wmi.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198
  1. /*
  2. * Copyright (c) 2005-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include <linux/skbuff.h>
  18. #include "core.h"
  19. #include "htc.h"
  20. #include "debug.h"
  21. #include "wmi.h"
  22. #include "mac.h"
  23. int ath10k_wmi_wait_for_service_ready(struct ath10k *ar)
  24. {
  25. int ret;
  26. ret = wait_for_completion_timeout(&ar->wmi.service_ready,
  27. WMI_SERVICE_READY_TIMEOUT_HZ);
  28. return ret;
  29. }
  30. int ath10k_wmi_wait_for_unified_ready(struct ath10k *ar)
  31. {
  32. int ret;
  33. ret = wait_for_completion_timeout(&ar->wmi.unified_ready,
  34. WMI_UNIFIED_READY_TIMEOUT_HZ);
  35. return ret;
  36. }
  37. static struct sk_buff *ath10k_wmi_alloc_skb(u32 len)
  38. {
  39. struct sk_buff *skb;
  40. u32 round_len = roundup(len, 4);
  41. skb = ath10k_htc_alloc_skb(WMI_SKB_HEADROOM + round_len);
  42. if (!skb)
  43. return NULL;
  44. skb_reserve(skb, WMI_SKB_HEADROOM);
  45. if (!IS_ALIGNED((unsigned long)skb->data, 4))
  46. ath10k_warn("Unaligned WMI skb\n");
  47. skb_put(skb, round_len);
  48. memset(skb->data, 0, round_len);
  49. return skb;
  50. }
  51. static void ath10k_wmi_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  52. {
  53. dev_kfree_skb(skb);
  54. }
  55. static int ath10k_wmi_cmd_send_nowait(struct ath10k *ar, struct sk_buff *skb,
  56. enum wmi_cmd_id cmd_id)
  57. {
  58. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb);
  59. struct wmi_cmd_hdr *cmd_hdr;
  60. int ret;
  61. u32 cmd = 0;
  62. if (skb_push(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
  63. return -ENOMEM;
  64. cmd |= SM(cmd_id, WMI_CMD_HDR_CMD_ID);
  65. cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
  66. cmd_hdr->cmd_id = __cpu_to_le32(cmd);
  67. memset(skb_cb, 0, sizeof(*skb_cb));
  68. ret = ath10k_htc_send(&ar->htc, ar->wmi.eid, skb);
  69. trace_ath10k_wmi_cmd(cmd_id, skb->data, skb->len, ret);
  70. if (ret)
  71. goto err_pull;
  72. return 0;
  73. err_pull:
  74. skb_pull(skb, sizeof(struct wmi_cmd_hdr));
  75. return ret;
  76. }
  77. static void ath10k_wmi_tx_beacon_nowait(struct ath10k_vif *arvif)
  78. {
  79. struct wmi_bcn_tx_arg arg = {0};
  80. int ret;
  81. lockdep_assert_held(&arvif->ar->data_lock);
  82. if (arvif->beacon == NULL)
  83. return;
  84. arg.vdev_id = arvif->vdev_id;
  85. arg.tx_rate = 0;
  86. arg.tx_power = 0;
  87. arg.bcn = arvif->beacon->data;
  88. arg.bcn_len = arvif->beacon->len;
  89. ret = ath10k_wmi_beacon_send_nowait(arvif->ar, &arg);
  90. if (ret)
  91. return;
  92. dev_kfree_skb_any(arvif->beacon);
  93. arvif->beacon = NULL;
  94. }
  95. static void ath10k_wmi_tx_beacons_iter(void *data, u8 *mac,
  96. struct ieee80211_vif *vif)
  97. {
  98. struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
  99. ath10k_wmi_tx_beacon_nowait(arvif);
  100. }
  101. static void ath10k_wmi_tx_beacons_nowait(struct ath10k *ar)
  102. {
  103. spin_lock_bh(&ar->data_lock);
  104. ieee80211_iterate_active_interfaces_atomic(ar->hw,
  105. IEEE80211_IFACE_ITER_NORMAL,
  106. ath10k_wmi_tx_beacons_iter,
  107. NULL);
  108. spin_unlock_bh(&ar->data_lock);
  109. }
  110. static void ath10k_wmi_op_ep_tx_credits(struct ath10k *ar)
  111. {
  112. /* try to send pending beacons first. they take priority */
  113. ath10k_wmi_tx_beacons_nowait(ar);
  114. wake_up(&ar->wmi.tx_credits_wq);
  115. }
  116. static int ath10k_wmi_cmd_send(struct ath10k *ar, struct sk_buff *skb,
  117. enum wmi_cmd_id cmd_id)
  118. {
  119. int ret = -EINVAL;
  120. wait_event_timeout(ar->wmi.tx_credits_wq, ({
  121. /* try to send pending beacons first. they take priority */
  122. ath10k_wmi_tx_beacons_nowait(ar);
  123. ret = ath10k_wmi_cmd_send_nowait(ar, skb, cmd_id);
  124. (ret != -EAGAIN);
  125. }), 3*HZ);
  126. if (ret)
  127. dev_kfree_skb_any(skb);
  128. return ret;
  129. }
  130. static int ath10k_wmi_event_scan(struct ath10k *ar, struct sk_buff *skb)
  131. {
  132. struct wmi_scan_event *event = (struct wmi_scan_event *)skb->data;
  133. enum wmi_scan_event_type event_type;
  134. enum wmi_scan_completion_reason reason;
  135. u32 freq;
  136. u32 req_id;
  137. u32 scan_id;
  138. u32 vdev_id;
  139. event_type = __le32_to_cpu(event->event_type);
  140. reason = __le32_to_cpu(event->reason);
  141. freq = __le32_to_cpu(event->channel_freq);
  142. req_id = __le32_to_cpu(event->scan_req_id);
  143. scan_id = __le32_to_cpu(event->scan_id);
  144. vdev_id = __le32_to_cpu(event->vdev_id);
