xmit.c 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define TIME_SYMBOLS(t) ((t) >> 2)
  31. #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
  32. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  33. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  34. static u16 bits_per_symbol[][2] = {
  35. /* 20MHz 40MHz */
  36. { 26, 54 }, /* 0: BPSK */
  37. { 52, 108 }, /* 1: QPSK 1/2 */
  38. { 78, 162 }, /* 2: QPSK 3/4 */
  39. { 104, 216 }, /* 3: 16-QAM 1/2 */
  40. { 156, 324 }, /* 4: 16-QAM 3/4 */
  41. { 208, 432 }, /* 5: 64-QAM 2/3 */
  42. { 234, 486 }, /* 6: 64-QAM 3/4 */
  43. { 260, 540 }, /* 7: 64-QAM 5/6 */
  44. };
  45. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  46. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  47. struct ath_atx_tid *tid, struct sk_buff *skb);
  48. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  49. int tx_flags, struct ath_txq *txq);
  50. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  51. struct ath_txq *txq, struct list_head *bf_q,
  52. struct ath_tx_status *ts, int txok);
  53. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  54. struct list_head *head, bool internal);
  55. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  56. struct ath_tx_status *ts, int nframes, int nbad,
  57. int txok);
  58. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  59. int seqno);
  60. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  61. struct ath_txq *txq,
  62. struct ath_atx_tid *tid,
  63. struct sk_buff *skb);
  64. enum {
  65. MCS_HT20,
  66. MCS_HT20_SGI,
  67. MCS_HT40,
  68. MCS_HT40_SGI,
  69. };
  70. /*********************/
  71. /* Aggregation logic */
  72. /*********************/
  73. void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  74. __acquires(&txq->axq_lock)
  75. {
  76. spin_lock_bh(&txq->axq_lock);
  77. }
  78. void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  79. __releases(&txq->axq_lock)
  80. {
  81. spin_unlock_bh(&txq->axq_lock);
  82. }
  83. void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  84. __releases(&txq->axq_lock)
  85. {
  86. struct sk_buff_head q;
  87. struct sk_buff *skb;
  88. __skb_queue_head_init(&q);
  89. skb_queue_splice_init(&txq->complete_q, &q);
  90. spin_unlock_bh(&txq->axq_lock);
  91. while ((skb = __skb_dequeue(&q)))
  92. ieee80211_tx_status(sc->hw, skb);
  93. }
  94. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  95. {
  96. struct ath_atx_ac *ac = tid->ac;
  97. if (tid->paused)
  98. return;
  99. if (tid->sched)
  100. return;
  101. tid->sched = true;
  102. list_add_tail(&tid->list, &ac->tid_q);
  103. if (ac->sched)
  104. return;
  105. ac->sched = true;
  106. list_add_tail(&ac->list, &txq->axq_acq);
  107. }
  108. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  109. {
  110. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  111. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  112. sizeof(tx_info->rate_driver_data));
  113. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  114. }
  115. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  116. {
  117. if (!tid->an->sta)
  118. return;
  119. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  120. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  121. }
  122. static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
  123. struct ath_buf *bf)
  124. {
  125. ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
  126. ARRAY_SIZE(bf->rates));
  127. }
  128. static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
  129. struct sk_buff *skb)
  130. {
  131. int q;
  132. q = skb_get_queue_mapping(skb);
  133. if (txq == sc->tx.uapsdq)
  134. txq = sc->tx.txq_map[q];
  135. if (txq != sc->tx.txq_map[q])
  136. return;
  137. if (WARN_ON(--txq->pending_frames < 0))
  138. txq->pending_frames = 0;
  139. if (txq->stopped &&
  140. txq->pending_frames < sc->tx.txq_max_pending[q]) {
  141. ieee80211_wake_queue(sc->hw, q);
  142. txq->stopped = false;
  143. }
  144. }
  145. static struct ath_atx_tid *
  146. ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
  147. {
  148. struct ieee80211_hdr *hdr;
  149. u8 tidno = 0;
  150. hdr = (struct ieee80211_hdr *) skb->data;
  151. if (ieee80211_is_data_qos(hdr->frame_control))
  152. tidno = ieee80211_get_qos_ctl(hdr)[0];
  153. tidno &= IEEE80211_QOS_CTL_TID_MASK;
  154. return ATH_AN_2_TID(an, tidno);
  155. }
  156. static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
  157. {
  158. return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
  159. }
  160. static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
  161. {
  162. struct sk_buff *skb;
  163. skb = __skb_dequeue(&tid->retry_q);
  164. if (!skb)
  165. skb = __skb_dequeue(&tid->buf_q);
  166. return skb;
  167. }
  168. /*
  169. * ath_tx_tid_change_state:
  170. * - clears a-mpdu flag of previous session
  171. * - force sequence number allocation to fix next BlockAck Window
  172. */
  173. static void
  174. ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
  175. {
  176. struct ath_txq *txq = tid->ac->txq;
  177. struct ieee80211_tx_info *tx_info;
  178. struct sk_buff *skb, *tskb;
  179. struct ath_buf *bf;
  180. struct ath_frame_info *fi;
  181. skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
  182. fi = get_frame_info(skb);
  183. bf = fi->bf;
  184. tx_info = IEEE80211_SKB_CB(skb);
  185. tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
  186. if (bf)
  187. continue;
  188. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  189. if (!bf) {
  190. __skb_unlink(skb, &tid->buf_q);
  191. ath_txq_skb_done(sc, txq, skb);
  192. ieee80211_free_txskb(sc->hw, skb);
  193. continue;
  194. }
  195. }
  196. }
  197. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  198. {
  199. struct ath_txq *txq = tid->ac->txq;
  200. struct sk_buff *skb;
  201. struct ath_buf *bf;
  202. struct list_head bf_head;
  203. struct ath_tx_status ts;
  204. struct ath_frame_info *fi;
  205. bool sendbar = false;
  206. INIT_LIST_HEAD(&bf_head);
  207. memset(&ts, 0, sizeof(ts));
  208. while ((skb = __skb_dequeue(&tid->retry_q))) {
  209. fi = get_frame_info(skb);
  210. bf = fi->bf;
  211. if (!bf) {
  212. ath_txq_skb_done(sc, txq, skb);
  213. ieee80211_free_txskb(sc->hw, skb);
  214. continue;
  215. }
  216. if (fi->baw_tracked) {
  217. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  218. sendbar = true;
  219. }
  220. list_add_tail(&bf->list, &bf_head);
  221. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  222. }
  223. if (sendbar) {
  224. ath_txq_unlock(sc, txq);
  225. ath_send_bar(tid, tid->seq_start);
  226. ath_txq_lock(sc, txq);
  227. }
  228. }
  229. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  230. int seqno)
  231. {
  232. int index, cindex;
  233. index = ATH_BA_INDEX(tid->seq_start, seqno);
  234. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  235. __clear_bit(cindex, tid->tx_buf);
  236. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  237. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  238. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  239. if (tid->bar_index >= 0)
  240. tid->bar_index--;
  241. }
  242. }
  243. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  244. struct ath_buf *bf)
  245. {
  246. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  247. u16 seqno = bf->bf_state.seqno;
  248. int index, cindex;
  249. index = ATH_BA_INDEX(tid->seq_start, seqno);
  250. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  251. __set_bit(cindex, tid->tx_buf);
  252. fi->baw_tracked = 1;
  253. if (index >= ((tid->baw_tail - tid->baw_head) &
  254. (ATH_TID_MAX_BUFS - 1))) {
  255. tid->baw_tail = cindex;
  256. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  257. }
  258. }
  259. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  260. struct ath_atx_tid *tid)
  261. {
  262. struct sk_buff *skb;
  263. struct ath_buf *bf;
  264. struct list_head bf_head;
  265. struct ath_tx_status ts;
  266. struct ath_frame_info *fi;
  267. memset(&ts, 0, sizeof(ts));
  268. INIT_LIST_HEAD(&bf_head);
  269. while ((skb = ath_tid_dequeue(tid))) {
  270. fi = get_frame_info(skb);
  271. bf = fi->bf;
  272. if (!bf) {
  273. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  274. continue;
  275. }
  276. list_add_tail(&bf->list, &bf_head);
  277. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  278. }
  279. }
  280. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  281. struct sk_buff *skb, int count)
  282. {
  283. struct ath_frame_info *fi = get_frame_info(skb);
  284. struct ath_buf *bf = fi->bf;
  285. struct ieee80211_hdr *hdr;
  286. int prev = fi->retries;
  287. TX_STAT_INC(txq->axq_qnum, a_retries);
  288. fi->retries += count;
  289. if (prev > 0)
  290. return;
  291. hdr = (struct ieee80211_hdr *)skb->data;
  292. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  293. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  294. sizeof(*hdr), DMA_TO_DEVICE);
  295. }
  296. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  297. {
  298. struct ath_buf *bf = NULL;
  299. spin_lock_bh(&sc->tx.txbuflock);
  300. if (unlikely(list_empty(&sc->tx.txbuf))) {
  301. spin_unlock_bh(&sc->tx.txbuflock);
  302. return NULL;
  303. }
  304. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  305. list_del(&bf->list);
  306. spin_unlock_bh(&sc->tx.txbuflock);
  307. return bf;
  308. }
  309. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  310. {
  311. spin_lock_bh(&sc->tx.txbuflock);
  312. list_add_tail(&bf->list, &sc->tx.txbuf);
  313. spin_unlock_bh(&sc->tx.txbuflock);
  314. }
  315. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  316. {
  317. struct ath_buf *tbf;
