hw.c 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <asm/unaligned.h>
  20. #include "hw.h"
  21. #include "hw-ops.h"
  22. #include "rc.h"
  23. #include "ar9003_mac.h"
  24. #include "ar9003_mci.h"
  25. #include "ar9003_phy.h"
  26. #include "debug.h"
  27. #include "ath9k.h"
  28. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  29. MODULE_AUTHOR("Atheros Communications");
  30. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  31. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  32. MODULE_LICENSE("Dual BSD/GPL");
  33. static int __init ath9k_init(void)
  34. {
  35. return 0;
  36. }
  37. module_init(ath9k_init);
  38. static void __exit ath9k_exit(void)
  39. {
  40. return;
  41. }
  42. module_exit(ath9k_exit);
  43. /* Private hardware callbacks */
  44. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  45. {
  46. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  47. }
  48. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  49. struct ath9k_channel *chan)
  50. {
  51. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  52. }
  53. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  54. {
  55. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  56. return;
  57. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  58. }
  59. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  60. {
  61. /* You will not have this callback if using the old ANI */
  62. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  63. return;
  64. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  65. }
  66. /********************/
  67. /* Helper Functions */
  68. /********************/
  69. #ifdef CONFIG_ATH9K_DEBUGFS
  70. void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
  71. {
  72. struct ath_softc *sc = common->priv;
  73. if (sync_cause)
  74. sc->debug.stats.istats.sync_cause_all++;
  75. if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
  76. sc->debug.stats.istats.sync_rtc_irq++;
  77. if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
  78. sc->debug.stats.istats.sync_mac_irq++;
  79. if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
  80. sc->debug.stats.istats.eeprom_illegal_access++;
  81. if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
  82. sc->debug.stats.istats.apb_timeout++;
  83. if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
  84. sc->debug.stats.istats.pci_mode_conflict++;
  85. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
  86. sc->debug.stats.istats.host1_fatal++;
  87. if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
  88. sc->debug.stats.istats.host1_perr++;
  89. if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
  90. sc->debug.stats.istats.trcv_fifo_perr++;
  91. if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
  92. sc->debug.stats.istats.radm_cpl_ep++;
  93. if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
  94. sc->debug.stats.istats.radm_cpl_dllp_abort++;
  95. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
  96. sc->debug.stats.istats.radm_cpl_tlp_abort++;
  97. if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
  98. sc->debug.stats.istats.radm_cpl_ecrc_err++;
  99. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
  100. sc->debug.stats.istats.radm_cpl_timeout++;
  101. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
  102. sc->debug.stats.istats.local_timeout++;
  103. if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
  104. sc->debug.stats.istats.pm_access++;
  105. if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
  106. sc->debug.stats.istats.mac_awake++;
  107. if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
  108. sc->debug.stats.istats.mac_asleep++;
  109. if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
  110. sc->debug.stats.istats.mac_sleep_access++;
  111. }
  112. #endif
  113. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  114. {
  115. struct ath_common *common = ath9k_hw_common(ah);
  116. struct ath9k_channel *chan = ah->curchan;
  117. unsigned int clockrate;
  118. /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  119. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  120. clockrate = 117;
  121. else if (!chan) /* should really check for CCK instead */
  122. clockrate = ATH9K_CLOCK_RATE_CCK;
  123. else if (IS_CHAN_2GHZ(chan))
  124. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  125. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  126. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  127. else
  128. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  129. if (IS_CHAN_HT40(chan))
  130. clockrate *= 2;
  131. if (ah->curchan) {
  132. if (IS_CHAN_HALF_RATE(chan))
  133. clockrate /= 2;
  134. if (IS_CHAN_QUARTER_RATE(chan))
  135. clockrate /= 4;
  136. }
  137. common->clockrate = clockrate;
  138. }
  139. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  140. {
  141. struct ath_common *common = ath9k_hw_common(ah);
  142. return usecs * common->clockrate;
  143. }
  144. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  145. {
  146. int i;
  147. BUG_ON(timeout < AH_TIME_QUANTUM);
  148. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  149. if ((REG_READ(ah, reg) & mask) == val)
  150. return true;
  151. udelay(AH_TIME_QUANTUM);
  152. }
  153. ath_dbg(ath9k_hw_common(ah), ANY,
  154. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  155. timeout, reg, REG_READ(ah, reg), mask, val);
  156. return false;
  157. }
  158. EXPORT_SYMBOL(ath9k_hw_wait);
  159. void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  160. int hw_delay)
  161. {
  162. hw_delay /= 10;
  163. if (IS_CHAN_HALF_RATE(chan))
  164. hw_delay *= 2;
  165. else if (IS_CHAN_QUARTER_RATE(chan))
  166. hw_delay *= 4;
  167. udelay(hw_delay + BASE_ACTIVATE_DELAY);
  168. }
  169. void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
  170. int column, unsigned int *writecnt)
  171. {
  172. int r;
  173. ENABLE_REGWRITE_BUFFER(ah);
  174. for (r = 0; r < array->ia_rows; r++) {
  175. REG_WRITE(ah, INI_RA(array, r, 0),
  176. INI_RA(array, r, column));
  177. DO_DELAY(*writecnt);
  178. }
  179. REGWRITE_BUFFER_FLUSH(ah);
  180. }
  181. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  182. {
  183. u32 retval;
  184. int i;
  185. for (i = 0, retval = 0; i < n; i++) {
  186. retval = (retval << 1) | (val & 1);
  187. val >>= 1;
  188. }
  189. return retval;
  190. }
  191. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  192. u8 phy, int kbps,
  193. u32 frameLen, u16 rateix,
  194. bool shortPreamble)
  195. {
  196. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  197. if (kbps == 0)
  198. return 0;
  199. switch (phy) {
  200. case WLAN_RC_PHY_CCK:
  201. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  202. if (shortPreamble)
  203. phyTime >>= 1;
  204. numBits = frameLen << 3;
  205. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  206. break;
  207. case WLAN_RC_PHY_OFDM:
  208. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  209. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  210. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  211. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  212. txTime = OFDM_SIFS_TIME_QUARTER
  213. + OFDM_PREAMBLE_TIME_QUARTER
  214. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  215. } else if (ah->curchan &&
  216. IS_CHAN_HALF_RATE(ah->curchan)) {
  217. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  218. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  219. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  220. txTime = OFDM_SIFS_TIME_HALF +
  221. OFDM_PREAMBLE_TIME_HALF
  222. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  223. } else {
  224. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  225. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  226. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  227. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  228. + (numSymbols * OFDM_SYMBOL_TIME);
  229. }
  230. break;
  231. default:
  232. ath_err(ath9k_hw_common(ah),
  233. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  234. txTime = 0;
  235. break;
  236. }
  237. return txTime;
  238. }
  239. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  240. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  241. struct ath9k_channel *chan,
  242. struct chan_centers *centers)
  243. {
  244. int8_t extoff;
  245. if (!IS_CHAN_HT40(chan)) {
  246. centers->ctl_center = centers->ext_center =
  247. centers->synth_center = chan->channel;
  248. return;
  249. }
  250. if (IS_CHAN_HT40PLUS(chan)) {
  251. centers->synth_center =
  252. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  253. extoff = 1;
  254. } else {
  255. centers->synth_center =
  256. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  257. extoff = -1;
  258. }
  259. centers->ctl_center =
  260. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  261. /* 25 MHz spacing is supported by hw but not on upper layers */
  262. centers->ext_center =
  263. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  264. }
  265. /******************/
  266. /* Chip Revisions */
  267. /******************/
  268. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  269. {
  270. u32 val;
  271. switch (ah->hw_version.devid) {
  272. case AR5416_AR9100_DEVID:
  273. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  274. break;
  275. case AR9300_DEVID_AR9330:
  276. ah->hw_version.macVersion = AR_SREV_VERSION_9330;
  277. if (ah->get_mac_revision) {
  278. ah->hw_version.macRev = ah->get_mac_revision();
  279. } else {
  280. val = REG_READ(ah, AR_SREV);
  281. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  282. }
  283. return;
  284. case AR9300_DEVID_AR9340:
  285. ah->hw_version.macVersion = AR_SREV_VERSION_9340;
  286. val = REG_READ(ah, AR_SREV);
  287. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  288. return;
  289. case AR9300_DEVID_QCA955X:
  290. ah->hw_version.macVersion = AR_SREV_VERSION_9550;
  291. return;
  292. }
  293. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  294. if (val == 0xFF) {
  295. val = REG_READ(ah, AR_SREV);
  296. ah->hw_version.macVersion =
  297. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  298. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  299. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  300. ah->is_pciexpress = true;
  301. else
  302. ah->is_pciexpress = (val &
  303. AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  304. } else {
  305. if (!AR_SREV_9100(ah))
  306. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  307. ah->hw_version.macRev = val & AR_SREV_REVISION;
  308. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  309. ah->is_pciexpress = true;
  310. }
  311. }
  312. /************************************/
  313. /* HW Attach, Detach, Init Routines */
  314. /************************************/
  315. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  316. {
  317. if (!AR_SREV_5416(ah))
  318. return;
  319. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  320. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  321. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  322. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  323. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  324. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  325. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  326. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  327. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  328. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  329. }
  330. /* This should work for all families including legacy */
  331. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  332. {
  333. struct ath_common *common = ath9k_hw_common(ah);
  334. u32 regAddr[2] = { AR_STA_ID0 };
  335. u32 regHold[2];
  336. static const u32 patternData[4] = {
  337. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  338. };
  339. int i, j, loop_max;
  340. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  341. loop_max = 2;
  342. regAddr[1] = AR_PHY_BASE + (8 << 2);
  343. } else
  344. loop_max = 1;
  345. for (i = 0; i < loop_max; i++) {
  346. u32 addr = regAddr[i];
  347. u32 wrData, rdData;
  348. regHold[i] = REG_READ(ah, addr);
  349. for (j = 0; j < 0x100; j++) {
  350. wrData = (j << 16) | j;
  351. REG_WRITE(ah, addr, wrData);
  352. rdData = REG_READ(ah, addr);
  353. if (rdData != wrData) {
  354. ath_err(common,
  355. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  356. addr, wrData, rdData);
  357. return false;
  358. }
  359. }
  360. for (j = 0; j < 4; j++) {
  361. wrData = patternData[j];
  362. REG_WRITE(ah, addr, wrData);
  363. rdData = REG_READ(ah, addr);
  364. if (wrData != rdData) {
  365. ath_err(common,
  366. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  367. addr, wrData, rdData);
  368. return false;
  369. }
  370. }
  371. REG_WRITE(ah, regAddr[i], regHold[i]);
  372. }
  373. udelay(100);
  374. return true;
  375. }
  376. static void ath9k_hw_init_config(struct ath_hw *ah)
  377. {
  378. int i;
  379. ah->config.dma_beacon_response_time = 1;
  380. ah->config.sw_beacon_response_time = 6;
  381. ah->config.additional_swba_backoff = 0;
  382. ah->config.ack_6mb = 0x0;
  383. ah->config.cwm_ignore_extcca = 0;
  384. ah->config.pcie_clock_req = 0;
  385. ah->config.analog_shiftreg = 1;
  386. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  387. ah->config.spurchans[i][0] = AR_NO_SPUR;
  388. ah->config.spurchans[i][1] = AR_NO_SPUR;
  389. }
  390. ah->config.rx_intr_mitigation = true;
  391. ah->config.pcieSerDesWrite = true;
  392. /*
  393. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  394. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  395. * This means we use it for all AR5416 devices, and the few
  396. * minor PCI AR9280 devices out there.
