. BMASKDWORD) & 0x3FF0000) >> 16;
  1817. result[t][6] = (rtl_get_bbreg(hw, 0xec4,
  1818. BMASKDWORD) & 0x3FF0000) >> 16;
  1819. result[t][7] = (rtl_get_bbreg(hw, 0xecc,
  1820. BMASKDWORD) & 0x3FF0000) >> 16;
  1821. break;
  1822. } else if (i == (retrycount - 1) && pathb_ok == 0x01) {
  1823. /* Tx IQK OK */
  1824. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1825. "Path B Only Tx IQK Success!!\n");
  1826. result[t][4] = (rtl_get_bbreg(hw, 0xeb4,
  1827. BMASKDWORD) & 0x3FF0000) >> 16;
  1828. result[t][5] = (rtl_get_bbreg(hw, 0xebc,
  1829. BMASKDWORD) & 0x3FF0000) >> 16;
  1830. }
  1831. }
  1832. if (0x00 == pathb_ok)
  1833. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1834. "Path B IQK failed!!\n");
  1835. }
  1836. /* Back to BB mode, load original value */
  1837. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1838. "IQK:Back to BB mode, load original value!\n");
  1839. rtl_set_bbreg(hw, 0xe28, BMASKDWORD, 0);
  1840. if (t != 0) {
  1841. /* Switch back BB to SI mode after finish IQ Calibration. */
  1842. if (!rtlphy->rfpi_enable)
  1843. _rtl92d_phy_pimode_switch(hw, false);
  1844. /* Reload ADDA power saving parameters */
  1845. _rtl92d_phy_reload_adda_registers(hw, adda_reg,
  1846. rtlphy->adda_backup, IQK_ADDA_REG_NUM);
  1847. /* Reload MAC parameters */
  1848. _rtl92d_phy_reload_mac_registers(hw, iqk_mac_reg,
  1849. rtlphy->iqk_mac_backup);
  1850. if (is2t)
  1851. _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
  1852. rtlphy->iqk_bb_backup,
  1853. IQK_BB_REG_NUM);
  1854. else
  1855. _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
  1856. rtlphy->iqk_bb_backup,
  1857. IQK_BB_REG_NUM - 1);
  1858. /* load 0xe30 IQC default value */
  1859. rtl_set_bbreg(hw, 0xe30, BMASKDWORD, 0x01008c00);
  1860. rtl_set_bbreg(hw, 0xe34, BMASKDWORD, 0x01008c00);
  1861. }
  1862. RTPRINT(rtlpriv, FINIT, INIT_IQK, "<==\n");
  1863. }
  1864. static void _rtl92d_phy_iq_calibrate_5g_normal(struct ieee80211_hw *hw,
  1865. long result[][8], u8 t)
  1866. {
  1867. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1868. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1869. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  1870. u8 patha_ok, pathb_ok;
  1871. static u32 adda_reg[IQK_ADDA_REG_NUM] = {
  1872. RFPGA0_XCD_SWITCHCONTROL, 0xe6c, 0xe70, 0xe74,
  1873. 0xe78, 0xe7c, 0xe80, 0xe84,
  1874. 0xe88, 0xe8c, 0xed0, 0xed4,
  1875. 0xed8, 0xedc, 0xee0, 0xeec
  1876. };
  1877. static u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
  1878. 0x522, 0x550, 0x551, 0x040
  1879. };
  1880. static u32 iqk_bb_reg[IQK_BB_REG_NUM] = {
  1881. RFPGA0_XAB_RFINTERFACESW, RFPGA0_XA_RFINTERFACEOE,
  1882. RFPGA0_XB_RFINTERFACEOE, ROFDM0_TRMUXPAR,
  1883. RFPGA0_XCD_RFINTERFACESW, ROFDM0_TRXPATHENABLE,
  1884. RFPGA0_RFMOD, RFPGA0_ANALOGPARAMETER4,
  1885. ROFDM0_XAAGCCORE1, ROFDM0_XBAGCCORE1
  1886. };
  1887. u32 bbvalue;
  1888. bool is2t = IS_92D_SINGLEPHY(rtlhal->version);
  1889. /* Note: IQ calibration must be performed after loading
  1890. * PHY_REG.txt , and radio_a, radio_b.txt */
  1891. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK for 5G NORMAL:Start!!!\n");
  1892. mdelay(IQK_DELAY_TIME * 20);
  1893. if (t == 0) {
  1894. bbvalue = rtl_get_bbreg(hw, RFPGA0_RFMOD, BMASKDWORD);
  1895. RTPRINT(rtlpriv, FINIT, INIT_IQK, "==>0x%08x\n", bbvalue);
  1896. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQ Calibration for %s\n",
  1897. is2t ? "2T2R" : "1T1R");
  1898. /* Save ADDA parameters, turn Path A ADDA on */
  1899. _rtl92d_phy_save_adda_registers(hw, adda_reg,
  1900. rtlphy->adda_backup,
  1901. IQK_ADDA_REG_NUM);
  1902. _rtl92d_phy_save_mac_registers(hw, iqk_mac_reg,
  1903. rtlphy->iqk_mac_backup);
  1904. if (is2t)
  1905. _rtl92d_phy_save_adda_registers(hw, iqk_bb_reg,
  1906. rtlphy->iqk_bb_backup,
  1907. IQK_BB_REG_NUM);
  1908. else
  1909. _rtl92d_phy_save_adda_registers(hw, iqk_bb_reg,
  1910. rtlphy->iqk_bb_backup,
  1911. IQK_BB_REG_NUM - 1);
  1912. }
  1913. _rtl92d_phy_path_adda_on(hw, adda_reg, true, is2t);
  1914. /* MAC settings */
  1915. _rtl92d_phy_mac_setting_calibration(hw, iqk_mac_reg,
  1916. rtlphy->iqk_mac_backup);
  1917. if (t == 0)
  1918. rtlphy->rfpi_enable = (u8) rtl_get_bbreg(hw,
  1919. RFPGA0_XA_HSSIPARAMETER1, BIT(8));
  1920. /* Switch BB to PI mode to do IQ Calibration. */
  1921. if (!rtlphy->rfpi_enable)
  1922. _rtl92d_phy_pimode_switch(hw, true);
  1923. rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(24), 0x00);
  1924. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKDWORD, 0x03a05600);
  1925. rtl_set_bbreg(hw, ROFDM0_TRMUXPAR, BMASKDWORD, 0x000800e4);
  1926. rtl_set_bbreg(hw, RFPGA0_XCD_RFINTERFACESW, BMASKDWORD, 0x22208000);
  1927. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xf00000, 0x0f);
  1928. /* Page B init */
  1929. rtl_set_bbreg(hw, 0xb68, BMASKDWORD, 0x0f600000);
  1930. if (is2t)
  1931. rtl_set_bbreg(hw, 0xb6c, BMASKDWORD, 0x0f600000);
  1932. /* IQ calibration setting */
  1933. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK setting!\n");
  1934. rtl_set_bbreg(hw, 0xe28, BMASKDWORD, 0x80800000);
  1935. rtl_set_bbreg(hw, 0xe40, BMASKDWORD, 0x10007c00);
  1936. rtl_set_bbreg(hw, 0xe44, BMASKDWORD, 0x01004800);
  1937. patha_ok = _rtl92d_phy_patha_iqk_5g_normal(hw, is2t);
  1938. if (patha_ok == 0x03) {
  1939. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK Success!!\n");
  1940. result[t][0] = (rtl_get_bbreg(hw, 0xe94, BMASKDWORD) &
  1941. 0x3FF0000) >> 16;
  1942. result[t][1] = (rtl_get_bbreg(hw, 0xe9c, BMASKDWORD) &
  1943. 0x3FF0000) >> 16;
  1944. result[t][2] = (rtl_get_bbreg(hw, 0xea4, BMASKDWORD) &
  1945. 0x3FF0000) >> 16;
  1946. result[t][3] = (rtl_get_bbreg(hw, 0xeac, BMASKDWORD) &
  1947. 0x3FF0000) >> 16;
  1948. } else if (patha_ok == 0x01) { /* Tx IQK OK */
  1949. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1950. "Path A IQK Only Tx Success!!\n");
  1951. result[t][0] = (rtl_get_bbreg(hw, 0xe94, BMASKDWORD) &
  1952. 0x3FF0000) >> 16;
  1953. result[t][1] = (rtl_get_bbreg(hw, 0xe9c, BMASKDWORD) &
  1954. 0x3FF0000) >> 16;
  1955. } else {
  1956. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK Fail!!\n");
  1957. }
  1958. if (is2t) {
  1959. /* _rtl92d_phy_patha_standby(hw); */
  1960. /* Turn Path B ADDA on */
  1961. _rtl92d_phy_path_adda_on(hw, adda_reg, false, is2t);
  1962. pathb_ok = _rtl92d_phy_pathb_iqk_5g_normal(hw);
  1963. if (pathb_ok == 0x03) {
  1964. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1965. "Path B IQK Success!!\n");
  1966. result[t][4] = (rtl_get_bbreg(hw, 0xeb4, BMASKDWORD) &
  1967. 0x3FF0000) >> 16;
  1968. result[t][5] = (rtl_get_bbreg(hw, 0xebc, BMASKDWORD) &
  1969. 0x3FF0000) >> 16;
  1970. result[t][6] = (rtl_get_bbreg(hw, 0xec4, BMASKDWORD) &
  1971. 0x3FF0000) >> 16;
  1972. result[t][7] = (rtl_get_bbreg(hw, 0xecc, BMASKDWORD) &
  1973. 0x3FF0000) >> 16;
  1974. } else if (pathb_ok == 0x01) { /* Tx IQK OK */
  1975. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1976. "Path B Only Tx IQK Success!!\n");
  1977. result[t][4] = (rtl_get_bbreg(hw, 0xeb4, BMASKDWORD) &
  1978. 0x3FF0000) >> 16;
  1979. result[t][5] = (rtl_get_bbreg(hw, 0xebc, BMASKDWORD) &
  1980. 0x3FF0000) >> 16;
  1981. } else {
  1982. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1983. "Path B IQK failed!!\n");
  1984. }
  1985. }
  1986. /* Back to BB mode, load original value */
  1987. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1988. "IQK:Back to BB mode, load original value!\n");
  1989. rtl_set_bbreg(hw, 0xe28, BMASKDWORD, 0);
  1990. if (t != 0) {
  1991. if (is2t)
  1992. _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
  1993. rtlphy->iqk_bb_backup,
  1994. IQK_BB_REG_NUM);
  1995. else
  1996. _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
  1997. rtlphy->iqk_bb_backup,
  1998. IQK_BB_REG_NUM - 1);
  1999. /* Reload MAC parameters */
  2000. _rtl92d_phy_reload_mac_registers(hw, iqk_mac_reg,
