sdio_chip.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983
  1. /*
  2. * Copyright (c) 2011 Broadcom Corporation
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  11. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  13. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  14. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. /* ***** SDIO interface chip backplane handle functions ***** */
  17. #include <linux/types.h>
  18. #include <linux/netdevice.h>
  19. #include <linux/mmc/card.h>
  20. #include <linux/mmc/sdio_func.h>
  21. #include <linux/ssb/ssb_regs.h>
  22. #include <linux/bcma/bcma.h>
  23. #include <chipcommon.h>
  24. #include <brcm_hw_ids.h>
  25. #include <brcmu_wifi.h>
  26. #include <brcmu_utils.h>
  27. #include <soc.h>
  28. #include "dhd_dbg.h"
  29. #include "sdio_host.h"
  30. #include "sdio_chip.h"
  31. /* chip core base & ramsize */
  32. /* bcm4329 */
  33. /* SDIO device core, ID 0x829 */
  34. #define BCM4329_CORE_BUS_BASE 0x18011000
  35. /* internal memory core, ID 0x80e */
  36. #define BCM4329_CORE_SOCRAM_BASE 0x18003000
  37. /* ARM Cortex M3 core, ID 0x82a */
  38. #define BCM4329_CORE_ARM_BASE 0x18002000
  39. #define BCM4329_RAMSIZE 0x48000
  40. /* bcm43143 */
  41. /* SDIO device core */
  42. #define BCM43143_CORE_BUS_BASE 0x18002000
  43. /* internal memory core */
  44. #define BCM43143_CORE_SOCRAM_BASE 0x18004000
  45. /* ARM Cortex M3 core, ID 0x82a */
  46. #define BCM43143_CORE_ARM_BASE 0x18003000
  47. #define BCM43143_RAMSIZE 0x70000
  48. #define SBCOREREV(sbidh) \
  49. ((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
  50. ((sbidh) & SSB_IDHIGH_RCLO))
  51. /* SOC Interconnect types (aka chip types) */
  52. #define SOCI_SB 0
  53. #define SOCI_AI 1
  54. /* EROM CompIdentB */
  55. #define CIB_REV_MASK 0xff000000
  56. #define CIB_REV_SHIFT 24
  57. /* ARM CR4 core specific control flag bits */
  58. #define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020
  59. #define SDIOD_DRVSTR_KEY(chip, pmu) (((chip) << 16) | (pmu))
  60. /* SDIO Pad drive strength to select value mappings */
  61. struct sdiod_drive_str {
  62. u8 strength; /* Pad Drive Strength in mA */
  63. u8 sel; /* Chip-specific select value */
  64. };
  65. /* SDIO Drive Strength to sel value table for PMU Rev 11 (1.8V) */
  66. static const struct sdiod_drive_str sdiod_drvstr_tab1_1v8[] = {
  67. {32, 0x6},
  68. {26, 0x7},
  69. {22, 0x4},
  70. {16, 0x5},
  71. {12, 0x2},
  72. {8, 0x3},
  73. {4, 0x0},
  74. {0, 0x1}
  75. };
  76. /* SDIO Drive Strength to sel value table for 43143 PMU Rev 17 (3.3V) */
  77. static const struct sdiod_drive_str sdiod_drvstr_tab2_3v3[] = {
  78. {16, 0x7},
  79. {12, 0x5},
  80. {8, 0x3},
  81. {4, 0x1}
  82. };
  83. u8
  84. brcmf_sdio_chip_getinfidx(struct chip_info *ci, u16 coreid)
  85. {
  86. u8 idx;
  87. for (idx = 0; idx < BRCMF_MAX_CORENUM; idx++)
  88. if (coreid == ci->c_inf[idx].id)
  89. return idx;
  90. return BRCMF_MAX_CORENUM;
  91. }
  92. static u32
  93. brcmf_sdio_sb_corerev(struct brcmf_sdio_dev *sdiodev,
  94. struct chip_info *ci, u16 coreid)
  95. {
  96. u32 regdata;
  97. u8 idx;
  98. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  99. regdata = brcmf_sdio_regrl(sdiodev,
  100. CORE_SB(ci->c_inf[idx].base, sbidhigh),
  101. NULL);
  102. return SBCOREREV(regdata);
  103. }
  104. static u32
  105. brcmf_sdio_ai_corerev(struct brcmf_sdio_dev *sdiodev,
  106. struct chip_info *ci, u16 coreid)
  107. {
  108. u8 idx;
  109. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  110. return (ci->c_inf[idx].cib & CIB_REV_MASK) >> CIB_REV_SHIFT;
  111. }
  112. static bool
  113. brcmf_sdio_sb_iscoreup(struct brcmf_sdio_dev *sdiodev,
  114. struct chip_info *ci, u16 coreid)
  115. {
  116. u32 regdata;
  117. u8 idx;
  118. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  119. if (idx == BRCMF_MAX_CORENUM)
  120. return false;
  121. regdata = brcmf_sdio_regrl(sdiodev,
  122. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  123. NULL);
  124. regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
  125. SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
  126. return (SSB_TMSLOW_CLOCK == regdata);
  127. }
  128. static bool
  129. brcmf_sdio_ai_iscoreup(struct brcmf_sdio_dev *sdiodev,
  130. struct chip_info *ci, u16 coreid)
  131. {
  132. u32 regdata;
  133. u8 idx;
  134. bool ret;
  135. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  136. if (idx == BRCMF_MAX_CORENUM)
  137. return false;
  138. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  139. NULL);
  140. ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;
  141. regdata = brcmf_sdio_regrl(sdiodev,
  142. ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  143. NULL);