  318. tbf = ath_tx_get_buffer(sc);
  319. if (WARN_ON(!tbf))
  320. return NULL;
  321. ATH_TXBUF_RESET(tbf);
  322. tbf->bf_mpdu = bf->bf_mpdu;
  323. tbf->bf_buf_addr = bf->bf_buf_addr;
  324. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  325. tbf->bf_state = bf->bf_state;
  326. tbf->bf_state.stale = false;
  327. return tbf;
  328. }
  329. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  330. struct ath_tx_status *ts, int txok,
  331. int *nframes, int *nbad)
  332. {
  333. struct ath_frame_info *fi;
  334. u16 seq_st = 0;
  335. u32 ba[WME_BA_BMP_SIZE >> 5];
  336. int ba_index;
  337. int isaggr = 0;
  338. *nbad = 0;
  339. *nframes = 0;
  340. isaggr = bf_isaggr(bf);
  341. if (isaggr) {
  342. seq_st = ts->ts_seqnum;
  343. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  344. }
  345. while (bf) {
  346. fi = get_frame_info(bf->bf_mpdu);
  347. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  348. (*nframes)++;
  349. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  350. (*nbad)++;
  351. bf = bf->bf_next;
  352. }
  353. }
  354. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  355. struct ath_buf *bf, struct list_head *bf_q,
  356. struct ath_tx_status *ts, int txok)
  357. {
  358. struct ath_node *an = NULL;
  359. struct sk_buff *skb;
  360. struct ieee80211_sta *sta;
  361. struct ieee80211_hw *hw = sc->hw;
  362. struct ieee80211_hdr *hdr;
  363. struct ieee80211_tx_info *tx_info;
  364. struct ath_atx_tid *tid = NULL;
  365. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  366. struct list_head bf_head;
  367. struct sk_buff_head bf_pending;
  368. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  369. u32 ba[WME_BA_BMP_SIZE >> 5];
  370. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  371. bool rc_update = true, isba;
  372. struct ieee80211_tx_rate rates[4];
  373. struct ath_frame_info *fi;
  374. int nframes;
  375. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  376. int i, retries;
  377. int bar_index = -1;
  378. skb = bf->bf_mpdu;
  379. hdr = (struct ieee80211_hdr *)skb->data;
  380. tx_info = IEEE80211_SKB_CB(skb);
  381. memcpy(rates, bf->rates, sizeof(rates));
  382. retries = ts->ts_longretry + 1;
  383. for (i = 0; i < ts->ts_rateindex; i++)
  384. retries += rates[i].count;
  385. rcu_read_lock();
  386. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  387. if (!sta) {
  388. rcu_read_unlock();
  389. INIT_LIST_HEAD(&bf_head);
  390. while (bf) {
  391. bf_next = bf->bf_next;
  392. if (!bf->bf_state.stale || bf_next != NULL)
  393. list_move_tail(&bf->list, &bf_head);
  394. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  395. bf = bf_next;
  396. }
  397. return;
  398. }
  399. an = (struct ath_node *)sta->drv_priv;
  400. tid = ath_get_skb_tid(sc, an, skb);
  401. seq_first = tid->seq_start;
  402. isba = ts->ts_flags & ATH9K_TX_BA;
  403. /*
  404. * The hardware occasionally sends a tx status for the wrong TID.
  405. * In this case, the BA status cannot be considered valid and all
  406. * subframes need to be retransmitted
  407. *
  408. * Only BlockAcks have a TID and therefore normal Acks cannot be
  409. * checked
  410. */
  411. if (isba && tid->tidno != ts->tid)
  412. txok = false;
  413. isaggr = bf_isaggr(bf);
  414. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  415. if (isaggr && txok) {
  416. if (ts->ts_flags & ATH9K_TX_BA) {
  417. seq_st = ts->ts_seqnum;
  418. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  419. } else {
  420. /*
  421. * AR5416 can become deaf/mute when BA
  422. * issue happens. Chip needs to be reset.
  423. * But AP code may have sychronization issues
  424. * when perform internal reset in this routine.
  425. * Only enable reset in STA mode for now.
  426. */
  427. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  428. needreset = 1;
  429. }
  430. }
  431. __skb_queue_head_init(&bf_pending);
  432. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  433. while (bf) {
  434. u16 seqno = bf->bf_state.seqno;
  435. txfail = txpending = sendbar = 0;
  436. bf_next = bf->bf_next;
  437. skb = bf->bf_mpdu;
  438. tx_info = IEEE80211_SKB_CB(skb);
  439. fi = get_frame_info(skb);
  440. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
  441. !tid->active) {
  442. /*
  443. * Outside of the current BlockAck window,
  444. * maybe part of a previous session
  445. */
  446. txfail = 1;
  447. } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  448. /* transmit completion, subframe is
  449. * acked by block ack */
  450. acked_cnt++;
  451. } else if (!isaggr && txok) {
  452. /* transmit completion */
  453. acked_cnt++;
  454. } else if (flush) {
  455. txpending = 1;
  456. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  457. if (txok || !an->sleeping)
  458. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  459. retries);
  460. txpending = 1;
  461. } else {
  462. txfail = 1;
  463. txfail_cnt++;
  464. bar_index = max_t(int, bar_index,
  465. ATH_BA_INDEX(seq_first, seqno));
  466. }
  467. /*
  468. * Make sure the last desc is reclaimed if it
  469. * not a holding desc.
  470. */
  471. INIT_LIST_HEAD(&bf_head);
  472. if (bf_next != NULL || !bf_last->bf_state.stale)
  473. list_move_tail(&bf->list, &bf_head);
  474. if (!txpending) {
  475. /*
  476. * complete the acked-ones/xretried ones; update
  477. * block-ack window
  478. */
  479. ath_tx_update_baw(sc, tid, seqno);
  480. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  481. memcpy(tx_info->control.rates, rates, sizeof(rates));
  482. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  483. rc_update = false;
  484. }
  485. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  486. !txfail);
  487. } else {
  488. if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
  489. tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
  490. ieee80211_sta_eosp(sta);
  491. }
  492. /* retry the un-acked ones */
  493. if (bf->bf_next == NULL && bf_last->bf_state.stale) {
  494. struct ath_buf *tbf;
  495. tbf = ath_clone_txbuf(sc, bf_last);
  496. /*
  497. * Update tx baw and complete the
  498. * frame with failed status if we
  499. * run out of tx buf.
  500. */
  501. if (!tbf) {
  502. ath_tx_update_baw(sc, tid, seqno);
  503. ath_tx_complete_buf(sc, bf, txq,
  504. &bf_head, ts, 0);
  505. bar_index = max_t(int, bar_index,
  506. ATH_BA_INDEX(seq_first, seqno));
  507. break;
  508. }
  509. fi->bf = tbf;
  510. }
  511. /*
  512. * Put this buffer to the temporary pending
  513. * queue to retain ordering
  514. */
  515. __skb_queue_tail(&bf_pending, skb);
  516. }
  517. bf = bf_next;
  518. }
  519. /* prepend un-acked frames to the beginning of the pending frame queue */
  520. if (!skb_queue_empty(&bf_pending)) {
  521. if (an->sleeping)
  522. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  523. skb_queue_splice_tail(&bf_pending, &tid->retry_q);
  524. if (!an->sleeping) {
  525. ath_tx_queue_tid(txq, tid);
  526. if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
  527. tid->ac->clear_ps_filter = true;
  528. }
  529. }
  530. if (bar_index >= 0) {
  531. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  532. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  533. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  534. ath_txq_unlock(sc, txq);
  535. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  536. ath_txq_lock(sc, txq);
  537. }
  538. rcu_read_unlock();
  539. if (needreset)
  540. ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
  541. }
  542. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  543. {
  544. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  545. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  546. }
  547. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  548. struct ath_tx_status *ts, struct ath_buf *bf,
  549. struct list_head *bf_head)
  550. {
  551. struct ieee80211_tx_info *info;
  552. bool txok, flush;
  553. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  554. flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  555. txq->axq_tx_inprogress = false;
  556. txq->axq_depth--;
  557. if (bf_is_ampdu_not_probing(bf))
  558. txq->axq_ampdu_depth--;
  559. if (!bf_isampdu(bf)) {
  560. if (!flush) {
  561. info = IEEE80211_SKB_CB(bf->bf_mpdu);
  562. memcpy(info->control.rates, bf->rates,
  563. sizeof(info->control.rates));
  564. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  565. }
  566. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  567. } else
  568. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
  569. if (!flush)
  570. ath_txq_schedule(sc, txq);
  571. }
  572. static bool ath_lookup_legacy(struct ath_buf *bf)
  573. {
  574. struct sk_buff *skb;
  575. struct ieee80211_tx_info *tx_info;
  576. struct ieee80211_tx_rate *rates;
  577. int i;
  578. skb = bf->bf_mpdu;
  579. tx_info = IEEE80211_SKB_CB(skb);
  580. rates = tx_info->control.rates;
  581. for (i = 0; i < 4; i++) {
  582. if (!rates[i].count || rates[i].idx < 0)
  583. break;
  584. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  585. return true;
  586. }
  587. return false;
  588. }
  589. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  590. struct ath_atx_tid *tid)
  591. {
  592. struct sk_buff *skb;
  593. struct ieee80211_tx_info *tx_info;
  594. struct ieee80211_tx_rate *rates;
  595. u32 max_4ms_framelen, frmlen;
  596. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  597. int q = tid->ac->txq->mac80211_qnum;
  598. int i;
  599. skb = bf->bf_mpdu;
  600. tx_info = IEEE80211_SKB_CB(skb);
  601. rates = bf->rates;
  602. /*
  603. * Find the lowest frame length among the rate series that will have a
  604. * 4ms (or TXOP limited) transmit duration.