  2001. rtlphy->iqk_mac_backup);
  2002. /* Switch back BB to SI mode after finish IQ Calibration. */
  2003. if (!rtlphy->rfpi_enable)
  2004. _rtl92d_phy_pimode_switch(hw, false);
  2005. /* Reload ADDA power saving parameters */
  2006. _rtl92d_phy_reload_adda_registers(hw, adda_reg,
  2007. rtlphy->adda_backup,
  2008. IQK_ADDA_REG_NUM);
  2009. }
  2010. RTPRINT(rtlpriv, FINIT, INIT_IQK, "<==\n");
  2011. }
  2012. static bool _rtl92d_phy_simularity_compare(struct ieee80211_hw *hw,
  2013. long result[][8], u8 c1, u8 c2)
  2014. {
  2015. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2016. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2017. u32 i, j, diff, sim_bitmap, bound;
  2018. u8 final_candidate[2] = {0xFF, 0xFF}; /* for path A and path B */
  2019. bool bresult = true;
  2020. bool is2t = IS_92D_SINGLEPHY(rtlhal->version);
  2021. if (is2t)
  2022. bound = 8;
  2023. else
  2024. bound = 4;
  2025. sim_bitmap = 0;
  2026. for (i = 0; i < bound; i++) {
  2027. diff = (result[c1][i] > result[c2][i]) ? (result[c1][i] -
  2028. result[c2][i]) : (result[c2][i] - result[c1][i]);
  2029. if (diff > MAX_TOLERANCE_92D) {
  2030. if ((i == 2 || i == 6) && !sim_bitmap) {
  2031. if (result[c1][i] + result[c1][i + 1] == 0)
  2032. final_candidate[(i / 4)] = c2;
  2033. else if (result[c2][i] + result[c2][i + 1] == 0)
  2034. final_candidate[(i / 4)] = c1;
  2035. else
  2036. sim_bitmap = sim_bitmap | (1 << i);
  2037. } else {
  2038. sim_bitmap = sim_bitmap | (1 << i);
  2039. }
  2040. }
  2041. }
  2042. if (sim_bitmap == 0) {
  2043. for (i = 0; i < (bound / 4); i++) {
  2044. if (final_candidate[i] != 0xFF) {
  2045. for (j = i * 4; j < (i + 1) * 4 - 2; j++)
  2046. result[3][j] =
  2047. result[final_candidate[i]][j];
  2048. bresult = false;
  2049. }
  2050. }
  2051. return bresult;
  2052. }
  2053. if (!(sim_bitmap & 0x0F)) { /* path A OK */
  2054. for (i = 0; i < 4; i++)
  2055. result[3][i] = result[c1][i];
  2056. } else if (!(sim_bitmap & 0x03)) { /* path A, Tx OK */
  2057. for (i = 0; i < 2; i++)
  2058. result[3][i] = result[c1][i];
  2059. }
  2060. if (!(sim_bitmap & 0xF0) && is2t) { /* path B OK */
  2061. for (i = 4; i < 8; i++)
  2062. result[3][i] = result[c1][i];
  2063. } else if (!(sim_bitmap & 0x30)) { /* path B, Tx OK */
  2064. for (i = 4; i < 6; i++)
  2065. result[3][i] = result[c1][i];
  2066. }
  2067. return false;
  2068. }
  2069. static void _rtl92d_phy_patha_fill_iqk_matrix(struct ieee80211_hw *hw,
  2070. bool iqk_ok, long result[][8],
  2071. u8 final_candidate, bool txonly)
  2072. {
  2073. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2074. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2075. u32 oldval_0, val_x, tx0_a, reg;
  2076. long val_y, tx0_c;
  2077. bool is2t = IS_92D_SINGLEPHY(rtlhal->version) ||
  2078. rtlhal->macphymode == DUALMAC_DUALPHY;
  2079. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2080. "Path A IQ Calibration %s !\n", iqk_ok ? "Success" : "Failed");
  2081. if (final_candidate == 0xFF) {
  2082. return;
  2083. } else if (iqk_ok) {
  2084. oldval_0 = (rtl_get_bbreg(hw, ROFDM0_XATxIQIMBALANCE,
  2085. BMASKDWORD) >> 22) & 0x3FF; /* OFDM0_D */
  2086. val_x = result[final_candidate][0];
  2087. if ((val_x & 0x00000200) != 0)
  2088. val_x = val_x | 0xFFFFFC00;
  2089. tx0_a = (val_x * oldval_0) >> 8;
  2090. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2091. "X = 0x%x, tx0_a = 0x%x, oldval_0 0x%x\n",
  2092. val_x, tx0_a, oldval_0);
  2093. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, 0x3FF, tx0_a);
  2094. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(24),
  2095. ((val_x * oldval_0 >> 7) & 0x1));
  2096. val_y = result[final_candidate][1];
  2097. if ((val_y & 0x00000200) != 0)
  2098. val_y = val_y | 0xFFFFFC00;
  2099. /* path B IQK result + 3 */
  2100. if (rtlhal->interfaceindex == 1 &&
  2101. rtlhal->current_bandtype == BAND_ON_5G)
  2102. val_y += 3;
  2103. tx0_c = (val_y * oldval_0) >> 8;
  2104. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2105. "Y = 0x%lx, tx0_c = 0x%lx\n",
  2106. val_y, tx0_c);
  2107. rtl_set_bbreg(hw, ROFDM0_XCTxAFE, 0xF0000000,
  2108. ((tx0_c & 0x3C0) >> 6));
  2109. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, 0x003F0000,
  2110. (tx0_c & 0x3F));
  2111. if (is2t)
  2112. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(26),
  2113. ((val_y * oldval_0 >> 7) & 0x1));
  2114. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xC80 = 0x%x\n",
  2115. rtl_get_bbreg(hw, ROFDM0_XATxIQIMBALANCE,
  2116. BMASKDWORD));
  2117. if (txonly) {
  2118. RTPRINT(rtlpriv, FINIT, INIT_IQK, "only Tx OK\n");
  2119. return;
  2120. }
  2121. reg = result[final_candidate][2];
  2122. rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0x3FF, reg);
  2123. reg = result[final_candidate][3] & 0x3F;
  2124. rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0xFC00, reg);
  2125. reg = (result[final_candidate][3] >> 6) & 0xF;
  2126. rtl_set_bbreg(hw, 0xca0, 0xF0000000, reg);
  2127. }
  2128. }
  2129. static void _rtl92d_phy_pathb_fill_iqk_matrix(struct ieee80211_hw *hw,
  2130. bool iqk_ok, long result[][8], u8 final_candidate, bool txonly)
  2131. {
  2132. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2133. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2134. u32 oldval_1, val_x, tx1_a, reg;
  2135. long val_y, tx1_c;
  2136. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQ Calibration %s !\n",
  2137. iqk_ok ? "Success" : "Failed");
  2138. if (final_candidate == 0xFF) {
  2139. return;
  2140. } else if (iqk_ok) {
  2141. oldval_1 = (rtl_get_bbreg(hw, ROFDM0_XBTxIQIMBALANCE,
  2142. BMASKDWORD) >> 22) & 0x3FF;
  2143. val_x = result[final_candidate][4];
  2144. if ((val_x & 0x00000200) != 0)
  2145. val_x = val_x | 0xFFFFFC00;
  2146. tx1_a = (val_x * oldval_1) >> 8;
  2147. RTPRINT(rtlpriv, FINIT, INIT_IQK, "X = 0x%x, tx1_a = 0x%x\n",
  2148. val_x, tx1_a);
  2149. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, 0x3FF, tx1_a);
  2150. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(28),
  2151. ((val_x * oldval_1 >> 7) & 0x1));
  2152. val_y = result[final_candidate][5];
  2153. if ((val_y & 0x00000200) != 0)
  2154. val_y = val_y | 0xFFFFFC00;
  2155. if (rtlhal->current_bandtype == BAND_ON_5G)
  2156. val_y += 3;
  2157. tx1_c = (val_y * oldval_1) >> 8;
  2158. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Y = 0x%lx, tx1_c = 0x%lx\n",
  2159. val_y, tx1_c);
  2160. rtl_set_bbreg(hw, ROFDM0_XDTxAFE, 0xF0000000,
  2161. ((tx1_c & 0x3C0) >> 6));
  2162. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, 0x003F0000,
  2163. (tx1_c & 0x3F));
  2164. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(30),
  2165. ((val_y * oldval_1 >> 7) & 0x1));
  2166. if (txonly)
  2167. return;
  2168. reg = result[final_candidate][6];
  2169. rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, 0x3FF, reg);
  2170. reg = result[final_candidate][7] & 0x3F;
  2171. rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, 0xFC00, reg);
  2172. reg = (result[final_candidate][7] >> 6) & 0xF;
  2173. rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, 0x0000F000, reg);
  2174. }
  2175. }
  2176. void rtl92d_phy_iq_calibrate(struct ieee80211_hw *hw)
  2177. {
  2178. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2179. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2180. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2181. long result[4][8];
  2182. u8 i, final_candidate, indexforchannel;
  2183. bool patha_ok, pathb_ok;
  2184. long rege94, rege9c, regea4, regeac, regeb4;
  2185. long regebc, regec4, regecc, regtmp = 0;
  2186. bool is12simular, is13simular, is23simular;
  2187. unsigned long flag = 0;
  2188. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2189. "IQK:Start!!!channel %d\n", rtlphy->current_channel);
  2190. for (i = 0; i < 8; i++) {
  2191. result[0][i] = 0;
  2192. result[1][i] = 0;
  2193. result[2][i] = 0;