  397. *
  398. * Serialization is required because these devices do not handle
  399. * well the case of two concurrent reads/writes due to the latency
  400. * involved. During one read/write another read/write can be issued
  401. * on another CPU while the previous read/write may still be working
  402. * on our hardware, if we hit this case the hardware poops in a loop.
  403. * We prevent this by serializing reads and writes.
  404. *
  405. * This issue is not present on PCI-Express devices or pre-AR5416
  406. * devices (legacy, 802.11abg).
  407. */
  408. if (num_possible_cpus() > 1)
  409. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  410. }
  411. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  412. {
  413. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  414. regulatory->country_code = CTRY_DEFAULT;
  415. regulatory->power_limit = MAX_RATE_POWER;
  416. ah->hw_version.magic = AR5416_MAGIC;
  417. ah->hw_version.subvendorid = 0;
  418. ah->atim_window = 0;
  419. ah->sta_id1_defaults =
  420. AR_STA_ID1_CRPT_MIC_ENABLE |
  421. AR_STA_ID1_MCAST_KSRCH;
  422. if (AR_SREV_9100(ah))
  423. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  424. ah->slottime = ATH9K_SLOT_TIME_9;
  425. ah->globaltxtimeout = (u32) -1;
  426. ah->power_mode = ATH9K_PM_UNDEFINED;
  427. ah->htc_reset_init = true;
  428. }
  429. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  430. {
  431. struct ath_common *common = ath9k_hw_common(ah);
  432. u32 sum;
  433. int i;
  434. u16 eeval;
  435. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  436. sum = 0;
  437. for (i = 0; i < 3; i++) {
  438. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  439. sum += eeval;
  440. common->macaddr[2 * i] = eeval >> 8;
  441. common->macaddr[2 * i + 1] = eeval & 0xff;
  442. }
  443. if (sum == 0 || sum == 0xffff * 3)
  444. return -EADDRNOTAVAIL;
  445. return 0;
  446. }
  447. static int ath9k_hw_post_init(struct ath_hw *ah)
  448. {
  449. struct ath_common *common = ath9k_hw_common(ah);
  450. int ecode;
  451. if (common->bus_ops->ath_bus_type != ATH_USB) {
  452. if (!ath9k_hw_chip_test(ah))
  453. return -ENODEV;
  454. }
  455. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  456. ecode = ar9002_hw_rf_claim(ah);
  457. if (ecode != 0)
  458. return ecode;
  459. }
  460. ecode = ath9k_hw_eeprom_init(ah);
  461. if (ecode != 0)
  462. return ecode;
  463. ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
  464. ah->eep_ops->get_eeprom_ver(ah),
  465. ah->eep_ops->get_eeprom_rev(ah));
  466. ath9k_hw_ani_init(ah);
  467. /*
  468. * EEPROM needs to be initialized before we do this.
  469. * This is required for regulatory compliance.
  470. */
  471. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  472. u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  473. if ((regdmn & 0xF0) == CTL_FCC) {
  474. ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9462_FCC_2GHZ;
  475. ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9462_FCC_5GHZ;
  476. }
  477. }
  478. return 0;
  479. }
  480. static int ath9k_hw_attach_ops(struct ath_hw *ah)
  481. {
  482. if (!AR_SREV_9300_20_OR_LATER(ah))
  483. return ar9002_hw_attach_ops(ah);
  484. ar9003_hw_attach_ops(ah);
  485. return 0;
  486. }
  487. /* Called for all hardware families */
  488. static int __ath9k_hw_init(struct ath_hw *ah)
  489. {
  490. struct ath_common *common = ath9k_hw_common(ah);
  491. int r = 0;
  492. ath9k_hw_read_revisions(ah);
  493. /*
  494. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  495. * We need to do this to avoid RMW of this register. We cannot
  496. * read the reg when chip is asleep.
  497. */
  498. if (AR_SREV_9300_20_OR_LATER(ah)) {
  499. ah->WARegVal = REG_READ(ah, AR_WA);
  500. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  501. AR_WA_ASPM_TIMER_BASED_DISABLE);
  502. }
  503. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  504. ath_err(common, "Couldn't reset chip\n");
  505. return -EIO;
  506. }
  507. if (AR_SREV_9565(ah)) {
  508. ah->WARegVal |= AR_WA_BIT22;
  509. REG_WRITE(ah, AR_WA, ah->WARegVal);
  510. }
  511. ath9k_hw_init_defaults(ah);
  512. ath9k_hw_init_config(ah);
  513. r = ath9k_hw_attach_ops(ah);
  514. if (r)
  515. return r;
  516. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  517. ath_err(common, "Couldn't wakeup chip\n");
  518. return -EIO;
  519. }
  520. if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  521. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  522. ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
  523. !ah->is_pciexpress)) {
  524. ah->config.serialize_regmode =
  525. SER_REG_MODE_ON;
  526. } else {
  527. ah->config.serialize_regmode =
  528. SER_REG_MODE_OFF;
  529. }
  530. }
  531. ath_dbg(common, RESET, "serialize_regmode is %d\n",
  532. ah->config.serialize_regmode);
  533. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  534. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  535. else
  536. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  537. switch (ah->hw_version.macVersion) {
  538. case AR_SREV_VERSION_5416_PCI:
  539. case AR_SREV_VERSION_5416_PCIE:
  540. case AR_SREV_VERSION_9160:
  541. case AR_SREV_VERSION_9100:
  542. case AR_SREV_VERSION_9280:
  543. case AR_SREV_VERSION_9285:
  544. case AR_SREV_VERSION_9287:
  545. case AR_SREV_VERSION_9271:
  546. case AR_SREV_VERSION_9300:
  547. case AR_SREV_VERSION_9330:
  548. case AR_SREV_VERSION_9485:
  549. case AR_SREV_VERSION_9340:
  550. case AR_SREV_VERSION_9462:
  551. case AR_SREV_VERSION_9550:
  552. case AR_SREV_VERSION_9565:
  553. break;
  554. default:
  555. ath_err(common,
  556. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  557. ah->hw_version.macVersion, ah->hw_version.macRev);
  558. return -EOPNOTSUPP;
  559. }
  560. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
  561. AR_SREV_9330(ah) || AR_SREV_9550(ah))
  562. ah->is_pciexpress = false;
  563. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  564. ath9k_hw_init_cal_settings(ah);
  565. ah->ani_function = ATH9K_ANI_ALL;
  566. if (!AR_SREV_9300_20_OR_LATER(ah))
  567. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  568. if (!ah->is_pciexpress)
  569. ath9k_hw_disablepcie(ah);
  570. r = ath9k_hw_post_init(ah);
  571. if (r)
  572. return r;
  573. ath9k_hw_init_mode_gain_regs(ah);
  574. r = ath9k_hw_fill_cap_info(ah);
  575. if (r)
  576. return r;
  577. r = ath9k_hw_init_macaddr(ah);
  578. if (r) {
  579. ath_err(common, "Failed to initialize MAC address\n");
  580. return r;
  581. }
  582. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  583. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  584. else
  585. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  586. if (AR_SREV_9330(ah))
  587. ah->bb_watchdog_timeout_ms = 85;
  588. else
  589. ah->bb_watchdog_timeout_ms = 25;
  590. common->state = ATH_HW_INITIALIZED;
  591. return 0;
  592. }
  593. int ath9k_hw_init(struct ath_hw *ah)
  594. {
  595. int ret;
  596. struct ath_common *common = ath9k_hw_common(ah);
  597. /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
  598. switch (ah->hw_version.devid) {
  599. case AR5416_DEVID_PCI:
  600. case AR5416_DEVID_PCIE:
  601. case AR5416_AR9100_DEVID:
  602. case AR9160_DEVID_PCI:
  603. case AR9280_DEVID_PCI:
  604. case AR9280_DEVID_PCIE:
  605. case AR9285_DEVID_PCIE:
  606. case AR9287_DEVID_PCI:
  607. case AR9287_DEVID_PCIE:
  608. case AR2427_DEVID_PCIE:
  609. case AR9300_DEVID_PCIE:
  610. case AR9300_DEVID_AR9485_PCIE:
  611. case AR9300_DEVID_AR9330:
  612. case AR9300_DEVID_AR9340:
  613. case AR9300_DEVID_QCA955X:
  614. case AR9300_DEVID_AR9580:
  615. case AR9300_DEVID_AR9462:
  616. case AR9485_DEVID_AR1111:
  617. case AR9300_DEVID_AR9565:
  618. break;
  619. default:
  620. if (common->bus_ops->ath_bus_type == ATH_USB)
  621. break;
  622. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  623. ah->hw_version.devid);
  624. return -EOPNOTSUPP;
  625. }
  626. ret = __ath9k_hw_init(ah);
  627. if (ret) {
  628. ath_err(common,
  629. "Unable to initialize hardware; initialization status: %d\n",
  630. ret);
  631. return ret;
  632. }
  633. return 0;
  634. }
  635. EXPORT_SYMBOL(ath9k_hw_init);
  636. static void ath9k_hw_init_qos(struct ath_hw *ah)
  637. {
  638. ENABLE_REGWRITE_BUFFER(ah);
  639. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  640. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  641. REG_WRITE(ah, AR_QOS_NO_ACK,
  642. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  643. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  644. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  645. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  646. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  647. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  648. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  649. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  650. REGWRITE_BUFFER_FLUSH(ah);
  651. }
  652. u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  653. {
  654. struct ath_common *common = ath9k_hw_common(ah);
  655. int i = 0;
  656. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  657. udelay(100);
  658. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  659. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
  660. udelay(100);
  661. if (WARN_ON_ONCE(i >= 100)) {
  662. ath_err(common, "PLL4 meaurement not done\n");
  663. break;
  664. }
  665. i++;
  666. }
  667. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  668. }
  669. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  670. static void ath9k_hw_init_pll(struct ath_hw *ah,
  671. struct ath9k_channel *chan)
  672. {
  673. u32 pll;
  674. if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
  675. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  676. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  677. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  678. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  679. AR_CH0_DPLL2_KD, 0x40);
  680. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  681. AR_CH0_DPLL2_KI, 0x4);
  682. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  683. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  684. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  685. AR_CH0_BB_DPLL1_NINI, 0x58);
  686. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  687. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  688. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  689. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  690. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  691. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  692. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  693. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  694. /* program BB PLL phase_shift to 0x6 */
  695. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  696. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  697. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  698. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  699. udelay(1000);
  700. } else if (AR_SREV_9330(ah)) {
  701. u32 ddr_dpll2, pll_control2, kd;
  702. if (ah->is_clk_25mhz) {
  703. ddr_dpll2 = 0x18e82f01;
  704. pll_control2 = 0xe04a3d;
  705. kd = 0x1d;
  706. } else {
  707. ddr_dpll2 = 0x19e82f01;
  708. pll_control2 = 0x886666;
  709. kd = 0x3d;
  710. }
  711. /* program DDR PLL ki and kd value */
  712. REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
