init.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  17. #include <linux/dma-mapping.h>
  18. #include <linux/slab.h>
  19. #include <linux/ath9k_platform.h>
  20. #include <linux/module.h>
  21. #include <linux/relay.h>
  22. #include <net/ieee80211_radiotap.h>
  23. #include "ath9k.h"
  24. struct ath9k_eeprom_ctx {
  25. struct completion complete;
  26. struct ath_hw *ah;
  27. };
  28. static char *dev_info = "ath9k";
  29. MODULE_AUTHOR("Atheros Communications");
  30. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  31. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  32. MODULE_LICENSE("Dual BSD/GPL");
  33. static unsigned int ath9k_debug = ATH_DBG_DEFAULT;
  34. module_param_named(debug, ath9k_debug, uint, 0);
  35. MODULE_PARM_DESC(debug, "Debugging mask");
  36. int ath9k_modparam_nohwcrypt;
  37. module_param_named(nohwcrypt, ath9k_modparam_nohwcrypt, int, 0444);
  38. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
  39. int led_blink;
  40. module_param_named(blink, led_blink, int, 0444);
  41. MODULE_PARM_DESC(blink, "Enable LED blink on activity");
  42. static int ath9k_btcoex_enable;
  43. module_param_named(btcoex_enable, ath9k_btcoex_enable, int, 0444);
  44. MODULE_PARM_DESC(btcoex_enable, "Enable wifi-BT coexistence");
  45. static int ath9k_bt_ant_diversity;
  46. module_param_named(bt_ant_diversity, ath9k_bt_ant_diversity, int, 0444);
  47. MODULE_PARM_DESC(bt_ant_diversity, "Enable WLAN/BT RX antenna diversity");
  48. bool is_ath9k_unloaded;
  49. /* We use the hw_value as an index into our private channel structure */
  50. #define CHAN2G(_freq, _idx) { \
  51. .band = IEEE80211_BAND_2GHZ, \
  52. .center_freq = (_freq), \
  53. .hw_value = (_idx), \
  54. .max_power = 20, \
  55. }
  56. #define CHAN5G(_freq, _idx) { \
  57. .band = IEEE80211_BAND_5GHZ, \
  58. .center_freq = (_freq), \
  59. .hw_value = (_idx), \
  60. .max_power = 20, \
  61. }
  62. /* Some 2 GHz radios are actually tunable on 2312-2732
  63. * on 5 MHz steps, we support the channels which we know
  64. * we have calibration data for all cards though to make
  65. * this static */
  66. static const struct ieee80211_channel ath9k_2ghz_chantable[] = {
  67. CHAN2G(2412, 0), /* Channel 1 */
  68. CHAN2G(2417, 1), /* Channel 2 */
  69. CHAN2G(2422, 2), /* Channel 3 */
  70. CHAN2G(2427, 3), /* Channel 4 */
  71. CHAN2G(2432, 4), /* Channel 5 */
  72. CHAN2G(2437, 5), /* Channel 6 */
  73. CHAN2G(2442, 6), /* Channel 7 */
  74. CHAN2G(2447, 7), /* Channel 8 */
  75. CHAN2G(2452, 8), /* Channel 9 */
  76. CHAN2G(2457, 9), /* Channel 10 */
  77. CHAN2G(2462, 10), /* Channel 11 */
  78. CHAN2G(2467, 11), /* Channel 12 */
  79. CHAN2G(2472, 12), /* Channel 13 */
  80. CHAN2G(2484, 13), /* Channel 14 */
  81. };
  82. /* Some 5 GHz radios are actually tunable on XXXX-YYYY
  83. * on 5 MHz steps, we support the channels which we know
  84. * we have calibration data for all cards though to make
  85. * this static */
  86. static const struct ieee80211_channel ath9k_5ghz_chantable[] = {
  87. /* _We_ call this UNII 1 */
  88. CHAN5G(5180, 14), /* Channel 36 */
  89. CHAN5G(5200, 15), /* Channel 40 */
  90. CHAN5G(5220, 16), /* Channel 44 */
  91. CHAN5G(5240, 17), /* Channel 48 */
  92. /* _We_ call this UNII 2 */
  93. CHAN5G(5260, 18), /* Channel 52 */
  94. CHAN5G(5280, 19), /* Channel 56 */
  95. CHAN5G(5300, 20), /* Channel 60 */
  96. CHAN5G(5320, 21), /* Channel 64 */
  97. /* _We_ call this "Middle band" */
  98. CHAN5G(5500, 22), /* Channel 100 */
  99. CHAN5G(5520, 23), /* Channel 104 */
  100. CHAN5G(5540, 24), /* Channel 108 */
  101. CHAN5G(5560, 25), /* Channel 112 */
  102. CHAN5G(5580, 26), /* Channel 116 */
  103. CHAN5G(5600, 27), /* Channel 120 */
  104. CHAN5G(5620, 28), /* Channel 124 */
  105. CHAN5G(5640, 29), /* Channel 128 */
  106. CHAN5G(5660, 30), /* Channel 132 */
  107. CHAN5G(5680, 31), /* Channel 136 */
  108. CHAN5G(5700, 32), /* Channel 140 */
  109. /* _We_ call this UNII 3 */
  110. CHAN5G(5745, 33), /* Channel 149 */
  111. CHAN5G(5765, 34), /* Channel 153 */
  112. CHAN5G(5785, 35), /* Channel 157 */
  113. CHAN5G(5805, 36), /* Channel 161 */
  114. CHAN5G(5825, 37), /* Channel 165 */
  115. };
  116. /* Atheros hardware rate code addition for short premble */