  2194. result[3][i] = 0;
  2195. }
  2196. final_candidate = 0xff;
  2197. patha_ok = false;
  2198. pathb_ok = false;
  2199. is12simular = false;
  2200. is23simular = false;
  2201. is13simular = false;
  2202. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2203. "IQK !!!currentband %d\n", rtlhal->current_bandtype);
  2204. rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag);
  2205. for (i = 0; i < 3; i++) {
  2206. if (rtlhal->current_bandtype == BAND_ON_5G) {
  2207. _rtl92d_phy_iq_calibrate_5g_normal(hw, result, i);
  2208. } else if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  2209. if (IS_92D_SINGLEPHY(rtlhal->version))
  2210. _rtl92d_phy_iq_calibrate(hw, result, i, true);
  2211. else
  2212. _rtl92d_phy_iq_calibrate(hw, result, i, false);
  2213. }
  2214. if (i == 1) {
  2215. is12simular = _rtl92d_phy_simularity_compare(hw, result,
  2216. 0, 1);
  2217. if (is12simular) {
  2218. final_candidate = 0;
  2219. break;
  2220. }
  2221. }
  2222. if (i == 2) {
  2223. is13simular = _rtl92d_phy_simularity_compare(hw, result,
  2224. 0, 2);
  2225. if (is13simular) {
  2226. final_candidate = 0;
  2227. break;
  2228. }
  2229. is23simular = _rtl92d_phy_simularity_compare(hw, result,
  2230. 1, 2);
  2231. if (is23simular) {
  2232. final_candidate = 1;
  2233. } else {
  2234. for (i = 0; i < 8; i++)
  2235. regtmp += result[3][i];
  2236. if (regtmp != 0)
  2237. final_candidate = 3;
  2238. else
  2239. final_candidate = 0xFF;
  2240. }
  2241. }
  2242. }
  2243. rtl92d_release_cckandrw_pagea_ctl(hw, &flag);
  2244. for (i = 0; i < 4; i++) {
  2245. rege94 = result[i][0];
  2246. rege9c = result[i][1];
  2247. regea4 = result[i][2];
  2248. regeac = result[i][3];
  2249. regeb4 = result[i][4];
  2250. regebc = result[i][5];
  2251. regec4 = result[i][6];
  2252. regecc = result[i][7];
  2253. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2254. "IQK: rege94=%lx rege9c=%lx regea4=%lx regeac=%lx regeb4=%lx regebc=%lx regec4=%lx regecc=%lx\n",
  2255. rege94, rege9c, regea4, regeac, regeb4, regebc, regec4,
  2256. regecc);
  2257. }
  2258. if (final_candidate != 0xff) {
  2259. rtlphy->reg_e94 = rege94 = result[final_candidate][0];
  2260. rtlphy->reg_e9c = rege9c = result[final_candidate][1];
  2261. regea4 = result[final_candidate][2];
  2262. regeac = result[final_candidate][3];
  2263. rtlphy->reg_eb4 = regeb4 = result[final_candidate][4];
  2264. rtlphy->reg_ebc = regebc = result[final_candidate][5];
  2265. regec4 = result[final_candidate][6];
  2266. regecc = result[final_candidate][7];
  2267. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2268. "IQK: final_candidate is %x\n", final_candidate);
  2269. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2270. "IQK: rege94=%lx rege9c=%lx regea4=%lx regeac=%lx regeb4=%lx regebc=%lx regec4=%lx regecc=%lx\n",
  2271. rege94, rege9c, regea4, regeac, regeb4, regebc, regec4,
  2272. regecc);
  2273. patha_ok = pathb_ok = true;
  2274. } else {
  2275. rtlphy->reg_e94 = rtlphy->reg_eb4 = 0x100; /* X default value */
  2276. rtlphy->reg_e9c = rtlphy->reg_ebc = 0x0; /* Y default value */
  2277. }
  2278. if ((rege94 != 0) /*&&(regea4 != 0) */)
  2279. _rtl92d_phy_patha_fill_iqk_matrix(hw, patha_ok, result,
  2280. final_candidate, (regea4 == 0));
  2281. if (IS_92D_SINGLEPHY(rtlhal->version)) {
  2282. if ((regeb4 != 0) /*&&(regec4 != 0) */)
  2283. _rtl92d_phy_pathb_fill_iqk_matrix(hw, pathb_ok, result,
  2284. final_candidate, (regec4 == 0));
  2285. }
  2286. if (final_candidate != 0xFF) {
  2287. indexforchannel = rtl92d_get_rightchnlplace_for_iqk(
  2288. rtlphy->current_channel);
  2289. for (i = 0; i < IQK_MATRIX_REG_NUM; i++)
  2290. rtlphy->iqk_matrix[indexforchannel].
  2291. value[0][i] = result[final_candidate][i];
  2292. rtlphy->iqk_matrix[indexforchannel].iqk_done =
  2293. true;
  2294. RT_TRACE(rtlpriv, COMP_SCAN | COMP_MLME, DBG_LOUD,
  2295. "IQK OK indexforchannel %d\n", indexforchannel);
  2296. }
  2297. }
  2298. void rtl92d_phy_reload_iqk_setting(struct ieee80211_hw *hw, u8 channel)
  2299. {
  2300. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2301. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2302. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2303. u8 indexforchannel;
  2304. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "channel %d\n", channel);
  2305. /*------Do IQK for normal chip and test chip 5G band------- */
  2306. indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
  2307. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "indexforchannel %d done %d\n",
  2308. indexforchannel,
  2309. rtlphy->iqk_matrix[indexforchannel].iqk_done);
  2310. if (0 && !rtlphy->iqk_matrix[indexforchannel].iqk_done &&
  2311. rtlphy->need_iqk) {
  2312. /* Re Do IQK. */
  2313. RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_LOUD,
  2314. "Do IQK Matrix reg for channel:%d....\n", channel);
  2315. rtl92d_phy_iq_calibrate(hw);
  2316. } else {
  2317. /* Just load the value. */
  2318. /* 2G band just load once. */
  2319. if (((!rtlhal->load_imrandiqk_setting_for2g) &&
  2320. indexforchannel == 0) || indexforchannel > 0) {
  2321. RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
  2322. "Just Read IQK Matrix reg for channel:%d....\n",
  2323. channel);
  2324. if ((rtlphy->iqk_matrix[indexforchannel].
  2325. value[0] != NULL)
  2326. /*&&(regea4 != 0) */)
  2327. _rtl92d_phy_patha_fill_iqk_matrix(hw, true,
  2328. rtlphy->iqk_matrix[
  2329. indexforchannel].value, 0,
  2330. (rtlphy->iqk_matrix[
  2331. indexforchannel].value[0][2] == 0));
  2332. if (IS_92D_SINGLEPHY(rtlhal->version)) {
  2333. if ((rtlphy->iqk_matrix[
  2334. indexforchannel].value[0][4] != 0)
  2335. /*&&(regec4 != 0) */)
  2336. _rtl92d_phy_pathb_fill_iqk_matrix(hw,
  2337. true,
  2338. rtlphy->iqk_matrix[
  2339. indexforchannel].value, 0,
  2340. (rtlphy->iqk_matrix[
  2341. indexforchannel].value[0][6]
  2342. == 0));
  2343. }
  2344. }
  2345. }
  2346. rtlphy->need_iqk = false;
  2347. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
  2348. }
  2349. static u32 _rtl92d_phy_get_abs(u32 val1, u32 val2)
  2350. {
  2351. u32 ret;
  2352. if (val1 >= val2)
  2353. ret = val1 - val2;
  2354. else
  2355. ret = val2 - val1;
  2356. return ret;
  2357. }
  2358. static bool _rtl92d_is_legal_5g_channel(struct ieee80211_hw *hw, u8 channel)
  2359. {
  2360. int i;
  2361. u8 channel_5g[45] = {
  2362. 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
  2363. 60, 62, 64, 100, 102, 104, 106, 108, 110, 112,
  2364. 114, 116, 118, 120, 122, 124, 126, 128, 130, 132,
  2365. 134, 136, 138, 140, 149, 151, 153, 155, 157, 159,
  2366. 161, 163, 165
  2367. };
  2368. for (i = 0; i < sizeof(channel_5g); i++)
  2369. if (channel == channel_5g[i])
  2370. return true;
  2371. return false;
  2372. }
  2373. static void _rtl92d_phy_calc_curvindex(struct ieee80211_hw *hw,
  2374. u32 *targetchnl, u32 * curvecount_val,
  2375. bool is5g, u32 *curveindex)
  2376. {
  2377. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2378. u32 smallest_abs_val = 0xffffffff, u4tmp;
  2379. u8 i, j;
  2380. u8 chnl_num = is5g ? TARGET_CHNL_NUM_5G : TARGET_CHNL_NUM_2G;
  2381. for (i = 0; i < chnl_num; i++) {
  2382. if (is5g && !_rtl92d_is_legal_5g_channel(hw, i + 1))
  2383. continue;
  2384. curveindex[i] = 0;
  2385. for (j = 0; j < (CV_CURVE_CNT * 2); j++) {
  2386. u4tmp = _rtl92d_phy_get_abs(targetchnl[i],
  2387. curvecount_val[j]);
  2388. if (u4tmp < smallest_abs_val) {
  2389. curveindex[i] = j;
  2390. smallest_abs_val = u4tmp;
  2391. }
  2392. }
  2393. smallest_abs_val = 0xffffffff;
  2394. RTPRINT(rtlpriv, FINIT, INIT_IQK, "curveindex[%d] = %x\n",
  2395. i, curveindex[i]);
  2396. }
  2397. }
  2398. static void _rtl92d_phy_reload_lck_setting(struct ieee80211_hw *hw,
  2399. u8 channel)
  2400. {
  2401. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2402. u8 erfpath = rtlpriv->rtlhal.current_bandtype ==