  713. /* program DDR PLL phase_shift */
  714. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  715. AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
  716. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  717. udelay(1000);
  718. /* program refdiv, nint, frac to RTC register */
  719. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
  720. /* program BB PLL kd and ki value */
  721. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
  722. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
  723. /* program BB PLL phase_shift */
  724. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  725. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
  726. } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  727. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  728. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  729. udelay(1000);
  730. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  731. udelay(100);
  732. if (ah->is_clk_25mhz) {
  733. pll2_divint = 0x54;
  734. pll2_divfrac = 0x1eb85;
  735. refdiv = 3;
  736. } else {
  737. if (AR_SREV_9340(ah)) {
  738. pll2_divint = 88;
  739. pll2_divfrac = 0;
  740. refdiv = 5;
  741. } else {
  742. pll2_divint = 0x11;
  743. pll2_divfrac = 0x26666;
  744. refdiv = 1;
  745. }
  746. }
  747. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  748. regval |= (0x1 << 16);
  749. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  750. udelay(100);
  751. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  752. (pll2_divint << 18) | pll2_divfrac);
  753. udelay(100);
  754. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  755. if (AR_SREV_9340(ah))
  756. regval = (regval & 0x80071fff) | (0x1 << 30) |
  757. (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
  758. else
  759. regval = (regval & 0x80071fff) | (0x3 << 30) |
  760. (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
  761. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  762. REG_WRITE(ah, AR_PHY_PLL_MODE,
  763. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  764. udelay(1000);
  765. }
  766. pll = ath9k_hw_compute_pll_control(ah, chan);
  767. if (AR_SREV_9565(ah))
  768. pll |= 0x40000;
  769. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  770. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
  771. AR_SREV_9550(ah))
  772. udelay(1000);
  773. /* Switch the core clock for ar9271 to 117Mhz */
  774. if (AR_SREV_9271(ah)) {
  775. udelay(500);
  776. REG_WRITE(ah, 0x50040, 0x304);
  777. }
  778. udelay(RTC_PLL_SETTLE_DELAY);
  779. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  780. if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  781. if (ah->is_clk_25mhz) {
  782. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  783. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  784. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  785. } else {
  786. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  787. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  788. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  789. }
  790. udelay(100);
  791. }
  792. }
  793. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  794. enum nl80211_iftype opmode)
  795. {
  796. u32 sync_default = AR_INTR_SYNC_DEFAULT;
  797. u32 imr_reg = AR_IMR_TXERR |
  798. AR_IMR_TXURN |
  799. AR_IMR_RXERR |
  800. AR_IMR_RXORN |
  801. AR_IMR_BCNMISC;
  802. if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
  803. sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
  804. if (AR_SREV_9300_20_OR_LATER(ah)) {
  805. imr_reg |= AR_IMR_RXOK_HP;
  806. if (ah->config.rx_intr_mitigation)
  807. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  808. else
  809. imr_reg |= AR_IMR_RXOK_LP;
  810. } else {
  811. if (ah->config.rx_intr_mitigation)
  812. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  813. else
  814. imr_reg |= AR_IMR_RXOK;
  815. }
  816. if (ah->config.tx_intr_mitigation)
  817. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  818. else
  819. imr_reg |= AR_IMR_TXOK;
  820. ENABLE_REGWRITE_BUFFER(ah);
  821. REG_WRITE(ah, AR_IMR, imr_reg);
  822. ah->imrs2_reg |= AR_IMR_S2_GTT;
  823. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  824. if (!AR_SREV_9100(ah)) {
  825. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  826. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
  827. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  828. }
  829. REGWRITE_BUFFER_FLUSH(ah);
  830. if (AR_SREV_9300_20_OR_LATER(ah)) {
  831. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  832. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  833. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  834. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  835. }
  836. }
  837. static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
  838. {
  839. u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
  840. val = min(val, (u32) 0xFFFF);
  841. REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
  842. }
  843. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  844. {
  845. u32 val = ath9k_hw_mac_to_clks(ah, us);
  846. val = min(val, (u32) 0xFFFF);
  847. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  848. }
  849. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  850. {
  851. u32 val = ath9k_hw_mac_to_clks(ah, us);
  852. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  853. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  854. }
  855. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  856. {
  857. u32 val = ath9k_hw_mac_to_clks(ah, us);
  858. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  859. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  860. }
  861. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  862. {
  863. if (tu > 0xFFFF) {
  864. ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
  865. tu);
  866. ah->globaltxtimeout = (u32) -1;
  867. return false;
  868. } else {
  869. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  870. ah->globaltxtimeout = tu;
  871. return true;
  872. }
  873. }
  874. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  875. {
  876. struct ath_common *common = ath9k_hw_common(ah);
  877. const struct ath9k_channel *chan = ah->curchan;
  878. int acktimeout, ctstimeout, ack_offset = 0;
  879. int slottime;
  880. int sifstime;
  881. int rx_lat = 0, tx_lat = 0, eifs = 0;
  882. u32 reg;
  883. ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
  884. ah->misc_mode);
  885. if (!chan)
  886. return;
  887. if (ah->misc_mode != 0)
  888. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  889. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  890. rx_lat = 41;
  891. else
  892. rx_lat = 37;
  893. tx_lat = 54;
  894. if (IS_CHAN_5GHZ(chan))
  895. sifstime = 16;
  896. else
  897. sifstime = 10;
  898. if (IS_CHAN_HALF_RATE(chan)) {
  899. eifs = 175;
  900. rx_lat *= 2;
  901. tx_lat *= 2;
  902. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  903. tx_lat += 11;
  904. sifstime = 32;
  905. ack_offset = 16;
  906. slottime = 13;
  907. } else if (IS_CHAN_QUARTER_RATE(chan)) {
  908. eifs = 340;
  909. rx_lat = (rx_lat * 4) - 1;
  910. tx_lat *= 4;
  911. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  912. tx_lat += 22;
  913. sifstime = 64;
  914. ack_offset = 32;
  915. slottime = 21;
  916. } else {
  917. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  918. eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
  919. reg = AR_USEC_ASYNC_FIFO;
  920. } else {
  921. eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
  922. common->clockrate;
  923. reg = REG_READ(ah, AR_USEC);
  924. }
  925. rx_lat = MS(reg, AR_USEC_RX_LAT);
  926. tx_lat = MS(reg, AR_USEC_TX_LAT);
  927. slottime = ah->slottime;
  928. }
  929. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  930. slottime += 3 * ah->coverage_class;
  931. acktimeout = slottime + sifstime + ack_offset;
  932. ctstimeout = acktimeout;
  933. /*
  934. * Workaround for early ACK timeouts, add an offset to match the
  935. * initval's 64us ack timeout value. Use 48us for the CTS timeout.
  936. * This was initially only meant to work around an issue with delayed
  937. * BA frames in some implementations, but it has been found to fix ACK
  938. * timeout issues in other cases as well.
  939. */
  940. if (IS_CHAN_2GHZ(chan) &&
  941. !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
  942. acktimeout += 64 - sifstime - ah->slottime;
  943. ctstimeout += 48 - sifstime - ah->slottime;
  944. }
  945. ath9k_hw_set_sifs_time(ah, sifstime);
  946. ath9k_hw_setslottime(ah, slottime);
  947. ath9k_hw_set_ack_timeout(ah, acktimeout);
  948. ath9k_hw_set_cts_timeout(ah, ctstimeout);
  949. if (ah->globaltxtimeout != (u32) -1)
  950. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  951. REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
  952. REG_RMW(ah, AR_USEC,
  953. (common->clockrate - 1) |
  954. SM(rx_lat, AR_USEC_RX_LAT) |
  955. SM(tx_lat, AR_USEC_TX_LAT),
  956. AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
  957. }
  958. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  959. void ath9k_hw_deinit(struct ath_hw *ah)
  960. {
  961. struct ath_common *common = ath9k_hw_common(ah);
  962. if (common->state < ATH_HW_INITIALIZED)
  963. return;
  964. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  965. }
  966. EXPORT_SYMBOL(ath9k_hw_deinit);
  967. /*******/
  968. /* INI */
  969. /*******/
  970. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  971. {
  972. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  973. if (IS_CHAN_2GHZ(chan))
  974. ctl |= CTL_11G;
  975. else
  976. ctl |= CTL_11A;
  977. return ctl;
  978. }
  979. /****************************************/
  980. /* Reset and Channel Switching Routines */
  981. /****************************************/
  982. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  983. {
  984. struct ath_common *common = ath9k_hw_common(ah);
  985. int txbuf_size;
  986. ENABLE_REGWRITE_BUFFER(ah);
  987. /*
  988. * set AHB_MODE not to do cacheline prefetches
  989. */
  990. if (!AR_SREV_9300_20_OR_LATER(ah))
  991. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  992. /*
  993. * let mac dma reads be in 128 byte chunks
  994. */
  995. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  996. REGWRITE_BUFFER_FLUSH(ah);
  997. /*
  998. * Restore TX Trigger Level to its pre-reset value.
  999. * The initial value depends on whether aggregation is enabled, and is
  1000. * adjusted whenever underruns are detected.
  1001. */
  1002. if (!AR_SREV_9300_20_OR_LATER(ah))
  1003. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  1004. ENABLE_REGWRITE_BUFFER(ah);
  1005. /*
  1006. * let mac dma writes be in 128 byte chunks
  1007. */
  1008. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  1009. /*
  1010. * Setup receive FIFO threshold to hold off TX activities
  1011. */
  1012. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  1013. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1014. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  1015. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  1016. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  1017. ah->caps.rx_status_len);
  1018. }
  1019. /*
  1020. * reduce the number of usable entries in PCU TXBUF to avoid
  1021. * wrap around issues.
  1022. */
  1023. if (AR_SREV_9285(ah)) {
  1024. /* For AR9285 the number of Fifos are reduced to half.