  605. */
  606. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  607. for (i = 0; i < 4; i++) {
  608. int modeidx;
  609. if (!rates[i].count)
  610. continue;
  611. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  612. legacy = 1;
  613. break;
  614. }
  615. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  616. modeidx = MCS_HT40;
  617. else
  618. modeidx = MCS_HT20;
  619. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  620. modeidx++;
  621. frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
  622. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  623. }
  624. /*
  625. * limit aggregate size by the minimum rate if rate selected is
  626. * not a probe rate, if rate selected is a probe rate then
  627. * avoid aggregation of this packet.
  628. */
  629. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  630. return 0;
  631. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  632. /*
  633. * Override the default aggregation limit for BTCOEX.
  634. */
  635. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  636. if (bt_aggr_limit)
  637. aggr_limit = bt_aggr_limit;
  638. /*
  639. * h/w can accept aggregates up to 16 bit lengths (65535).
  640. * The IE, however can hold up to 65536, which shows up here
  641. * as zero. Ignore 65536 since we are constrained by hw.
  642. */
  643. if (tid->an->maxampdu)
  644. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  645. return aggr_limit;
  646. }
  647. /*
  648. * Returns the number of delimiters to be added to
  649. * meet the minimum required mpdudensity.
  650. */
  651. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  652. struct ath_buf *bf, u16 frmlen,
  653. bool first_subfrm)
  654. {
  655. #define FIRST_DESC_NDELIMS 60
  656. u32 nsymbits, nsymbols;
  657. u16 minlen;
  658. u8 flags, rix;
  659. int width, streams, half_gi, ndelim, mindelim;
  660. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  661. /* Select standard number of delimiters based on frame length alone */
  662. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  663. /*
  664. * If encryption enabled, hardware requires some more padding between
  665. * subframes.
  666. * TODO - this could be improved to be dependent on the rate.
  667. * The hardware can keep up at lower rates, but not higher rates
  668. */
  669. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  670. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  671. ndelim += ATH_AGGR_ENCRYPTDELIM;
  672. /*
  673. * Add delimiter when using RTS/CTS with aggregation
  674. * and non enterprise AR9003 card
  675. */
  676. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  677. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  678. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  679. /*
  680. * Convert desired mpdu density from microeconds to bytes based
  681. * on highest rate in rate series (i.e. first rate) to determine
  682. * required minimum length for subframe. Take into account
  683. * whether high rate is 20 or 40Mhz and half or full GI.
  684. *
  685. * If there is no mpdu density restriction, no further calculation
  686. * is needed.
  687. */
  688. if (tid->an->mpdudensity == 0)
  689. return ndelim;
  690. rix = bf->rates[0].idx;
  691. flags = bf->rates[0].flags;
  692. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  693. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  694. if (half_gi)
  695. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  696. else
  697. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  698. if (nsymbols == 0)
  699. nsymbols = 1;
  700. streams = HT_RC_2_STREAMS(rix);
  701. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  702. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  703. if (frmlen < minlen) {
  704. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  705. ndelim = max(mindelim, ndelim);
  706. }
  707. return ndelim;
  708. }
  709. static struct ath_buf *
  710. ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
  711. struct ath_atx_tid *tid, struct sk_buff_head **q)
  712. {
  713. struct ieee80211_tx_info *tx_info;
  714. struct ath_frame_info *fi;
  715. struct sk_buff *skb;
  716. struct ath_buf *bf;
  717. u16 seqno;
  718. while (1) {
  719. *q = &tid->retry_q;
  720. if (skb_queue_empty(*q))
  721. *q = &tid->buf_q;
  722. skb = skb_peek(*q);
  723. if (!skb)
  724. break;
  725. fi = get_frame_info(skb);
  726. bf = fi->bf;
  727. if (!fi->bf)
  728. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  729. else
  730. bf->bf_state.stale = false;
  731. if (!bf) {
  732. __skb_unlink(skb, *q);
  733. ath_txq_skb_done(sc, txq, skb);
  734. ieee80211_free_txskb(sc->hw, skb);
  735. continue;
  736. }
  737. bf->bf_next = NULL;
  738. bf->bf_lastbf = bf;
  739. tx_info = IEEE80211_SKB_CB(skb);
  740. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  741. if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
  742. bf->bf_state.bf_type = 0;
  743. return bf;
  744. }
  745. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  746. seqno = bf->bf_state.seqno;
  747. /* do not step over block-ack window */
  748. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
  749. break;
  750. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  751. struct ath_tx_status ts = {};
  752. struct list_head bf_head;
  753. INIT_LIST_HEAD(&bf_head);
  754. list_add(&bf->list, &bf_head);
  755. __skb_unlink(skb, *q);
  756. ath_tx_update_baw(sc, tid, seqno);
  757. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  758. continue;
  759. }
  760. return bf;
  761. }
  762. return NULL;
  763. }
  764. static bool
  765. ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
  766. struct ath_atx_tid *tid, struct list_head *bf_q,
  767. struct ath_buf *bf_first, struct sk_buff_head *tid_q,
  768. int *aggr_len)
  769. {
  770. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  771. struct ath_buf *bf = bf_first, *bf_prev = NULL;
  772. int nframes = 0, ndelim;
  773. u16 aggr_limit = 0, al = 0, bpad = 0,
  774. al_delta, h_baw = tid->baw_size / 2;
  775. struct ieee80211_tx_info *tx_info;
  776. struct ath_frame_info *fi;
  777. struct sk_buff *skb;
  778. bool closed = false;
  779. bf = bf_first;
  780. aggr_limit = ath_lookup_rate(sc, bf, tid);
  781. do {
  782. skb = bf->bf_mpdu;
  783. fi = get_frame_info(skb);
  784. /* do not exceed aggregation limit */
  785. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  786. if (nframes) {
  787. if (aggr_limit < al + bpad + al_delta ||
  788. ath_lookup_legacy(bf) || nframes >= h_baw)
  789. break;
  790. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  791. if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
  792. !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
  793. break;
  794. }
  795. /* add padding for previous frame to aggregation length */
  796. al += bpad + al_delta;
  797. /*
  798. * Get the delimiters needed to meet the MPDU
  799. * density for this node.
  800. */
  801. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  802. !nframes);
  803. bpad = PADBYTES(al_delta) + (ndelim << 2);
  804. nframes++;
  805. bf->bf_next = NULL;
  806. /* link buffers of this frame to the aggregate */
  807. if (!fi->baw_tracked)
  808. ath_tx_addto_baw(sc, tid, bf);
  809. bf->bf_state.ndelim = ndelim;
  810. __skb_unlink(skb, tid_q);
  811. list_add_tail(&bf->list, bf_q);
  812. if (bf_prev)
  813. bf_prev->bf_next = bf;
  814. bf_prev = bf;
  815. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  816. if (!bf) {
  817. closed = true;
  818. break;
  819. }
  820. } while (ath_tid_has_buffered(tid));
  821. bf = bf_first;
  822. bf->bf_lastbf = bf_prev;
  823. if (bf == bf_prev) {
  824. al = get_frame_info(bf->bf_mpdu)->framelen;
  825. bf->bf_state.bf_type = BUF_AMPDU;
  826. } else {
  827. TX_STAT_INC(txq->axq_qnum, a_aggr);
  828. }
  829. *aggr_len = al;
  830. return closed;
  831. #undef PADBYTES
  832. }
  833. /*
  834. * rix - rate index
  835. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  836. * width - 0 for 20 MHz, 1 for 40 MHz
  837. * half_gi - to use 4us v/s 3.6 us for symbol time
  838. */
  839. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  840. int width, int half_gi, bool shortPreamble)
  841. {
  842. u32 nbits, nsymbits, duration, nsymbols;
  843. int streams;
  844. /* find number of symbols: PLCP + data */
  845. streams = HT_RC_2_STREAMS(rix);
  846. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  847. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  848. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  849. if (!half_gi)
  850. duration = SYMBOL_TIME(nsymbols);
  851. else
  852. duration = SYMBOL_TIME_HALFGI(nsymbols);
  853. /* addup duration for legacy/ht training and signal fields */
  854. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  855. return duration;
  856. }
  857. static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
  858. {
  859. int streams = HT_RC_2_STREAMS(mcs);
  860. int symbols, bits;
  861. int bytes = 0;
  862. symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
  863. bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
  864. bits -= OFDM_PLCP_BITS;
  865. bytes = bits / 8;
  866. bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  867. if (bytes > 65532)
  868. bytes = 65532;
  869. return bytes;
  870. }
  871. void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
  872. {
  873. u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
  874. int mcs;
  875. /* 4ms is the default (and maximum) duration */
  876. if (!txop || txop > 4096)
  877. txop = 4096;
  878. cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
  879. cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
  880. cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
  881. cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
  882. for (mcs = 0; mcs < 32; mcs++) {
  883. cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
  884. cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
  885. cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
  886. cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
  887. }
  888. }
  889. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  890. struct ath_tx_info *info, int len, bool rts)
  891. {
  892. struct ath_hw *ah = sc->sc_ah;
  893. struct sk_buff *skb;
  894. struct ieee80211_tx_info *tx_info;
  895. struct ieee80211_tx_rate *rates;
  896. const struct ieee80211_rate *rate;
  897. struct ieee80211_hdr *hdr;
  898. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  899. u32 rts_thresh = sc->hw->wiphy->rts_threshold;
  900. int i;
  901. u8 rix = 0;
  902. skb = bf->bf_mpdu;
  903. tx_info = IEEE80211_SKB_CB(skb);
  904. rates = bf->rates;
  905. hdr = (struct ieee80211_hdr *)skb->data;
  906. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  907. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  908. info->rtscts_rate = fi->rtscts_rate;
  909. for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
  910. bool is_40, is_sgi, is_sp;
  911. int phy;
  912. if (!rates[i].count || (rates[i].idx < 0))
  913. continue;
  914. rix = rates[i].idx;
  915. info->rates[i].Tries = rates[i].count;
  916. /*
  917. * Handle RTS threshold for unaggregated HT frames.