  2403. BAND_ON_5G ? RF90_PATH_A :
  2404. IS_92D_SINGLEPHY(rtlpriv->rtlhal.version) ?
  2405. RF90_PATH_B : RF90_PATH_A;
  2406. u32 u4tmp = 0, u4regvalue = 0;
  2407. bool bneed_powerdown_radio = false;
  2408. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "path %d\n", erfpath);
  2409. RTPRINT(rtlpriv, FINIT, INIT_IQK, "band type = %d\n",
  2410. rtlpriv->rtlhal.current_bandtype);
  2411. RTPRINT(rtlpriv, FINIT, INIT_IQK, "channel = %d\n", channel);
  2412. if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G) {/* Path-A for 5G */
  2413. u4tmp = curveindex_5g[channel-1];
  2414. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2415. "ver 1 set RF-A, 5G, 0x28 = 0x%ulx !!\n", u4tmp);
  2416. if (rtlpriv->rtlhal.macphymode == DUALMAC_DUALPHY &&
  2417. rtlpriv->rtlhal.interfaceindex == 1) {
  2418. bneed_powerdown_radio =
  2419. rtl92d_phy_enable_anotherphy(hw, false);
  2420. rtlpriv->rtlhal.during_mac1init_radioa = true;
  2421. /* asume no this case */
  2422. if (bneed_powerdown_radio)
  2423. _rtl92d_phy_enable_rf_env(hw, erfpath,
  2424. &u4regvalue);
  2425. }
  2426. rtl_set_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800, u4tmp);
  2427. if (bneed_powerdown_radio)
  2428. _rtl92d_phy_restore_rf_env(hw, erfpath, &u4regvalue);
  2429. if (rtlpriv->rtlhal.during_mac1init_radioa)
  2430. rtl92d_phy_powerdown_anotherphy(hw, false);
  2431. } else if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G) {
  2432. u4tmp = curveindex_2g[channel-1];
  2433. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2434. "ver 3 set RF-B, 2G, 0x28 = 0x%ulx !!\n", u4tmp);
  2435. if (rtlpriv->rtlhal.macphymode == DUALMAC_DUALPHY &&
  2436. rtlpriv->rtlhal.interfaceindex == 0) {
  2437. bneed_powerdown_radio =
  2438. rtl92d_phy_enable_anotherphy(hw, true);
  2439. rtlpriv->rtlhal.during_mac0init_radiob = true;
  2440. if (bneed_powerdown_radio)
  2441. _rtl92d_phy_enable_rf_env(hw, erfpath,
  2442. &u4regvalue);
  2443. }
  2444. rtl_set_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800, u4tmp);
  2445. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2446. "ver 3 set RF-B, 2G, 0x28 = 0x%ulx !!\n",
  2447. rtl_get_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800));
  2448. if (bneed_powerdown_radio)
  2449. _rtl92d_phy_restore_rf_env(hw, erfpath, &u4regvalue);
  2450. if (rtlpriv->rtlhal.during_mac0init_radiob)
  2451. rtl92d_phy_powerdown_anotherphy(hw, true);
  2452. }
  2453. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
  2454. }
  2455. static void _rtl92d_phy_lc_calibrate_sw(struct ieee80211_hw *hw, bool is2t)
  2456. {
  2457. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2458. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2459. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2460. u8 tmpreg, index, rf_mode[2];
  2461. u8 path = is2t ? 2 : 1;
  2462. u8 i;
  2463. u32 u4tmp, offset;
  2464. u32 curvecount_val[CV_CURVE_CNT * 2] = {0};
  2465. u16 timeout = 800, timecount = 0;
  2466. /* Check continuous TX and Packet TX */
  2467. tmpreg = rtl_read_byte(rtlpriv, 0xd03);
  2468. /* if Deal with contisuous TX case, disable all continuous TX */
  2469. /* if Deal with Packet TX case, block all queues */
  2470. if ((tmpreg & 0x70) != 0)
  2471. rtl_write_byte(rtlpriv, 0xd03, tmpreg & 0x8F);
  2472. else
  2473. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  2474. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xF00000, 0x0F);
  2475. for (index = 0; index < path; index++) {
  2476. /* 1. Read original RF mode */
  2477. offset = index == 0 ? ROFDM0_XAAGCCORE1 : ROFDM0_XBAGCCORE1;
  2478. rf_mode[index] = rtl_read_byte(rtlpriv, offset);
  2479. /* 2. Set RF mode = standby mode */
  2480. rtl_set_rfreg(hw, (enum radio_path)index, RF_AC,
  2481. BRFREGOFFSETMASK, 0x010000);
  2482. if (rtlpci->init_ready) {
  2483. /* switch CV-curve control by LC-calibration */
  2484. rtl_set_rfreg(hw, (enum radio_path)index, RF_SYN_G7,
  2485. BIT(17), 0x0);
  2486. /* 4. Set LC calibration begin */
  2487. rtl_set_rfreg(hw, (enum radio_path)index, RF_CHNLBW,
  2488. 0x08000, 0x01);
  2489. }
  2490. u4tmp = rtl_get_rfreg(hw, (enum radio_path)index, RF_SYN_G6,
  2491. BRFREGOFFSETMASK);
  2492. while ((!(u4tmp & BIT(11))) && timecount <= timeout) {
  2493. mdelay(50);
  2494. timecount += 50;
  2495. u4tmp = rtl_get_rfreg(hw, (enum radio_path)index,
  2496. RF_SYN_G6, BRFREGOFFSETMASK);
  2497. }
  2498. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2499. "PHY_LCK finish delay for %d ms=2\n", timecount);
  2500. u4tmp = rtl_get_rfreg(hw, index, RF_SYN_G4, BRFREGOFFSETMASK);
  2501. if (index == 0 && rtlhal->interfaceindex == 0) {
  2502. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2503. "path-A / 5G LCK\n");
  2504. } else {
  2505. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2506. "path-B / 2.4G LCK\n");
  2507. }
  2508. memset(&curvecount_val[0], 0, CV_CURVE_CNT * 2);
  2509. /* Set LC calibration off */
  2510. rtl_set_rfreg(hw, (enum radio_path)index, RF_CHNLBW,
  2511. 0x08000, 0x0);
  2512. RTPRINT(rtlpriv, FINIT, INIT_IQK, "set RF 0x18[15] = 0\n");
  2513. /* save Curve-counting number */
  2514. for (i = 0; i < CV_CURVE_CNT; i++) {
  2515. u32 readval = 0, readval2 = 0;
  2516. rtl_set_rfreg(hw, (enum radio_path)index, 0x3F,
  2517. 0x7f, i);
  2518. rtl_set_rfreg(hw, (enum radio_path)index, 0x4D,
  2519. BRFREGOFFSETMASK, 0x0);
  2520. readval = rtl_get_rfreg(hw, (enum radio_path)index,
  2521. 0x4F, BRFREGOFFSETMASK);
  2522. curvecount_val[2 * i + 1] = (readval & 0xfffe0) >> 5;
  2523. /* reg 0x4f [4:0] */
  2524. /* reg 0x50 [19:10] */
  2525. readval2 = rtl_get_rfreg(hw, (enum radio_path)index,
  2526. 0x50, 0xffc00);
  2527. curvecount_val[2 * i] = (((readval & 0x1F) << 10) |
  2528. readval2);
  2529. }
  2530. if (index == 0 && rtlhal->interfaceindex == 0)
  2531. _rtl92d_phy_calc_curvindex(hw, targetchnl_5g,
  2532. curvecount_val,
  2533. true, curveindex_5g);
  2534. else
  2535. _rtl92d_phy_calc_curvindex(hw, targetchnl_2g,
  2536. curvecount_val,
  2537. false, curveindex_2g);
  2538. /* switch CV-curve control mode */
  2539. rtl_set_rfreg(hw, (enum radio_path)index, RF_SYN_G7,
  2540. BIT(17), 0x1);
  2541. }
  2542. /* Restore original situation */
  2543. for (index = 0; index < path; index++) {
  2544. offset = index == 0 ? ROFDM0_XAAGCCORE1 : ROFDM0_XBAGCCORE1;
  2545. rtl_write_byte(rtlpriv, offset, 0x50);
  2546. rtl_write_byte(rtlpriv, offset, rf_mode[index]);
  2547. }
  2548. if ((tmpreg & 0x70) != 0)
  2549. rtl_write_byte(rtlpriv, 0xd03, tmpreg);
  2550. else /*Deal with Packet TX case */
  2551. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
  2552. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xF00000, 0x00);
  2553. _rtl92d_phy_reload_lck_setting(hw, rtlpriv->phy.current_channel);
  2554. }
  2555. static void _rtl92d_phy_lc_calibrate(struct ieee80211_hw *hw, bool is2t)
  2556. {
  2557. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2558. RTPRINT(rtlpriv, FINIT, INIT_IQK, "cosa PHY_LCK ver=2\n");
  2559. _rtl92d_phy_lc_calibrate_sw(hw, is2t);
  2560. }
  2561. void rtl92d_phy_lc_calibrate(struct ieee80211_hw *hw)
  2562. {
  2563. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2564. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2565. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2566. u32 timeout = 2000, timecount = 0;
  2567. while (rtlpriv->mac80211.act_scanning && timecount < timeout) {
  2568. udelay(50);
  2569. timecount += 50;
  2570. }
  2571. rtlphy->lck_inprogress = true;
  2572. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2573. "LCK:Start!!! currentband %x delay %d ms\n",
  2574. rtlhal->current_bandtype, timecount);
  2575. if (IS_92D_SINGLEPHY(rtlhal->version)) {
  2576. _rtl92d_phy_lc_calibrate(hw, true);
  2577. } else {
  2578. /* For 1T1R */
  2579. _rtl92d_phy_lc_calibrate(hw, false);
  2580. }
  2581. rtlphy->lck_inprogress = false;
  2582. RTPRINT(rtlpriv, FINIT, INIT_IQK, "LCK:Finish!!!\n");
  2583. }
  2584. void rtl92d_phy_ap_calibrate(struct ieee80211_hw *hw, char delta)
  2585. {
  2586. return;
  2587. }
  2588. static bool _rtl92d_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable,
  2589. u32 cmdtableidx, u32 cmdtablesz, enum swchnlcmd_id cmdid,
  2590. u32 para1, u32 para2, u32 msdelay)
  2591. {