  145. ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENTID\n");
  146. ath10k_dbg(ATH10K_DBG_WMI,
  147. "scan event type %d reason %d freq %d req_id %d "
  148. "scan_id %d vdev_id %d\n",
  149. event_type, reason, freq, req_id, scan_id, vdev_id);
  150. spin_lock_bh(&ar->data_lock);
  151. switch (event_type) {
  152. case WMI_SCAN_EVENT_STARTED:
  153. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_STARTED\n");
  154. if (ar->scan.in_progress && ar->scan.is_roc)
  155. ieee80211_ready_on_channel(ar->hw);
  156. complete(&ar->scan.started);
  157. break;
  158. case WMI_SCAN_EVENT_COMPLETED:
  159. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_COMPLETED\n");
  160. switch (reason) {
  161. case WMI_SCAN_REASON_COMPLETED:
  162. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_COMPLETED\n");
  163. break;
  164. case WMI_SCAN_REASON_CANCELLED:
  165. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_CANCELED\n");
  166. break;
  167. case WMI_SCAN_REASON_PREEMPTED:
  168. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_PREEMPTED\n");
  169. break;
  170. case WMI_SCAN_REASON_TIMEDOUT:
  171. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_TIMEDOUT\n");
  172. break;
  173. default:
  174. break;
  175. }
  176. ar->scan_channel = NULL;
  177. if (!ar->scan.in_progress) {
  178. ath10k_warn("no scan requested, ignoring\n");
  179. break;
  180. }
  181. if (ar->scan.is_roc) {
  182. ath10k_offchan_tx_purge(ar);
  183. if (!ar->scan.aborting)
  184. ieee80211_remain_on_channel_expired(ar->hw);
  185. } else {
  186. ieee80211_scan_completed(ar->hw, ar->scan.aborting);
  187. }
  188. del_timer(&ar->scan.timeout);
  189. complete_all(&ar->scan.completed);
  190. ar->scan.in_progress = false;
  191. break;
  192. case WMI_SCAN_EVENT_BSS_CHANNEL:
  193. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_BSS_CHANNEL\n");
  194. ar->scan_channel = NULL;
  195. break;
  196. case WMI_SCAN_EVENT_FOREIGN_CHANNEL:
  197. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_FOREIGN_CHANNEL\n");
  198. ar->scan_channel = ieee80211_get_channel(ar->hw->wiphy, freq);
  199. if (ar->scan.in_progress && ar->scan.is_roc &&
  200. ar->scan.roc_freq == freq) {
  201. complete(&ar->scan.on_channel);
  202. }
  203. break;
  204. case WMI_SCAN_EVENT_DEQUEUED:
  205. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_DEQUEUED\n");
  206. break;
  207. case WMI_SCAN_EVENT_PREEMPTED:
  208. ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_PREEMPTED\n");
  209. break;
  210. case WMI_SCAN_EVENT_START_FAILED:
  211. ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_START_FAILED\n");
  212. break;
  213. default:
  214. break;
  215. }
  216. spin_unlock_bh(&ar->data_lock);
  217. return 0;
  218. }
  219. static inline enum ieee80211_band phy_mode_to_band(u32 phy_mode)
  220. {
  221. enum ieee80211_band band;
  222. switch (phy_mode) {
  223. case MODE_11A:
  224. case MODE_11NA_HT20:
  225. case MODE_11NA_HT40:
  226. case MODE_11AC_VHT20:
  227. case MODE_11AC_VHT40:
  228. case MODE_11AC_VHT80:
  229. band = IEEE80211_BAND_5GHZ;
  230. break;
  231. case MODE_11G:
  232. case MODE_11B:
  233. case MODE_11GONLY:
  234. case MODE_11NG_HT20:
  235. case MODE_11NG_HT40:
  236. case MODE_11AC_VHT20_2G:
  237. case MODE_11AC_VHT40_2G:
  238. case MODE_11AC_VHT80_2G:
  239. default:
  240. band = IEEE80211_BAND_2GHZ;
  241. }
  242. return band;
  243. }
  244. static inline u8 get_rate_idx(u32 rate, enum ieee80211_band band)
  245. {
  246. u8 rate_idx = 0;
  247. /* rate in Kbps */
  248. switch (rate) {
  249. case 1000:
  250. rate_idx = 0;
  251. break;
  252. case 2000:
  253. rate_idx = 1;
  254. break;
  255. case 5500:
  256. rate_idx = 2;
  257. break;
  258. case 11000:
  259. rate_idx = 3;
  260. break;
  261. case 6000:
  262. rate_idx = 4;
  263. break;
  264. case 9000:
  265. rate_idx = 5;
  266. break;
  267. case 12000:
  268. rate_idx = 6;
  269. break;
  270. case 18000:
  271. rate_idx = 7;
  272. break;
  273. case 24000:
  274. rate_idx = 8;
  275. break;
  276. case 36000:
  277. rate_idx = 9;
  278. break;
  279. case 48000:
  280. rate_idx = 10;
  281. break;
  282. case 54000:
  283. rate_idx = 11;
  284. break;
  285. default:
  286. break;
  287. }
  288. if (band == IEEE80211_BAND_5GHZ) {
  289. if (rate_idx > 3)
  290. /* Omit CCK rates */
  291. rate_idx -= 4;
  292. else
  293. rate_idx = 0;
  294. }
  295. return rate_idx;
  296. }
  297. static int ath10k_wmi_event_mgmt_rx(struct ath10k *ar, struct sk_buff *skb)