  117. #define SHPCHECK(__hw_rate, __flags) \
  118. ((__flags & IEEE80211_RATE_SHORT_PREAMBLE) ? (__hw_rate | 0x04 ) : 0)
  119. #define RATE(_bitrate, _hw_rate, _flags) { \
  120. .bitrate = (_bitrate), \
  121. .flags = (_flags), \
  122. .hw_value = (_hw_rate), \
  123. .hw_value_short = (SHPCHECK(_hw_rate, _flags)) \
  124. }
  125. static struct ieee80211_rate ath9k_legacy_rates[] = {
  126. RATE(10, 0x1b, 0),
  127. RATE(20, 0x1a, IEEE80211_RATE_SHORT_PREAMBLE),
  128. RATE(55, 0x19, IEEE80211_RATE_SHORT_PREAMBLE),
  129. RATE(110, 0x18, IEEE80211_RATE_SHORT_PREAMBLE),
  130. RATE(60, 0x0b, (IEEE80211_RATE_SUPPORTS_5MHZ |
  131. IEEE80211_RATE_SUPPORTS_10MHZ)),
  132. RATE(90, 0x0f, (IEEE80211_RATE_SUPPORTS_5MHZ |
  133. IEEE80211_RATE_SUPPORTS_10MHZ)),
  134. RATE(120, 0x0a, (IEEE80211_RATE_SUPPORTS_5MHZ |
  135. IEEE80211_RATE_SUPPORTS_10MHZ)),
  136. RATE(180, 0x0e, (IEEE80211_RATE_SUPPORTS_5MHZ |
  137. IEEE80211_RATE_SUPPORTS_10MHZ)),
  138. RATE(240, 0x09, (IEEE80211_RATE_SUPPORTS_5MHZ |
  139. IEEE80211_RATE_SUPPORTS_10MHZ)),
  140. RATE(360, 0x0d, (IEEE80211_RATE_SUPPORTS_5MHZ |
  141. IEEE80211_RATE_SUPPORTS_10MHZ)),
  142. RATE(480, 0x08, (IEEE80211_RATE_SUPPORTS_5MHZ |
  143. IEEE80211_RATE_SUPPORTS_10MHZ)),
  144. RATE(540, 0x0c, (IEEE80211_RATE_SUPPORTS_5MHZ |
  145. IEEE80211_RATE_SUPPORTS_10MHZ)),
  146. };
  147. #ifdef CONFIG_MAC80211_LEDS
  148. static const struct ieee80211_tpt_blink ath9k_tpt_blink[] = {
  149. { .throughput = 0 * 1024, .blink_time = 334 },
  150. { .throughput = 1 * 1024, .blink_time = 260 },
  151. { .throughput = 5 * 1024, .blink_time = 220 },
  152. { .throughput = 10 * 1024, .blink_time = 190 },
  153. { .throughput = 20 * 1024, .blink_time = 170 },
  154. { .throughput = 50 * 1024, .blink_time = 150 },
  155. { .throughput = 70 * 1024, .blink_time = 130 },
  156. { .throughput = 100 * 1024, .blink_time = 110 },
  157. { .throughput = 200 * 1024, .blink_time = 80 },
  158. { .throughput = 300 * 1024, .blink_time = 50 },
  159. };
  160. #endif
  161. static void ath9k_deinit_softc(struct ath_softc *sc);
  162. /*
  163. * Read and write, they both share the same lock. We do this to serialize
  164. * reads and writes on Atheros 802.11n PCI devices only. This is required
  165. * as the FIFO on these devices can only accept sanely 2 requests.
  166. */
  167. static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
  168. {
  169. struct ath_hw *ah = (struct ath_hw *) hw_priv;
  170. struct ath_common *common = ath9k_hw_common(ah);
  171. struct ath_softc *sc = (struct ath_softc *) common->priv;
  172. if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_ON) {
  173. unsigned long flags;
  174. spin_lock_irqsave(&sc->sc_serial_rw, flags);
  175. iowrite32(val, sc->mem + reg_offset);
  176. spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
  177. } else
  178. iowrite32(val, sc->mem + reg_offset);
  179. }
  180. static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset)
  181. {
  182. struct ath_hw *ah = (struct ath_hw *) hw_priv;
  183. struct ath_common *common = ath9k_hw_common(ah);
  184. struct ath_softc *sc = (struct ath_softc *) common->priv;
  185. u32 val;
  186. if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_ON) {
  187. unsigned long flags;
  188. spin_lock_irqsave(&sc->sc_serial_rw, flags);
  189. val = ioread32(sc->mem + reg_offset);
  190. spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
  191. } else
  192. val = ioread32(sc->mem + reg_offset);
  193. return val;
  194. }
  195. static unsigned int __ath9k_reg_rmw(struct ath_softc *sc, u32 reg_offset,
  196. u32 set, u32 clr)
  197. {
  198. u32 val;
  199. val = ioread32(sc->mem + reg_offset);
  200. val &= ~clr;
  201. val |= set;
  202. iowrite32(val, sc->mem + reg_offset);
  203. return val;
  204. }
  205. static unsigned int ath9k_reg_rmw(void *hw_priv, u32 reg_offset, u32 set, u32 clr)
  206. {
  207. struct ath_hw *ah = (struct ath_hw *) hw_priv;
  208. struct ath_common *common = ath9k_hw_common(ah);
  209. struct ath_softc *sc = (struct ath_softc *) common->priv;
  210. unsigned long uninitialized_var(flags);
  211. u32 val;
  212. if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_ON) {
  213. spin_lock_irqsave(&sc->sc_serial_rw, flags);
  214. val = __ath9k_reg_rmw(sc, reg_offset, set, clr);