  918. */
  919. if (bf_isampdu(bf) && !bf_isaggr(bf) &&
  920. (rates[i].flags & IEEE80211_TX_RC_MCS) &&
  921. unlikely(rts_thresh != (u32) -1)) {
  922. if (!rts_thresh || (len > rts_thresh))
  923. rts = true;
  924. }
  925. if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  926. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  927. info->flags |= ATH9K_TXDESC_RTSENA;
  928. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  929. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  930. info->flags |= ATH9K_TXDESC_CTSENA;
  931. }
  932. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  933. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  934. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  935. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  936. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  937. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  938. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  939. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  940. /* MCS rates */
  941. info->rates[i].Rate = rix | 0x80;
  942. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  943. ah->txchainmask, info->rates[i].Rate);
  944. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  945. is_40, is_sgi, is_sp);
  946. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  947. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  948. continue;
  949. }
  950. /* legacy rates */
  951. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  952. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  953. !(rate->flags & IEEE80211_RATE_ERP_G))
  954. phy = WLAN_RC_PHY_CCK;
  955. else
  956. phy = WLAN_RC_PHY_OFDM;
  957. info->rates[i].Rate = rate->hw_value;
  958. if (rate->hw_value_short) {
  959. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  960. info->rates[i].Rate |= rate->hw_value_short;
  961. } else {
  962. is_sp = false;
  963. }
  964. if (bf->bf_state.bfs_paprd)
  965. info->rates[i].ChSel = ah->txchainmask;
  966. else
  967. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  968. ah->txchainmask, info->rates[i].Rate);
  969. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  970. phy, rate->bitrate * 100, len, rix, is_sp);
  971. }
  972. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  973. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  974. info->flags &= ~ATH9K_TXDESC_RTSENA;
  975. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  976. if (info->flags & ATH9K_TXDESC_RTSENA)
  977. info->flags &= ~ATH9K_TXDESC_CTSENA;
  978. }
  979. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  980. {
  981. struct ieee80211_hdr *hdr;
  982. enum ath9k_pkt_type htype;
  983. __le16 fc;
  984. hdr = (struct ieee80211_hdr *)skb->data;
  985. fc = hdr->frame_control;
  986. if (ieee80211_is_beacon(fc))
  987. htype = ATH9K_PKT_TYPE_BEACON;
  988. else if (ieee80211_is_probe_resp(fc))
  989. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  990. else if (ieee80211_is_atim(fc))
  991. htype = ATH9K_PKT_TYPE_ATIM;
  992. else if (ieee80211_is_pspoll(fc))
  993. htype = ATH9K_PKT_TYPE_PSPOLL;
  994. else
  995. htype = ATH9K_PKT_TYPE_NORMAL;
  996. return htype;
  997. }
  998. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  999. struct ath_txq *txq, int len)
  1000. {
  1001. struct ath_hw *ah = sc->sc_ah;
  1002. struct ath_buf *bf_first = NULL;
  1003. struct ath_tx_info info;
  1004. u32 rts_thresh = sc->hw->wiphy->rts_threshold;
  1005. bool rts = false;
  1006. memset(&info, 0, sizeof(info));
  1007. info.is_first = true;
  1008. info.is_last = true;
  1009. info.txpower = MAX_RATE_POWER;
  1010. info.qcu = txq->axq_qnum;
  1011. while (bf) {
  1012. struct sk_buff *skb = bf->bf_mpdu;
  1013. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1014. struct ath_frame_info *fi = get_frame_info(skb);
  1015. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  1016. info.type = get_hw_packet_type(skb);
  1017. if (bf->bf_next)
  1018. info.link = bf->bf_next->bf_daddr;
  1019. else
  1020. info.link = 0;
  1021. if (!bf_first) {
  1022. bf_first = bf;
  1023. info.flags = ATH9K_TXDESC_INTREQ;
  1024. if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
  1025. txq == sc->tx.uapsdq)
  1026. info.flags |= ATH9K_TXDESC_CLRDMASK;
  1027. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  1028. info.flags |= ATH9K_TXDESC_NOACK;
  1029. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  1030. info.flags |= ATH9K_TXDESC_LDPC;
  1031. if (bf->bf_state.bfs_paprd)
  1032. info.flags |= (u32) bf->bf_state.bfs_paprd <<
  1033. ATH9K_TXDESC_PAPRD_S;
  1034. /*
  1035. * mac80211 doesn't handle RTS threshold for HT because
  1036. * the decision has to be taken based on AMPDU length
  1037. * and aggregation is done entirely inside ath9k.
  1038. * Set the RTS/CTS flag for the first subframe based
  1039. * on the threshold.
  1040. */
  1041. if (aggr && (bf == bf_first) &&
  1042. unlikely(rts_thresh != (u32) -1)) {
  1043. /*
  1044. * "len" is the size of the entire AMPDU.
  1045. */
  1046. if (!rts_thresh || (len > rts_thresh))
  1047. rts = true;
  1048. }
  1049. ath_buf_set_rate(sc, bf, &info, len, rts);
  1050. }
  1051. info.buf_addr[0] = bf->bf_buf_addr;
  1052. info.buf_len[0] = skb->len;
  1053. info.pkt_len = fi->framelen;
  1054. info.keyix = fi->keyix;
  1055. info.keytype = fi->keytype;
  1056. if (aggr) {
  1057. if (bf == bf_first)
  1058. info.aggr = AGGR_BUF_FIRST;
  1059. else if (bf == bf_first->bf_lastbf)
  1060. info.aggr = AGGR_BUF_LAST;
  1061. else
  1062. info.aggr = AGGR_BUF_MIDDLE;
  1063. info.ndelim = bf->bf_state.ndelim;
  1064. info.aggr_len = len;
  1065. }
  1066. if (bf == bf_first->bf_lastbf)
  1067. bf_first = NULL;
  1068. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  1069. bf = bf->bf_next;
  1070. }
  1071. }
  1072. static void
  1073. ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
  1074. struct ath_atx_tid *tid, struct list_head *bf_q,
  1075. struct ath_buf *bf_first, struct sk_buff_head *tid_q)
  1076. {
  1077. struct ath_buf *bf = bf_first, *bf_prev = NULL;
  1078. struct sk_buff *skb;
  1079. int nframes = 0;
  1080. do {
  1081. struct ieee80211_tx_info *tx_info;
  1082. skb = bf->bf_mpdu;
  1083. nframes++;
  1084. __skb_unlink(skb, tid_q);
  1085. list_add_tail(&bf->list, bf_q);
  1086. if (bf_prev)
  1087. bf_prev->bf_next = bf;
  1088. bf_prev = bf;
  1089. if (nframes >= 2)
  1090. break;
  1091. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  1092. if (!bf)
  1093. break;
  1094. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1095. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
  1096. break;
  1097. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1098. } while (1);
  1099. }
  1100. static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  1101. struct ath_atx_tid *tid, bool *stop)
  1102. {
  1103. struct ath_buf *bf;
  1104. struct ieee80211_tx_info *tx_info;
  1105. struct sk_buff_head *tid_q;
  1106. struct list_head bf_q;
  1107. int aggr_len = 0;
  1108. bool aggr, last = true;
  1109. if (!ath_tid_has_buffered(tid))
  1110. return false;
  1111. INIT_LIST_HEAD(&bf_q);
  1112. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  1113. if (!bf)
  1114. return false;
  1115. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1116. aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
  1117. if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
  1118. (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
  1119. *stop = true;
  1120. return false;
  1121. }
  1122. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1123. if (aggr)
  1124. last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
  1125. tid_q, &aggr_len);
  1126. else
  1127. ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
  1128. if (list_empty(&bf_q))
  1129. return false;
  1130. if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
  1131. tid->ac->clear_ps_filter = false;
  1132. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1133. }
  1134. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  1135. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  1136. return true;
  1137. }
  1138. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  1139. u16 tid, u16 *ssn)
  1140. {
  1141. struct ath_atx_tid *txtid;
  1142. struct ath_txq *txq;
  1143. struct ath_node *an;
  1144. u8 density;
  1145. an = (struct ath_node *)sta->drv_priv;
  1146. txtid = ATH_AN_2_TID(an, tid);
  1147. txq = txtid->ac->txq;
  1148. ath_txq_lock(sc, txq);
  1149. /* update ampdu factor/density, they may have changed. This may happen
  1150. * in HT IBSS when a beacon with HT-info is received after the station
  1151. * has already been added.