  298. {
  299. struct wmi_mgmt_rx_event_v1 *ev_v1;
  300. struct wmi_mgmt_rx_event_v2 *ev_v2;
  301. struct wmi_mgmt_rx_hdr_v1 *ev_hdr;
  302. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
  303. struct ieee80211_hdr *hdr;
  304. u32 rx_status;
  305. u32 channel;
  306. u32 phy_mode;
  307. u32 snr;
  308. u32 rate;
  309. u32 buf_len;
  310. u16 fc;
  311. int pull_len;
  312. if (test_bit(ATH10K_FW_FEATURE_EXT_WMI_MGMT_RX, ar->fw_features)) {
  313. ev_v2 = (struct wmi_mgmt_rx_event_v2 *)skb->data;
  314. ev_hdr = &ev_v2->hdr.v1;
  315. pull_len = sizeof(*ev_v2);
  316. } else {
  317. ev_v1 = (struct wmi_mgmt_rx_event_v1 *)skb->data;
  318. ev_hdr = &ev_v1->hdr;
  319. pull_len = sizeof(*ev_v1);
  320. }
  321. channel = __le32_to_cpu(ev_hdr->channel);
  322. buf_len = __le32_to_cpu(ev_hdr->buf_len);
  323. rx_status = __le32_to_cpu(ev_hdr->status);
  324. snr = __le32_to_cpu(ev_hdr->snr);
  325. phy_mode = __le32_to_cpu(ev_hdr->phy_mode);
  326. rate = __le32_to_cpu(ev_hdr->rate);
  327. memset(status, 0, sizeof(*status));
  328. ath10k_dbg(ATH10K_DBG_MGMT,
  329. "event mgmt rx status %08x\n", rx_status);
  330. if (rx_status & WMI_RX_STATUS_ERR_DECRYPT) {
  331. dev_kfree_skb(skb);
  332. return 0;
  333. }
  334. if (rx_status & WMI_RX_STATUS_ERR_KEY_CACHE_MISS) {
  335. dev_kfree_skb(skb);
  336. return 0;
  337. }
  338. if (rx_status & WMI_RX_STATUS_ERR_CRC)
  339. status->flag |= RX_FLAG_FAILED_FCS_CRC;
  340. if (rx_status & WMI_RX_STATUS_ERR_MIC)
  341. status->flag |= RX_FLAG_MMIC_ERROR;
  342. status->band = phy_mode_to_band(phy_mode);
  343. status->freq = ieee80211_channel_to_frequency(channel, status->band);
  344. status->signal = snr + ATH10K_DEFAULT_NOISE_FLOOR;
  345. status->rate_idx = get_rate_idx(rate, status->band);
  346. skb_pull(skb, pull_len);
  347. hdr = (struct ieee80211_hdr *)skb->data;
  348. fc = le16_to_cpu(hdr->frame_control);
  349. if (fc & IEEE80211_FCTL_PROTECTED) {
  350. status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED |
  351. RX_FLAG_MMIC_STRIPPED;
  352. hdr->frame_control = __cpu_to_le16(fc &
  353. ~IEEE80211_FCTL_PROTECTED);
  354. }
  355. ath10k_dbg(ATH10K_DBG_MGMT,
  356. "event mgmt rx skb %p len %d ftype %02x stype %02x\n",
  357. skb, skb->len,
  358. fc & IEEE80211_FCTL_FTYPE, fc & IEEE80211_FCTL_STYPE);
  359. ath10k_dbg(ATH10K_DBG_MGMT,
  360. "event mgmt rx freq %d band %d snr %d, rate_idx %d\n",
  361. status->freq, status->band, status->signal,
  362. status->rate_idx);
  363. /*
  364. * packets from HTC come aligned to 4byte boundaries
  365. * because they can originally come in along with a trailer
  366. */
  367. skb_trim(skb, buf_len);
  368. ieee80211_rx(ar->hw, skb);
  369. return 0;
  370. }
  371. static int freq_to_idx(struct ath10k *ar, int freq)
  372. {
  373. struct ieee80211_supported_band *sband;
  374. int band, ch, idx = 0;
  375. for (band = IEEE80211_BAND_2GHZ; band < IEEE80211_NUM_BANDS; band++) {
  376. sband = ar->hw->wiphy->bands[band];
  377. if (!sband)
  378. continue;
  379. for (ch = 0; ch < sband->n_channels; ch++, idx++)
  380. if (sband->channels[ch].center_freq == freq)
  381. goto exit;
  382. }
  383. exit:
  384. return idx;
  385. }
  386. static void ath10k_wmi_event_chan_info(struct ath10k *ar, struct sk_buff *skb)
  387. {
  388. struct wmi_chan_info_event *ev;
  389. struct survey_info *survey;
  390. u32 err_code, freq, cmd_flags, noise_floor, rx_clear_count, cycle_count;
  391. int idx;
  392. ev = (struct wmi_chan_info_event *)skb->data;
  393. err_code = __le32_to_cpu(ev->err_code);
  394. freq = __le32_to_cpu(ev->freq);
  395. cmd_flags = __le32_to_cpu(ev->cmd_flags);
  396. noise_floor = __le32_to_cpu(ev->noise_floor);
  397. rx_clear_count = __le32_to_cpu(ev->rx_clear_count);
  398. cycle_count = __le32_to_cpu(ev->cycle_count);
  399. ath10k_dbg(ATH10K_DBG_WMI,
  400. "chan info err_code %d freq %d cmd_flags %d noise_floor %d rx_clear_count %d cycle_count %d\n",
  401. err_code, freq, cmd_flags, noise_floor, rx_clear_count,
  402. cycle_count);
  403. spin_lock_bh(&ar->data_lock);
  404. if (!ar->scan.in_progress) {
  405. ath10k_warn("chan info event without a scan request?\n");
  406. goto exit;
  407. }
  408. idx = freq_to_idx(ar, freq);
  409. if (idx >= ARRAY_SIZE(ar->survey)) {
  410. ath10k_warn("chan info: invalid frequency %d (idx %d out of bounds)\n",
  411. freq, idx);
  412. goto exit;
  413. }
  414. if (cmd_flags & WMI_CHAN_INFO_FLAG_COMPLETE) {
  415. /* During scanning chan info is reported twice for each