  144. ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);
  145. return ret;
  146. }
  147. static void
  148. brcmf_sdio_sb_coredisable(struct brcmf_sdio_dev *sdiodev,
  149. struct chip_info *ci, u16 coreid, u32 core_bits)
  150. {
  151. u32 regdata, base;
  152. u8 idx;
  153. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  154. base = ci->c_inf[idx].base;
  155. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL);
  156. if (regdata & SSB_TMSLOW_RESET)
  157. return;
  158. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL);
  159. if ((regdata & SSB_TMSLOW_CLOCK) != 0) {
  160. /*
  161. * set target reject and spin until busy is clear
  162. * (preserve core-specific bits)
  163. */
  164. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow),
  165. NULL);
  166. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow),
  167. regdata | SSB_TMSLOW_REJECT, NULL);
  168. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow),
  169. NULL);
  170. udelay(1);
  171. SPINWAIT((brcmf_sdio_regrl(sdiodev,
  172. CORE_SB(base, sbtmstatehigh),
  173. NULL) &
  174. SSB_TMSHIGH_BUSY), 100000);
  175. regdata = brcmf_sdio_regrl(sdiodev,
  176. CORE_SB(base, sbtmstatehigh),
  177. NULL);
  178. if (regdata & SSB_TMSHIGH_BUSY)
  179. brcmf_err("core state still busy\n");
  180. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbidlow),
  181. NULL);
  182. if (regdata & SSB_IDLOW_INITIATOR) {
  183. regdata = brcmf_sdio_regrl(sdiodev,
  184. CORE_SB(base, sbimstate),
  185. NULL);
  186. regdata |= SSB_IMSTATE_REJECT;
  187. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbimstate),
  188. regdata, NULL);
  189. regdata = brcmf_sdio_regrl(sdiodev,
  190. CORE_SB(base, sbimstate),
  191. NULL);
  192. udelay(1);
  193. SPINWAIT((brcmf_sdio_regrl(sdiodev,
  194. CORE_SB(base, sbimstate),
  195. NULL) &
  196. SSB_IMSTATE_BUSY), 100000);
  197. }
  198. /* set reset and reject while enabling the clocks */
  199. regdata = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  200. SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
  201. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow),
  202. regdata, NULL);
  203. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow),
  204. NULL);
  205. udelay(10);
  206. /* clear the initiator reject bit */
  207. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbidlow),
  208. NULL);
  209. if (regdata & SSB_IDLOW_INITIATOR) {
  210. regdata = brcmf_sdio_regrl(sdiodev,
  211. CORE_SB(base, sbimstate),
  212. NULL);
  213. regdata &= ~SSB_IMSTATE_REJECT;
  214. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbimstate),
  215. regdata, NULL);
  216. }
  217. }
  218. /* leave reset and reject asserted */
  219. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow),
  220. (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET), NULL);
  221. udelay(1);
  222. }
  223. static void
  224. brcmf_sdio_ai_coredisable(struct brcmf_sdio_dev *sdiodev,
  225. struct chip_info *ci, u16 coreid, u32 core_bits)
  226. {
  227. u8 idx;
  228. u32 regdata;
  229. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  230. if (idx == BRCMF_MAX_CORENUM)
  231. return;
  232. /* if core is already in reset, just return */
  233. regdata = brcmf_sdio_regrl(sdiodev,
  234. ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  235. NULL);
  236. if ((regdata & BCMA_RESET_CTL_RESET) != 0)
  237. return;
  238. /* ensure no pending backplane operation
  239. * 300uc should be sufficient for backplane ops to be finish
  240. * extra 10ms is taken into account for firmware load stage
  241. * after 10300us carry on disabling the core anyway
  242. */
  243. SPINWAIT(brcmf_sdio_regrl(sdiodev,
  244. ci->c_inf[idx].wrapbase+BCMA_RESET_ST,
  245. NULL), 10300);
  246. regdata = brcmf_sdio_regrl(sdiodev,
  247. ci->c_inf[idx].wrapbase+BCMA_RESET_ST,
  248. NULL);
  249. if (regdata)
  250. brcmf_err("disabling core 0x%x with reset status %x\n",
  251. coreid, regdata);
  252. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  253. BCMA_RESET_CTL_RESET, NULL);
  254. udelay(1);
  255. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  256. core_bits, NULL);
  257. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  258. NULL);
  259. usleep_range(10, 20);
  260. }
  261. static void
  262. brcmf_sdio_sb_resetcore(struct brcmf_sdio_dev *sdiodev,
  263. struct chip_info *ci, u16 coreid, u32 core_bits)
  264. {
  265. u32 regdata;
  266. u8 idx;
  267. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  268. if (idx == BRCMF_MAX_CORENUM)
  269. return;
  270. /*
  271. * Must do the disable sequence first to work for
  272. * arbitrary current core state.