  215. spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
  216. } else
  217. val = __ath9k_reg_rmw(sc, reg_offset, set, clr);
  218. return val;
  219. }
  220. /**************************/
  221. /* Initialization */
  222. /**************************/
  223. static void setup_ht_cap(struct ath_softc *sc,
  224. struct ieee80211_sta_ht_cap *ht_info)
  225. {
  226. struct ath_hw *ah = sc->sc_ah;
  227. struct ath_common *common = ath9k_hw_common(ah);
  228. u8 tx_streams, rx_streams;
  229. int i, max_streams;
  230. ht_info->ht_supported = true;
  231. ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
  232. IEEE80211_HT_CAP_SM_PS |
  233. IEEE80211_HT_CAP_SGI_40 |
  234. IEEE80211_HT_CAP_DSSSCCK40;
  235. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_LDPC)
  236. ht_info->cap |= IEEE80211_HT_CAP_LDPC_CODING;
  237. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
  238. ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
  239. ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
  240. ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
  241. if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah))
  242. max_streams = 1;
  243. else if (AR_SREV_9462(ah))
  244. max_streams = 2;
  245. else if (AR_SREV_9300_20_OR_LATER(ah))
  246. max_streams = 3;
  247. else
  248. max_streams = 2;
  249. if (AR_SREV_9280_20_OR_LATER(ah)) {
  250. if (max_streams >= 2)
  251. ht_info->cap |= IEEE80211_HT_CAP_TX_STBC;
  252. ht_info->cap |= (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
  253. }
  254. /* set up supported mcs set */
  255. memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
  256. tx_streams = ath9k_cmn_count_streams(ah->txchainmask, max_streams);
  257. rx_streams = ath9k_cmn_count_streams(ah->rxchainmask, max_streams);
  258. ath_dbg(common, CONFIG, "TX streams %d, RX streams: %d\n",
  259. tx_streams, rx_streams);
  260. if (tx_streams != rx_streams) {
  261. ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
  262. ht_info->mcs.tx_params |= ((tx_streams - 1) <<
  263. IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
  264. }
  265. for (i = 0; i < rx_streams; i++)
  266. ht_info->mcs.rx_mask[i] = 0xff;
  267. ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
  268. }
  269. static void ath9k_reg_notifier(struct wiphy *wiphy,
  270. struct regulatory_request *request)
  271. {
  272. struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
  273. struct ath_softc *sc = hw->priv;
  274. struct ath_hw *ah = sc->sc_ah;
  275. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  276. ath_reg_notifier_apply(wiphy, request, reg);
  277. /* Set tx power */
  278. if (ah->curchan) {
  279. sc->config.txpowlimit = 2 * ah->curchan->chan->max_power;
  280. ath9k_ps_wakeup(sc);
  281. ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit, false);
  282. sc->curtxpow = ath9k_hw_regulatory(ah)->power_limit;
  283. /* synchronize DFS detector if regulatory domain changed */
  284. if (sc->dfs_detector != NULL)
  285. sc->dfs_detector->set_dfs_domain(sc->dfs_detector,
  286. request->dfs_region);
  287. ath9k_ps_restore(sc);
  288. }
  289. }
  290. /*
  291. * This function will allocate both the DMA descriptor structure, and the
  292. * buffers it contains. These are used to contain the descriptors used
  293. * by the system.
  294. */
  295. int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
  296. struct list_head *head, const char *name,
  297. int nbuf, int ndesc, bool is_tx)
  298. {
  299. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  300. u8 *ds;
  301. int i, bsize, desc_len;
  302. ath_dbg(common, CONFIG, "%s DMA: %u buffers %u desc/buf\n",
  303. name, nbuf, ndesc);
  304. INIT_LIST_HEAD(head);
  305. if (is_tx)
  306. desc_len = sc->sc_ah->caps.tx_desc_len;
  307. else
  308. desc_len = sizeof(struct ath_desc);
  309. /* ath_desc must be a multiple of DWORDs */
  310. if ((desc_len % 4) != 0) {
  311. ath_err(common, "ath_desc not DWORD aligned\n");
  312. BUG_ON((desc_len % 4) != 0);
  313. return -ENOMEM;
  314. }
  315. dd->dd_desc_len = desc_len * nbuf * ndesc;
  316. /*
  317. * Need additional DMA memory because we can't use
  318. * descriptors that cross the 4K page boundary. Assume
  319. * one skipped descriptor per 4K page.