  416. * visited channel. The reported cycle count is global
  417. * and per-channel cycle count must be calculated */
  418. cycle_count -= ar->survey_last_cycle_count;
  419. rx_clear_count -= ar->survey_last_rx_clear_count;
  420. survey = &ar->survey[idx];
  421. survey->channel_time = WMI_CHAN_INFO_MSEC(cycle_count);
  422. survey->channel_time_rx = WMI_CHAN_INFO_MSEC(rx_clear_count);
  423. survey->noise = noise_floor;
  424. survey->filled = SURVEY_INFO_CHANNEL_TIME |
  425. SURVEY_INFO_CHANNEL_TIME_RX |
  426. SURVEY_INFO_NOISE_DBM;
  427. }
  428. ar->survey_last_rx_clear_count = rx_clear_count;
  429. ar->survey_last_cycle_count = cycle_count;
  430. exit:
  431. spin_unlock_bh(&ar->data_lock);
  432. }
  433. static void ath10k_wmi_event_echo(struct ath10k *ar, struct sk_buff *skb)
  434. {
  435. ath10k_dbg(ATH10K_DBG_WMI, "WMI_ECHO_EVENTID\n");
  436. }
  437. static void ath10k_wmi_event_debug_mesg(struct ath10k *ar, struct sk_buff *skb)
  438. {
  439. ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_MESG_EVENTID\n");
  440. }
  441. static void ath10k_wmi_event_update_stats(struct ath10k *ar,
  442. struct sk_buff *skb)
  443. {
  444. struct wmi_stats_event *ev = (struct wmi_stats_event *)skb->data;
  445. ath10k_dbg(ATH10K_DBG_WMI, "WMI_UPDATE_STATS_EVENTID\n");
  446. ath10k_debug_read_target_stats(ar, ev);
  447. }
  448. static void ath10k_wmi_event_vdev_start_resp(struct ath10k *ar,
  449. struct sk_buff *skb)
  450. {
  451. struct wmi_vdev_start_response_event *ev;
  452. ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_START_RESP_EVENTID\n");
  453. ev = (struct wmi_vdev_start_response_event *)skb->data;
  454. if (WARN_ON(__le32_to_cpu(ev->status)))
  455. return;
  456. complete(&ar->vdev_setup_done);
  457. }
  458. static void ath10k_wmi_event_vdev_stopped(struct ath10k *ar,
  459. struct sk_buff *skb)
  460. {
  461. ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_STOPPED_EVENTID\n");
  462. complete(&ar->vdev_setup_done);
  463. }
  464. static void ath10k_wmi_event_peer_sta_kickout(struct ath10k *ar,
  465. struct sk_buff *skb)
  466. {
  467. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PEER_STA_KICKOUT_EVENTID\n");
  468. }
  469. /*
  470. * FIXME
  471. *
  472. * We don't report to mac80211 sleep state of connected
  473. * stations. Due to this mac80211 can't fill in TIM IE
  474. * correctly.
  475. *
  476. * I know of no way of getting nullfunc frames that contain
  477. * sleep transition from connected stations - these do not
  478. * seem to be sent from the target to the host. There also
  479. * doesn't seem to be a dedicated event for that. So the
  480. * only way left to do this would be to read tim_bitmap
  481. * during SWBA.
  482. *
  483. * We could probably try using tim_bitmap from SWBA to tell
  484. * mac80211 which stations are asleep and which are not. The
  485. * problem here is calling mac80211 functions so many times
  486. * could take too long and make us miss the time to submit
  487. * the beacon to the target.
  488. *
  489. * So as a workaround we try to extend the TIM IE if there
  490. * is unicast buffered for stations with aid > 7 and fill it
  491. * in ourselves.
  492. */
  493. static void ath10k_wmi_update_tim(struct ath10k *ar,
  494. struct ath10k_vif *arvif,
  495. struct sk_buff *bcn,
  496. struct wmi_bcn_info *bcn_info)
  497. {
  498. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)bcn->data;
  499. struct ieee80211_tim_ie *tim;
  500. u8 *ies, *ie;
  501. u8 ie_len, pvm_len;
  502. /* if next SWBA has no tim_changed the tim_bitmap is garbage.
  503. * we must copy the bitmap upon change and reuse it later */
  504. if (__le32_to_cpu(bcn_info->tim_info.tim_changed)) {
  505. int i;
  506. BUILD_BUG_ON(sizeof(arvif->u.ap.tim_bitmap) !=
  507. sizeof(bcn_info->tim_info.tim_bitmap));
  508. for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++) {
  509. __le32 t = bcn_info->tim_info.tim_bitmap[i / 4];
  510. u32 v = __le32_to_cpu(t);
  511. arvif->u.ap.tim_bitmap[i] = (v >> ((i % 4) * 8)) & 0xFF;
  512. }
  513. /* FW reports either length 0 or 16
  514. * so we calculate this on our own */
  515. arvif->u.ap.tim_len = 0;
  516. for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++)
  517. if (arvif->u.ap.tim_bitmap[i])
  518. arvif->u.ap.tim_len = i;
  519. arvif->u.ap.tim_len++;
  520. }
  521. ies = bcn->data;
  522. ies += ieee80211_hdrlen(hdr->frame_control);
  523. ies += 12; /* fixed parameters */