  273. */
  274. brcmf_sdio_sb_coredisable(sdiodev, ci, coreid, 0);
  275. /*
  276. * Now do the initialization sequence.
  277. * set reset while enabling the clock and
  278. * forcing them on throughout the core
  279. */
  280. brcmf_sdio_regwl(sdiodev,
  281. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  282. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET,
  283. NULL);
  284. regdata = brcmf_sdio_regrl(sdiodev,
  285. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  286. NULL);
  287. udelay(1);
  288. /* clear any serror */
  289. regdata = brcmf_sdio_regrl(sdiodev,
  290. CORE_SB(ci->c_inf[idx].base, sbtmstatehigh),
  291. NULL);
  292. if (regdata & SSB_TMSHIGH_SERR)
  293. brcmf_sdio_regwl(sdiodev,
  294. CORE_SB(ci->c_inf[idx].base, sbtmstatehigh),
  295. 0, NULL);
  296. regdata = brcmf_sdio_regrl(sdiodev,
  297. CORE_SB(ci->c_inf[idx].base, sbimstate),
  298. NULL);
  299. if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO))
  300. brcmf_sdio_regwl(sdiodev,
  301. CORE_SB(ci->c_inf[idx].base, sbimstate),
  302. regdata & ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO),
  303. NULL);
  304. /* clear reset and allow it to propagate throughout the core */
  305. brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  306. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK, NULL);
  307. regdata = brcmf_sdio_regrl(sdiodev,
  308. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  309. NULL);
  310. udelay(1);
  311. /* leave clock enabled */
  312. brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  313. SSB_TMSLOW_CLOCK, NULL);
  314. regdata = brcmf_sdio_regrl(sdiodev,
  315. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  316. NULL);
  317. udelay(1);
  318. }
  319. static void
  320. brcmf_sdio_ai_resetcore(struct brcmf_sdio_dev *sdiodev,
  321. struct chip_info *ci, u16 coreid, u32 core_bits)
  322. {
  323. u8 idx;
  324. u32 regdata;
  325. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  326. if (idx == BRCMF_MAX_CORENUM)
  327. return;
  328. /* must disable first to work for arbitrary current core state */
  329. brcmf_sdio_ai_coredisable(sdiodev, ci, coreid, core_bits);
  330. /* now do initialization sequence */
  331. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  332. core_bits | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK, NULL);
  333. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  334. NULL);
  335. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  336. 0, NULL);
  337. regdata = brcmf_sdio_regrl(sdiodev,
  338. ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  339. NULL);
  340. udelay(1);
  341. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  342. core_bits | BCMA_IOCTL_CLK, NULL);
  343. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  344. NULL);
  345. udelay(1);
  346. }
  347. #ifdef DEBUG
  348. /* safety check for chipinfo */
  349. static int brcmf_sdio_chip_cichk(struct chip_info *ci)
  350. {
  351. u8 core_idx;
  352. /* check RAM core presence for ARM CM3 core */
  353. core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CM3);
  354. if (BRCMF_MAX_CORENUM != core_idx) {
  355. core_idx = brcmf_sdio_chip_getinfidx(ci,
  356. BCMA_CORE_INTERNAL_MEM);
  357. if (BRCMF_MAX_CORENUM == core_idx) {
  358. brcmf_err("RAM core not provided with ARM CM3 core\n");
  359. return -ENODEV;
  360. }
  361. }
  362. /* check RAM base for ARM CR4 core */
  363. core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CR4);
  364. if (BRCMF_MAX_CORENUM != core_idx) {
  365. if (ci->rambase == 0) {
  366. brcmf_err("RAM base not provided with ARM CR4 core\n");
  367. return -ENOMEM;
  368. }
  369. }
  370. return 0;
  371. }
  372. #else /* DEBUG */
  373. static inline int brcmf_sdio_chip_cichk(struct chip_info *ci)
  374. {
  375. return 0;
  376. }
  377. #endif
  378. static int brcmf_sdio_chip_recognition(struct brcmf_sdio_dev *sdiodev,
  379. struct chip_info *ci, u32 regs)
  380. {
  381. u32 regdata;
  382. int ret;
  383. /* Get CC core rev
  384. * Chipid is assume to be at offset 0 from regs arg
  385. * For different chiptypes or old sdio hosts w/o chipcommon,
  386. * other ways of recognition should be added here.