  1152. */
  1153. if (sta->ht_cap.ht_supported) {
  1154. an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
  1155. sta->ht_cap.ampdu_factor);
  1156. density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
  1157. an->mpdudensity = density;
  1158. }
  1159. /* force sequence number allocation for pending frames */
  1160. ath_tx_tid_change_state(sc, txtid);
  1161. txtid->active = true;
  1162. txtid->paused = true;
  1163. *ssn = txtid->seq_start = txtid->seq_next;
  1164. txtid->bar_index = -1;
  1165. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  1166. txtid->baw_head = txtid->baw_tail = 0;
  1167. ath_txq_unlock_complete(sc, txq);
  1168. return 0;
  1169. }
  1170. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1171. {
  1172. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1173. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  1174. struct ath_txq *txq = txtid->ac->txq;
  1175. ath_txq_lock(sc, txq);
  1176. txtid->active = false;
  1177. txtid->paused = false;
  1178. ath_tx_flush_tid(sc, txtid);
  1179. ath_tx_tid_change_state(sc, txtid);
  1180. ath_txq_unlock_complete(sc, txq);
  1181. }
  1182. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1183. struct ath_node *an)
  1184. {
  1185. struct ath_atx_tid *tid;
  1186. struct ath_atx_ac *ac;
  1187. struct ath_txq *txq;
  1188. bool buffered;
  1189. int tidno;
  1190. for (tidno = 0, tid = &an->tid[tidno];
  1191. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1192. if (!tid->sched)
  1193. continue;
  1194. ac = tid->ac;
  1195. txq = ac->txq;
  1196. ath_txq_lock(sc, txq);
  1197. buffered = ath_tid_has_buffered(tid);
  1198. tid->sched = false;
  1199. list_del(&tid->list);
  1200. if (ac->sched) {
  1201. ac->sched = false;
  1202. list_del(&ac->list);
  1203. }
  1204. ath_txq_unlock(sc, txq);
  1205. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1206. }
  1207. }
  1208. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1209. {
  1210. struct ath_atx_tid *tid;
  1211. struct ath_atx_ac *ac;
  1212. struct ath_txq *txq;
  1213. int tidno;
  1214. for (tidno = 0, tid = &an->tid[tidno];
  1215. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1216. ac = tid->ac;
  1217. txq = ac->txq;
  1218. ath_txq_lock(sc, txq);
  1219. ac->clear_ps_filter = true;
  1220. if (!tid->paused && ath_tid_has_buffered(tid)) {
  1221. ath_tx_queue_tid(txq, tid);
  1222. ath_txq_schedule(sc, txq);
  1223. }
  1224. ath_txq_unlock_complete(sc, txq);
  1225. }
  1226. }
  1227. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
  1228. u16 tidno)
  1229. {
  1230. struct ath_atx_tid *tid;
  1231. struct ath_node *an;
  1232. struct ath_txq *txq;
  1233. an = (struct ath_node *)sta->drv_priv;
  1234. tid = ATH_AN_2_TID(an, tidno);
  1235. txq = tid->ac->txq;
  1236. ath_txq_lock(sc, txq);
  1237. tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1238. tid->paused = false;
  1239. if (ath_tid_has_buffered(tid)) {
  1240. ath_tx_queue_tid(txq, tid);
  1241. ath_txq_schedule(sc, txq);
  1242. }
  1243. ath_txq_unlock_complete(sc, txq);
  1244. }
  1245. void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
  1246. struct ieee80211_sta *sta,
  1247. u16 tids, int nframes,
  1248. enum ieee80211_frame_release_type reason,
  1249. bool more_data)
  1250. {
  1251. struct ath_softc *sc = hw->priv;
  1252. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1253. struct ath_txq *txq = sc->tx.uapsdq;
  1254. struct ieee80211_tx_info *info;
  1255. struct list_head bf_q;
  1256. struct ath_buf *bf_tail = NULL, *bf;
  1257. struct sk_buff_head *tid_q;
  1258. int sent = 0;
  1259. int i;
  1260. INIT_LIST_HEAD(&bf_q);
  1261. for (i = 0; tids && nframes; i++, tids >>= 1) {
  1262. struct ath_atx_tid *tid;
  1263. if (!(tids & 1))
  1264. continue;
  1265. tid = ATH_AN_2_TID(an, i);
  1266. if (tid->paused)
  1267. continue;
  1268. ath_txq_lock(sc, tid->ac->txq);
  1269. while (nframes > 0) {
  1270. bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
  1271. if (!bf)
  1272. break;
  1273. __skb_unlink(bf->bf_mpdu, tid_q);
  1274. list_add_tail(&bf->list, &bf_q);
  1275. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1276. if (bf_isampdu(bf)) {
  1277. ath_tx_addto_baw(sc, tid, bf);
  1278. bf->bf_state.bf_type &= ~BUF_AGGR;
  1279. }
  1280. if (bf_tail)
  1281. bf_tail->bf_next = bf;
  1282. bf_tail = bf;
  1283. nframes--;
  1284. sent++;
  1285. TX_STAT_INC(txq->axq_qnum, a_queued_hw);
  1286. if (an->sta && !ath_tid_has_buffered(tid))
  1287. ieee80211_sta_set_buffered(an->sta, i, false);
  1288. }
  1289. ath_txq_unlock_complete(sc, tid->ac->txq);
  1290. }
  1291. if (list_empty(&bf_q))
  1292. return;
  1293. info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
  1294. info->flags |= IEEE80211_TX_STATUS_EOSP;
  1295. bf = list_first_entry(&bf_q, struct ath_buf, list);
  1296. ath_txq_lock(sc, txq);
  1297. ath_tx_fill_desc(sc, bf, txq, 0);
  1298. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  1299. ath_txq_unlock(sc, txq);
  1300. }
  1301. /********************/
  1302. /* Queue Management */
  1303. /********************/
  1304. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1305. {
  1306. struct ath_hw *ah = sc->sc_ah;
  1307. struct ath9k_tx_queue_info qi;
  1308. static const int subtype_txq_to_hwq[] = {
  1309. [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
  1310. [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
  1311. [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
  1312. [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
  1313. };
  1314. int axq_qnum, i;
  1315. memset(&qi, 0, sizeof(qi));
  1316. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1317. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1318. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1319. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1320. qi.tqi_physCompBuf = 0;
  1321. /*
  1322. * Enable interrupts only for EOL and DESC conditions.
  1323. * We mark tx descriptors to receive a DESC interrupt
  1324. * when a tx queue gets deep; otherwise waiting for the
  1325. * EOL to reap descriptors. Note that this is done to
  1326. * reduce interrupt load and this only defers reaping
  1327. * descriptors, never transmitting frames. Aside from
  1328. * reducing interrupts this also permits more concurrency.
  1329. * The only potential downside is if the tx queue backs
  1330. * up in which case the top half of the kernel may backup
  1331. * due to a lack of tx descriptors.
  1332. *
  1333. * The UAPSD queue is an exception, since we take a desc-
  1334. * based intr on the EOSP frames.
  1335. */
  1336. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1337. qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
  1338. } else {
  1339. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1340. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1341. else
  1342. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1343. TXQ_FLAG_TXDESCINT_ENABLE;
  1344. }
  1345. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1346. if (axq_qnum == -1) {
  1347. /*
  1348. * NB: don't print a message, this happens
  1349. * normally on parts with too few tx queues
  1350. */
  1351. return NULL;
  1352. }
  1353. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1354. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1355. txq->axq_qnum = axq_qnum;
  1356. txq->mac80211_qnum = -1;
  1357. txq->axq_link = NULL;
  1358. __skb_queue_head_init(&txq->complete_q);
  1359. INIT_LIST_HEAD(&txq->axq_q);
  1360. INIT_LIST_HEAD(&txq->axq_acq);
  1361. spin_lock_init(&txq->axq_lock);
  1362. txq->axq_depth = 0;
  1363. txq->axq_ampdu_depth = 0;
  1364. txq->axq_tx_inprogress = false;
  1365. sc->tx.txqsetup |= 1<<axq_qnum;
  1366. txq->txq_headidx = txq->txq_tailidx = 0;
  1367. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1368. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1369. }
  1370. return &sc->tx.txq[axq_qnum];
  1371. }
  1372. int ath_txq_update(struct ath_softc *sc, int qnum,
  1373. struct ath9k_tx_queue_info *qinfo)
  1374. {
  1375. struct ath_hw *ah = sc->sc_ah;
  1376. int error = 0;
  1377. struct ath9k_tx_queue_info qi;
  1378. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1379. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1380. qi.tqi_aifs = qinfo->tqi_aifs;
  1381. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1382. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1383. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1384. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1385. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1386. ath_err(ath9k_hw_common(sc->sc_ah),
  1387. "Unable to update hardware queue %u!\n", qnum);
  1388. error = -EIO;
  1389. } else {
  1390. ath9k_hw_resettxqueue(ah, qnum);
  1391. }
  1392. return error;
  1393. }
  1394. int ath_cabq_update(struct ath_softc *sc)
  1395. {
  1396. struct ath9k_tx_queue_info qi;
  1397. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1398. int qnum = sc->beacon.cabq->axq_qnum;
  1399. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1400. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1401. ATH_CABQ_READY_TIME) / 100;
  1402. ath_txq_update(sc, qnum, &qi);
  1403. return 0;
  1404. }
  1405. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1406. struct list_head *list)
  1407. {
  1408. struct ath_buf *bf, *lastbf;
  1409. struct list_head bf_head;
  1410. struct ath_tx_status ts;
  1411. memset(&ts, 0, sizeof(ts));
  1412. ts.ts_status = ATH9K_TX_FLUSH;
  1413. INIT_LIST_HEAD(&bf_head);
  1414. while (!list_empty(list)) {
  1415. bf = list_first_entry(list, struct ath_buf, list);
  1416. if (bf->bf_state.stale) {
  1417. list_del(&bf->list);
  1418. ath_tx_return_buffer(sc, bf);
  1419. continue;
  1420. }
  1421. lastbf = bf->bf_lastbf;
  1422. list_cut_position(&bf_head, list, &lastbf->list);
  1423. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1424. }
  1425. }
  1426. /*
  1427. * Drain a given TX queue (could be Beacon or Data)
  1428. *
  1429. * This assumes output has been stopped and
  1430. * we do not need to block ath_tx_tasklet.