  320. */
  321. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
  322. u32 ndesc_skipped =
  323. ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
  324. u32 dma_len;
  325. while (ndesc_skipped) {
  326. dma_len = ndesc_skipped * desc_len;
  327. dd->dd_desc_len += dma_len;
  328. ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
  329. }
  330. }
  331. /* allocate descriptors */
  332. dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
  333. &dd->dd_desc_paddr, GFP_KERNEL);
  334. if (!dd->dd_desc)
  335. return -ENOMEM;
  336. ds = (u8 *) dd->dd_desc;
  337. ath_dbg(common, CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
  338. name, ds, (u32) dd->dd_desc_len,
  339. ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
  340. /* allocate buffers */
  341. if (is_tx) {
  342. struct ath_buf *bf;
  343. bsize = sizeof(struct ath_buf) * nbuf;
  344. bf = devm_kzalloc(sc->dev, bsize, GFP_KERNEL);
  345. if (!bf)
  346. return -ENOMEM;
  347. for (i = 0; i < nbuf; i++, bf++, ds += (desc_len * ndesc)) {
  348. bf->bf_desc = ds;
  349. bf->bf_daddr = DS2PHYS(dd, ds);
  350. if (!(sc->sc_ah->caps.hw_caps &
  351. ATH9K_HW_CAP_4KB_SPLITTRANS)) {
  352. /*
  353. * Skip descriptor addresses which can cause 4KB
  354. * boundary crossing (addr + length) with a 32 dword
  355. * descriptor fetch.
  356. */
  357. while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
  358. BUG_ON((caddr_t) bf->bf_desc >=
  359. ((caddr_t) dd->dd_desc +
  360. dd->dd_desc_len));
  361. ds += (desc_len * ndesc);
  362. bf->bf_desc = ds;
  363. bf->bf_daddr = DS2PHYS(dd, ds);
  364. }
  365. }
  366. list_add_tail(&bf->list, head);
  367. }
  368. } else {
  369. struct ath_rxbuf *bf;
  370. bsize = sizeof(struct ath_rxbuf) * nbuf;
  371. bf = devm_kzalloc(sc->dev, bsize, GFP_KERNEL);
  372. if (!bf)
  373. return -ENOMEM;
  374. for (i = 0; i < nbuf; i++, bf++, ds += (desc_len * ndesc)) {
  375. bf->bf_desc = ds;
  376. bf->bf_daddr = DS2PHYS(dd, ds);
  377. if (!(sc->sc_ah->caps.hw_caps &
  378. ATH9K_HW_CAP_4KB_SPLITTRANS)) {
  379. /*
  380. * Skip descriptor addresses which can cause 4KB
  381. * boundary crossing (addr + length) with a 32 dword
  382. * descriptor fetch.
  383. */
  384. while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
  385. BUG_ON((caddr_t) bf->bf_desc >=
  386. ((caddr_t) dd->dd_desc +
  387. dd->dd_desc_len));
  388. ds += (desc_len * ndesc);
  389. bf->bf_desc = ds;
  390. bf->bf_daddr = DS2PHYS(dd, ds);
  391. }
  392. }
  393. list_add_tail(&bf->list, head);
  394. }
  395. }
  396. return 0;
  397. }
  398. static int ath9k_init_queues(struct ath_softc *sc)
  399. {
  400. int i = 0;
  401. sc->beacon.beaconq = ath9k_hw_beaconq_setup(sc->sc_ah);
  402. sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
  403. ath_cabq_update(sc);
  404. sc->tx.uapsdq = ath_txq_setup(sc, ATH9K_TX_QUEUE_UAPSD, 0);
  405. for (i = 0; i < IEEE80211_NUM_ACS; i++) {
  406. sc->tx.txq_map[i] = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, i);
  407. sc->tx.txq_map[i]->mac80211_qnum = i;
  408. sc->tx.txq_max_pending[i] = ATH_MAX_QDEPTH;
  409. }
  410. return 0;
  411. }
  412. static int ath9k_init_channels_rates(struct ath_softc *sc)
  413. {
  414. void *channels;
  415. BUILD_BUG_ON(ARRAY_SIZE(ath9k_2ghz_chantable) +
  416. ARRAY_SIZE(ath9k_5ghz_chantable) !=
  417. ATH9K_NUM_CHANNELS);
  418. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ) {
  419. channels = devm_kzalloc(sc->dev,
  420. sizeof(ath9k_2ghz_chantable), GFP_KERNEL);
  421. if (!channels)
  422. return -ENOMEM;
  423. memcpy(channels, ath9k_2ghz_chantable,
  424. sizeof(ath9k_2ghz_chantable));
  425. sc->sbands[IEEE80211_BAND_2GHZ].channels = channels;
  426. sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
  427. sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
  428. ARRAY_SIZE(ath9k_2ghz_chantable);
  429. sc->sbands[IEEE80211_BAND_2GHZ].bitrates = ath9k_legacy_rates;
  430. sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates =
  431. ARRAY_SIZE(ath9k_legacy_rates);
  432. }
  433. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ) {
  434. channels = devm_kzalloc(sc->dev,
  435. sizeof(ath9k_5ghz_chantable), GFP_KERNEL);
  436. if (!channels)
  437. return -ENOMEM;
  438. memcpy(channels, ath9k_5ghz_chantable,
  439. sizeof(ath9k_5ghz_chantable));
  440. sc->sbands[IEEE80211_BAND_5GHZ].channels = channels;
  441. sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
  442. sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
  443. ARRAY_SIZE(ath9k_5ghz_chantable);
  444. sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
  445. ath9k_legacy_rates + 4;
  446. sc->sbands[IEEE80211_BAND_5GHZ].n_bitrates =
  447. ARRAY_SIZE(ath9k_legacy_rates) - 4;
  448. }
  449. return 0;
  450. }
  451. static void ath9k_init_misc(struct ath_softc *sc)
  452. {
  453. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  454. int i = 0;
  455. setup_timer(&common->ani.timer, ath_ani_calibrate, (unsigned long)sc);
  456. sc->last_rssi = ATH_RSSI_DUMMY_MARKER;
  457. sc->config.txpowlimit = ATH_TXPOWER_MAX;
  458. memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN);