  387. */
  388. ci->c_inf[0].id = BCMA_CORE_CHIPCOMMON;
  389. ci->c_inf[0].base = regs;
  390. regdata = brcmf_sdio_regrl(sdiodev,
  391. CORE_CC_REG(ci->c_inf[0].base, chipid),
  392. NULL);
  393. ci->chip = regdata & CID_ID_MASK;
  394. ci->chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
  395. if (sdiodev->func[0]->device == SDIO_DEVICE_ID_BROADCOM_4335_4339 &&
  396. ci->chiprev >= 2)
  397. ci->chip = BCM4339_CHIP_ID;
  398. ci->socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
  399. brcmf_dbg(INFO, "chipid=0x%x chiprev=%d\n", ci->chip, ci->chiprev);
  400. /* Address of cores for new chips should be added here */
  401. switch (ci->chip) {
  402. case BCM43143_CHIP_ID:
  403. ci->c_inf[0].wrapbase = ci->c_inf[0].base + 0x00100000;
  404. ci->c_inf[0].cib = 0x2b000000;
  405. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  406. ci->c_inf[1].base = BCM43143_CORE_BUS_BASE;
  407. ci->c_inf[1].wrapbase = ci->c_inf[1].base + 0x00100000;
  408. ci->c_inf[1].cib = 0x18000000;
  409. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  410. ci->c_inf[2].base = BCM43143_CORE_SOCRAM_BASE;
  411. ci->c_inf[2].wrapbase = ci->c_inf[2].base + 0x00100000;
  412. ci->c_inf[2].cib = 0x14000000;
  413. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  414. ci->c_inf[3].base = BCM43143_CORE_ARM_BASE;
  415. ci->c_inf[3].wrapbase = ci->c_inf[3].base + 0x00100000;
  416. ci->c_inf[3].cib = 0x07000000;
  417. ci->ramsize = BCM43143_RAMSIZE;
  418. break;
  419. case BCM43241_CHIP_ID:
  420. ci->c_inf[0].wrapbase = 0x18100000;
  421. ci->c_inf[0].cib = 0x2a084411;
  422. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  423. ci->c_inf[1].base = 0x18002000;
  424. ci->c_inf[1].wrapbase = 0x18102000;
  425. ci->c_inf[1].cib = 0x0e004211;
  426. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  427. ci->c_inf[2].base = 0x18004000;
  428. ci->c_inf[2].wrapbase = 0x18104000;
  429. ci->c_inf[2].cib = 0x14080401;
  430. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  431. ci->c_inf[3].base = 0x18003000;
  432. ci->c_inf[3].wrapbase = 0x18103000;
  433. ci->c_inf[3].cib = 0x07004211;
  434. ci->ramsize = 0x90000;
  435. break;
  436. case BCM4329_CHIP_ID:
  437. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  438. ci->c_inf[1].base = BCM4329_CORE_BUS_BASE;
  439. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  440. ci->c_inf[2].base = BCM4329_CORE_SOCRAM_BASE;
  441. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  442. ci->c_inf[3].base = BCM4329_CORE_ARM_BASE;
  443. ci->ramsize = BCM4329_RAMSIZE;
  444. break;
  445. case BCM4330_CHIP_ID:
  446. ci->c_inf[0].wrapbase = 0x18100000;
  447. ci->c_inf[0].cib = 0x27004211;
  448. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  449. ci->c_inf[1].base = 0x18002000;
  450. ci->c_inf[1].wrapbase = 0x18102000;
  451. ci->c_inf[1].cib = 0x07004211;
  452. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  453. ci->c_inf[2].base = 0x18004000;
  454. ci->c_inf[2].wrapbase = 0x18104000;
  455. ci->c_inf[2].cib = 0x0d080401;
  456. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  457. ci->c_inf[3].base = 0x18003000;
  458. ci->c_inf[3].wrapbase = 0x18103000;
  459. ci->c_inf[3].cib = 0x03004211;
  460. ci->ramsize = 0x48000;
  461. break;
  462. case BCM4334_CHIP_ID:
  463. ci->c_inf[0].wrapbase = 0x18100000;
  464. ci->c_inf[0].cib = 0x29004211;
  465. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  466. ci->c_inf[1].base = 0x18002000;