  1431. */
  1432. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
  1433. {
  1434. ath_txq_lock(sc, txq);
  1435. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1436. int idx = txq->txq_tailidx;
  1437. while (!list_empty(&txq->txq_fifo[idx])) {
  1438. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
  1439. INCR(idx, ATH_TXFIFO_DEPTH);
  1440. }
  1441. txq->txq_tailidx = idx;
  1442. }
  1443. txq->axq_link = NULL;
  1444. txq->axq_tx_inprogress = false;
  1445. ath_drain_txq_list(sc, txq, &txq->axq_q);
  1446. ath_txq_unlock_complete(sc, txq);
  1447. }
  1448. bool ath_drain_all_txq(struct ath_softc *sc)
  1449. {
  1450. struct ath_hw *ah = sc->sc_ah;
  1451. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1452. struct ath_txq *txq;
  1453. int i;
  1454. u32 npend = 0;
  1455. if (test_bit(SC_OP_INVALID, &sc->sc_flags))
  1456. return true;
  1457. ath9k_hw_abort_tx_dma(ah);
  1458. /* Check if any queue remains active */
  1459. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1460. if (!ATH_TXQ_SETUP(sc, i))
  1461. continue;
  1462. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1463. npend |= BIT(i);
  1464. }
  1465. if (npend)
  1466. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1467. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1468. if (!ATH_TXQ_SETUP(sc, i))
  1469. continue;
  1470. /*
  1471. * The caller will resume queues with ieee80211_wake_queues.
  1472. * Mark the queue as not stopped to prevent ath_tx_complete
  1473. * from waking the queue too early.
  1474. */
  1475. txq = &sc->tx.txq[i];
  1476. txq->stopped = false;
  1477. ath_draintxq(sc, txq);
  1478. }
  1479. return !npend;
  1480. }
  1481. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1482. {
  1483. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1484. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1485. }
  1486. /* For each axq_acq entry, for each tid, try to schedule packets
  1487. * for transmit until ampdu_depth has reached min Q depth.
  1488. */
  1489. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1490. {
  1491. struct ath_atx_ac *ac, *last_ac;
  1492. struct ath_atx_tid *tid, *last_tid;
  1493. bool sent = false;
  1494. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
  1495. list_empty(&txq->axq_acq))
  1496. return;
  1497. rcu_read_lock();
  1498. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1499. while (!list_empty(&txq->axq_acq)) {
  1500. bool stop = false;
  1501. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1502. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1503. list_del(&ac->list);
  1504. ac->sched = false;
  1505. while (!list_empty(&ac->tid_q)) {
  1506. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1507. list);
  1508. list_del(&tid->list);
  1509. tid->sched = false;
  1510. if (tid->paused)
  1511. continue;
  1512. if (ath_tx_sched_aggr(sc, txq, tid, &stop))
  1513. sent = true;
  1514. /*
  1515. * add tid to round-robin queue if more frames
  1516. * are pending for the tid
  1517. */
  1518. if (ath_tid_has_buffered(tid))
  1519. ath_tx_queue_tid(txq, tid);
  1520. if (stop || tid == last_tid)
  1521. break;
  1522. }
  1523. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1524. ac->sched = true;
  1525. list_add_tail(&ac->list, &txq->axq_acq);
  1526. }
  1527. if (stop)
  1528. break;
  1529. if (ac == last_ac) {
  1530. if (!sent)
  1531. break;
  1532. sent = false;
  1533. last_ac = list_entry(txq->axq_acq.prev,
  1534. struct ath_atx_ac, list);
  1535. }
  1536. }
  1537. rcu_read_unlock();
  1538. }
  1539. /***********/
  1540. /* TX, DMA */
  1541. /***********/
  1542. /*
  1543. * Insert a chain of ath_buf (descriptors) on a txq and
  1544. * assume the descriptors are already chained together by caller.
  1545. */
  1546. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1547. struct list_head *head, bool internal)
  1548. {
  1549. struct ath_hw *ah = sc->sc_ah;
  1550. struct ath_common *common = ath9k_hw_common(ah);
  1551. struct ath_buf *bf, *bf_last;
  1552. bool puttxbuf = false;
  1553. bool edma;
  1554. /*
  1555. * Insert the frame on the outbound list and
  1556. * pass it on to the hardware.
  1557. */
  1558. if (list_empty(head))
  1559. return;
  1560. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1561. bf = list_first_entry(head, struct ath_buf, list);
  1562. bf_last = list_entry(head->prev, struct ath_buf, list);
  1563. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1564. txq->axq_qnum, txq->axq_depth);
  1565. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1566. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1567. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1568. puttxbuf = true;
  1569. } else {
  1570. list_splice_tail_init(head, &txq->axq_q);
  1571. if (txq->axq_link) {
  1572. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1573. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1574. txq->axq_qnum, txq->axq_link,
  1575. ito64(bf->bf_daddr), bf->bf_desc);
  1576. } else if (!edma)
  1577. puttxbuf = true;
  1578. txq->axq_link = bf_last->bf_desc;
  1579. }
  1580. if (puttxbuf) {
  1581. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1582. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1583. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1584. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1585. }
  1586. if (!edma) {
  1587. TX_STAT_INC(txq->axq_qnum, txstart);
  1588. ath9k_hw_txstart(ah, txq->axq_qnum);
  1589. }
  1590. if (!internal) {
  1591. while (bf) {
  1592. txq->axq_depth++;
  1593. if (bf_is_ampdu_not_probing(bf))
  1594. txq->axq_ampdu_depth++;
  1595. bf_last = bf->bf_lastbf;
  1596. bf = bf_last->bf_next;
  1597. bf_last->bf_next = NULL;
  1598. }
  1599. }
  1600. }
  1601. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1602. struct ath_atx_tid *tid, struct sk_buff *skb)
  1603. {
  1604. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1605. struct ath_frame_info *fi = get_frame_info(skb);
  1606. struct list_head bf_head;
  1607. struct ath_buf *bf = fi->bf;
  1608. INIT_LIST_HEAD(&bf_head);
  1609. list_add_tail(&bf->list, &bf_head);
  1610. bf->bf_state.bf_type = 0;
  1611. if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
  1612. bf->bf_state.bf_type = BUF_AMPDU;
  1613. ath_tx_addto_baw(sc, tid, bf);
  1614. }
  1615. bf->bf_next = NULL;
  1616. bf->bf_lastbf = bf;
  1617. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1618. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1619. TX_STAT_INC(txq->axq_qnum, queued);
  1620. }
  1621. static void setup_frame_info(struct ieee80211_hw *hw,
  1622. struct ieee80211_sta *sta,
  1623. struct sk_buff *skb,
  1624. int framelen)
  1625. {
  1626. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1627. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1628. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1629. const struct ieee80211_rate *rate;
  1630. struct ath_frame_info *fi = get_frame_info(skb);
  1631. struct ath_node *an = NULL;
  1632. enum ath9k_key_type keytype;
  1633. bool short_preamble = false;
  1634. /*
  1635. * We check if Short Preamble is needed for the CTS rate by
  1636. * checking the BSS's global flag.
  1637. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1638. */
  1639. if (tx_info->control.vif &&
  1640. tx_info->control.vif->bss_conf.use_short_preamble)
  1641. short_preamble = true;
  1642. rate = ieee80211_get_rts_cts_rate(hw, tx_info);
  1643. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1644. if (sta)
  1645. an = (struct ath_node *) sta->drv_priv;
  1646. memset(fi, 0, sizeof(*fi));
  1647. if (hw_key)
  1648. fi->keyix = hw_key->hw_key_idx;
  1649. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1650. fi->keyix = an->ps_key;
  1651. else
  1652. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1653. fi->keytype = keytype;
  1654. fi->framelen = framelen;
  1655. fi->rtscts_rate = rate->hw_value;
  1656. if (short_preamble)
  1657. fi->rtscts_rate |= rate->hw_value_short;
  1658. }
  1659. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1660. {
  1661. struct ath_hw *ah = sc->sc_ah;
  1662. struct ath9k_channel *curchan = ah->curchan;
  1663. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
  1664. (chainmask == 0x7) && (rate < 0x90))
  1665. return 0x3;
  1666. else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
  1667. IS_CCK_RATE(rate))
  1668. return 0x2;
  1669. else
  1670. return chainmask;
  1671. }
  1672. /*
  1673. * Assign a descriptor (and sequence number if necessary,
  1674. * and map buffer for DMA. Frees skb on error
  1675. */
  1676. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1677. struct ath_txq *txq,
  1678. struct ath_atx_tid *tid,
  1679. struct sk_buff *skb)
  1680. {
  1681. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1682. struct ath_frame_info *fi = get_frame_info(skb);
  1683. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1684. struct ath_buf *bf;
  1685. int fragno;
  1686. u16 seqno;
  1687. bf = ath_tx_get_buffer(sc);
  1688. if (!bf) {
  1689. ath_dbg(common, XMIT, "TX buffers are full\n");
  1690. return NULL;
  1691. }
  1692. ATH_TXBUF_RESET(bf);
  1693. if (tid) {
  1694. fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
  1695. seqno = tid->seq_next;
  1696. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1697. if (fragno)
  1698. hdr->seq_ctrl |= cpu_to_le16(fragno);
  1699. if (!ieee80211_has_morefrags(hdr->frame_control))
  1700. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1701. bf->bf_state.seqno = seqno;
  1702. }
  1703. bf->bf_mpdu = skb;
  1704. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1705. skb->len, DMA_TO_DEVICE);
  1706. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1707. bf->bf_mpdu = NULL;
  1708. bf->bf_buf_addr = 0;
  1709. ath_err(ath9k_hw_common(sc->sc_ah),
  1710. "dma_mapping_error() on TX\n");
  1711. ath_tx_return_buffer(sc, bf);
  1712. return NULL;
  1713. }
  1714. fi->bf = bf;
  1715. return bf;
  1716. }
  1717. static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
  1718. struct ath_tx_control *txctl)
  1719. {
  1720. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1721. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1722. struct ieee80211_sta *sta = txctl->sta;
  1723. struct ieee80211_vif *vif = info->control.vif;
  1724. struct ath_vif *avp;
  1725. struct ath_softc *sc = hw->priv;
  1726. int frmlen = skb->len + FCS_LEN;
  1727. int padpos, padsize;
  1728. /* NOTE: sta can be NULL according to net/mac80211.h */
  1729. if (sta)
  1730. txctl->an = (struct ath_node *)sta->drv_priv;
  1731. else if (vif && ieee80211_is_data(hdr->frame_control)) {
  1732. avp = (void *)vif->drv_priv;
  1733. txctl->an = &avp->mcast_node;
  1734. }
  1735. if (info->control.hw_key)
  1736. frmlen += info->control.hw_key->icv_len;
  1737. /*
  1738. * As a temporary workaround, assign seq# here; this will likely need
  1739. * to be cleaned up to work better with Beacon transmission and virtual
  1740. * BSSes.