  1025. * So set the usable tx buf size also to half to
  1026. * avoid data/delimiter underruns
  1027. */
  1028. txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
  1029. } else if (AR_SREV_9340_13_OR_LATER(ah)) {
  1030. /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
  1031. txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
  1032. } else {
  1033. txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
  1034. }
  1035. if (!AR_SREV_9271(ah))
  1036. REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
  1037. REGWRITE_BUFFER_FLUSH(ah);
  1038. if (AR_SREV_9300_20_OR_LATER(ah))
  1039. ath9k_hw_reset_txstatus_ring(ah);
  1040. }
  1041. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  1042. {
  1043. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  1044. u32 set = AR_STA_ID1_KSRCH_MODE;
  1045. switch (opmode) {
  1046. case NL80211_IFTYPE_ADHOC:
  1047. set |= AR_STA_ID1_ADHOC;
  1048. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1049. break;
  1050. case NL80211_IFTYPE_MESH_POINT:
  1051. case NL80211_IFTYPE_AP:
  1052. set |= AR_STA_ID1_STA_AP;
  1053. /* fall through */
  1054. case NL80211_IFTYPE_STATION:
  1055. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1056. break;
  1057. default:
  1058. if (!ah->is_monitoring)
  1059. set = 0;
  1060. break;
  1061. }
  1062. REG_RMW(ah, AR_STA_ID1, set, mask);
  1063. }
  1064. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  1065. u32 *coef_mantissa, u32 *coef_exponent)
  1066. {
  1067. u32 coef_exp, coef_man;
  1068. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1069. if ((coef_scaled >> coef_exp) & 0x1)
  1070. break;
  1071. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1072. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1073. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1074. *coef_exponent = coef_exp - 16;
  1075. }
  1076. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1077. {
  1078. u32 rst_flags;
  1079. u32 tmpReg;
  1080. if (AR_SREV_9100(ah)) {
  1081. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  1082. AR_RTC_DERIVED_CLK_PERIOD, 1);
  1083. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1084. }
  1085. ENABLE_REGWRITE_BUFFER(ah);
  1086. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1087. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1088. udelay(10);
  1089. }
  1090. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1091. AR_RTC_FORCE_WAKE_ON_INT);
  1092. if (AR_SREV_9100(ah)) {
  1093. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1094. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1095. } else {
  1096. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1097. if (AR_SREV_9340(ah))
  1098. tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
  1099. else
  1100. tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
  1101. AR_INTR_SYNC_RADM_CPL_TIMEOUT;
  1102. if (tmpReg) {
  1103. u32 val;
  1104. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1105. val = AR_RC_HOSTIF;
  1106. if (!AR_SREV_9300_20_OR_LATER(ah))
  1107. val |= AR_RC_AHB;
  1108. REG_WRITE(ah, AR_RC, val);
  1109. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  1110. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1111. rst_flags = AR_RTC_RC_MAC_WARM;
  1112. if (type == ATH9K_RESET_COLD)
  1113. rst_flags |= AR_RTC_RC_MAC_COLD;
  1114. }
  1115. if (AR_SREV_9330(ah)) {
  1116. int npend = 0;
  1117. int i;
  1118. /* AR9330 WAR:
  1119. * call external reset function to reset WMAC if:
  1120. * - doing a cold reset
  1121. * - we have pending frames in the TX queues
  1122. */
  1123. for (i = 0; i < AR_NUM_QCU; i++) {
  1124. npend = ath9k_hw_numtxpending(ah, i);
  1125. if (npend)
  1126. break;
  1127. }
  1128. if (ah->external_reset &&
  1129. (npend || type == ATH9K_RESET_COLD)) {
  1130. int reset_err = 0;
  1131. ath_dbg(ath9k_hw_common(ah), RESET,
  1132. "reset MAC via external reset\n");
  1133. reset_err = ah->external_reset();
  1134. if (reset_err) {
  1135. ath_err(ath9k_hw_common(ah),
  1136. "External reset failed, err=%d\n",
  1137. reset_err);
  1138. return false;
  1139. }
  1140. REG_WRITE(ah, AR_RTC_RESET, 1);
  1141. }
  1142. }
  1143. if (ath9k_hw_mci_is_enabled(ah))
  1144. ar9003_mci_check_gpm_offset(ah);
  1145. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1146. REGWRITE_BUFFER_FLUSH(ah);
  1147. udelay(50);
  1148. REG_WRITE(ah, AR_RTC_RC, 0);
  1149. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1150. ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
  1151. return false;
  1152. }
  1153. if (!AR_SREV_9100(ah))
  1154. REG_WRITE(ah, AR_RC, 0);
  1155. if (AR_SREV_9100(ah))
  1156. udelay(50);
  1157. return true;
  1158. }
  1159. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1160. {
  1161. ENABLE_REGWRITE_BUFFER(ah);
  1162. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1163. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1164. udelay(10);
  1165. }
  1166. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1167. AR_RTC_FORCE_WAKE_ON_INT);
  1168. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1169. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1170. REG_WRITE(ah, AR_RTC_RESET, 0);
  1171. REGWRITE_BUFFER_FLUSH(ah);
  1172. if (!AR_SREV_9300_20_OR_LATER(ah))
  1173. udelay(2);
  1174. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1175. REG_WRITE(ah, AR_RC, 0);
  1176. REG_WRITE(ah, AR_RTC_RESET, 1);
  1177. if (!ath9k_hw_wait(ah,
  1178. AR_RTC_STATUS,
  1179. AR_RTC_STATUS_M,
  1180. AR_RTC_STATUS_ON,
  1181. AH_WAIT_TIMEOUT)) {
  1182. ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
  1183. return false;
  1184. }
  1185. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1186. }
  1187. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1188. {
  1189. bool ret = false;
  1190. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1191. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1192. udelay(10);
  1193. }
  1194. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1195. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1196. if (!ah->reset_power_on)
  1197. type = ATH9K_RESET_POWER_ON;
  1198. switch (type) {
  1199. case ATH9K_RESET_POWER_ON:
  1200. ret = ath9k_hw_set_reset_power_on(ah);
  1201. if (ret)
  1202. ah->reset_power_on = true;
  1203. break;
  1204. case ATH9K_RESET_WARM:
  1205. case ATH9K_RESET_COLD:
  1206. ret = ath9k_hw_set_reset(ah, type);
  1207. break;
  1208. default:
  1209. break;
  1210. }
  1211. return ret;
  1212. }
  1213. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1214. struct ath9k_channel *chan)
  1215. {
  1216. int reset_type = ATH9K_RESET_WARM;
  1217. if (AR_SREV_9280(ah)) {
  1218. if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1219. reset_type = ATH9K_RESET_POWER_ON;
  1220. else
  1221. reset_type = ATH9K_RESET_COLD;
  1222. } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
  1223. (REG_READ(ah, AR_CR) & AR_CR_RXE))
  1224. reset_type = ATH9K_RESET_COLD;
  1225. if (!ath9k_hw_set_reset_reg(ah, reset_type))
  1226. return false;
  1227. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1228. return false;
  1229. ah->chip_fullsleep = false;
  1230. if (AR_SREV_9330(ah))
  1231. ar9003_hw_internal_regulator_apply(ah);
  1232. ath9k_hw_init_pll(ah, chan);
  1233. ath9k_hw_set_rfmode(ah, chan);
  1234. return true;
  1235. }
  1236. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1237. struct ath9k_channel *chan)
  1238. {
  1239. struct ath_common *common = ath9k_hw_common(ah);
  1240. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1241. bool band_switch = false, mode_diff = false;
  1242. u8 ini_reloaded = 0;
  1243. u32 qnum;
  1244. int r;
  1245. if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
  1246. band_switch = IS_CHAN_5GHZ(ah->curchan) != IS_CHAN_5GHZ(chan);
  1247. mode_diff = (chan->channelFlags != ah->curchan->channelFlags);
  1248. }
  1249. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1250. if (ath9k_hw_numtxpending(ah, qnum)) {
  1251. ath_dbg(common, QUEUE,
  1252. "Transmit frames pending on queue %d\n", qnum);
  1253. return false;
  1254. }
  1255. }
  1256. if (!ath9k_hw_rfbus_req(ah)) {
  1257. ath_err(common, "Could not kill baseband RX\n");
  1258. return false;
  1259. }
  1260. if (band_switch || mode_diff) {
  1261. ath9k_hw_mark_phy_inactive(ah);
  1262. udelay(5);
  1263. if (band_switch)
  1264. ath9k_hw_init_pll(ah, chan);
  1265. if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
  1266. ath_err(common, "Failed to do fast channel change\n");
  1267. return false;
  1268. }
  1269. }
  1270. ath9k_hw_set_channel_regs(ah, chan);
  1271. r = ath9k_hw_rf_set_freq(ah, chan);
  1272. if (r) {
  1273. ath_err(common, "Failed to set channel\n");
  1274. return false;
  1275. }
  1276. ath9k_hw_set_clockrate(ah);
  1277. ath9k_hw_apply_txpower(ah, chan, false);
  1278. ath9k_hw_set_delta_slope(ah, chan);
  1279. ath9k_hw_spur_mitigate_freq(ah, chan);
  1280. if (band_switch || ini_reloaded)
  1281. ah->eep_ops->set_board_values(ah, chan);
  1282. ath9k_hw_init_bb(ah, chan);
  1283. ath9k_hw_rfbus_done(ah);
  1284. if (band_switch || ini_reloaded) {
  1285. ah->ah_flags |= AH_FASTCC;
  1286. ath9k_hw_init_cal(ah, chan);
  1287. ah->ah_flags &= ~AH_FASTCC;
  1288. }
  1289. return true;
  1290. }
  1291. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1292. {
  1293. u32 gpio_mask = ah->gpio_mask;
  1294. int i;
  1295. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1296. if (!(gpio_mask & 1))
  1297. continue;
  1298. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1299. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1300. }
  1301. }
  1302. static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
  1303. int *hang_state, int *hang_pos)
  1304. {
  1305. static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
  1306. u32 chain_state, dcs_pos, i;
  1307. for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
  1308. chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
  1309. for (i = 0; i < 3; i++) {
  1310. if (chain_state == dcu_chain_state[i]) {
  1311. *hang_state = chain_state;
  1312. *hang_pos = dcs_pos;
  1313. return true;
  1314. }
  1315. }
  1316. }
  1317. return false;
  1318. }
  1319. #define DCU_COMPLETE_STATE 1
  1320. #define DCU_COMPLETE_STATE_MASK 0x3
  1321. #define NUM_STATUS_READS 50
  1322. static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
  1323. {
  1324. u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
  1325. u32 i, hang_pos, hang_state, num_state = 6;
  1326. comp_state = REG_READ(ah, AR_DMADBG_6);
  1327. if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
  1328. ath_dbg(ath9k_hw_common(ah), RESET,
  1329. "MAC Hang signature not found at DCU complete\n");
  1330. return false;
  1331. }
  1332. chain_state = REG_READ(ah, dcs_reg);
  1333. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1334. goto hang_check_iter;
  1335. dcs_reg = AR_DMADBG_5;
  1336. num_state = 4;
  1337. chain_state = REG_READ(ah, dcs_reg);
  1338. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1339. goto hang_check_iter;
  1340. ath_dbg(ath9k_hw_common(ah), RESET,
  1341. "MAC Hang signature 1 not found\n");
  1342. return false;
  1343. hang_check_iter:
  1344. ath_dbg(ath9k_hw_common(ah), RESET,
  1345. "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
  1346. chain_state, comp_state, hang_state, hang_pos);
  1347. for (i = 0; i < NUM_STATUS_READS; i++) {
  1348. chain_state = REG_READ(ah, dcs_reg);
  1349. chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
  1350. comp_state = REG_READ(ah, AR_DMADBG_6);
  1351. if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
  1352. DCU_COMPLETE_STATE) ||
  1353. (chain_state != hang_state))
  1354. return false;
  1355. }
  1356. ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
  1357. return true;
  1358. }
  1359. void ath9k_hw_check_nav(struct ath_hw *ah)
  1360. {
  1361. struct ath_common *common = ath9k_hw_common(ah);
  1362. u32 val;
  1363. val = REG_READ(ah, AR_NAV);
  1364. if (val != 0xdeadbeef && val > 0x7fff) {
  1365. ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