  459. sc->beacon.slottime = ATH9K_SLOT_TIME_9;
  460. for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
  461. sc->beacon.bslot[i] = NULL;
  462. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)
  463. sc->ant_comb.count = ATH_ANT_DIV_COMB_INIT_COUNT;
  464. sc->spec_config.enabled = 0;
  465. sc->spec_config.short_repeat = true;
  466. sc->spec_config.count = 8;
  467. sc->spec_config.endless = false;
  468. sc->spec_config.period = 0xFF;
  469. sc->spec_config.fft_period = 0xF;
  470. }
  471. static void ath9k_init_platform(struct ath_softc *sc)
  472. {
  473. struct ath_hw *ah = sc->sc_ah;
  474. struct ath9k_hw_capabilities *pCap = &ah->caps;
  475. struct ath_common *common = ath9k_hw_common(ah);
  476. if (common->bus_ops->ath_bus_type != ATH_PCI)
  477. return;
  478. if (sc->driver_data & (ATH9K_PCI_CUS198 |
  479. ATH9K_PCI_CUS230)) {
  480. ah->config.xlna_gpio = 9;
  481. ah->config.xatten_margin_cfg = true;
  482. ah->config.alt_mingainidx = true;
  483. ah->config.ant_ctrl_comm2g_switch_enable = 0x000BBB88;
  484. sc->ant_comb.low_rssi_thresh = 20;
  485. sc->ant_comb.fast_div_bias = 3;
  486. ath_info(common, "Set parameters for %s\n",
  487. (sc->driver_data & ATH9K_PCI_CUS198) ?
  488. "CUS198" : "CUS230");
  489. }
  490. if (sc->driver_data & ATH9K_PCI_CUS217)
  491. ath_info(common, "CUS217 card detected\n");
  492. if (sc->driver_data & ATH9K_PCI_CUS252)
  493. ath_info(common, "CUS252 card detected\n");
  494. if (sc->driver_data & ATH9K_PCI_AR9565_1ANT)
  495. ath_info(common, "WB335 1-ANT card detected\n");
  496. if (sc->driver_data & ATH9K_PCI_AR9565_2ANT)
  497. ath_info(common, "WB335 2-ANT card detected\n");
  498. /*
  499. * Some WB335 cards do not support antenna diversity. Since
  500. * we use a hardcoded value for AR9565 instead of using the
  501. * EEPROM/OTP data, remove the combining feature from
  502. * the HW capabilities bitmap.
  503. */
  504. if (sc->driver_data & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
  505. if (!(sc->driver_data & ATH9K_PCI_BT_ANT_DIV))
  506. pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB;
  507. }
  508. if (sc->driver_data & ATH9K_PCI_BT_ANT_DIV) {
  509. pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV;
  510. ath_info(common, "Set BT/WLAN RX diversity capability\n");
  511. }
  512. if (sc->driver_data & ATH9K_PCI_D3_L1_WAR) {
  513. ah->config.pcie_waen = 0x0040473b;
  514. ath_info(common, "Enable WAR for ASPM D3/L1\n");
  515. }
  516. }
  517. static void ath9k_eeprom_request_cb(const struct firmware *eeprom_blob,
  518. void *ctx)
  519. {
  520. struct ath9k_eeprom_ctx *ec = ctx;
  521. if (eeprom_blob)
  522. ec->ah->eeprom_blob = eeprom_blob;
  523. complete(&ec->complete);
  524. }
  525. static int ath9k_eeprom_request(struct ath_softc *sc, const char *name)
  526. {
  527. struct ath9k_eeprom_ctx ec;
  528. struct ath_hw *ah = ah = sc->sc_ah;
  529. int err;
  530. /* try to load the EEPROM content asynchronously */
  531. init_completion(&ec.complete);
  532. ec.ah = sc->sc_ah;
  533. err = request_firmware_nowait(THIS_MODULE, 1, name, sc->dev, GFP_KERNEL,
  534. &ec, ath9k_eeprom_request_cb);
  535. if (err < 0) {
  536. ath_err(ath9k_hw_common(ah),
  537. "EEPROM request failed\n");
  538. return err;
  539. }
  540. wait_for_completion(&ec.complete);
  541. if (!ah->eeprom_blob) {
  542. ath_err(ath9k_hw_common(ah),
  543. "Unable to load EEPROM file %s\n", name);
  544. return -EINVAL;
  545. }
  546. return 0;
  547. }
  548. static void ath9k_eeprom_release(struct ath_softc *sc)
  549. {
  550. release_firmware(sc->sc_ah->eeprom_blob);
  551. }
  552. static int ath9k_init_softc(u16 devid, struct ath_softc *sc,
  553. const struct ath_bus_ops *bus_ops)
  554. {
  555. struct ath9k_platform_data *pdata = sc->dev->platform_data;
  556. struct ath_hw *ah = NULL;
  557. struct ath9k_hw_capabilities *pCap;
  558. struct ath_common *common;
  559. int ret = 0, i;
  560. int csz = 0;
  561. ah = devm_kzalloc(sc->dev, sizeof(struct ath_hw), GFP_KERNEL);
  562. if (!ah)
  563. return -ENOMEM;
  564. ah->dev = sc->dev;
  565. ah->hw = sc->hw;
  566. ah->hw_version.devid = devid;
  567. ah->reg_ops.read = ath9k_ioread32;
  568. ah->reg_ops.write = ath9k_iowrite32;
  569. ah->reg_ops.rmw = ath9k_reg_rmw;
  570. atomic_set(&ah->intr_ref_cnt, -1);
  571. sc->sc_ah = ah;
  572. pCap = &ah->caps;
  573. sc->dfs_detector = dfs_pattern_detector_init(ah, NL80211_DFS_UNSET);
  574. if (!pdata) {
  575. ah->ah_flags |= AH_USE_EEPROM;
  576. sc->sc_ah->led_pin = -1;
  577. } else {
  578. sc->sc_ah->gpio_mask = pdata->gpio_mask;
  579. sc->sc_ah->gpio_val = pdata->gpio_val;
  580. sc->sc_ah->led_pin = pdata->led_pin;
  581. ah->is_clk_25mhz = pdata->is_clk_25mhz;
  582. ah->get_mac_revision = pdata->get_mac_revision;
  583. ah->external_reset = pdata->external_reset;
  584. }
  585. common = ath9k_hw_common(ah);
  586. common->ops = &ah->reg_ops;
  587. common->bus_ops = bus_ops;
  588. common->ah = ah;
  589. common->hw = sc->hw;
  590. common->priv = sc;
  591. common->debug_mask = ath9k_debug;
  592. common->btcoex_enabled = ath9k_btcoex_enable == 1;
  593. common->disable_ani = false;
  594. /*
  595. * Platform quirks.