  1741. */
  1742. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1743. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1744. sc->tx.seq_no += 0x10;
  1745. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1746. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1747. }
  1748. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1749. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1750. !ieee80211_is_data(hdr->frame_control))
  1751. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1752. /* Add the padding after the header if this is not already done */
  1753. padpos = ieee80211_hdrlen(hdr->frame_control);
  1754. padsize = padpos & 3;
  1755. if (padsize && skb->len > padpos) {
  1756. if (skb_headroom(skb) < padsize)
  1757. return -ENOMEM;
  1758. skb_push(skb, padsize);
  1759. memmove(skb->data, skb->data + padsize, padpos);
  1760. }
  1761. setup_frame_info(hw, sta, skb, frmlen);
  1762. return 0;
  1763. }
  1764. /* Upon failure caller should free skb */
  1765. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1766. struct ath_tx_control *txctl)
  1767. {
  1768. struct ieee80211_hdr *hdr;
  1769. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1770. struct ieee80211_sta *sta = txctl->sta;
  1771. struct ieee80211_vif *vif = info->control.vif;
  1772. struct ath_softc *sc = hw->priv;
  1773. struct ath_txq *txq = txctl->txq;
  1774. struct ath_atx_tid *tid = NULL;
  1775. struct ath_buf *bf;
  1776. int q;
  1777. int ret;
  1778. ret = ath_tx_prepare(hw, skb, txctl);
  1779. if (ret)
  1780. return ret;
  1781. hdr = (struct ieee80211_hdr *) skb->data;
  1782. /*
  1783. * At this point, the vif, hw_key and sta pointers in the tx control
  1784. * info are no longer valid (overwritten by the ath_frame_info data.
  1785. */
  1786. q = skb_get_queue_mapping(skb);
  1787. ath_txq_lock(sc, txq);
  1788. if (txq == sc->tx.txq_map[q] &&
  1789. ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
  1790. !txq->stopped) {
  1791. ieee80211_stop_queue(sc->hw, q);
  1792. txq->stopped = true;
  1793. }
  1794. if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) {
  1795. ath_txq_unlock(sc, txq);
  1796. txq = sc->tx.uapsdq;
  1797. ath_txq_lock(sc, txq);
  1798. } else if (txctl->an &&
  1799. ieee80211_is_data_present(hdr->frame_control)) {
  1800. tid = ath_get_skb_tid(sc, txctl->an, skb);
  1801. WARN_ON(tid->ac->txq != txctl->txq);
  1802. if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  1803. tid->ac->clear_ps_filter = true;
  1804. /*
  1805. * Add this frame to software queue for scheduling later
  1806. * for aggregation.
  1807. */
  1808. TX_STAT_INC(txq->axq_qnum, a_queued_sw);
  1809. __skb_queue_tail(&tid->buf_q, skb);
  1810. if (!txctl->an->sleeping)
  1811. ath_tx_queue_tid(txq, tid);
  1812. ath_txq_schedule(sc, txq);
  1813. goto out;
  1814. }
  1815. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1816. if (!bf) {
  1817. ath_txq_skb_done(sc, txq, skb);
  1818. if (txctl->paprd)
  1819. dev_kfree_skb_any(skb);
  1820. else
  1821. ieee80211_free_txskb(sc->hw, skb);
  1822. goto out;
  1823. }
  1824. bf->bf_state.bfs_paprd = txctl->paprd;
  1825. if (txctl->paprd)
  1826. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1827. ath_set_rates(vif, sta, bf);
  1828. ath_tx_send_normal(sc, txq, tid, skb);
  1829. out:
  1830. ath_txq_unlock(sc, txq);
  1831. return 0;
  1832. }
  1833. void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
  1834. struct sk_buff *skb)
  1835. {
  1836. struct ath_softc *sc = hw->priv;
  1837. struct ath_tx_control txctl = {
  1838. .txq = sc->beacon.cabq
  1839. };
  1840. struct ath_tx_info info = {};
  1841. struct ieee80211_hdr *hdr;
  1842. struct ath_buf *bf_tail = NULL;
  1843. struct ath_buf *bf;
  1844. LIST_HEAD(bf_q);
  1845. int duration = 0;
  1846. int max_duration;
  1847. max_duration =
  1848. sc->cur_beacon_conf.beacon_interval * 1000 *
  1849. sc->cur_beacon_conf.dtim_period / ATH_BCBUF;
  1850. do {
  1851. struct ath_frame_info *fi = get_frame_info(skb);
  1852. if (ath_tx_prepare(hw, skb, &txctl))
  1853. break;
  1854. bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
  1855. if (!bf)
  1856. break;
  1857. bf->bf_lastbf = bf;
  1858. ath_set_rates(vif, NULL, bf);
  1859. ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
  1860. duration += info.rates[0].PktDuration;
  1861. if (bf_tail)
  1862. bf_tail->bf_next = bf;
  1863. list_add_tail(&bf->list, &bf_q);
  1864. bf_tail = bf;
  1865. skb = NULL;
  1866. if (duration > max_duration)
  1867. break;
  1868. skb = ieee80211_get_buffered_bc(hw, vif);
  1869. } while(skb);
  1870. if (skb)
  1871. ieee80211_free_txskb(hw, skb);
  1872. if (list_empty(&bf_q))
  1873. return;
  1874. bf = list_first_entry(&bf_q, struct ath_buf, list);
  1875. hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
  1876. if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
  1877. hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
  1878. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  1879. sizeof(*hdr), DMA_TO_DEVICE);
  1880. }
  1881. ath_txq_lock(sc, txctl.txq);
  1882. ath_tx_fill_desc(sc, bf, txctl.txq, 0);
  1883. ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
  1884. TX_STAT_INC(txctl.txq->axq_qnum, queued);
  1885. ath_txq_unlock(sc, txctl.txq);
  1886. }
  1887. /*****************/
  1888. /* TX Completion */
  1889. /*****************/
  1890. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1891. int tx_flags, struct ath_txq *txq)
  1892. {
  1893. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1894. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1895. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1896. int padpos, padsize;
  1897. unsigned long flags;
  1898. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1899. if (sc->sc_ah->caldata)
  1900. set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
  1901. if (!(tx_flags & ATH_TX_ERROR))
  1902. /* Frame was ACKed */
  1903. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1904. padpos = ieee80211_hdrlen(hdr->frame_control);
  1905. padsize = padpos & 3;
  1906. if (padsize && skb->len>padpos+padsize) {
  1907. /*
  1908. * Remove MAC header padding before giving the frame back to
  1909. * mac80211.
  1910. */
  1911. memmove(skb->data + padsize, skb->data, padpos);
  1912. skb_pull(skb, padsize);
  1913. }
  1914. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  1915. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1916. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1917. ath_dbg(common, PS,
  1918. "Going back to sleep after having received TX status (0x%lx)\n",
  1919. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1920. PS_WAIT_FOR_CAB |
  1921. PS_WAIT_FOR_PSPOLL_DATA |
  1922. PS_WAIT_FOR_TX_ACK));
  1923. }
  1924. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  1925. __skb_queue_tail(&txq->complete_q, skb);
  1926. ath_txq_skb_done(sc, txq, skb);
  1927. }
  1928. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1929. struct ath_txq *txq, struct list_head *bf_q,
  1930. struct ath_tx_status *ts, int txok)
  1931. {
  1932. struct sk_buff *skb = bf->bf_mpdu;
  1933. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1934. unsigned long flags;
  1935. int tx_flags = 0;
  1936. if (!txok)
  1937. tx_flags |= ATH_TX_ERROR;
  1938. if (ts->ts_status & ATH9K_TXERR_FILT)
  1939. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1940. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1941. bf->bf_buf_addr = 0;
  1942. if (bf->bf_state.bfs_paprd) {
  1943. if (time_after(jiffies,
  1944. bf->bf_state.bfs_paprd_timestamp +
  1945. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1946. dev_kfree_skb_any(skb);
  1947. else
  1948. complete(&sc->paprd_complete);
  1949. } else {
  1950. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1951. ath_tx_complete(sc, skb, tx_flags, txq);
  1952. }
  1953. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1954. * accidentally reference it later.
  1955. */
  1956. bf->bf_mpdu = NULL;
  1957. /*
  1958. * Return the list of ath_buf of this mpdu to free queue
  1959. */
  1960. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1961. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1962. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1963. }
  1964. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1965. struct ath_tx_status *ts, int nframes, int nbad,
  1966. int txok)
  1967. {
  1968. struct sk_buff *skb = bf->bf_mpdu;
  1969. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1970. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1971. struct ieee80211_hw *hw = sc->hw;
  1972. struct ath_hw *ah = sc->sc_ah;
  1973. u8 i, tx_rateindex;
  1974. if (txok)
  1975. tx_info->status.ack_signal = ts->ts_rssi;
  1976. tx_rateindex = ts->ts_rateindex;
  1977. WARN_ON(tx_rateindex >= hw->max_rates);
  1978. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1979. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1980. BUG_ON(nbad > nframes);
  1981. }
  1982. tx_info->status.ampdu_len = nframes;
  1983. tx_info->status.ampdu_ack_len = nframes - nbad;
  1984. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1985. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1986. /*
  1987. * If an underrun error is seen assume it as an excessive
  1988. * retry only if max frame trigger level has been reached
  1989. * (2 KB for single stream, and 4 KB for dual stream).