  467. ci->c_inf[1].wrapbase = 0x18102000;
  468. ci->c_inf[1].cib = 0x0d004211;
  469. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  470. ci->c_inf[2].base = 0x18004000;
  471. ci->c_inf[2].wrapbase = 0x18104000;
  472. ci->c_inf[2].cib = 0x13080401;
  473. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  474. ci->c_inf[3].base = 0x18003000;
  475. ci->c_inf[3].wrapbase = 0x18103000;
  476. ci->c_inf[3].cib = 0x07004211;
  477. ci->ramsize = 0x80000;
  478. break;
  479. case BCM4335_CHIP_ID:
  480. ci->c_inf[0].wrapbase = 0x18100000;
  481. ci->c_inf[0].cib = 0x2b084411;
  482. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  483. ci->c_inf[1].base = 0x18005000;
  484. ci->c_inf[1].wrapbase = 0x18105000;
  485. ci->c_inf[1].cib = 0x0f004211;
  486. ci->c_inf[2].id = BCMA_CORE_ARM_CR4;
  487. ci->c_inf[2].base = 0x18002000;
  488. ci->c_inf[2].wrapbase = 0x18102000;
  489. ci->c_inf[2].cib = 0x01084411;
  490. ci->ramsize = 0xc0000;
  491. ci->rambase = 0x180000;
  492. break;
  493. case BCM4339_CHIP_ID:
  494. ci->c_inf[0].wrapbase = 0x18100000;
  495. ci->c_inf[0].cib = 0x2e084411;
  496. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  497. ci->c_inf[1].base = 0x18005000;
  498. ci->c_inf[1].wrapbase = 0x18105000;
  499. ci->c_inf[1].cib = 0x15004211;
  500. ci->c_inf[2].id = BCMA_CORE_ARM_CR4;
  501. ci->c_inf[2].base = 0x18002000;
  502. ci->c_inf[2].wrapbase = 0x18102000;
  503. ci->c_inf[2].cib = 0x04084411;
  504. ci->ramsize = 0xc0000;
  505. ci->rambase = 0x180000;
  506. break;
  507. default:
  508. brcmf_err("chipid 0x%x is not supported\n", ci->chip);
  509. return -ENODEV;
  510. }
  511. ret = brcmf_sdio_chip_cichk(ci);
  512. if (ret)
  513. return ret;
  514. switch (ci->socitype) {
  515. case SOCI_SB:
  516. ci->iscoreup = brcmf_sdio_sb_iscoreup;
  517. ci->corerev = brcmf_sdio_sb_corerev;
  518. ci->coredisable = brcmf_sdio_sb_coredisable;
  519. ci->resetcore = brcmf_sdio_sb_resetcore;
  520. break;
  521. case SOCI_AI:
  522. ci->iscoreup = brcmf_sdio_ai_iscoreup;
  523. ci->corerev = brcmf_sdio_ai_corerev;
  524. ci->coredisable = brcmf_sdio_ai_coredisable;
  525. ci->resetcore = brcmf_sdio_ai_resetcore;
  526. break;
  527. default:
  528. brcmf_err("socitype %u not supported\n", ci->socitype);
  529. return -ENODEV;
  530. }
  531. return 0;
  532. }
  533. static int
  534. brcmf_sdio_chip_buscoreprep(struct brcmf_sdio_dev *sdiodev)
  535. {
  536. int err = 0;
  537. u8 clkval, clkset;
  538. /* Try forcing SDIO core to do ALPAvail request only */
  539. clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ;
  540. brcmf_sdio_regwb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err);
  541. if (err) {
  542. brcmf_err("error writing for HT off\n");
  543. return err;
  544. }
  545. /* If register supported, wait for ALPAvail and then force ALP */
  546. /* This may take up to 15 milliseconds */
  547. clkval = brcmf_sdio_regrb(sdiodev,
  548. SBSDIO_FUNC1_CHIPCLKCSR, NULL);
  549. if ((clkval & ~SBSDIO_AVBITS) != clkset) {
  550. brcmf_err("ChipClkCSR access: wrote 0x%02x read 0x%02x\n",
  551. clkset, clkval);
  552. return -EACCES;
  553. }
  554. SPINWAIT(((clkval = brcmf_sdio_regrb(sdiodev,
  555. SBSDIO_FUNC1_CHIPCLKCSR, NULL)),
  556. !SBSDIO_ALPAV(clkval)),
  557. PMU_MAX_TRANSITION_DLY);
  558. if (!SBSDIO_ALPAV(clkval)) {
  559. brcmf_err("timeout on ALPAV wait, clkval 0x%02x\n",