  596. */
  597. ath9k_init_platform(sc);
  598. /*
  599. * Enable WLAN/BT RX Antenna diversity only when:
  600. *
  601. * - BTCOEX is disabled.
  602. * - the user manually requests the feature.
  603. * - the HW cap is set using the platform data.
  604. */
  605. if (!common->btcoex_enabled && ath9k_bt_ant_diversity &&
  606. (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV))
  607. common->bt_ant_diversity = 1;
  608. spin_lock_init(&common->cc_lock);
  609. spin_lock_init(&sc->sc_serial_rw);
  610. spin_lock_init(&sc->sc_pm_lock);
  611. mutex_init(&sc->mutex);
  612. tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
  613. tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
  614. (unsigned long)sc);
  615. INIT_WORK(&sc->hw_reset_work, ath_reset_work);
  616. INIT_WORK(&sc->hw_check_work, ath_hw_check);
  617. INIT_WORK(&sc->paprd_work, ath_paprd_calibrate);
  618. INIT_DELAYED_WORK(&sc->hw_pll_work, ath_hw_pll_work);
  619. setup_timer(&sc->rx_poll_timer, ath_rx_poll, (unsigned long)sc);
  620. /*
  621. * Cache line size is used to size and align various
  622. * structures used to communicate with the hardware.
  623. */
  624. ath_read_cachesize(common, &csz);
  625. common->cachelsz = csz << 2; /* convert to bytes */
  626. if (pdata && pdata->eeprom_name) {
  627. ret = ath9k_eeprom_request(sc, pdata->eeprom_name);
  628. if (ret)
  629. return ret;
  630. }
  631. /* Initializes the hardware for all supported chipsets */
  632. ret = ath9k_hw_init(ah);
  633. if (ret)
  634. goto err_hw;
  635. if (pdata && pdata->macaddr)
  636. memcpy(common->macaddr, pdata->macaddr, ETH_ALEN);
  637. ret = ath9k_init_queues(sc);
  638. if (ret)
  639. goto err_queues;
  640. ret = ath9k_init_btcoex(sc);
  641. if (ret)
  642. goto err_btcoex;
  643. ret = ath9k_init_channels_rates(sc);
  644. if (ret)
  645. goto err_btcoex;
  646. ath9k_cmn_init_crypto(sc->sc_ah);
  647. ath9k_init_misc(sc);
  648. ath_fill_led_pin(sc);
  649. if (common->bus_ops->aspm_init)
  650. common->bus_ops->aspm_init(common);
  651. return 0;
  652. err_btcoex:
  653. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  654. if (ATH_TXQ_SETUP(sc, i))
  655. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  656. err_queues:
  657. ath9k_hw_deinit(ah);
  658. err_hw:
  659. ath9k_eeprom_release(sc);
  660. return ret;
  661. }
  662. static void ath9k_init_band_txpower(struct ath_softc *sc, int band)
  663. {
  664. struct ieee80211_supported_band *sband;
  665. struct ieee80211_channel *chan;
  666. struct ath_hw *ah = sc->sc_ah;
  667. struct cfg80211_chan_def chandef;
  668. int i;
  669. sband = &sc->sbands[band];
  670. for (i = 0; i < sband->n_channels; i++) {
  671. chan = &sband->channels[i];
  672. ah->curchan = &ah->channels[chan->hw_value];
  673. cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_HT20);
  674. ath9k_cmn_get_channel(sc->hw, ah, &chandef);
  675. ath9k_hw_set_txpowerlimit(ah, MAX_RATE_POWER, true);
  676. }
  677. }
  678. static void ath9k_init_txpower_limits(struct ath_softc *sc)
  679. {
  680. struct ath_hw *ah = sc->sc_ah;
  681. struct ath9k_channel *curchan = ah->curchan;
  682. if (ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
  683. ath9k_init_band_txpower(sc, IEEE80211_BAND_2GHZ);
  684. if (ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
  685. ath9k_init_band_txpower(sc, IEEE80211_BAND_5GHZ);
  686. ah->curchan = curchan;
  687. }
  688. void ath9k_reload_chainmask_settings(struct ath_softc *sc)
  689. {
  690. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT))
  691. return;
  692. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
  693. setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
  694. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
  695. setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
  696. }
  697. static const struct ieee80211_iface_limit if_limits[] = {
  698. { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) |
  699. BIT(NL80211_IFTYPE_P2P_CLIENT) |
  700. BIT(NL80211_IFTYPE_WDS) },
  701. { .max = 8, .types =
  702. #ifdef CONFIG_MAC80211_MESH
  703. BIT(NL80211_IFTYPE_MESH_POINT) |
  704. #endif