  1366. REG_WRITE(ah, AR_NAV, 0);
  1367. }
  1368. }
  1369. EXPORT_SYMBOL(ath9k_hw_check_nav);
  1370. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1371. {
  1372. int count = 50;
  1373. u32 reg;
  1374. if (AR_SREV_9300(ah))
  1375. return !ath9k_hw_detect_mac_hang(ah);
  1376. if (AR_SREV_9285_12_OR_LATER(ah))
  1377. return true;
  1378. do {
  1379. reg = REG_READ(ah, AR_OBS_BUS_1);
  1380. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1381. continue;
  1382. switch (reg & 0x7E000B00) {
  1383. case 0x1E000000:
  1384. case 0x52000B00:
  1385. case 0x18000B00:
  1386. continue;
  1387. default:
  1388. return true;
  1389. }
  1390. } while (count-- > 0);
  1391. return false;
  1392. }
  1393. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1394. static void ath9k_hw_init_mfp(struct ath_hw *ah)
  1395. {
  1396. /* Setup MFP options for CCMP */
  1397. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1398. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1399. * frames when constructing CCMP AAD. */
  1400. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1401. 0xc7ff);
  1402. ah->sw_mgmt_crypto = false;
  1403. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1404. /* Disable hardware crypto for management frames */
  1405. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1406. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1407. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1408. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1409. ah->sw_mgmt_crypto = true;
  1410. } else {
  1411. ah->sw_mgmt_crypto = true;
  1412. }
  1413. }
  1414. static void ath9k_hw_reset_opmode(struct ath_hw *ah,
  1415. u32 macStaId1, u32 saveDefAntenna)
  1416. {
  1417. struct ath_common *common = ath9k_hw_common(ah);
  1418. ENABLE_REGWRITE_BUFFER(ah);
  1419. REG_RMW(ah, AR_STA_ID1, macStaId1
  1420. | AR_STA_ID1_RTS_USE_DEF
  1421. | (ah->config.ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1422. | ah->sta_id1_defaults,
  1423. ~AR_STA_ID1_SADH_MASK);
  1424. ath_hw_setbssidmask(common);
  1425. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1426. ath9k_hw_write_associd(ah);
  1427. REG_WRITE(ah, AR_ISR, ~0);
  1428. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1429. REGWRITE_BUFFER_FLUSH(ah);
  1430. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1431. }
  1432. static void ath9k_hw_init_queues(struct ath_hw *ah)
  1433. {
  1434. int i;
  1435. ENABLE_REGWRITE_BUFFER(ah);
  1436. for (i = 0; i < AR_NUM_DCU; i++)
  1437. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1438. REGWRITE_BUFFER_FLUSH(ah);
  1439. ah->intr_txqs = 0;
  1440. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1441. ath9k_hw_resettxqueue(ah, i);
  1442. }
  1443. /*
  1444. * For big endian systems turn on swapping for descriptors
  1445. */
  1446. static void ath9k_hw_init_desc(struct ath_hw *ah)
  1447. {
  1448. struct ath_common *common = ath9k_hw_common(ah);
  1449. if (AR_SREV_9100(ah)) {
  1450. u32 mask;
  1451. mask = REG_READ(ah, AR_CFG);
  1452. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1453. ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
  1454. mask);
  1455. } else {
  1456. mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1457. REG_WRITE(ah, AR_CFG, mask);
  1458. ath_dbg(common, RESET, "Setting CFG 0x%x\n",
  1459. REG_READ(ah, AR_CFG));
  1460. }
  1461. } else {
  1462. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1463. /* Configure AR9271 target WLAN */
  1464. if (AR_SREV_9271(ah))
  1465. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1466. else
  1467. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1468. }
  1469. #ifdef __BIG_ENDIAN
  1470. else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
  1471. AR_SREV_9550(ah))
  1472. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1473. else
  1474. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1475. #endif
  1476. }
  1477. }
  1478. /*
  1479. * Fast channel change:
  1480. * (Change synthesizer based on channel freq without resetting chip)
  1481. */
  1482. static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
  1483. {
  1484. struct ath_common *common = ath9k_hw_common(ah);
  1485. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1486. int ret;
  1487. if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
  1488. goto fail;
  1489. if (ah->chip_fullsleep)
  1490. goto fail;
  1491. if (!ah->curchan)
  1492. goto fail;
  1493. if (chan->channel == ah->curchan->channel)
  1494. goto fail;
  1495. if ((ah->curchan->channelFlags | chan->channelFlags) &
  1496. (CHANNEL_HALF | CHANNEL_QUARTER))
  1497. goto fail;
  1498. /*
  1499. * If cross-band fcc is not supoprted, bail out if channelFlags differ.
  1500. */
  1501. if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
  1502. chan->channelFlags != ah->curchan->channelFlags)
  1503. goto fail;
  1504. if (!ath9k_hw_check_alive(ah))
  1505. goto fail;
  1506. /*
  1507. * For AR9462, make sure that calibration data for
  1508. * re-using are present.
  1509. */
  1510. if (AR_SREV_9462(ah) && (ah->caldata &&
  1511. (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
  1512. !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
  1513. !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
  1514. goto fail;
  1515. ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
  1516. ah->curchan->channel, chan->channel);
  1517. ret = ath9k_hw_channel_change(ah, chan);
  1518. if (!ret)
  1519. goto fail;
  1520. if (ath9k_hw_mci_is_enabled(ah))
  1521. ar9003_mci_2g5g_switch(ah, false);
  1522. ath9k_hw_loadnf(ah, ah->curchan);
  1523. ath9k_hw_start_nfcal(ah, true);
  1524. if (AR_SREV_9271(ah))
  1525. ar9002_hw_load_ani_reg(ah, chan);
  1526. return 0;
  1527. fail:
  1528. return -EINVAL;
  1529. }
  1530. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1531. struct ath9k_hw_cal_data *caldata, bool fastcc)
  1532. {
  1533. struct ath_common *common = ath9k_hw_common(ah);
  1534. u32 saveLedState;
  1535. u32 saveDefAntenna;
  1536. u32 macStaId1;
  1537. u64 tsf = 0;
  1538. int r;
  1539. bool start_mci_reset = false;
  1540. bool save_fullsleep = ah->chip_fullsleep;
  1541. if (ath9k_hw_mci_is_enabled(ah)) {
  1542. start_mci_reset = ar9003_mci_start_reset(ah, chan);
  1543. if (start_mci_reset)
  1544. return 0;
  1545. }
  1546. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1547. return -EIO;
  1548. if (ah->curchan && !ah->chip_fullsleep)
  1549. ath9k_hw_getnf(ah, ah->curchan);
  1550. ah->caldata = caldata;
  1551. if (caldata && (chan->channel != caldata->channel ||
  1552. chan->channelFlags != caldata->channelFlags)) {
  1553. /* Operating channel changed, reset channel calibration data */
  1554. memset(caldata, 0, sizeof(*caldata));
  1555. ath9k_init_nfcal_hist_buffer(ah, chan);
  1556. } else if (caldata) {
  1557. clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
  1558. }
  1559. ah->noise = ath9k_hw_getchan_noise(ah, chan);
  1560. if (fastcc) {
  1561. r = ath9k_hw_do_fastcc(ah, chan);
  1562. if (!r)
  1563. return r;
  1564. }
  1565. if (ath9k_hw_mci_is_enabled(ah))
  1566. ar9003_mci_stop_bt(ah, save_fullsleep);
  1567. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1568. if (saveDefAntenna == 0)
  1569. saveDefAntenna = 1;
  1570. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1571. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1572. if (AR_SREV_9100(ah) ||
  1573. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1574. tsf = ath9k_hw_gettsf64(ah);
  1575. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1576. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1577. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1578. ath9k_hw_mark_phy_inactive(ah);
  1579. ah->paprd_table_write_done = false;
  1580. /* Only required on the first reset */
  1581. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1582. REG_WRITE(ah,
  1583. AR9271_RESET_POWER_DOWN_CONTROL,
  1584. AR9271_RADIO_RF_RST);
  1585. udelay(50);
  1586. }
  1587. if (!ath9k_hw_chip_reset(ah, chan)) {
  1588. ath_err(common, "Chip reset failed\n");
  1589. return -EINVAL;
  1590. }
  1591. /* Only required on the first reset */
  1592. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1593. ah->htc_reset_init = false;
  1594. REG_WRITE(ah,
  1595. AR9271_RESET_POWER_DOWN_CONTROL,
  1596. AR9271_GATE_MAC_CTL);
  1597. udelay(50);
  1598. }
  1599. /* Restore TSF */
  1600. if (tsf)
  1601. ath9k_hw_settsf64(ah, tsf);
  1602. if (AR_SREV_9280_20_OR_LATER(ah))
  1603. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1604. if (!AR_SREV_9300_20_OR_LATER(ah))
  1605. ar9002_hw_enable_async_fifo(ah);
  1606. r = ath9k_hw_process_ini(ah, chan);
  1607. if (r)
  1608. return r;
  1609. if (ath9k_hw_mci_is_enabled(ah))
  1610. ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
  1611. /*
  1612. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1613. * right after the chip reset. When that happens, write a new
  1614. * value after the initvals have been applied, with an offset
  1615. * based on measured time difference
  1616. */
  1617. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1618. tsf += 1500;
  1619. ath9k_hw_settsf64(ah, tsf);
  1620. }
  1621. ath9k_hw_init_mfp(ah);
  1622. ath9k_hw_set_delta_slope(ah, chan);
  1623. ath9k_hw_spur_mitigate_freq(ah, chan);
  1624. ah->eep_ops->set_board_values(ah, chan);
  1625. ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
  1626. r = ath9k_hw_rf_set_freq(ah, chan);
  1627. if (r)
  1628. return r;
  1629. ath9k_hw_set_clockrate(ah);
  1630. ath9k_hw_init_queues(ah);
  1631. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1632. ath9k_hw_ani_cache_ini_regs(ah);
  1633. ath9k_hw_init_qos(ah);
  1634. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1635. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1636. ath9k_hw_init_global_settings(ah);
  1637. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  1638. REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  1639. AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  1640. REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  1641. AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  1642. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1643. AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  1644. }
  1645. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1646. ath9k_hw_set_dma(ah);
  1647. if (!ath9k_hw_mci_is_enabled(ah))
  1648. REG_WRITE(ah, AR_OBS, 8);
  1649. if (ah->config.rx_intr_mitigation) {
  1650. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1651. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1652. }
  1653. if (ah->config.tx_intr_mitigation) {
  1654. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1655. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1656. }
  1657. ath9k_hw_init_bb(ah, chan);
  1658. if (caldata) {
  1659. clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
  1660. clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
  1661. }
  1662. if (!ath9k_hw_init_cal(ah, chan))
  1663. return -EIO;
  1664. if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
  1665. return -EIO;
  1666. ENABLE_REGWRITE_BUFFER(ah);
  1667. ath9k_hw_restore_chainmask(ah);
  1668. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1669. REGWRITE_BUFFER_FLUSH(ah);
  1670. ath9k_hw_init_desc(ah);
  1671. if (ath9k_hw_btcoex_is_enabled(ah))
  1672. ath9k_hw_btcoex_enable(ah);
  1673. if (ath9k_hw_mci_is_enabled(ah))
  1674. ar9003_mci_check_bt(ah);
  1675. ath9k_hw_loadnf(ah, chan);
  1676. ath9k_hw_start_nfcal(ah, true);
  1677. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1678. ar9003_hw_bb_watchdog_config(ah);
  1679. ar9003_hw_disable_phy_restart(ah);
  1680. }
  1681. ath9k_hw_apply_gpio_override(ah);
  1682. if (AR_SREV_9565(ah) && common->bt_ant_diversity)
  1683. REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
  1684. return 0;
  1685. }
  1686. EXPORT_SYMBOL(ath9k_hw_reset);
  1687. /******************************/
  1688. /* Power Management (Chipset) */
  1689. /******************************/
  1690. /*
  1691. * Notify Power Mgt is disabled in self-generated frames.