  2592. struct swchnlcmd *pcmd;
  2593. if (cmdtable == NULL) {
  2594. RT_ASSERT(false, "cmdtable cannot be NULL\n");
  2595. return false;
  2596. }
  2597. if (cmdtableidx >= cmdtablesz)
  2598. return false;
  2599. pcmd = cmdtable + cmdtableidx;
  2600. pcmd->cmdid = cmdid;
  2601. pcmd->para1 = para1;
  2602. pcmd->para2 = para2;
  2603. pcmd->msdelay = msdelay;
  2604. return true;
  2605. }
  2606. void rtl92d_phy_reset_iqk_result(struct ieee80211_hw *hw)
  2607. {
  2608. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2609. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2610. u8 i;
  2611. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  2612. "settings regs %d default regs %d\n",
  2613. (int)(sizeof(rtlphy->iqk_matrix) /
  2614. sizeof(struct iqk_matrix_regs)),
  2615. IQK_MATRIX_REG_NUM);
  2616. /* 0xe94, 0xe9c, 0xea4, 0xeac, 0xeb4, 0xebc, 0xec4, 0xecc */
  2617. for (i = 0; i < IQK_MATRIX_SETTINGS_NUM; i++) {
  2618. rtlphy->iqk_matrix[i].value[0][0] = 0x100;
  2619. rtlphy->iqk_matrix[i].value[0][2] = 0x100;
  2620. rtlphy->iqk_matrix[i].value[0][4] = 0x100;
  2621. rtlphy->iqk_matrix[i].value[0][6] = 0x100;
  2622. rtlphy->iqk_matrix[i].value[0][1] = 0x0;
  2623. rtlphy->iqk_matrix[i].value[0][3] = 0x0;
  2624. rtlphy->iqk_matrix[i].value[0][5] = 0x0;
  2625. rtlphy->iqk_matrix[i].value[0][7] = 0x0;
  2626. rtlphy->iqk_matrix[i].iqk_done = false;
  2627. }
  2628. }
  2629. static bool _rtl92d_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw,
  2630. u8 channel, u8 *stage, u8 *step,
  2631. u32 *delay)
  2632. {
  2633. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2634. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2635. struct swchnlcmd precommoncmd[MAX_PRECMD_CNT];
  2636. u32 precommoncmdcnt;
  2637. struct swchnlcmd postcommoncmd[MAX_POSTCMD_CNT];
  2638. u32 postcommoncmdcnt;
  2639. struct swchnlcmd rfdependcmd[MAX_RFDEPENDCMD_CNT];
  2640. u32 rfdependcmdcnt;
  2641. struct swchnlcmd *currentcmd = NULL;
  2642. u8 rfpath;
  2643. u8 num_total_rfpath = rtlphy->num_total_rfpath;
  2644. precommoncmdcnt = 0;
  2645. _rtl92d_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
  2646. MAX_PRECMD_CNT,
  2647. CMDID_SET_TXPOWEROWER_LEVEL, 0, 0, 0);
  2648. _rtl92d_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
  2649. MAX_PRECMD_CNT, CMDID_END, 0, 0, 0);
  2650. postcommoncmdcnt = 0;
  2651. _rtl92d_phy_set_sw_chnl_cmdarray(postcommoncmd, postcommoncmdcnt++,
  2652. MAX_POSTCMD_CNT, CMDID_END, 0, 0, 0);
  2653. rfdependcmdcnt = 0;
  2654. _rtl92d_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
  2655. MAX_RFDEPENDCMD_CNT, CMDID_RF_WRITEREG,
  2656. RF_CHNLBW, channel, 0);
  2657. _rtl92d_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
  2658. MAX_RFDEPENDCMD_CNT, CMDID_END,
  2659. 0, 0, 0);
  2660. do {
  2661. switch (*stage) {
  2662. case 0:
  2663. currentcmd = &precommoncmd[*step];
  2664. break;
  2665. case 1:
  2666. currentcmd = &rfdependcmd[*step];
  2667. break;
  2668. case 2:
  2669. currentcmd = &postcommoncmd[*step];
  2670. break;
  2671. }
  2672. if (currentcmd->cmdid == CMDID_END) {
  2673. if ((*stage) == 2) {
  2674. return true;
  2675. } else {
  2676. (*stage)++;
  2677. (*step) = 0;
  2678. continue;
  2679. }
  2680. }
  2681. switch (currentcmd->cmdid) {
  2682. case CMDID_SET_TXPOWEROWER_LEVEL:
  2683. rtl92d_phy_set_txpower_level(hw, channel);
  2684. break;
  2685. case CMDID_WRITEPORT_ULONG:
  2686. rtl_write_dword(rtlpriv, currentcmd->para1,
  2687. currentcmd->para2);
  2688. break;
  2689. case CMDID_WRITEPORT_USHORT:
  2690. rtl_write_word(rtlpriv, currentcmd->para1,
  2691. (u16)currentcmd->para2);
  2692. break;
  2693. case CMDID_WRITEPORT_UCHAR:
  2694. rtl_write_byte(rtlpriv, currentcmd->para1,
  2695. (u8)currentcmd->para2);
  2696. break;
  2697. case CMDID_RF_WRITEREG:
  2698. for (rfpath = 0; rfpath < num_total_rfpath; rfpath++) {
  2699. rtlphy->rfreg_chnlval[rfpath] =
  2700. ((rtlphy->rfreg_chnlval[rfpath] &
  2701. 0xffffff00) | currentcmd->para2);
  2702. if (rtlpriv->rtlhal.current_bandtype ==
  2703. BAND_ON_5G) {
  2704. if (currentcmd->para2 > 99)
  2705. rtlphy->rfreg_chnlval[rfpath] =
  2706. rtlphy->rfreg_chnlval
  2707. [rfpath] | (BIT(18));
  2708. else
  2709. rtlphy->rfreg_chnlval[rfpath] =
  2710. rtlphy->rfreg_chnlval
  2711. [rfpath] & (~BIT(18));
  2712. rtlphy->rfreg_chnlval[rfpath] |=
  2713. (BIT(16) | BIT(8));
  2714. } else {
  2715. rtlphy->rfreg_chnlval[rfpath] &=
  2716. ~(BIT(8) | BIT(16) | BIT(18));
  2717. }
  2718. rtl_set_rfreg(hw, (enum radio_path)rfpath,
  2719. currentcmd->para1,
  2720. BRFREGOFFSETMASK,
  2721. rtlphy->rfreg_chnlval[rfpath]);
  2722. _rtl92d_phy_reload_imr_setting(hw, channel,
  2723. rfpath);
  2724. }
  2725. _rtl92d_phy_switch_rf_setting(hw, channel);
  2726. /* do IQK when all parameters are ready */
  2727. rtl92d_phy_reload_iqk_setting(hw, channel);
  2728. break;
  2729. default:
  2730. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2731. "switch case not processed\n");
  2732. break;
  2733. }
  2734. break;
  2735. } while (true);
  2736. (*delay) = currentcmd->msdelay;
  2737. (*step)++;
  2738. return false;
  2739. }
  2740. u8 rtl92d_phy_sw_chnl(struct ieee80211_hw *hw)
  2741. {
  2742. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2743. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2744. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  2745. u32 delay;
  2746. u32 timeout = 1000, timecount = 0;
  2747. u8 channel = rtlphy->current_channel;
  2748. u32 ret_value;
  2749. if (rtlphy->sw_chnl_inprogress)
  2750. return 0;
  2751. if (rtlphy->set_bwmode_inprogress)
  2752. return 0;
  2753. if ((is_hal_stop(rtlhal)) || (RT_CANNOT_IO(hw))) {
  2754. RT_TRACE(rtlpriv, COMP_CHAN, DBG_LOUD,
  2755. "sw_chnl_inprogress false driver sleep or unload\n");
  2756. return 0;
  2757. }
  2758. while (rtlphy->lck_inprogress && timecount < timeout) {
  2759. mdelay(50);
  2760. timecount += 50;
  2761. }
  2762. if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY &&
  2763. rtlhal->bandset == BAND_ON_BOTH) {
  2764. ret_value = rtl_get_bbreg(hw, RFPGA0_XAB_RFPARAMETER,
  2765. BMASKDWORD);
  2766. if (rtlphy->current_channel > 14 && !(ret_value & BIT(0)))
  2767. rtl92d_phy_switch_wirelessband(hw, BAND_ON_5G);
  2768. else if (rtlphy->current_channel <= 14 && (ret_value & BIT(0)))
  2769. rtl92d_phy_switch_wirelessband(hw, BAND_ON_2_4G);
  2770. }
  2771. switch (rtlhal->current_bandtype) {
  2772. case BAND_ON_5G:
  2773. /* Get first channel error when change between
  2774. * 5G and 2.4G band. */
  2775. if (channel <= 14)
  2776. return 0;
  2777. RT_ASSERT((channel > 14), "5G but channel<=14\n");
  2778. break;
  2779. case BAND_ON_2_4G:
  2780. /* Get first channel error when change between
  2781. * 5G and 2.4G band. */
  2782. if (channel > 14)
  2783. return 0;
  2784. RT_ASSERT((channel <= 14), "2G but channel>14\n");
  2785. break;
  2786. default:
  2787. RT_ASSERT(false, "Invalid WirelessMode(%#x)!!\n",
  2788. rtlpriv->mac80211.mode);
  2789. break;
  2790. }
  2791. rtlphy->sw_chnl_inprogress = true;
  2792. if (channel == 0)
  2793. channel = 1;
  2794. rtlphy->sw_chnl_stage = 0;
  2795. rtlphy->sw_chnl_step = 0;
  2796. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE,
  2797. "switch to channel%d\n", rtlphy->current_channel);
  2798. do {
  2799. if (!rtlphy->sw_chnl_inprogress)
  2800. break;
  2801. if (!_rtl92d_phy_sw_chnl_step_by_step(hw,
  2802. rtlphy->current_channel,
  2803. &rtlphy->sw_chnl_stage, &rtlphy->sw_chnl_step, &delay)) {
  2804. if (delay > 0)
  2805. mdelay(delay);
  2806. else
  2807. continue;
  2808. } else {
  2809. rtlphy->sw_chnl_inprogress = false;
  2810. }
  2811. break;
  2812. } while (true);
  2813. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n");
  2814. rtlphy->sw_chnl_inprogress = false;
  2815. return 1;
  2816. }
  2817. static void rtl92d_phy_set_io(struct ieee80211_hw *hw)
  2818. {
  2819. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2820. struct dig_t *de_digtable = &rtlpriv->dm_digtable;
  2821. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2822. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  2823. "--->Cmd(%#x), set_io_inprogress(%d)\n",
  2824. rtlphy->current_io_type, rtlphy->set_io_inprogress);