  560. clkval);
  561. return -EBUSY;
  562. }
  563. clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_FORCE_ALP;
  564. brcmf_sdio_regwb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err);
  565. udelay(65);
  566. /* Also, disable the extra SDIO pull-ups */
  567. brcmf_sdio_regwb(sdiodev, SBSDIO_FUNC1_SDIOPULLUP, 0, NULL);
  568. return 0;
  569. }
  570. static void
  571. brcmf_sdio_chip_buscoresetup(struct brcmf_sdio_dev *sdiodev,
  572. struct chip_info *ci)
  573. {
  574. u32 base = ci->c_inf[0].base;
  575. /* get chipcommon rev */
  576. ci->c_inf[0].rev = ci->corerev(sdiodev, ci, ci->c_inf[0].id);
  577. /* get chipcommon capabilites */
  578. ci->c_inf[0].caps = brcmf_sdio_regrl(sdiodev,
  579. CORE_CC_REG(base, capabilities),
  580. NULL);
  581. /* get pmu caps & rev */
  582. if (ci->c_inf[0].caps & CC_CAP_PMU) {
  583. ci->pmucaps =
  584. brcmf_sdio_regrl(sdiodev,
  585. CORE_CC_REG(base, pmucapabilities),
  586. NULL);
  587. ci->pmurev = ci->pmucaps & PCAP_REV_MASK;
  588. }
  589. ci->c_inf[1].rev = ci->corerev(sdiodev, ci, ci->c_inf[1].id);
  590. brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, buscore rev/type=%d/0x%x\n",
  591. ci->c_inf[0].rev, ci->pmurev,
  592. ci->c_inf[1].rev, ci->c_inf[1].id);
  593. /*
  594. * Make sure any on-chip ARM is off (in case strapping is wrong),
  595. * or downloaded code was already running.
  596. */
  597. ci->coredisable(sdiodev, ci, BCMA_CORE_ARM_CM3, 0);
  598. }
  599. int brcmf_sdio_chip_attach(struct brcmf_sdio_dev *sdiodev,
  600. struct chip_info **ci_ptr, u32 regs)
  601. {
  602. int ret;
  603. struct chip_info *ci;
  604. brcmf_dbg(TRACE, "Enter\n");
  605. /* alloc chip_info_t */
  606. ci = kzalloc(sizeof(struct chip_info), GFP_ATOMIC);
  607. if (!ci)
  608. return -ENOMEM;
  609. ret = brcmf_sdio_chip_buscoreprep(sdiodev);
  610. if (ret != 0)
  611. goto err;
  612. ret = brcmf_sdio_chip_recognition(sdiodev, ci, regs);
  613. if (ret != 0)
  614. goto err;
  615. brcmf_sdio_chip_buscoresetup(sdiodev, ci);
  616. brcmf_sdio_regwl(sdiodev, CORE_CC_REG(ci->c_inf[0].base, gpiopullup),
  617. 0, NULL);
  618. brcmf_sdio_regwl(sdiodev, CORE_CC_REG(ci->c_inf[0].base, gpiopulldown),
  619. 0, NULL);
  620. *ci_ptr = ci;
  621. return 0;
  622. err:
  623. kfree(ci);
  624. return ret;
  625. }
  626. void
  627. brcmf_sdio_chip_detach(struct chip_info **ci_ptr)
  628. {
  629. brcmf_dbg(TRACE, "Enter\n");
  630. kfree(*ci_ptr);
  631. *ci_ptr = NULL;
  632. }
  633. static char *brcmf_sdio_chip_name(uint chipid, char *buf, uint len)
  634. {
  635. const char *fmt;
  636. fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x";
  637. snprintf(buf, len, fmt, chipid);
  638. return buf;
  639. }
  640. void
  641. brcmf_sdio_chip_drivestrengthinit(struct brcmf_sdio_dev *sdiodev,
  642. struct chip_info *ci, u32 drivestrength)
  643. {
  644. const struct sdiod_drive_str *str_tab = NULL;
  645. u32 str_mask;
  646. u32 str_shift;
  647. char chn[8];
  648. u32 base = ci->c_inf[0].base;
  649. u32 i;
  650. u32 drivestrength_sel = 0;
  651. u32 cc_data_temp;
  652. u32 addr;
  653. if (!(ci->c_inf[0].caps & CC_CAP_PMU))
  654. return;
  655. switch (SDIOD_DRVSTR_KEY(ci->chip, ci->pmurev)) {
  656. case SDIOD_DRVSTR_KEY(BCM4330_CHIP_ID, 12):
  657. str_tab = sdiod_drvstr_tab1_1v8;
  658. str_mask = 0x00003800;
  659. str_shift = 11;
  660. break;
  661. case SDIOD_DRVSTR_KEY(BCM43143_CHIP_ID, 17):