  524. ie = (u8 *)cfg80211_find_ie(WLAN_EID_TIM, ies,
  525. (u8 *)skb_tail_pointer(bcn) - ies);
  526. if (!ie) {
  527. if (arvif->vdev_type != WMI_VDEV_TYPE_IBSS)
  528. ath10k_warn("no tim ie found;\n");
  529. return;
  530. }
  531. tim = (void *)ie + 2;
  532. ie_len = ie[1];
  533. pvm_len = ie_len - 3; /* exclude dtim count, dtim period, bmap ctl */
  534. if (pvm_len < arvif->u.ap.tim_len) {
  535. int expand_size = sizeof(arvif->u.ap.tim_bitmap) - pvm_len;
  536. int move_size = skb_tail_pointer(bcn) - (ie + 2 + ie_len);
  537. void *next_ie = ie + 2 + ie_len;
  538. if (skb_put(bcn, expand_size)) {
  539. memmove(next_ie + expand_size, next_ie, move_size);
  540. ie[1] += expand_size;
  541. ie_len += expand_size;
  542. pvm_len += expand_size;
  543. } else {
  544. ath10k_warn("tim expansion failed\n");
  545. }
  546. }
  547. if (pvm_len > sizeof(arvif->u.ap.tim_bitmap)) {
  548. ath10k_warn("tim pvm length is too great (%d)\n", pvm_len);
  549. return;
  550. }
  551. tim->bitmap_ctrl = !!__le32_to_cpu(bcn_info->tim_info.tim_mcast);
  552. memcpy(tim->virtual_map, arvif->u.ap.tim_bitmap, pvm_len);
  553. ath10k_dbg(ATH10K_DBG_MGMT, "dtim %d/%d mcast %d pvmlen %d\n",
  554. tim->dtim_count, tim->dtim_period,
  555. tim->bitmap_ctrl, pvm_len);
  556. }
  557. static void ath10k_p2p_fill_noa_ie(u8 *data, u32 len,
  558. struct wmi_p2p_noa_info *noa)
  559. {
  560. struct ieee80211_p2p_noa_attr *noa_attr;
  561. u8 ctwindow_oppps = noa->ctwindow_oppps;
  562. u8 ctwindow = ctwindow_oppps >> WMI_P2P_OPPPS_CTWINDOW_OFFSET;
  563. bool oppps = !!(ctwindow_oppps & WMI_P2P_OPPPS_ENABLE_BIT);
  564. __le16 *noa_attr_len;
  565. u16 attr_len;
  566. u8 noa_descriptors = noa->num_descriptors;
  567. int i;
  568. /* P2P IE */
  569. data[0] = WLAN_EID_VENDOR_SPECIFIC;
  570. data[1] = len - 2;
  571. data[2] = (WLAN_OUI_WFA >> 16) & 0xff;
  572. data[3] = (WLAN_OUI_WFA >> 8) & 0xff;
  573. data[4] = (WLAN_OUI_WFA >> 0) & 0xff;
  574. data[5] = WLAN_OUI_TYPE_WFA_P2P;
  575. /* NOA ATTR */
  576. data[6] = IEEE80211_P2P_ATTR_ABSENCE_NOTICE;
  577. noa_attr_len = (__le16 *)&data[7]; /* 2 bytes */
  578. noa_attr = (struct ieee80211_p2p_noa_attr *)&data[9];
  579. noa_attr->index = noa->index;
  580. noa_attr->oppps_ctwindow = ctwindow;
  581. if (oppps)
  582. noa_attr->oppps_ctwindow |= IEEE80211_P2P_OPPPS_ENABLE_BIT;
  583. for (i = 0; i < noa_descriptors; i++) {
  584. noa_attr->desc[i].count =
  585. __le32_to_cpu(noa->descriptors[i].type_count);
  586. noa_attr->desc[i].duration = noa->descriptors[i].duration;
  587. noa_attr->desc[i].interval = noa->descriptors[i].interval;
  588. noa_attr->desc[i].start_time = noa->descriptors[i].start_time;
  589. }
  590. attr_len = 2; /* index + oppps_ctwindow */
  591. attr_len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
  592. *noa_attr_len = __cpu_to_le16(attr_len);
  593. }
  594. static u32 ath10k_p2p_calc_noa_ie_len(struct wmi_p2p_noa_info *noa)
  595. {
  596. u32 len = 0;
  597. u8 noa_descriptors = noa->num_descriptors;
  598. u8 opp_ps_info = noa->ctwindow_oppps;
  599. bool opps_enabled = !!(opp_ps_info & WMI_P2P_OPPPS_ENABLE_BIT);
  600. if (!noa_descriptors && !opps_enabled)
  601. return len;
  602. len += 1 + 1 + 4; /* EID + len + OUI */
  603. len += 1 + 2; /* noa attr + attr len */
  604. len += 1 + 1; /* index + oppps_ctwindow */
  605. len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
  606. return len;
  607. }
  608. static void ath10k_wmi_update_noa(struct ath10k *ar, struct ath10k_vif *arvif,
  609. struct sk_buff *bcn,
  610. struct wmi_bcn_info *bcn_info)
  611. {
  612. struct wmi_p2p_noa_info *noa = &bcn_info->p2p_noa_info;
  613. u8 *new_data, *old_data = arvif->u.ap.noa_data;
  614. u32 new_len;
  615. if (arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO)
  616. return;
  617. ath10k_dbg(ATH10K_DBG_MGMT, "noa changed: %d\n", noa->changed);
  618. if (noa->changed & WMI_P2P_NOA_CHANGED_BIT) {
  619. new_len = ath10k_p2p_calc_noa_ie_len(noa);
  620. if (!new_len)
  621. goto cleanup;
  622. new_data = kmalloc(new_len, GFP_ATOMIC);
  623. if (!new_data)
  624. goto cleanup;
  625. ath10k_p2p_fill_noa_ie(new_data, new_len, noa);
  626. spin_lock_bh(&ar->data_lock);
  627. arvif->u.ap.noa_data = new_data;
  628. arvif->u.ap.noa_len = new_len;
  629. spin_unlock_bh(&ar->data_lock);
  630. kfree(old_data);
  631. }
  632. if (arvif->u.ap.noa_data)
  633. if (!pskb_expand_head(bcn, 0, arvif->u.ap.noa_len, GFP_ATOMIC))
  634. memcpy(skb_put(bcn, arvif->u.ap.noa_len),