  2825. switch (rtlphy->current_io_type) {
  2826. case IO_CMD_RESUME_DM_BY_SCAN:
  2827. de_digtable->cur_igvalue = rtlphy->initgain_backup.xaagccore1;
  2828. rtl92d_dm_write_dig(hw);
  2829. rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);
  2830. break;
  2831. case IO_CMD_PAUSE_DM_BY_SCAN:
  2832. rtlphy->initgain_backup.xaagccore1 = de_digtable->cur_igvalue;
  2833. de_digtable->cur_igvalue = 0x37;
  2834. rtl92d_dm_write_dig(hw);
  2835. break;
  2836. default:
  2837. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2838. "switch case not processed\n");
  2839. break;
  2840. }
  2841. rtlphy->set_io_inprogress = false;
  2842. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "<---(%#x)\n",
  2843. rtlphy->current_io_type);
  2844. }
  2845. bool rtl92d_phy_set_io_cmd(struct ieee80211_hw *hw, enum io_type iotype)
  2846. {
  2847. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2848. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2849. bool postprocessing = false;
  2850. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  2851. "-->IO Cmd(%#x), set_io_inprogress(%d)\n",
  2852. iotype, rtlphy->set_io_inprogress);
  2853. do {
  2854. switch (iotype) {
  2855. case IO_CMD_RESUME_DM_BY_SCAN:
  2856. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  2857. "[IO CMD] Resume DM after scan\n");
  2858. postprocessing = true;
  2859. break;
  2860. case IO_CMD_PAUSE_DM_BY_SCAN:
  2861. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  2862. "[IO CMD] Pause DM before scan\n");
  2863. postprocessing = true;
  2864. break;
  2865. default:
  2866. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2867. "switch case not processed\n");
  2868. break;
  2869. }
  2870. } while (false);
  2871. if (postprocessing && !rtlphy->set_io_inprogress) {
  2872. rtlphy->set_io_inprogress = true;
  2873. rtlphy->current_io_type = iotype;
  2874. } else {
  2875. return false;
  2876. }
  2877. rtl92d_phy_set_io(hw);
  2878. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "<--IO Type(%#x)\n", iotype);
  2879. return true;
  2880. }
  2881. static void _rtl92d_phy_set_rfon(struct ieee80211_hw *hw)
  2882. {
  2883. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2884. /* a. SYS_CLKR 0x08[11] = 1 restore MAC clock */
  2885. /* b. SPS_CTRL 0x11[7:0] = 0x2b */
  2886. if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY)
  2887. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
  2888. /* c. For PCIE: SYS_FUNC_EN 0x02[7:0] = 0xE3 enable BB TRX function */
  2889. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
  2890. /* RF_ON_EXCEP(d~g): */
  2891. /* d. APSD_CTRL 0x600[7:0] = 0x00 */
  2892. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00);
  2893. /* e. SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB TRX function again */
  2894. /* f. SYS_FUNC_EN 0x02[7:0] = 0xE3 enable BB TRX function*/
  2895. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  2896. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
  2897. /* g. txpause 0x522[7:0] = 0x00 enable mac tx queue */
  2898. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
  2899. }
  2900. static void _rtl92d_phy_set_rfsleep(struct ieee80211_hw *hw)
  2901. {
  2902. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2903. u32 u4btmp;
  2904. u8 delay = 5;
  2905. /* a. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
  2906. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  2907. /* b. RF path 0 offset 0x00 = 0x00 disable RF */
  2908. rtl_set_rfreg(hw, RF90_PATH_A, 0x00, BRFREGOFFSETMASK, 0x00);
  2909. /* c. APSD_CTRL 0x600[7:0] = 0x40 */
  2910. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
  2911. /* d. APSD_CTRL 0x600[7:0] = 0x00
  2912. * APSD_CTRL 0x600[7:0] = 0x00
  2913. * RF path 0 offset 0x00 = 0x00
  2914. * APSD_CTRL 0x600[7:0] = 0x40
  2915. * */
  2916. u4btmp = rtl_get_rfreg(hw, RF90_PATH_A, 0, BRFREGOFFSETMASK);
  2917. while (u4btmp != 0 && delay > 0) {
  2918. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x0);
  2919. rtl_set_rfreg(hw, RF90_PATH_A, 0x00, BRFREGOFFSETMASK, 0x00);
  2920. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
  2921. u4btmp = rtl_get_rfreg(hw, RF90_PATH_A, 0, BRFREGOFFSETMASK);
  2922. delay--;
  2923. }
  2924. if (delay == 0) {
  2925. /* Jump out the LPS turn off sequence to RF_ON_EXCEP */
  2926. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00);
  2927. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  2928. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
  2929. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
  2930. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
  2931. "Fail !!! Switch RF timeout\n");
  2932. return;
  2933. }
  2934. /* e. For PCIE: SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB TRX function */
  2935. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  2936. /* f. SPS_CTRL 0x11[7:0] = 0x22 */
  2937. if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY)
  2938. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x22);
  2939. /* g. SYS_CLKR 0x08[11] = 0 gated MAC clock */
  2940. }
  2941. bool rtl92d_phy_set_rf_power_state(struct ieee80211_hw *hw,
  2942. enum rf_pwrstate rfpwr_state)
  2943. {
  2944. bool bresult = true;
  2945. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2946. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  2947. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2948. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  2949. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2950. u8 i, queue_id;
  2951. struct rtl8192_tx_ring *ring = NULL;
  2952. if (rfpwr_state == ppsc->rfpwr_state)
  2953. return false;
  2954. switch (rfpwr_state) {
  2955. case ERFON:
  2956. if ((ppsc->rfpwr_state == ERFOFF) &&
  2957. RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
  2958. bool rtstatus;
  2959. u32 InitializeCount = 0;
  2960. do {
  2961. InitializeCount++;
  2962. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  2963. "IPS Set eRf nic enable\n");
  2964. rtstatus = rtl_ps_enable_nic(hw);
  2965. } while (!rtstatus && (InitializeCount < 10));
  2966. RT_CLEAR_PS_LEVEL(ppsc,
  2967. RT_RF_OFF_LEVL_HALT_NIC);
  2968. } else {
  2969. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  2970. "awake, sleeped:%d ms state_inap:%x\n",
  2971. jiffies_to_msecs(jiffies -
  2972. ppsc->last_sleep_jiffies),
  2973. rtlpriv->psc.state_inap);
  2974. ppsc->last_awake_jiffies = jiffies;
  2975. _rtl92d_phy_set_rfon(hw);
  2976. }
  2977. if (mac->link_state == MAC80211_LINKED)
  2978. rtlpriv->cfg->ops->led_control(hw,
  2979. LED_CTL_LINK);
  2980. else
  2981. rtlpriv->cfg->ops->led_control(hw,
  2982. LED_CTL_NO_LINK);
  2983. break;
  2984. case ERFOFF:
  2985. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) {
  2986. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  2987. "IPS Set eRf nic disable\n");
  2988. rtl_ps_disable_nic(hw);
  2989. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  2990. } else {
  2991. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
  2992. rtlpriv->cfg->ops->led_control(hw,
  2993. LED_CTL_NO_LINK);
  2994. else
  2995. rtlpriv->cfg->ops->led_control(hw,
  2996. LED_CTL_POWER_OFF);
  2997. }
  2998. break;
  2999. case ERFSLEEP:
  3000. if (ppsc->rfpwr_state == ERFOFF)
  3001. return false;
  3002. for (queue_id = 0, i = 0;
  3003. queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
  3004. ring = &pcipriv->dev.tx_ring[queue_id];
  3005. if (skb_queue_len(&ring->queue) == 0 ||
  3006. queue_id == BEACON_QUEUE) {
  3007. queue_id++;
  3008. continue;
  3009. } else if (rtlpci->pdev->current_state != PCI_D0) {
  3010. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
  3011. "eRf Off/Sleep: %d times TcbBusyQueue[%d] !=0 but lower power state!\n",
  3012. i + 1, queue_id);
  3013. break;
  3014. } else {
  3015. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  3016. "eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
  3017. i + 1, queue_id,
  3018. skb_queue_len(&ring->queue));
  3019. udelay(10);
  3020. i++;
  3021. }
  3022. if (i >= MAX_DOZE_WAITING_TIMES_9x) {
  3023. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  3024. "ERFOFF: %d times TcbBusyQueue[%d] = %d !\n",
  3025. MAX_DOZE_WAITING_TIMES_9x, queue_id,
  3026. skb_queue_len(&ring->queue));