  662. /* note: 43143 does not support tristate */
  663. i = ARRAY_SIZE(sdiod_drvstr_tab2_3v3) - 1;
  664. if (drivestrength >= sdiod_drvstr_tab2_3v3[i].strength) {
  665. str_tab = sdiod_drvstr_tab2_3v3;
  666. str_mask = 0x00000007;
  667. str_shift = 0;
  668. } else
  669. brcmf_err("Invalid SDIO Drive strength for chip %s, strength=%d\n",
  670. brcmf_sdio_chip_name(ci->chip, chn, 8),
  671. drivestrength);
  672. break;
  673. default:
  674. brcmf_err("No SDIO Drive strength init done for chip %s rev %d pmurev %d\n",
  675. brcmf_sdio_chip_name(ci->chip, chn, 8),
  676. ci->chiprev, ci->pmurev);
  677. break;
  678. }
  679. if (str_tab != NULL) {
  680. for (i = 0; str_tab[i].strength != 0; i++) {
  681. if (drivestrength >= str_tab[i].strength) {
  682. drivestrength_sel = str_tab[i].sel;
  683. break;
  684. }
  685. }
  686. addr = CORE_CC_REG(base, chipcontrol_addr);
  687. brcmf_sdio_regwl(sdiodev, addr, 1, NULL);
  688. cc_data_temp = brcmf_sdio_regrl(sdiodev, addr, NULL);
  689. cc_data_temp &= ~str_mask;
  690. drivestrength_sel <<= str_shift;
  691. cc_data_temp |= drivestrength_sel;
  692. brcmf_sdio_regwl(sdiodev, addr, cc_data_temp, NULL);
  693. brcmf_dbg(INFO, "SDIO: %d mA (req=%d mA) drive strength selected, set to 0x%08x\n",
  694. str_tab[i].strength, drivestrength, cc_data_temp);
  695. }
  696. }
  697. #ifdef DEBUG
  698. static bool
  699. brcmf_sdio_chip_verifynvram(struct brcmf_sdio_dev *sdiodev, u32 nvram_addr,
  700. char *nvram_dat, uint nvram_sz)
  701. {
  702. char *nvram_ularray;
  703. int err;
  704. bool ret = true;
  705. /* read back and verify */
  706. brcmf_dbg(INFO, "Compare NVRAM dl & ul; size=%d\n", nvram_sz);
  707. nvram_ularray = kmalloc(nvram_sz, GFP_KERNEL);
  708. /* do not proceed while no memory but */
  709. if (!nvram_ularray)
  710. return true;
  711. /* Upload image to verify downloaded contents. */
  712. memset(nvram_ularray, 0xaa, nvram_sz);
  713. /* Read the vars list to temp buffer for comparison */
  714. err = brcmf_sdio_ramrw(sdiodev, false, nvram_addr, nvram_ularray,
  715. nvram_sz);
  716. if (err) {
  717. brcmf_err("error %d on reading %d nvram bytes at 0x%08x\n",
  718. err, nvram_sz, nvram_addr);
  719. } else if (memcmp(nvram_dat, nvram_ularray, nvram_sz)) {
  720. brcmf_err("Downloaded NVRAM image is corrupted\n");
  721. ret = false;
  722. }
  723. kfree(nvram_ularray);
  724. return ret;
  725. }
  726. #else /* DEBUG */
  727. static inline bool
  728. brcmf_sdio_chip_verifynvram(struct brcmf_sdio_dev *sdiodev, u32 nvram_addr,
  729. char *nvram_dat, uint nvram_sz)
  730. {
  731. return true;
  732. }
  733. #endif /* DEBUG */
  734. static bool brcmf_sdio_chip_writenvram(struct brcmf_sdio_dev *sdiodev,
  735. struct chip_info *ci,
  736. char *nvram_dat, uint nvram_sz)
  737. {
  738. int err;
  739. u32 nvram_addr;
  740. u32 token;
  741. __le32 token_le;
  742. nvram_addr = (ci->ramsize - 4) - nvram_sz + ci->rambase;
  743. /* Write the vars list */
  744. err = brcmf_sdio_ramrw(sdiodev, true, nvram_addr, nvram_dat, nvram_sz);
  745. if (err) {
  746. brcmf_err("error %d on writing %d nvram bytes at 0x%08x\n",
  747. err, nvram_sz, nvram_addr);
  748. return false;
  749. }
  750. if (!brcmf_sdio_chip_verifynvram(sdiodev, nvram_addr,
  751. nvram_dat, nvram_sz))
  752. return false;
  753. /* generate token:
  754. * nvram size, converted to words, in lower 16-bits, checksum
  755. * in upper 16-bits.