  705. BIT(NL80211_IFTYPE_AP) |
  706. BIT(NL80211_IFTYPE_P2P_GO) },
  707. };
  708. static const struct ieee80211_iface_limit if_dfs_limits[] = {
  709. { .max = 1, .types = BIT(NL80211_IFTYPE_AP) },
  710. };
  711. static const struct ieee80211_iface_combination if_comb[] = {
  712. {
  713. .limits = if_limits,
  714. .n_limits = ARRAY_SIZE(if_limits),
  715. .max_interfaces = 2048,
  716. .num_different_channels = 1,
  717. .beacon_int_infra_match = true,
  718. },
  719. {
  720. .limits = if_dfs_limits,
  721. .n_limits = ARRAY_SIZE(if_dfs_limits),
  722. .max_interfaces = 1,
  723. .num_different_channels = 1,
  724. .beacon_int_infra_match = true,
  725. .radar_detect_widths = BIT(NL80211_CHAN_NO_HT) |
  726. BIT(NL80211_CHAN_HT20),
  727. }
  728. };
  729. #ifdef CONFIG_PM
  730. static const struct wiphy_wowlan_support ath9k_wowlan_support = {
  731. .flags = WIPHY_WOWLAN_MAGIC_PKT | WIPHY_WOWLAN_DISCONNECT,
  732. .n_patterns = MAX_NUM_USER_PATTERN,
  733. .pattern_min_len = 1,
  734. .pattern_max_len = MAX_PATTERN_SIZE,
  735. };
  736. #endif
  737. void ath9k_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
  738. {
  739. struct ath_hw *ah = sc->sc_ah;
  740. struct ath_common *common = ath9k_hw_common(ah);
  741. hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
  742. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  743. IEEE80211_HW_SIGNAL_DBM |
  744. IEEE80211_HW_SUPPORTS_PS |
  745. IEEE80211_HW_PS_NULLFUNC_STACK |
  746. IEEE80211_HW_SPECTRUM_MGMT |
  747. IEEE80211_HW_REPORTS_TX_ACK_STATUS |
  748. IEEE80211_HW_SUPPORTS_RC_TABLE |
  749. IEEE80211_HW_SUPPORTS_HT_CCK_RATES;
  750. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  751. hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
  752. if (AR_SREV_9280_20_OR_LATER(ah))
  753. hw->radiotap_mcs_details |=
  754. IEEE80211_RADIOTAP_MCS_HAVE_STBC;
  755. }
  756. if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || ath9k_modparam_nohwcrypt)
  757. hw->flags |= IEEE80211_HW_MFP_CAPABLE;
  758. hw->wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR;
  759. hw->wiphy->interface_modes =
  760. BIT(NL80211_IFTYPE_P2P_GO) |
  761. BIT(NL80211_IFTYPE_P2P_CLIENT) |
  762. BIT(NL80211_IFTYPE_AP) |
  763. BIT(NL80211_IFTYPE_WDS) |
  764. BIT(NL80211_IFTYPE_STATION) |
  765. BIT(NL80211_IFTYPE_ADHOC) |
  766. BIT(NL80211_IFTYPE_MESH_POINT);
  767. hw->wiphy->iface_combinations = if_comb;
  768. hw->wiphy->n_iface_combinations = ARRAY_SIZE(if_comb);
  769. hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
  770. hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
  771. hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS;
  772. hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
  773. hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
  774. hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
  775. #ifdef CONFIG_PM_SLEEP
  776. if ((ah->caps.hw_caps & ATH9K_HW_WOW_DEVICE_CAPABLE) &&
  777. (sc->driver_data & ATH9K_PCI_WOW) &&
  778. device_can_wakeup(sc->dev))
  779. hw->wiphy->wowlan = &ath9k_wowlan_support;
  780. atomic_set(&sc->wow_sleep_proc_intr, -1);
  781. atomic_set(&sc->wow_got_bmiss_intr, -1);
  782. #endif
  783. hw->queues = 4;
  784. hw->max_rates = 4;
  785. hw->channel_change_time = 5000;
  786. hw->max_listen_interval = 1;
  787. hw->max_rate_tries = 10;
  788. hw->sta_data_size = sizeof(struct ath_node);
  789. hw->vif_data_size = sizeof(struct ath_vif);
  790. hw->wiphy->available_antennas_rx = BIT(ah->caps.max_rxchains) - 1;
  791. hw->wiphy->available_antennas_tx = BIT(ah->caps.max_txchains) - 1;
  792. /* single chain devices with rx diversity */
  793. if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)
  794. hw->wiphy->available_antennas_rx = BIT(0) | BIT(1);
  795. sc->ant_rx = hw->wiphy->available_antennas_rx;
  796. sc->ant_tx = hw->wiphy->available_antennas_tx;
  797. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
  798. hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
  799. &sc->sbands[IEEE80211_BAND_2GHZ];
  800. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
  801. hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