  3027. break;
  3028. }
  3029. }
  3030. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  3031. "Set rfsleep awaked:%d ms\n",
  3032. jiffies_to_msecs(jiffies - ppsc->last_awake_jiffies));
  3033. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  3034. "sleep awaked:%d ms state_inap:%x\n",
  3035. jiffies_to_msecs(jiffies -
  3036. ppsc->last_awake_jiffies),
  3037. rtlpriv->psc.state_inap);
  3038. ppsc->last_sleep_jiffies = jiffies;
  3039. _rtl92d_phy_set_rfsleep(hw);
  3040. break;
  3041. default:
  3042. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  3043. "switch case not processed\n");
  3044. bresult = false;
  3045. break;
  3046. }
  3047. if (bresult)
  3048. ppsc->rfpwr_state = rfpwr_state;
  3049. return bresult;
  3050. }
  3051. void rtl92d_phy_config_macphymode(struct ieee80211_hw *hw)
  3052. {
  3053. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3054. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  3055. u8 offset = REG_MAC_PHY_CTRL_NORMAL;
  3056. switch (rtlhal->macphymode) {
  3057. case DUALMAC_DUALPHY:
  3058. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  3059. "MacPhyMode: DUALMAC_DUALPHY\n");
  3060. rtl_write_byte(rtlpriv, offset, 0xF3);
  3061. break;
  3062. case SINGLEMAC_SINGLEPHY:
  3063. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  3064. "MacPhyMode: SINGLEMAC_SINGLEPHY\n");
  3065. rtl_write_byte(rtlpriv, offset, 0xF4);
  3066. break;
  3067. case DUALMAC_SINGLEPHY:
  3068. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  3069. "MacPhyMode: DUALMAC_SINGLEPHY\n");
  3070. rtl_write_byte(rtlpriv, offset, 0xF1);
  3071. break;
  3072. }
  3073. }
  3074. void rtl92d_phy_config_macphymode_info(struct ieee80211_hw *hw)
  3075. {
  3076. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3077. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  3078. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  3079. switch (rtlhal->macphymode) {
  3080. case DUALMAC_SINGLEPHY:
  3081. rtlphy->rf_type = RF_2T2R;
  3082. rtlhal->version |= RF_TYPE_2T2R;
  3083. rtlhal->bandset = BAND_ON_BOTH;
  3084. rtlhal->current_bandtype = BAND_ON_2_4G;
  3085. break;
  3086. case SINGLEMAC_SINGLEPHY:
  3087. rtlphy->rf_type = RF_2T2R;
  3088. rtlhal->version |= RF_TYPE_2T2R;
  3089. rtlhal->bandset = BAND_ON_BOTH;
  3090. rtlhal->current_bandtype = BAND_ON_2_4G;
  3091. break;
  3092. case DUALMAC_DUALPHY:
  3093. rtlphy->rf_type = RF_1T1R;
  3094. rtlhal->version &= RF_TYPE_1T1R;
  3095. /* Now we let MAC0 run on 5G band. */
  3096. if (rtlhal->interfaceindex == 0) {
  3097. rtlhal->bandset = BAND_ON_5G;
  3098. rtlhal->current_bandtype = BAND_ON_5G;
  3099. } else {
  3100. rtlhal->bandset = BAND_ON_2_4G;
  3101. rtlhal->current_bandtype = BAND_ON_2_4G;
  3102. }
  3103. break;
  3104. default:
  3105. break;
  3106. }
  3107. }
  3108. u8 rtl92d_get_chnlgroup_fromarray(u8 chnl)
  3109. {
  3110. u8 group;
  3111. u8 channel_info[59] = {
  3112. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  3113. 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56,
  3114. 58, 60, 62, 64, 100, 102, 104, 106, 108,
  3115. 110, 112, 114, 116, 118, 120, 122, 124,
  3116. 126, 128, 130, 132, 134, 136, 138, 140,
  3117. 149, 151, 153, 155, 157, 159, 161, 163,
  3118. 165
  3119. };
  3120. if (channel_info[chnl] <= 3)
  3121. group = 0;
  3122. else if (channel_info[chnl] <= 9)
  3123. group = 1;
  3124. else if (channel_info[chnl] <= 14)
  3125. group = 2;
  3126. else if (channel_info[chnl] <= 44)
  3127. group = 3;
  3128. else if (channel_info[chnl] <= 54)
  3129. group = 4;
  3130. else if (channel_info[chnl] <= 64)
  3131. group = 5;
  3132. else if (channel_info[chnl] <= 112)
  3133. group = 6;
  3134. else if (channel_info[chnl] <= 126)
  3135. group = 7;
  3136. else if (channel_info[chnl] <= 140)
  3137. group = 8;
  3138. else if (channel_info[chnl] <= 153)
  3139. group = 9;
  3140. else if (channel_info[chnl] <= 159)
  3141. group = 10;
  3142. else
  3143. group = 11;
  3144. return group;
  3145. }
  3146. void rtl92d_phy_set_poweron(struct ieee80211_hw *hw)
  3147. {
  3148. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3149. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  3150. unsigned long flags;
  3151. u8 value8;
  3152. u16 i;
  3153. u32 mac_reg = (rtlhal->interfaceindex == 0 ? REG_MAC0 : REG_MAC1);
  3154. /* notice fw know band status 0x81[1]/0x53[1] = 0: 5G, 1: 2G */
  3155. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  3156. value8 = rtl_read_byte(rtlpriv, mac_reg);
  3157. value8 |= BIT(1);
  3158. rtl_write_byte(rtlpriv, mac_reg, value8);
  3159. } else {
  3160. value8 = rtl_read_byte(rtlpriv, mac_reg);
  3161. value8 &= (~BIT(1));
  3162. rtl_write_byte(rtlpriv, mac_reg, value8);
  3163. }
  3164. if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY) {
  3165. value8 = rtl_read_byte(rtlpriv, REG_MAC0);
  3166. rtl_write_byte(rtlpriv, REG_MAC0, value8 | MAC0_ON);
  3167. } else {
  3168. spin_lock_irqsave(&globalmutex_power, flags);
  3169. if (rtlhal->interfaceindex == 0) {
  3170. value8 = rtl_read_byte(rtlpriv, REG_MAC0);
  3171. rtl_write_byte(rtlpriv, REG_MAC0, value8 | MAC0_ON);
  3172. } else {
  3173. value8 = rtl_read_byte(rtlpriv, REG_MAC1);
  3174. rtl_write_byte(rtlpriv, REG_MAC1, value8 | MAC1_ON);
  3175. }
  3176. value8 = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
  3177. spin_unlock_irqrestore(&globalmutex_power, flags);
  3178. for (i = 0; i < 200; i++) {
  3179. if ((value8 & BIT(7)) == 0) {
  3180. break;
  3181. } else {
  3182. udelay(500);
  3183. spin_lock_irqsave(&globalmutex_power, flags);
  3184. value8 = rtl_read_byte(rtlpriv,
  3185. REG_POWER_OFF_IN_PROCESS);
  3186. spin_unlock_irqrestore(&globalmutex_power,
  3187. flags);
  3188. }
  3189. }
  3190. if (i == 200)
  3191. RT_ASSERT(false, "Another mac power off over time\n");
  3192. }
  3193. }
  3194. void rtl92d_phy_config_maccoexist_rfpage(struct ieee80211_hw *hw)
  3195. {
  3196. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3197. switch (rtlpriv->rtlhal.macphymode) {
  3198. case DUALMAC_DUALPHY:
  3199. rtl_write_byte(rtlpriv, REG_DMC, 0x0);
  3200. rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x08);
  3201. rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x13ff);
  3202. break;
  3203. case DUALMAC_SINGLEPHY:
  3204. rtl_write_byte(rtlpriv, REG_DMC, 0xf8);
  3205. rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x08);
  3206. rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x13ff);
  3207. break;
  3208. case SINGLEMAC_SINGLEPHY:
  3209. rtl_write_byte(rtlpriv, REG_DMC, 0x0);
  3210. rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x10);
  3211. rtl_write_word(rtlpriv, (REG_TRXFF_BNDY + 2), 0x27FF);
  3212. break;
  3213. default:
  3214. break;
  3215. }
  3216. }
  3217. void rtl92d_update_bbrf_configuration(struct ieee80211_hw *hw)
  3218. {
  3219. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3220. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  3221. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  3222. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  3223. u8 rfpath, i;
  3224. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==>\n");
  3225. /* r_select_5G for path_A/B 0 for 2.4G, 1 for 5G */
  3226. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  3227. /* r_select_5G for path_A/B,0x878 */
  3228. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(0), 0x0);
  3229. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0x0);
  3230. if (rtlhal->macphymode != DUALMAC_DUALPHY) {
  3231. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(16), 0x0);
  3232. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(31), 0x0);
  3233. }
  3234. /* rssi_table_select:index 0 for 2.4G.1~3 for 5G,0xc78 */
  3235. rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, BIT(6) | BIT(7), 0x0);
  3236. /* fc_area 0xd2c */
  3237. rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(14) | BIT(13), 0x0);
  3238. /* 5G LAN ON */
  3239. rtl_set_bbreg(hw, 0xB30, 0x00F00000, 0xa);
  3240. /* TX BB gain shift*1,Just for testchip,0xc80,0xc88 */
  3241. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, BMASKDWORD,
  3242. 0x40000100);
  3243. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, BMASKDWORD,