  756. */
  757. token = nvram_sz / 4;
  758. token = (~token << 16) | (token & 0x0000FFFF);
  759. token_le = cpu_to_le32(token);
  760. brcmf_dbg(INFO, "RAM size: %d\n", ci->ramsize);
  761. brcmf_dbg(INFO, "nvram is placed at %d, size %d, token=0x%08x\n",
  762. nvram_addr, nvram_sz, token);
  763. /* Write the length token to the last word */
  764. if (brcmf_sdio_ramrw(sdiodev, true, (ci->ramsize - 4 + ci->rambase),
  765. (u8 *)&token_le, 4))
  766. return false;
  767. return true;
  768. }
  769. static void
  770. brcmf_sdio_chip_cm3_enterdl(struct brcmf_sdio_dev *sdiodev,
  771. struct chip_info *ci)
  772. {
  773. u32 zeros = 0;
  774. ci->coredisable(sdiodev, ci, BCMA_CORE_ARM_CM3, 0);
  775. ci->resetcore(sdiodev, ci, BCMA_CORE_INTERNAL_MEM, 0);
  776. /* clear length token */
  777. brcmf_sdio_ramrw(sdiodev, true, ci->ramsize - 4, (u8 *)&zeros, 4);
  778. }
  779. static bool
  780. brcmf_sdio_chip_cm3_exitdl(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci,
  781. char *nvram_dat, uint nvram_sz)
  782. {
  783. u8 core_idx;
  784. u32 reg_addr;
  785. if (!ci->iscoreup(sdiodev, ci, BCMA_CORE_INTERNAL_MEM)) {
  786. brcmf_err("SOCRAM core is down after reset?\n");
  787. return false;
  788. }
  789. if (!brcmf_sdio_chip_writenvram(sdiodev, ci, nvram_dat, nvram_sz))
  790. return false;
  791. /* clear all interrupts */
  792. core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_SDIO_DEV);
  793. reg_addr = ci->c_inf[core_idx].base;
  794. reg_addr += offsetof(struct sdpcmd_regs, intstatus);
  795. brcmf_sdio_regwl(sdiodev, reg_addr, 0xFFFFFFFF, NULL);
  796. ci->resetcore(sdiodev, ci, BCMA_CORE_ARM_CM3, 0);
  797. return true;
  798. }
  799. static inline void
  800. brcmf_sdio_chip_cr4_enterdl(struct brcmf_sdio_dev *sdiodev,
  801. struct chip_info *ci)
  802. {
  803. ci->resetcore(sdiodev, ci, BCMA_CORE_ARM_CR4,
  804. ARMCR4_BCMA_IOCTL_CPUHALT);
  805. }
  806. static bool
  807. brcmf_sdio_chip_cr4_exitdl(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci,
  808. char *nvram_dat, uint nvram_sz)
  809. {
  810. u8 core_idx;
  811. u32 reg_addr;
  812. if (!brcmf_sdio_chip_writenvram(sdiodev, ci, nvram_dat, nvram_sz))
  813. return false;
  814. /* clear all interrupts */
  815. core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_SDIO_DEV);
  816. reg_addr = ci->c_inf[core_idx].base;
  817. reg_addr += offsetof(struct sdpcmd_regs, intstatus);
  818. brcmf_sdio_regwl(sdiodev, reg_addr, 0xFFFFFFFF, NULL);
  819. /* Write reset vector to address 0 */
  820. brcmf_sdio_ramrw(sdiodev, true, 0, (void *)&ci->rst_vec,
  821. sizeof(ci->rst_vec));
  822. /* restore ARM */
  823. ci->resetcore(sdiodev, ci, BCMA_CORE_ARM_CR4, 0);
  824. return true;
  825. }
  826. void brcmf_sdio_chip_enter_download(struct brcmf_sdio_dev *sdiodev,
  827. struct chip_info *ci)
  828. {
  829. u8 arm_core_idx;
  830. arm_core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CM3);
  831. if (BRCMF_MAX_CORENUM != arm_core_idx) {
  832. brcmf_sdio_chip_cm3_enterdl(sdiodev, ci);
  833. return;
  834. }
  835. brcmf_sdio_chip_cr4_enterdl(sdiodev, ci);
  836. }
  837. bool brcmf_sdio_chip_exit_download(struct brcmf_sdio_dev *sdiodev,
  838. struct chip_info *ci, char *nvram_dat,
  839. uint nvram_sz)
  840. {
  841. u8 arm_core_idx;
  842. arm_core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CM3);
  843. if (BRCMF_MAX_CORENUM != arm_core_idx)
  844. return brcmf_sdio_chip_cm3_exitdl(sdiodev, ci, nvram_dat,
  845. nvram_sz);
  846. return brcmf_sdio_chip_cr4_exitdl(sdiodev, ci, nvram_dat, nvram_sz);
  847. }