  635. arvif->u.ap.noa_data,
  636. arvif->u.ap.noa_len);
  637. return;
  638. cleanup:
  639. spin_lock_bh(&ar->data_lock);
  640. arvif->u.ap.noa_data = NULL;
  641. arvif->u.ap.noa_len = 0;
  642. spin_unlock_bh(&ar->data_lock);
  643. kfree(old_data);
  644. }
  645. static void ath10k_wmi_event_host_swba(struct ath10k *ar, struct sk_buff *skb)
  646. {
  647. struct wmi_host_swba_event *ev;
  648. u32 map;
  649. int i = -1;
  650. struct wmi_bcn_info *bcn_info;
  651. struct ath10k_vif *arvif;
  652. struct sk_buff *bcn;
  653. int vdev_id = 0;
  654. ath10k_dbg(ATH10K_DBG_MGMT, "WMI_HOST_SWBA_EVENTID\n");
  655. ev = (struct wmi_host_swba_event *)skb->data;
  656. map = __le32_to_cpu(ev->vdev_map);
  657. ath10k_dbg(ATH10K_DBG_MGMT, "host swba:\n"
  658. "-vdev map 0x%x\n",
  659. ev->vdev_map);
  660. for (; map; map >>= 1, vdev_id++) {
  661. if (!(map & 0x1))
  662. continue;
  663. i++;
  664. if (i >= WMI_MAX_AP_VDEV) {
  665. ath10k_warn("swba has corrupted vdev map\n");
  666. break;
  667. }
  668. bcn_info = &ev->bcn_info[i];
  669. ath10k_dbg(ATH10K_DBG_MGMT,
  670. "-bcn_info[%d]:\n"
  671. "--tim_len %d\n"
  672. "--tim_mcast %d\n"
  673. "--tim_changed %d\n"
  674. "--tim_num_ps_pending %d\n"
  675. "--tim_bitmap 0x%08x%08x%08x%08x\n",
  676. i,
  677. __le32_to_cpu(bcn_info->tim_info.tim_len),
  678. __le32_to_cpu(bcn_info->tim_info.tim_mcast),
  679. __le32_to_cpu(bcn_info->tim_info.tim_changed),
  680. __le32_to_cpu(bcn_info->tim_info.tim_num_ps_pending),
  681. __le32_to_cpu(bcn_info->tim_info.tim_bitmap[3]),
  682. __le32_to_cpu(bcn_info->tim_info.tim_bitmap[2]),
  683. __le32_to_cpu(bcn_info->tim_info.tim_bitmap[1]),
  684. __le32_to_cpu(bcn_info->tim_info.tim_bitmap[0]));
  685. arvif = ath10k_get_arvif(ar, vdev_id);
  686. if (arvif == NULL) {
  687. ath10k_warn("no vif for vdev_id %d found\n", vdev_id);
  688. continue;
  689. }
  690. bcn = ieee80211_beacon_get(ar->hw, arvif->vif);
  691. if (!bcn) {
  692. ath10k_warn("could not get mac80211 beacon\n");
  693. continue;
  694. }
  695. ath10k_tx_h_seq_no(bcn);
  696. ath10k_wmi_update_tim(ar, arvif, bcn, bcn_info);
  697. ath10k_wmi_update_noa(ar, arvif, bcn, bcn_info);
  698. spin_lock_bh(&ar->data_lock);
  699. if (arvif->beacon) {
  700. ath10k_warn("SWBA overrun on vdev %d\n",
  701. arvif->vdev_id);
  702. dev_kfree_skb_any(arvif->beacon);
  703. }
  704. arvif->beacon = bcn;
  705. ath10k_wmi_tx_beacon_nowait(arvif);
  706. spin_unlock_bh(&ar->data_lock);
  707. }
  708. }
  709. static void ath10k_wmi_event_tbttoffset_update(struct ath10k *ar,
  710. struct sk_buff *skb)
  711. {
  712. ath10k_dbg(ATH10K_DBG_WMI, "WMI_TBTTOFFSET_UPDATE_EVENTID\n");
  713. }
  714. static void ath10k_wmi_event_phyerr(struct ath10k *ar, struct sk_buff *skb)
  715. {
  716. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PHYERR_EVENTID\n");
  717. }
  718. static void ath10k_wmi_event_roam(struct ath10k *ar, struct sk_buff *skb)
  719. {
  720. ath10k_dbg(ATH10K_DBG_WMI, "WMI_ROAM_EVENTID\n");
  721. }
  722. static void ath10k_wmi_event_profile_match(struct ath10k *ar,
  723. struct sk_buff *skb)
  724. {
  725. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PROFILE_MATCH\n");
  726. }
  727. static void ath10k_wmi_event_debug_print(struct ath10k *ar,
  728. struct sk_buff *skb)
  729. {
  730. ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_PRINT_EVENTID\n");
  731. }
  732. static void ath10k_wmi_event_pdev_qvit(struct ath10k *ar, struct sk_buff *skb)
  733. {
  734. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_QVIT_EVENTID\n");
  735. }
  736. static void ath10k_wmi_event_wlan_profile_data(struct ath10k *ar,
  737. struct sk_buff *skb)
  738. {
  739. ath10k_dbg(ATH10K_DBG_WMI, "WMI_WLAN_PROFILE_DATA_EVENTID\n");
  740. }
  741. static void ath10k_wmi_event_rtt_measurement_report(struct ath10k *ar,
  742. struct sk_buff *skb)
  743. {
  744. ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_MEASUREMENT_REPORT_EVENTID\n");
  745. }
  746. static void ath10k_wmi_event_tsf_measurement_report(struct ath10k *ar,
  747. struct sk_buff *skb)
  748. {
  749. ath10k_dbg(ATH10K_DBG_WMI, "WMI_TSF_MEASUREMENT_REPORT_EVENTID\n");
  750. }
  751. static void ath10k_wmi_event_rtt_error_report(struct ath10k *ar,
  752. struct sk_buff *skb)
  753. {
  754. ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_ERROR_REPORT_EVENTID\n");
  755. }
  756. static void ath10k_wmi_event_wow_wakeup_host(struct ath10k *ar,
  757. struct sk_buff *skb)
  758. {