  802. &sc->sbands[IEEE80211_BAND_5GHZ];
  803. ath9k_reload_chainmask_settings(sc);
  804. SET_IEEE80211_PERM_ADDR(hw, common->macaddr);
  805. }
  806. int ath9k_init_device(u16 devid, struct ath_softc *sc,
  807. const struct ath_bus_ops *bus_ops)
  808. {
  809. struct ieee80211_hw *hw = sc->hw;
  810. struct ath_common *common;
  811. struct ath_hw *ah;
  812. int error = 0;
  813. struct ath_regulatory *reg;
  814. /* Bring up device */
  815. error = ath9k_init_softc(devid, sc, bus_ops);
  816. if (error)
  817. return error;
  818. ah = sc->sc_ah;
  819. common = ath9k_hw_common(ah);
  820. ath9k_set_hw_capab(sc, hw);
  821. /* Initialize regulatory */
  822. error = ath_regd_init(&common->regulatory, sc->hw->wiphy,
  823. ath9k_reg_notifier);
  824. if (error)
  825. goto deinit;
  826. reg = &common->regulatory;
  827. /* Setup TX DMA */
  828. error = ath_tx_init(sc, ATH_TXBUF);
  829. if (error != 0)
  830. goto deinit;
  831. /* Setup RX DMA */
  832. error = ath_rx_init(sc, ATH_RXBUF);
  833. if (error != 0)
  834. goto deinit;
  835. ath9k_init_txpower_limits(sc);
  836. #ifdef CONFIG_MAC80211_LEDS
  837. /* must be initialized before ieee80211_register_hw */
  838. sc->led_cdev.default_trigger = ieee80211_create_tpt_led_trigger(sc->hw,
  839. IEEE80211_TPT_LEDTRIG_FL_RADIO, ath9k_tpt_blink,
  840. ARRAY_SIZE(ath9k_tpt_blink));
  841. #endif
  842. /* Register with mac80211 */
  843. error = ieee80211_register_hw(hw);
  844. if (error)
  845. goto rx_cleanup;
  846. error = ath9k_init_debug(ah);
  847. if (error) {
  848. ath_err(common, "Unable to create debugfs files\n");
  849. goto unregister;
  850. }
  851. /* Handle world regulatory */
  852. if (!ath_is_world_regd(reg)) {
  853. error = regulatory_hint(hw->wiphy, reg->alpha2);
  854. if (error)
  855. goto debug_cleanup;
  856. }
  857. ath_init_leds(sc);
  858. ath_start_rfkill_poll(sc);
  859. return 0;
  860. debug_cleanup:
  861. ath9k_deinit_debug(sc);
  862. unregister:
  863. ieee80211_unregister_hw(hw);
  864. rx_cleanup:
  865. ath_rx_cleanup(sc);
  866. deinit:
  867. ath9k_deinit_softc(sc);
  868. return error;
  869. }
  870. /*****************************/
  871. /* De-Initialization */
  872. /*****************************/
  873. static void ath9k_deinit_softc(struct ath_softc *sc)
  874. {
  875. int i = 0;
  876. ath9k_deinit_btcoex(sc);
  877. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  878. if (ATH_TXQ_SETUP(sc, i))
  879. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  880. ath9k_hw_deinit(sc->sc_ah);
  881. if (sc->dfs_detector != NULL)
  882. sc->dfs_detector->exit(sc->dfs_detector);
  883. ath9k_eeprom_release(sc);
  884. }
  885. void ath9k_deinit_device(struct ath_softc *sc)
  886. {
  887. struct ieee80211_hw *hw = sc->hw;
  888. ath9k_ps_wakeup(sc);
  889. wiphy_rfkill_stop_polling(sc->hw->wiphy);
  890. ath_deinit_leds(sc);
  891. ath9k_ps_restore(sc);
  892. ath9k_deinit_debug(sc);
  893. ieee80211_unregister_hw(hw);
  894. ath_rx_cleanup(sc);
  895. ath9k_deinit_softc(sc);
  896. }
  897. /************************/
  898. /* Module Hooks */
  899. /************************/
  900. static int __init ath9k_init(void)
  901. {
  902. int error;
  903. /* Register rate control algorithm */
  904. error = ath_rate_control_register();
  905. if (error != 0) {
  906. pr_err("Unable to register rate control algorithm: %d\n",
  907. error);
  908. goto err_out;
  909. }
  910. error = ath_pci_init();
  911. if (error < 0) {
  912. pr_err("No PCI devices found, driver not installed\n");
  913. error = -ENODEV;
  914. goto err_rate_unregister;
  915. }
  916. error = ath_ahb_init();
  917. if (error < 0) {
  918. error = -ENODEV;
  919. goto err_pci_exit;
  920. }
  921. return 0;
  922. err_pci_exit:
  923. ath_pci_exit();
  924. err_rate_unregister:
  925. ath_rate_control_unregister();
  926. err_out:
  927. return error;
  928. }
  929. module_init(ath9k_init);
  930. static void __exit ath9k_exit(void)
  931. {
  932. is_ath9k_unloaded = true;
  933. ath_ahb_exit();
  934. ath_pci_exit();
  935. ath_rate_control_unregister();
  936. pr_info("%s: Driver unloaded\n", dev_info);
  937. }
  938. module_exit(ath9k_exit);