  1692. * If requested, force chip to sleep.
  1693. */
  1694. static void ath9k_set_power_sleep(struct ath_hw *ah)
  1695. {
  1696. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1697. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  1698. REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
  1699. REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
  1700. REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
  1701. /* xxx Required for WLAN only case ? */
  1702. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
  1703. udelay(100);
  1704. }
  1705. /*
  1706. * Clear the RTC force wake bit to allow the
  1707. * mac to go to sleep.
  1708. */
  1709. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1710. if (ath9k_hw_mci_is_enabled(ah))
  1711. udelay(100);
  1712. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1713. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1714. /* Shutdown chip. Active low */
  1715. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
  1716. REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
  1717. udelay(2);
  1718. }
  1719. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1720. if (AR_SREV_9300_20_OR_LATER(ah))
  1721. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1722. }
  1723. /*
  1724. * Notify Power Management is enabled in self-generating
  1725. * frames. If request, set power mode of chip to
  1726. * auto/normal. Duration in units of 128us (1/8 TU).
  1727. */
  1728. static void ath9k_set_power_network_sleep(struct ath_hw *ah)
  1729. {
  1730. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1731. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1732. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1733. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1734. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1735. AR_RTC_FORCE_WAKE_ON_INT);
  1736. } else {
  1737. /* When chip goes into network sleep, it could be waken
  1738. * up by MCI_INT interrupt caused by BT's HW messages
  1739. * (LNA_xxx, CONT_xxx) which chould be in a very fast
  1740. * rate (~100us). This will cause chip to leave and
  1741. * re-enter network sleep mode frequently, which in
  1742. * consequence will have WLAN MCI HW to generate lots of
  1743. * SYS_WAKING and SYS_SLEEPING messages which will make
  1744. * BT CPU to busy to process.
  1745. */
  1746. if (ath9k_hw_mci_is_enabled(ah))
  1747. REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
  1748. AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
  1749. /*
  1750. * Clear the RTC force wake bit to allow the
  1751. * mac to go to sleep.
  1752. */
  1753. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1754. if (ath9k_hw_mci_is_enabled(ah))
  1755. udelay(30);
  1756. }
  1757. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1758. if (AR_SREV_9300_20_OR_LATER(ah))
  1759. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1760. }
  1761. static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
  1762. {
  1763. u32 val;
  1764. int i;
  1765. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1766. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1767. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1768. udelay(10);
  1769. }
  1770. if ((REG_READ(ah, AR_RTC_STATUS) &
  1771. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1772. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  1773. return false;
  1774. }
  1775. if (!AR_SREV_9300_20_OR_LATER(ah))
  1776. ath9k_hw_init_pll(ah, NULL);
  1777. }
  1778. if (AR_SREV_9100(ah))
  1779. REG_SET_BIT(ah, AR_RTC_RESET,
  1780. AR_RTC_RESET_EN);
  1781. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1782. AR_RTC_FORCE_WAKE_EN);
  1783. udelay(50);
  1784. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1785. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1786. if (val == AR_RTC_STATUS_ON)
  1787. break;
  1788. udelay(50);
  1789. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1790. AR_RTC_FORCE_WAKE_EN);
  1791. }
  1792. if (i == 0) {
  1793. ath_err(ath9k_hw_common(ah),
  1794. "Failed to wakeup in %uus\n",
  1795. POWER_UP_TIME / 20);
  1796. return false;
  1797. }
  1798. if (ath9k_hw_mci_is_enabled(ah))
  1799. ar9003_mci_set_power_awake(ah);
  1800. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1801. return true;
  1802. }
  1803. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1804. {
  1805. struct ath_common *common = ath9k_hw_common(ah);
  1806. int status = true;
  1807. static const char *modes[] = {
  1808. "AWAKE",
  1809. "FULL-SLEEP",
  1810. "NETWORK SLEEP",
  1811. "UNDEFINED"
  1812. };
  1813. if (ah->power_mode == mode)
  1814. return status;
  1815. ath_dbg(common, RESET, "%s -> %s\n",
  1816. modes[ah->power_mode], modes[mode]);
  1817. switch (mode) {
  1818. case ATH9K_PM_AWAKE:
  1819. status = ath9k_hw_set_power_awake(ah);
  1820. break;
  1821. case ATH9K_PM_FULL_SLEEP:
  1822. if (ath9k_hw_mci_is_enabled(ah))
  1823. ar9003_mci_set_full_sleep(ah);
  1824. ath9k_set_power_sleep(ah);
  1825. ah->chip_fullsleep = true;
  1826. break;
  1827. case ATH9K_PM_NETWORK_SLEEP:
  1828. ath9k_set_power_network_sleep(ah);
  1829. break;
  1830. default:
  1831. ath_err(common, "Unknown power mode %u\n", mode);
  1832. return false;
  1833. }
  1834. ah->power_mode = mode;
  1835. /*
  1836. * XXX: If this warning never comes up after a while then
  1837. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1838. * ath9k_hw_setpower() return type void.
  1839. */
  1840. if (!(ah->ah_flags & AH_UNPLUGGED))
  1841. ATH_DBG_WARN_ON_ONCE(!status);
  1842. return status;
  1843. }
  1844. EXPORT_SYMBOL(ath9k_hw_setpower);
  1845. /*******************/
  1846. /* Beacon Handling */
  1847. /*******************/
  1848. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1849. {
  1850. int flags = 0;
  1851. ENABLE_REGWRITE_BUFFER(ah);
  1852. switch (ah->opmode) {
  1853. case NL80211_IFTYPE_ADHOC:
  1854. REG_SET_BIT(ah, AR_TXCFG,
  1855. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1856. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1857. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1858. flags |= AR_NDP_TIMER_EN;
  1859. case NL80211_IFTYPE_MESH_POINT:
  1860. case NL80211_IFTYPE_AP:
  1861. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1862. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1863. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1864. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1865. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1866. flags |=
  1867. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1868. break;
  1869. default:
  1870. ath_dbg(ath9k_hw_common(ah), BEACON,
  1871. "%s: unsupported opmode: %d\n", __func__, ah->opmode);
  1872. return;
  1873. break;
  1874. }
  1875. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1876. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1877. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1878. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1879. REGWRITE_BUFFER_FLUSH(ah);
  1880. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1881. }
  1882. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1883. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1884. const struct ath9k_beacon_state *bs)
  1885. {
  1886. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1887. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1888. struct ath_common *common = ath9k_hw_common(ah);
  1889. ENABLE_REGWRITE_BUFFER(ah);
  1890. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1891. REG_WRITE(ah, AR_BEACON_PERIOD,
  1892. TU_TO_USEC(bs->bs_intval));
  1893. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1894. TU_TO_USEC(bs->bs_intval));
  1895. REGWRITE_BUFFER_FLUSH(ah);
  1896. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1897. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1898. beaconintval = bs->bs_intval;
  1899. if (bs->bs_sleepduration > beaconintval)
  1900. beaconintval = bs->bs_sleepduration;
  1901. dtimperiod = bs->bs_dtimperiod;
  1902. if (bs->bs_sleepduration > dtimperiod)
  1903. dtimperiod = bs->bs_sleepduration;
  1904. if (beaconintval == dtimperiod)
  1905. nextTbtt = bs->bs_nextdtim;
  1906. else
  1907. nextTbtt = bs->bs_nexttbtt;
  1908. ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1909. ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
  1910. ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
  1911. ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
  1912. ENABLE_REGWRITE_BUFFER(ah);
  1913. REG_WRITE(ah, AR_NEXT_DTIM,
  1914. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1915. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1916. REG_WRITE(ah, AR_SLEEP1,
  1917. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1918. | AR_SLEEP1_ASSUME_DTIM);
  1919. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1920. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1921. else
  1922. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1923. REG_WRITE(ah, AR_SLEEP2,
  1924. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1925. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1926. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1927. REGWRITE_BUFFER_FLUSH(ah);
  1928. REG_SET_BIT(ah, AR_TIMER_MODE,
  1929. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1930. AR_DTIM_TIMER_EN);
  1931. /* TSF Out of Range Threshold */
  1932. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1933. }
  1934. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1935. /*******************/
  1936. /* HW Capabilities */
  1937. /*******************/
  1938. static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
  1939. {
  1940. eeprom_chainmask &= chip_chainmask;
  1941. if (eeprom_chainmask)
  1942. return eeprom_chainmask;
  1943. else
  1944. return chip_chainmask;
  1945. }
  1946. /**
  1947. * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
  1948. * @ah: the atheros hardware data structure
  1949. *
  1950. * We enable DFS support upstream on chipsets which have passed a series
  1951. * of tests. The testing requirements are going to be documented. Desired
  1952. * test requirements are documented at:
  1953. *
  1954. * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
  1955. *
  1956. * Once a new chipset gets properly tested an individual commit can be used
  1957. * to document the testing for DFS for that chipset.
  1958. */
  1959. static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
  1960. {
  1961. switch (ah->hw_version.macVersion) {
  1962. /* for temporary testing DFS with 9280 */
  1963. case AR_SREV_VERSION_9280:
  1964. /* AR9580 will likely be our first target to get testing on */
  1965. case AR_SREV_VERSION_9580:
  1966. return true;
  1967. default:
  1968. return false;
  1969. }
  1970. }
  1971. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1972. {
  1973. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1974. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1975. struct ath_common *common = ath9k_hw_common(ah);
  1976. unsigned int chip_chainmask;
  1977. u16 eeval;
  1978. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1979. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1980. regulatory->current_rd = eeval;
  1981. if (ah->opmode != NL80211_IFTYPE_AP &&
  1982. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1983. if (regulatory->current_rd == 0x64 ||
  1984. regulatory->current_rd == 0x65)
  1985. regulatory->current_rd += 5;
  1986. else if (regulatory->current_rd == 0x41)
  1987. regulatory->current_rd = 0x43;
  1988. ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
  1989. regulatory->current_rd);
  1990. }
  1991. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1992. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1993. ath_err(common,
  1994. "no band has been marked as supported in EEPROM\n");
  1995. return -EINVAL;
  1996. }
  1997. if (eeval & AR5416_OPFLAGS_11A)
  1998. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1999. if (eeval & AR5416_OPFLAGS_11G)
  2000. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  2001. if (AR_SREV_9485(ah) ||
  2002. AR_SREV_9285(ah) ||
  2003. AR_SREV_9330(ah) ||
  2004. AR_SREV_9565(ah))
  2005. chip_chainmask = 1;
  2006. else if (AR_SREV_9462(ah))
  2007. chip_chainmask = 3;
  2008. else if (!AR_SREV_9280_20_OR_LATER(ah))
  2009. chip_chainmask = 7;
  2010. else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
  2011. chip_chainmask = 3;
  2012. else
  2013. chip_chainmask = 7;
  2014. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  2015. /*
  2016. * For AR9271 we will temporarilly uses the rx chainmax as read from
  2017. * the EEPROM.