  759. ath10k_dbg(ATH10K_DBG_WMI, "WMI_WOW_WAKEUP_HOST_EVENTID\n");
  760. }
  761. static void ath10k_wmi_event_dcs_interference(struct ath10k *ar,
  762. struct sk_buff *skb)
  763. {
  764. ath10k_dbg(ATH10K_DBG_WMI, "WMI_DCS_INTERFERENCE_EVENTID\n");
  765. }
  766. static void ath10k_wmi_event_pdev_tpc_config(struct ath10k *ar,
  767. struct sk_buff *skb)
  768. {
  769. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_TPC_CONFIG_EVENTID\n");
  770. }
  771. static void ath10k_wmi_event_pdev_ftm_intg(struct ath10k *ar,
  772. struct sk_buff *skb)
  773. {
  774. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_FTM_INTG_EVENTID\n");
  775. }
  776. static void ath10k_wmi_event_gtk_offload_status(struct ath10k *ar,
  777. struct sk_buff *skb)
  778. {
  779. ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_OFFLOAD_STATUS_EVENTID\n");
  780. }
  781. static void ath10k_wmi_event_gtk_rekey_fail(struct ath10k *ar,
  782. struct sk_buff *skb)
  783. {
  784. ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_REKEY_FAIL_EVENTID\n");
  785. }
  786. static void ath10k_wmi_event_delba_complete(struct ath10k *ar,
  787. struct sk_buff *skb)
  788. {
  789. ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_DELBA_COMPLETE_EVENTID\n");
  790. }
  791. static void ath10k_wmi_event_addba_complete(struct ath10k *ar,
  792. struct sk_buff *skb)
  793. {
  794. ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_ADDBA_COMPLETE_EVENTID\n");
  795. }
  796. static void ath10k_wmi_event_vdev_install_key_complete(struct ath10k *ar,
  797. struct sk_buff *skb)
  798. {
  799. ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID\n");
  800. }
  801. static void ath10k_wmi_service_ready_event_rx(struct ath10k *ar,
  802. struct sk_buff *skb)
  803. {
  804. struct wmi_service_ready_event *ev = (void *)skb->data;
  805. if (skb->len < sizeof(*ev)) {
  806. ath10k_warn("Service ready event was %d B but expected %zu B. Wrong firmware version?\n",
  807. skb->len, sizeof(*ev));
  808. return;
  809. }
  810. ar->hw_min_tx_power = __le32_to_cpu(ev->hw_min_tx_power);
  811. ar->hw_max_tx_power = __le32_to_cpu(ev->hw_max_tx_power);
  812. ar->ht_cap_info = __le32_to_cpu(ev->ht_cap_info);
  813. ar->vht_cap_info = __le32_to_cpu(ev->vht_cap_info);
  814. ar->fw_version_major =
  815. (__le32_to_cpu(ev->sw_version) & 0xff000000) >> 24;
  816. ar->fw_version_minor = (__le32_to_cpu(ev->sw_version) & 0x00ffffff);
  817. ar->fw_version_release =
  818. (__le32_to_cpu(ev->sw_version_1) & 0xffff0000) >> 16;
  819. ar->fw_version_build = (__le32_to_cpu(ev->sw_version_1) & 0x0000ffff);
  820. ar->phy_capability = __le32_to_cpu(ev->phy_capability);
  821. ar->num_rf_chains = __le32_to_cpu(ev->num_rf_chains);
  822. if (ar->fw_version_build > 636)
  823. set_bit(ATH10K_FW_FEATURE_EXT_WMI_MGMT_RX, ar->fw_features);
  824. if (ar->num_rf_chains > WMI_MAX_SPATIAL_STREAM) {
  825. ath10k_warn("hardware advertises support for more spatial streams than it should (%d > %d)\n",
  826. ar->num_rf_chains, WMI_MAX_SPATIAL_STREAM);
  827. ar->num_rf_chains = WMI_MAX_SPATIAL_STREAM;
  828. }
  829. ar->ath_common.regulatory.current_rd =
  830. __le32_to_cpu(ev->hal_reg_capabilities.eeprom_rd);
  831. ath10k_debug_read_service_map(ar, ev->wmi_service_bitmap,
  832. sizeof(ev->wmi_service_bitmap));
  833. if (strlen(ar->hw->wiphy->fw_version) == 0) {
  834. snprintf(ar->hw->wiphy->fw_version,
  835. sizeof(ar->hw->wiphy->fw_version),
  836. "%u.%u.%u.%u",
  837. ar->fw_version_major,
  838. ar->fw_version_minor,
  839. ar->fw_version_release,
  840. ar->fw_version_build);
  841. }
  842. /* FIXME: it probably should be better to support this */
  843. if (__le32_to_cpu(ev->num_mem_reqs) > 0) {
  844. ath10k_warn("target requested %d memory chunks; ignoring\n",
  845. __le32_to_cpu(ev->num_mem_reqs));
  846. }
  847. ath10k_dbg(ATH10K_DBG_WMI,
  848. "wmi event service ready sw_ver 0x%08x sw_ver1 0x%08x abi_ver %u phy_cap 0x%08x ht_cap 0x%08x vht_cap 0x%08x vht_supp_msc 0x%08x sys_cap_info 0x%08x mem_reqs %u num_rf_chains %u\n",
  849. __le32_to_cpu(ev->sw_version),
  850. __le32_to_cpu(ev->sw_version_1),
  851. __le32_to_cpu(ev->abi_version),
  852. __le32_to_cpu(ev->phy_capability),
  853. __le32_to_cpu(ev->ht_cap_info),
  854. __le32_to_cpu(ev->vht_cap_info),
  855. __le32_to_cpu(ev->vht_supp_mcs),
  856. __le32_to_cpu(ev->sys_cap_info),
  857. __le32_to_cpu(ev->num_mem_reqs),
  858. __le32_to_cpu(ev->num_rf_chains));
  859. complete(&ar->wmi.service_ready);
  860. }