  1990. * Adjust the long retry as if the frame was tried
  1991. * hw->max_rate_tries times to affect how rate control updates
  1992. * PER for the failed rate.
  1993. * In case of congestion on the bus penalizing this type of
  1994. * underruns should help hardware actually transmit new frames
  1995. * successfully by eventually preferring slower rates.
  1996. * This itself should also alleviate congestion on the bus.
  1997. */
  1998. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1999. ATH9K_TX_DELIM_UNDERRUN)) &&
  2000. ieee80211_is_data(hdr->frame_control) &&
  2001. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  2002. tx_info->status.rates[tx_rateindex].count =
  2003. hw->max_rate_tries;
  2004. }
  2005. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  2006. tx_info->status.rates[i].count = 0;
  2007. tx_info->status.rates[i].idx = -1;
  2008. }
  2009. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  2010. }
  2011. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  2012. {
  2013. struct ath_hw *ah = sc->sc_ah;
  2014. struct ath_common *common = ath9k_hw_common(ah);
  2015. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  2016. struct list_head bf_head;
  2017. struct ath_desc *ds;
  2018. struct ath_tx_status ts;
  2019. int status;
  2020. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  2021. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  2022. txq->axq_link);
  2023. ath_txq_lock(sc, txq);
  2024. for (;;) {
  2025. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  2026. break;
  2027. if (list_empty(&txq->axq_q)) {
  2028. txq->axq_link = NULL;
  2029. ath_txq_schedule(sc, txq);
  2030. break;
  2031. }
  2032. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  2033. /*
  2034. * There is a race condition that a BH gets scheduled
  2035. * after sw writes TxE and before hw re-load the last
  2036. * descriptor to get the newly chained one.
  2037. * Software must keep the last DONE descriptor as a
  2038. * holding descriptor - software does so by marking
  2039. * it with the STALE flag.
  2040. */
  2041. bf_held = NULL;
  2042. if (bf->bf_state.stale) {
  2043. bf_held = bf;
  2044. if (list_is_last(&bf_held->list, &txq->axq_q))
  2045. break;
  2046. bf = list_entry(bf_held->list.next, struct ath_buf,
  2047. list);
  2048. }
  2049. lastbf = bf->bf_lastbf;
  2050. ds = lastbf->bf_desc;
  2051. memset(&ts, 0, sizeof(ts));
  2052. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  2053. if (status == -EINPROGRESS)
  2054. break;
  2055. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  2056. /*
  2057. * Remove ath_buf's of the same transmit unit from txq,
  2058. * however leave the last descriptor back as the holding
  2059. * descriptor for hw.
  2060. */
  2061. lastbf->bf_state.stale = true;
  2062. INIT_LIST_HEAD(&bf_head);
  2063. if (!list_is_singular(&lastbf->list))
  2064. list_cut_position(&bf_head,
  2065. &txq->axq_q, lastbf->list.prev);
  2066. if (bf_held) {
  2067. list_del(&bf_held->list);
  2068. ath_tx_return_buffer(sc, bf_held);
  2069. }
  2070. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  2071. }
  2072. ath_txq_unlock_complete(sc, txq);
  2073. }
  2074. void ath_tx_tasklet(struct ath_softc *sc)
  2075. {
  2076. struct ath_hw *ah = sc->sc_ah;
  2077. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
  2078. int i;
  2079. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  2080. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  2081. ath_tx_processq(sc, &sc->tx.txq[i]);
  2082. }
  2083. }
  2084. void ath_tx_edma_tasklet(struct ath_softc *sc)
  2085. {
  2086. struct ath_tx_status ts;
  2087. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2088. struct ath_hw *ah = sc->sc_ah;
  2089. struct ath_txq *txq;
  2090. struct ath_buf *bf, *lastbf;
  2091. struct list_head bf_head;
  2092. struct list_head *fifo_list;
  2093. int status;
  2094. for (;;) {
  2095. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  2096. break;
  2097. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  2098. if (status == -EINPROGRESS)
  2099. break;
  2100. if (status == -EIO) {
  2101. ath_dbg(common, XMIT, "Error processing tx status\n");
  2102. break;
  2103. }
  2104. /* Process beacon completions separately */
  2105. if (ts.qid == sc->beacon.beaconq) {
  2106. sc->beacon.tx_processed = true;
  2107. sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
  2108. ath9k_csa_is_finished(sc);
  2109. continue;
  2110. }
  2111. txq = &sc->tx.txq[ts.qid];
  2112. ath_txq_lock(sc, txq);
  2113. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  2114. fifo_list = &txq->txq_fifo[txq->txq_tailidx];
  2115. if (list_empty(fifo_list)) {
  2116. ath_txq_unlock(sc, txq);
  2117. return;
  2118. }
  2119. bf = list_first_entry(fifo_list, struct ath_buf, list);
  2120. if (bf->bf_state.stale) {
  2121. list_del(&bf->list);
  2122. ath_tx_return_buffer(sc, bf);
  2123. bf = list_first_entry(fifo_list, struct ath_buf, list);
  2124. }
  2125. lastbf = bf->bf_lastbf;
  2126. INIT_LIST_HEAD(&bf_head);
  2127. if (list_is_last(&lastbf->list, fifo_list)) {
  2128. list_splice_tail_init(fifo_list, &bf_head);
  2129. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  2130. if (!list_empty(&txq->axq_q)) {
  2131. struct list_head bf_q;
  2132. INIT_LIST_HEAD(&bf_q);
  2133. txq->axq_link = NULL;
  2134. list_splice_tail_init(&txq->axq_q, &bf_q);
  2135. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  2136. }
  2137. } else {
  2138. lastbf->bf_state.stale = true;
  2139. if (bf != lastbf)
  2140. list_cut_position(&bf_head, fifo_list,
  2141. lastbf->list.prev);
  2142. }
  2143. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  2144. ath_txq_unlock_complete(sc, txq);
  2145. }
  2146. }
  2147. /*****************/
  2148. /* Init, Cleanup */
  2149. /*****************/
  2150. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  2151. {
  2152. struct ath_descdma *dd = &sc->txsdma;
  2153. u8 txs_len = sc->sc_ah->caps.txs_len;
  2154. dd->dd_desc_len = size * txs_len;
  2155. dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
  2156. &dd->dd_desc_paddr, GFP_KERNEL);
  2157. if (!dd->dd_desc)
  2158. return -ENOMEM;
  2159. return 0;
  2160. }
  2161. static int ath_tx_edma_init(struct ath_softc *sc)
  2162. {
  2163. int err;
  2164. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  2165. if (!err)
  2166. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  2167. sc->txsdma.dd_desc_paddr,
  2168. ATH_TXSTATUS_RING_SIZE);
  2169. return err;
  2170. }
  2171. int ath_tx_init(struct ath_softc *sc, int nbufs)
  2172. {
  2173. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2174. int error = 0;
  2175. spin_lock_init(&sc->tx.txbuflock);
  2176. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  2177. "tx", nbufs, 1, 1);
  2178. if (error != 0) {
  2179. ath_err(common,
  2180. "Failed to allocate tx descriptors: %d\n", error);
  2181. return error;
  2182. }
  2183. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  2184. "beacon", ATH_BCBUF, 1, 1);
  2185. if (error != 0) {
  2186. ath_err(common,
  2187. "Failed to allocate beacon descriptors: %d\n", error);
  2188. return error;
  2189. }
  2190. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  2191. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  2192. error = ath_tx_edma_init(sc);
  2193. return error;
  2194. }
  2195. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  2196. {
  2197. struct ath_atx_tid *tid;
  2198. struct ath_atx_ac *ac;
  2199. int tidno, acno;
  2200. for (tidno = 0, tid = &an->tid[tidno];
  2201. tidno < IEEE80211_NUM_TIDS;
  2202. tidno++, tid++) {
  2203. tid->an = an;
  2204. tid->tidno = tidno;
  2205. tid->seq_start = tid->seq_next = 0;
  2206. tid->baw_size = WME_MAX_BA;
  2207. tid->baw_head = tid->baw_tail = 0;
  2208. tid->sched = false;
  2209. tid->paused = false;
  2210. tid->active = false;
  2211. __skb_queue_head_init(&tid->buf_q);
  2212. __skb_queue_head_init(&tid->retry_q);
  2213. acno = TID_TO_WME_AC(tidno);
  2214. tid->ac = &an->ac[acno];
  2215. }
  2216. for (acno = 0, ac = &an->ac[acno];
  2217. acno < IEEE80211_NUM_ACS; acno++, ac++) {
  2218. ac->sched = false;
  2219. ac->clear_ps_filter = true;
  2220. ac->txq = sc->tx.txq_map[acno];
  2221. INIT_LIST_HEAD(&ac->tid_q);
  2222. }
  2223. }
  2224. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2225. {
  2226. struct ath_atx_ac *ac;
  2227. struct ath_atx_tid *tid;
  2228. struct ath_txq *txq;
  2229. int tidno;
  2230. for (tidno = 0, tid = &an->tid[tidno];
  2231. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  2232. ac = tid->ac;
  2233. txq = ac->txq;
  2234. ath_txq_lock(sc, txq);
  2235. if (tid->sched) {
  2236. list_del(&tid->list);
  2237. tid->sched = false;
  2238. }
  2239. if (ac->sched) {
  2240. list_del(&ac->list);
  2241. tid->ac->sched = false;
  2242. }
  2243. ath_tid_drain(sc, txq, tid);
  2244. tid->active = false;
  2245. ath_txq_unlock(sc, txq);
  2246. }
  2247. }