  2018. */
  2019. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  2020. !(eeval & AR5416_OPFLAGS_11A) &&
  2021. !(AR_SREV_9271(ah)))
  2022. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  2023. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  2024. else if (AR_SREV_9100(ah))
  2025. pCap->rx_chainmask = 0x7;
  2026. else
  2027. /* Use rx_chainmask from EEPROM. */
  2028. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  2029. pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
  2030. pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
  2031. ah->txchainmask = pCap->tx_chainmask;
  2032. ah->rxchainmask = pCap->rx_chainmask;
  2033. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  2034. /* enable key search for every frame in an aggregate */
  2035. if (AR_SREV_9300_20_OR_LATER(ah))
  2036. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  2037. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  2038. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  2039. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  2040. else
  2041. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  2042. if (AR_SREV_9271(ah))
  2043. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  2044. else if (AR_DEVID_7010(ah))
  2045. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  2046. else if (AR_SREV_9300_20_OR_LATER(ah))
  2047. pCap->num_gpio_pins = AR9300_NUM_GPIO;
  2048. else if (AR_SREV_9287_11_OR_LATER(ah))
  2049. pCap->num_gpio_pins = AR9287_NUM_GPIO;
  2050. else if (AR_SREV_9285_12_OR_LATER(ah))
  2051. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  2052. else if (AR_SREV_9280_20_OR_LATER(ah))
  2053. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2054. else
  2055. pCap->num_gpio_pins = AR_NUM_GPIO;
  2056. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
  2057. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2058. else
  2059. pCap->rts_aggr_limit = (8 * 1024);
  2060. #ifdef CONFIG_ATH9K_RFKILL
  2061. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  2062. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  2063. ah->rfkill_gpio =
  2064. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  2065. ah->rfkill_polarity =
  2066. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  2067. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2068. }
  2069. #endif
  2070. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  2071. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  2072. else
  2073. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2074. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  2075. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2076. else
  2077. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2078. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2079. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  2080. if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
  2081. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  2082. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  2083. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  2084. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  2085. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  2086. pCap->txs_len = sizeof(struct ar9003_txs);
  2087. } else {
  2088. pCap->tx_desc_len = sizeof(struct ath_desc);
  2089. if (AR_SREV_9280_20(ah))
  2090. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  2091. }
  2092. if (AR_SREV_9300_20_OR_LATER(ah))
  2093. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  2094. if (AR_SREV_9300_20_OR_LATER(ah))
  2095. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  2096. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  2097. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  2098. if (AR_SREV_9285(ah)) {
  2099. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  2100. ant_div_ctl1 =
  2101. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2102. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
  2103. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2104. ath_info(common, "Enable LNA combining\n");
  2105. }
  2106. }
  2107. }
  2108. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2109. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  2110. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  2111. }
  2112. if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
  2113. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2114. if ((ant_div_ctl1 >> 0x6) == 0x3) {
  2115. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2116. ath_info(common, "Enable LNA combining\n");
  2117. }
  2118. }
  2119. if (ath9k_hw_dfs_tested(ah))
  2120. pCap->hw_caps |= ATH9K_HW_CAP_DFS;
  2121. tx_chainmask = pCap->tx_chainmask;
  2122. rx_chainmask = pCap->rx_chainmask;
  2123. while (tx_chainmask || rx_chainmask) {
  2124. if (tx_chainmask & BIT(0))
  2125. pCap->max_txchains++;
  2126. if (rx_chainmask & BIT(0))
  2127. pCap->max_rxchains++;
  2128. tx_chainmask >>= 1;
  2129. rx_chainmask >>= 1;
  2130. }
  2131. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2132. if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
  2133. pCap->hw_caps |= ATH9K_HW_CAP_MCI;
  2134. if (AR_SREV_9462_20_OR_LATER(ah))
  2135. pCap->hw_caps |= ATH9K_HW_CAP_RTT;
  2136. }
  2137. if (AR_SREV_9462(ah))
  2138. pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
  2139. if (AR_SREV_9300_20_OR_LATER(ah) &&
  2140. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  2141. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  2142. /*
  2143. * Fast channel change across bands is available
  2144. * only for AR9462 and AR9565.
  2145. */
  2146. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  2147. pCap->hw_caps |= ATH9K_HW_CAP_FCC_BAND_SWITCH;
  2148. return 0;
  2149. }
  2150. /****************************/
  2151. /* GPIO / RFKILL / Antennae */
  2152. /****************************/
  2153. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  2154. u32 gpio, u32 type)
  2155. {
  2156. int addr;
  2157. u32 gpio_shift, tmp;
  2158. if (gpio > 11)
  2159. addr = AR_GPIO_OUTPUT_MUX3;
  2160. else if (gpio > 5)
  2161. addr = AR_GPIO_OUTPUT_MUX2;
  2162. else
  2163. addr = AR_GPIO_OUTPUT_MUX1;
  2164. gpio_shift = (gpio % 6) * 5;
  2165. if (AR_SREV_9280_20_OR_LATER(ah)
  2166. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2167. REG_RMW(ah, addr, (type << gpio_shift),
  2168. (0x1f << gpio_shift));
  2169. } else {
  2170. tmp = REG_READ(ah, addr);
  2171. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2172. tmp &= ~(0x1f << gpio_shift);
  2173. tmp |= (type << gpio_shift);
  2174. REG_WRITE(ah, addr, tmp);
  2175. }
  2176. }
  2177. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  2178. {
  2179. u32 gpio_shift;
  2180. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  2181. if (AR_DEVID_7010(ah)) {
  2182. gpio_shift = gpio;
  2183. REG_RMW(ah, AR7010_GPIO_OE,
  2184. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  2185. (AR7010_GPIO_OE_MASK << gpio_shift));
  2186. return;
  2187. }
  2188. gpio_shift = gpio << 1;
  2189. REG_RMW(ah,
  2190. AR_GPIO_OE_OUT,
  2191. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  2192. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2193. }
  2194. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  2195. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  2196. {
  2197. #define MS_REG_READ(x, y) \
  2198. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  2199. if (gpio >= ah->caps.num_gpio_pins)
  2200. return 0xffffffff;
  2201. if (AR_DEVID_7010(ah)) {
  2202. u32 val;
  2203. val = REG_READ(ah, AR7010_GPIO_IN);
  2204. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  2205. } else if (AR_SREV_9300_20_OR_LATER(ah))
  2206. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  2207. AR_GPIO_BIT(gpio)) != 0;
  2208. else if (AR_SREV_9271(ah))
  2209. return MS_REG_READ(AR9271, gpio) != 0;
  2210. else if (AR_SREV_9287_11_OR_LATER(ah))
  2211. return MS_REG_READ(AR9287, gpio) != 0;
  2212. else if (AR_SREV_9285_12_OR_LATER(ah))
  2213. return MS_REG_READ(AR9285, gpio) != 0;
  2214. else if (AR_SREV_9280_20_OR_LATER(ah))
  2215. return MS_REG_READ(AR928X, gpio) != 0;
  2216. else
  2217. return MS_REG_READ(AR, gpio) != 0;
  2218. }
  2219. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  2220. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  2221. u32 ah_signal_type)
  2222. {
  2223. u32 gpio_shift;
  2224. if (AR_DEVID_7010(ah)) {
  2225. gpio_shift = gpio;
  2226. REG_RMW(ah, AR7010_GPIO_OE,
  2227. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  2228. (AR7010_GPIO_OE_MASK << gpio_shift));
  2229. return;
  2230. }
  2231. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  2232. gpio_shift = 2 * gpio;
  2233. REG_RMW(ah,
  2234. AR_GPIO_OE_OUT,
  2235. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2236. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2237. }
  2238. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  2239. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  2240. {
  2241. if (AR_DEVID_7010(ah)) {
  2242. val = val ? 0 : 1;
  2243. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  2244. AR_GPIO_BIT(gpio));
  2245. return;
  2246. }
  2247. if (AR_SREV_9271(ah))
  2248. val = ~val;
  2249. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2250. AR_GPIO_BIT(gpio));
  2251. }
  2252. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  2253. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  2254. {
  2255. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  2256. }
  2257. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2258. /*********************/
  2259. /* General Operation */
  2260. /*********************/
  2261. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2262. {
  2263. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2264. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2265. if (phybits & AR_PHY_ERR_RADAR)
  2266. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2267. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2268. bits |= ATH9K_RX_FILTER_PHYERR;
  2269. return bits;
  2270. }
  2271. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2272. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2273. {
  2274. u32 phybits;
  2275. ENABLE_REGWRITE_BUFFER(ah);
  2276. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  2277. bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
  2278. REG_WRITE(ah, AR_RX_FILTER, bits);
  2279. phybits = 0;
  2280. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2281. phybits |= AR_PHY_ERR_RADAR;
  2282. if (bits & ATH9K_RX_FILTER_PHYERR)
  2283. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2284. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2285. if (phybits)
  2286. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2287. else
  2288. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2289. REGWRITE_BUFFER_FLUSH(ah);
  2290. }
  2291. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2292. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2293. {
  2294. if (ath9k_hw_mci_is_enabled(ah))
  2295. ar9003_mci_bt_gain_ctrl(ah);
  2296. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2297. return false;
  2298. ath9k_hw_init_pll(ah, NULL);
  2299. ah->htc_reset_init = true;
  2300. return true;
  2301. }
  2302. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2303. bool ath9k_hw_disable(struct ath_hw *ah)
  2304. {
  2305. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2306. return false;
  2307. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2308. return false;
  2309. ath9k_hw_init_pll(ah, NULL);
  2310. return true;
  2311. }
  2312. EXPORT_SYMBOL(ath9k_hw_disable);
  2313. static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
  2314. {
  2315. enum eeprom_param gain_param;
  2316. if (IS_CHAN_2GHZ(chan))
  2317. gain_param = EEP_ANTENNA_GAIN_2G;
  2318. else
  2319. gain_param = EEP_ANTENNA_GAIN_5G;
  2320. return ah->eep_ops->get_eeprom(ah, gain_param);
  2321. }
  2322. void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
  2323. bool test)
  2324. {
  2325. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2326. struct ieee80211_channel *channel;
  2327. int chan_pwr, new_pwr, max_gain;
  2328. int ant_gain, ant_reduction = 0;
  2329. if (!chan)
  2330. return;
  2331. channel = chan->chan;
  2332. chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
  2333. new_pwr = min_t(int, chan_pwr, reg->power_limit);
  2334. max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
  2335. ant_gain = get_antenna_gain(ah, chan);
  2336. if (ant_gain > max_gain)
  2337. ant_reduction = ant_gain - max_gain;
  2338. ah->eep_ops->set_txpower(ah, chan,
  2339. ath9k_regd_get_ctl(reg, chan),
  2340. ant_reduction, new_pwr, test);
  2341. }