  3244. 0x40000100);
  3245. if (rtlhal->macphymode == DUALMAC_DUALPHY) {
  3246. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
  3247. BIT(10) | BIT(6) | BIT(5),
  3248. ((rtlefuse->eeprom_c9 & BIT(3)) >> 3) |
  3249. (rtlefuse->eeprom_c9 & BIT(1)) |
  3250. ((rtlefuse->eeprom_cc & BIT(1)) << 4));
  3251. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
  3252. BIT(10) | BIT(6) | BIT(5),
  3253. ((rtlefuse->eeprom_c9 & BIT(2)) >> 2) |
  3254. ((rtlefuse->eeprom_c9 & BIT(0)) << 1) |
  3255. ((rtlefuse->eeprom_cc & BIT(0)) << 5));
  3256. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0);
  3257. } else {
  3258. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
  3259. BIT(26) | BIT(22) | BIT(21) | BIT(10) |
  3260. BIT(6) | BIT(5),
  3261. ((rtlefuse->eeprom_c9 & BIT(3)) >> 3) |
  3262. (rtlefuse->eeprom_c9 & BIT(1)) |
  3263. ((rtlefuse->eeprom_cc & BIT(1)) << 4) |
  3264. ((rtlefuse->eeprom_c9 & BIT(7)) << 9) |
  3265. ((rtlefuse->eeprom_c9 & BIT(5)) << 12) |
  3266. ((rtlefuse->eeprom_cc & BIT(3)) << 18));
  3267. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
  3268. BIT(10) | BIT(6) | BIT(5),
  3269. ((rtlefuse->eeprom_c9 & BIT(2)) >> 2) |
  3270. ((rtlefuse->eeprom_c9 & BIT(0)) << 1) |
  3271. ((rtlefuse->eeprom_cc & BIT(0)) << 5));
  3272. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
  3273. BIT(10) | BIT(6) | BIT(5),
  3274. ((rtlefuse->eeprom_c9 & BIT(6)) >> 6) |
  3275. ((rtlefuse->eeprom_c9 & BIT(4)) >> 3) |
  3276. ((rtlefuse->eeprom_cc & BIT(2)) << 3));
  3277. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER,
  3278. BIT(31) | BIT(15), 0);
  3279. }
  3280. /* 1.5V_LDO */
  3281. } else {
  3282. /* r_select_5G for path_A/B */
  3283. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(0), 0x1);
  3284. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0x1);
  3285. if (rtlhal->macphymode != DUALMAC_DUALPHY) {
  3286. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(16), 0x1);
  3287. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(31), 0x1);
  3288. }
  3289. /* rssi_table_select:index 0 for 2.4G.1~3 for 5G */
  3290. rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, BIT(6) | BIT(7), 0x1);
  3291. /* fc_area */
  3292. rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(14) | BIT(13), 0x1);
  3293. /* 5G LAN ON */
  3294. rtl_set_bbreg(hw, 0xB30, 0x00F00000, 0x0);
  3295. /* TX BB gain shift,Just for testchip,0xc80,0xc88 */
  3296. if (rtlefuse->internal_pa_5g[0])
  3297. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, BMASKDWORD,
  3298. 0x2d4000b5);
  3299. else
  3300. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, BMASKDWORD,
  3301. 0x20000080);
  3302. if (rtlefuse->internal_pa_5g[1])
  3303. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, BMASKDWORD,
  3304. 0x2d4000b5);
  3305. else
  3306. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, BMASKDWORD,
  3307. 0x20000080);
  3308. if (rtlhal->macphymode == DUALMAC_DUALPHY) {
  3309. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
  3310. BIT(10) | BIT(6) | BIT(5),
  3311. (rtlefuse->eeprom_cc & BIT(5)));
  3312. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(10),
  3313. ((rtlefuse->eeprom_cc & BIT(4)) >> 4));
  3314. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15),
  3315. (rtlefuse->eeprom_cc & BIT(4)) >> 4);
  3316. } else {
  3317. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
  3318. BIT(26) | BIT(22) | BIT(21) | BIT(10) |
  3319. BIT(6) | BIT(5),
  3320. (rtlefuse->eeprom_cc & BIT(5)) |
  3321. ((rtlefuse->eeprom_cc & BIT(7)) << 14));
  3322. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(10),
  3323. ((rtlefuse->eeprom_cc & BIT(4)) >> 4));
  3324. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BIT(10),
  3325. ((rtlefuse->eeprom_cc & BIT(6)) >> 6));
  3326. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER,
  3327. BIT(31) | BIT(15),
  3328. ((rtlefuse->eeprom_cc & BIT(4)) >> 4) |
  3329. ((rtlefuse->eeprom_cc & BIT(6)) << 10));
  3330. }
  3331. }
  3332. /* update IQK related settings */
  3333. rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, BMASKDWORD, 0x40000100);
  3334. rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, BMASKDWORD, 0x40000100);
  3335. rtl_set_bbreg(hw, ROFDM0_XCTxAFE, 0xF0000000, 0x00);
  3336. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(30) | BIT(28) |
  3337. BIT(26) | BIT(24), 0x00);
  3338. rtl_set_bbreg(hw, ROFDM0_XDTxAFE, 0xF0000000, 0x00);
  3339. rtl_set_bbreg(hw, 0xca0, 0xF0000000, 0x00);
  3340. rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, 0x0000F000, 0x00);
  3341. /* Update RF */
  3342. for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath;
  3343. rfpath++) {
  3344. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  3345. /* MOD_AG for RF paht_A 0x18 BIT8,BIT16 */
  3346. rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(8) | BIT(16) |
  3347. BIT(18), 0);
  3348. /* RF0x0b[16:14] =3b'111 */
  3349. rtl_set_rfreg(hw, (enum radio_path)rfpath, 0x0B,
  3350. 0x1c000, 0x07);
  3351. } else {
  3352. /* MOD_AG for RF paht_A 0x18 BIT8,BIT16 */
  3353. rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(8) |
  3354. BIT(16) | BIT(18),
  3355. (BIT(16) | BIT(8)) >> 8);
  3356. }
  3357. }
  3358. /* Update for all band. */
  3359. /* DMDP */
  3360. if (rtlphy->rf_type == RF_1T1R) {
  3361. /* Use antenna 0,0xc04,0xd04 */
  3362. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKBYTE0, 0x11);
  3363. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x1);
  3364. /* enable ad/da clock1 for dual-phy reg0x888 */
  3365. if (rtlhal->interfaceindex == 0) {
  3366. rtl_set_bbreg(hw, RFPGA0_ADDALLOCKEN, BIT(12) |
  3367. BIT(13), 0x3);
  3368. } else {
  3369. rtl92d_phy_enable_anotherphy(hw, false);
  3370. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  3371. "MAC1 use DBI to update 0x888\n");
  3372. /* 0x888 */
  3373. rtl92de_write_dword_dbi(hw, RFPGA0_ADDALLOCKEN,
  3374. rtl92de_read_dword_dbi(hw,
  3375. RFPGA0_ADDALLOCKEN,
  3376. BIT(3)) | BIT(12) | BIT(13),
  3377. BIT(3));
  3378. rtl92d_phy_powerdown_anotherphy(hw, false);
  3379. }
  3380. } else {
  3381. /* Single PHY */
  3382. /* Use antenna 0 & 1,0xc04,0xd04 */
  3383. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKBYTE0, 0x33);
  3384. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x3);
  3385. /* disable ad/da clock1,0x888 */
  3386. rtl_set_bbreg(hw, RFPGA0_ADDALLOCKEN, BIT(12) | BIT(13), 0);
  3387. }
  3388. for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath;
  3389. rfpath++) {
  3390. rtlphy->rfreg_chnlval[rfpath] = rtl_get_rfreg(hw, rfpath,
  3391. RF_CHNLBW, BRFREGOFFSETMASK);
  3392. rtlphy->reg_rf3c[rfpath] = rtl_get_rfreg(hw, rfpath, 0x3C,
  3393. BRFREGOFFSETMASK);
  3394. }
  3395. for (i = 0; i < 2; i++)
  3396. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "RF 0x18 = 0x%x\n",
  3397. rtlphy->rfreg_chnlval[i]);
  3398. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<==\n");
  3399. }
  3400. bool rtl92d_phy_check_poweroff(struct ieee80211_hw *hw)
  3401. {
  3402. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3403. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  3404. u8 u1btmp;
  3405. unsigned long flags;
  3406. if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY) {
  3407. u1btmp = rtl_read_byte(rtlpriv, REG_MAC0);
  3408. rtl_write_byte(rtlpriv, REG_MAC0, u1btmp & (~MAC0_ON));
  3409. return true;
  3410. }
  3411. spin_lock_irqsave(&globalmutex_power, flags);
  3412. if (rtlhal->interfaceindex == 0) {
  3413. u1btmp = rtl_read_byte(rtlpriv, REG_MAC0);
  3414. rtl_write_byte(rtlpriv, REG_MAC0, u1btmp & (~MAC0_ON));
  3415. u1btmp = rtl_read_byte(rtlpriv, REG_MAC1);
  3416. u1btmp &= MAC1_ON;
  3417. } else {
  3418. u1btmp = rtl_read_byte(rtlpriv, REG_MAC1);
  3419. rtl_write_byte(rtlpriv, REG_MAC1, u1btmp & (~MAC1_ON));
  3420. u1btmp = rtl_read_byte(rtlpriv, REG_MAC0);
  3421. u1btmp &= MAC0_ON;
  3422. }
  3423. if (u1btmp) {
  3424. spin_unlock_irqrestore(&globalmutex_power, flags);
  3425. return false;
  3426. }
  3427. u1btmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
  3428. u1btmp |= BIT(7);
  3429. rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1btmp);
  3430. spin_unlock_irqrestore(&globalmutex_power, flags);
  3431. return true;
  3432. }