  2342. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  2343. {
  2344. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2345. struct ath9k_channel *chan = ah->curchan;
  2346. struct ieee80211_channel *channel = chan->chan;
  2347. reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
  2348. if (test)
  2349. channel->max_power = MAX_RATE_POWER / 2;
  2350. ath9k_hw_apply_txpower(ah, chan, test);
  2351. if (test)
  2352. channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
  2353. }
  2354. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  2355. void ath9k_hw_setopmode(struct ath_hw *ah)
  2356. {
  2357. ath9k_hw_set_operating_mode(ah, ah->opmode);
  2358. }
  2359. EXPORT_SYMBOL(ath9k_hw_setopmode);
  2360. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  2361. {
  2362. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  2363. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  2364. }
  2365. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  2366. void ath9k_hw_write_associd(struct ath_hw *ah)
  2367. {
  2368. struct ath_common *common = ath9k_hw_common(ah);
  2369. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  2370. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  2371. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2372. }
  2373. EXPORT_SYMBOL(ath9k_hw_write_associd);
  2374. #define ATH9K_MAX_TSF_READ 10
  2375. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  2376. {
  2377. u32 tsf_lower, tsf_upper1, tsf_upper2;
  2378. int i;
  2379. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  2380. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  2381. tsf_lower = REG_READ(ah, AR_TSF_L32);
  2382. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  2383. if (tsf_upper2 == tsf_upper1)
  2384. break;
  2385. tsf_upper1 = tsf_upper2;
  2386. }
  2387. WARN_ON( i == ATH9K_MAX_TSF_READ );
  2388. return (((u64)tsf_upper1 << 32) | tsf_lower);
  2389. }
  2390. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  2391. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  2392. {
  2393. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  2394. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  2395. }
  2396. EXPORT_SYMBOL(ath9k_hw_settsf64);
  2397. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  2398. {
  2399. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  2400. AH_TSF_WRITE_TIMEOUT))
  2401. ath_dbg(ath9k_hw_common(ah), RESET,
  2402. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  2403. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  2404. }
  2405. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  2406. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
  2407. {
  2408. if (set)
  2409. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  2410. else
  2411. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  2412. }
  2413. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  2414. void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
  2415. {
  2416. u32 macmode;
  2417. if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
  2418. macmode = AR_2040_JOINED_RX_CLEAR;
  2419. else
  2420. macmode = 0;
  2421. REG_WRITE(ah, AR_2040_MODE, macmode);
  2422. }
  2423. /* HW Generic timers configuration */
  2424. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2425. {
  2426. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2427. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2428. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2429. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2430. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2431. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2432. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2433. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2434. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2435. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2436. AR_NDP2_TIMER_MODE, 0x0002},
  2437. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2438. AR_NDP2_TIMER_MODE, 0x0004},
  2439. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2440. AR_NDP2_TIMER_MODE, 0x0008},
  2441. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2442. AR_NDP2_TIMER_MODE, 0x0010},
  2443. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2444. AR_NDP2_TIMER_MODE, 0x0020},
  2445. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2446. AR_NDP2_TIMER_MODE, 0x0040},
  2447. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2448. AR_NDP2_TIMER_MODE, 0x0080}
  2449. };
  2450. /* HW generic timer primitives */
  2451. /* compute and clear index of rightmost 1 */
  2452. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2453. {
  2454. u32 b;
  2455. b = *mask;
  2456. b &= (0-b);
  2457. *mask &= ~b;
  2458. b *= debruijn32;
  2459. b >>= 27;
  2460. return timer_table->gen_timer_index[b];
  2461. }
  2462. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2463. {
  2464. return REG_READ(ah, AR_TSF_L32);
  2465. }
  2466. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2467. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2468. void (*trigger)(void *),
  2469. void (*overflow)(void *),
  2470. void *arg,
  2471. u8 timer_index)
  2472. {
  2473. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2474. struct ath_gen_timer *timer;
  2475. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2476. if (timer == NULL)
  2477. return NULL;
  2478. /* allocate a hardware generic timer slot */
  2479. timer_table->timers[timer_index] = timer;
  2480. timer->index = timer_index;
  2481. timer->trigger = trigger;
  2482. timer->overflow = overflow;
  2483. timer->arg = arg;
  2484. return timer;
  2485. }
  2486. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2487. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2488. struct ath_gen_timer *timer,
  2489. u32 trig_timeout,
  2490. u32 timer_period)
  2491. {
  2492. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2493. u32 tsf, timer_next;
  2494. BUG_ON(!timer_period);
  2495. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2496. tsf = ath9k_hw_gettsf32(ah);
  2497. timer_next = tsf + trig_timeout;
  2498. ath_dbg(ath9k_hw_common(ah), BTCOEX,
  2499. "current tsf %x period %x timer_next %x\n",
  2500. tsf, timer_period, timer_next);
  2501. /*
  2502. * Program generic timer registers
  2503. */
  2504. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2505. timer_next);
  2506. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2507. timer_period);
  2508. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2509. gen_tmr_configuration[timer->index].mode_mask);
  2510. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2511. /*
  2512. * Starting from AR9462, each generic timer can select which tsf
  2513. * to use. But we still follow the old rule, 0 - 7 use tsf and
  2514. * 8 - 15 use tsf2.
  2515. */
  2516. if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
  2517. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2518. (1 << timer->index));
  2519. else
  2520. REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2521. (1 << timer->index));
  2522. }
  2523. /* Enable both trigger and thresh interrupt masks */
  2524. REG_SET_BIT(ah, AR_IMR_S5,
  2525. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2526. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2527. }
  2528. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2529. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2530. {
  2531. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2532. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2533. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2534. return;
  2535. }
  2536. /* Clear generic timer enable bits. */
  2537. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2538. gen_tmr_configuration[timer->index].mode_mask);
  2539. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2540. /*
  2541. * Need to switch back to TSF if it was using TSF2.
  2542. */
  2543. if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
  2544. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2545. (1 << timer->index));
  2546. }
  2547. }
  2548. /* Disable both trigger and thresh interrupt masks */
  2549. REG_CLR_BIT(ah, AR_IMR_S5,
  2550. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2551. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2552. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2553. }
  2554. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2555. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2556. {
  2557. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2558. /* free the hardware generic timer slot */
  2559. timer_table->timers[timer->index] = NULL;
  2560. kfree(timer);
  2561. }
  2562. EXPORT_SYMBOL(ath_gen_timer_free);
  2563. /*
  2564. * Generic Timer Interrupts handling
  2565. */
  2566. void ath_gen_timer_isr(struct ath_hw *ah)
  2567. {
  2568. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2569. struct ath_gen_timer *timer;
  2570. struct ath_common *common = ath9k_hw_common(ah);
  2571. u32 trigger_mask, thresh_mask, index;
  2572. /* get hardware generic timer interrupt status */
  2573. trigger_mask = ah->intr_gen_timer_trigger;
  2574. thresh_mask = ah->intr_gen_timer_thresh;
  2575. trigger_mask &= timer_table->timer_mask.val;
  2576. thresh_mask &= timer_table->timer_mask.val;
  2577. trigger_mask &= ~thresh_mask;
  2578. while (thresh_mask) {
  2579. index = rightmost_index(timer_table, &thresh_mask);
  2580. timer = timer_table->timers[index];
  2581. BUG_ON(!timer);
  2582. ath_dbg(common, BTCOEX, "TSF overflow for Gen timer %d\n",
  2583. index);
  2584. timer->overflow(timer->arg);
  2585. }
  2586. while (trigger_mask) {
  2587. index = rightmost_index(timer_table, &trigger_mask);
  2588. timer = timer_table->timers[index];
  2589. BUG_ON(!timer);
  2590. ath_dbg(common, BTCOEX,
  2591. "Gen timer[%d] trigger\n", index);
  2592. timer->trigger(timer->arg);
  2593. }
  2594. }
  2595. EXPORT_SYMBOL(ath_gen_timer_isr);
  2596. /********/
  2597. /* HTC */
  2598. /********/
  2599. static struct {
  2600. u32 version;
  2601. const char * name;
  2602. } ath_mac_bb_names[] = {
  2603. /* Devices with external radios */
  2604. { AR_SREV_VERSION_5416_PCI, "5416" },
  2605. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2606. { AR_SREV_VERSION_9100, "9100" },
  2607. { AR_SREV_VERSION_9160, "9160" },
  2608. /* Single-chip solutions */
  2609. { AR_SREV_VERSION_9280, "9280" },
  2610. { AR_SREV_VERSION_9285, "9285" },
  2611. { AR_SREV_VERSION_9287, "9287" },
  2612. { AR_SREV_VERSION_9271, "9271" },
  2613. { AR_SREV_VERSION_9300, "9300" },
  2614. { AR_SREV_VERSION_9330, "9330" },
  2615. { AR_SREV_VERSION_9340, "9340" },
  2616. { AR_SREV_VERSION_9485, "9485" },
  2617. { AR_SREV_VERSION_9462, "9462" },
  2618. { AR_SREV_VERSION_9550, "9550" },
  2619. { AR_SREV_VERSION_9565, "9565" },
  2620. };
  2621. /* For devices with external radios */
  2622. static struct {
  2623. u16 version;
  2624. const char * name;
  2625. } ath_rf_names[] = {
  2626. { 0, "5133" },
  2627. { AR_RAD5133_SREV_MAJOR, "5133" },
  2628. { AR_RAD5122_SREV_MAJOR, "5122" },
  2629. { AR_RAD2133_SREV_MAJOR, "2133" },
  2630. { AR_RAD2122_SREV_MAJOR, "2122" }
  2631. };
  2632. /*
  2633. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2634. */
  2635. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2636. {
  2637. int i;
  2638. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2639. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2640. return ath_mac_bb_names[i].name;
  2641. }
  2642. }
  2643. return "????";
  2644. }
  2645. /*
  2646. * Return the RF name. "????" is returned if the RF is unknown.
  2647. * Used for devices with external radios.
  2648. */
  2649. static const char *ath9k_hw_rf_name(u16 rf_version)
  2650. {
  2651. int i;
  2652. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2653. if (ath_rf_names[i].version == rf_version) {
  2654. return ath_rf_names[i].name;
  2655. }
  2656. }
  2657. return "????";
  2658. }
  2659. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2660. {
  2661. int used;
  2662. /* chipsets >= AR9280 are single-chip */
  2663. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2664. used = scnprintf(hw_name, len,
  2665. "Atheros AR%s Rev:%x",
  2666. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2667. ah->hw_version.macRev);
  2668. }
  2669. else {
  2670. used = scnprintf(hw_name, len,
  2671. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2672. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2673. ah->hw_version.macRev,
  2674. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
  2675. & AR_RADIO_SREV_MAJOR)),
  2676. ah->hw_version.phyRev);
  2677. }
  2678. hw_name[used] = '\0';
  2679. }
  2680. EXPORT_SYMBOL(ath9k_hw_name);