  861. static int ath10k_wmi_ready_event_rx(struct ath10k *ar, struct sk_buff *skb)
  862. {
  863. struct wmi_ready_event *ev = (struct wmi_ready_event *)skb->data;
  864. if (WARN_ON(skb->len < sizeof(*ev)))
  865. return -EINVAL;
  866. memcpy(ar->mac_addr, ev->mac_addr.addr, ETH_ALEN);
  867. ath10k_dbg(ATH10K_DBG_WMI,
  868. "wmi event ready sw_version %u abi_version %u mac_addr %pM status %d\n",
  869. __le32_to_cpu(ev->sw_version),
  870. __le32_to_cpu(ev->abi_version),
  871. ev->mac_addr.addr,
  872. __le32_to_cpu(ev->status));
  873. complete(&ar->wmi.unified_ready);
  874. return 0;
  875. }
  876. static void ath10k_wmi_process_rx(struct ath10k *ar, struct sk_buff *skb)
  877. {
  878. struct wmi_cmd_hdr *cmd_hdr;
  879. enum wmi_event_id id;
  880. u16 len;
  881. cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
  882. id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID);
  883. if (skb_pull(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
  884. return;
  885. len = skb->len;
  886. trace_ath10k_wmi_event(id, skb->data, skb->len);
  887. switch (id) {
  888. case WMI_MGMT_RX_EVENTID:
  889. ath10k_wmi_event_mgmt_rx(ar, skb);
  890. /* mgmt_rx() owns the skb now! */
  891. return;
  892. case WMI_SCAN_EVENTID:
  893. ath10k_wmi_event_scan(ar, skb);
  894. break;
  895. case WMI_CHAN_INFO_EVENTID:
  896. ath10k_wmi_event_chan_info(ar, skb);
  897. break;
  898. case WMI_ECHO_EVENTID:
  899. ath10k_wmi_event_echo(ar, skb);
  900. break;
  901. case WMI_DEBUG_MESG_EVENTID:
  902. ath10k_wmi_event_debug_mesg(ar, skb);
  903. break;
  904. case WMI_UPDATE_STATS_EVENTID:
  905. ath10k_wmi_event_update_stats(ar, skb);
  906. break;
  907. case WMI_VDEV_START_RESP_EVENTID:
  908. ath10k_wmi_event_vdev_start_resp(ar, skb);
  909. break;
  910. case WMI_VDEV_STOPPED_EVENTID:
  911. ath10k_wmi_event_vdev_stopped(ar, skb);
  912. break;
  913. case WMI_PEER_STA_KICKOUT_EVENTID:
  914. ath10k_wmi_event_peer_sta_kickout(ar, skb);
  915. break;
  916. case WMI_HOST_SWBA_EVENTID:
  917. ath10k_wmi_event_host_swba(ar, skb);
  918. break;
  919. case WMI_TBTTOFFSET_UPDATE_EVENTID:
  920. ath10k_wmi_event_tbttoffset_update(ar, skb);
  921. break;
  922. case WMI_PHYERR_EVENTID:
  923. ath10k_wmi_event_phyerr(ar, skb);
  924. break;
  925. case WMI_ROAM_EVENTID:
  926. ath10k_wmi_event_roam(ar, skb);
  927. break;
  928. case WMI_PROFILE_MATCH:
  929. ath10k_wmi_event_profile_match(ar, skb);
  930. break;
  931. case WMI_DEBUG_PRINT_EVENTID:
  932. ath10k_wmi_event_debug_print(ar, skb);
  933. break;
  934. case WMI_PDEV_QVIT_EVENTID:
  935. ath10k_wmi_event_pdev_qvit(ar, skb);
  936. break;
  937. case WMI_WLAN_PROFILE_DATA_EVENTID:
  938. ath10k_wmi_event_wlan_profile_data(ar, skb);
  939. break;
  940. case WMI_RTT_MEASUREMENT_REPORT_EVENTID:
  941. ath10k_wmi_event_rtt_measurement_report(ar, skb);
  942. break;
  943. case WMI_TSF_MEASUREMENT_REPORT_EVENTID:
  944. ath10k_wmi_event_tsf_measurement_report(ar, skb);
  945. break;
  946. case WMI_RTT_ERROR_REPORT_EVENTID:
  947. ath10k_wmi_event_rtt_error_report(ar, skb);
  948. break;
  949. case WMI_WOW_WAKEUP_HOST_EVENTID:
  950. ath10k_wmi_event_wow_wakeup_host(ar, skb);
  951. break;
  952. case WMI_DCS_INTERFERENCE_EVENTID:
  953. ath10k_wmi_event_dcs_interference(ar, skb);
  954. break;
  955. case WMI_PDEV_TPC_CONFIG_EVENTID:
  956. ath10k_wmi_event_pdev_tpc_config(ar, skb);
  957. break;
  958. case WMI_PDEV_FTM_INTG_EVENTID:
  959. ath10k_wmi_event_pdev_ftm_intg(ar, skb);
  960. break;
  961. case WMI_GTK_OFFLOAD_STATUS_EVENTID:
  962. ath10k_wmi_event_gtk_offload_status(ar, skb);
  963. break;
  964. case WMI_GTK_REKEY_FAIL_EVENTID:
  965. ath10k_wmi_event_gtk_rekey_fail(ar, skb);
  966. break;
  967. case WMI_TX_DELBA_COMPLETE_EVENTID:
  968. ath10k_wmi_event_delba_complete(ar, skb);
  969. break;
  970. case WMI_TX_ADDBA_COMPLETE_EVENTID:
  971. ath10k_wmi_event_addba_complete(ar, skb);
  972. break;
  973. case WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID:
  974. ath10k_wmi_event_vdev_install_key_complete(ar, skb);
  975. break;
  976. case WMI_SERVICE_READY_EVENTID:
  977. ath10k_wmi_service_ready_event_rx(ar, skb);
  978. break;
  979. case WMI_READY_EVENTID:
  980. ath10k_wmi_ready_event_rx(ar, skb);
  981. break;
  982. default:
  983. ath10k_warn("Unknown eventid: %d\n", id);
  984. break;
  985. }
  986. dev_kfree_skb(skb);
  987. }
  988. /* WMI Initialization functions */
  989. int ath10k_wmi_attach(struct ath10k *ar)
  990. {
  991. init_completion(&ar->wmi.service_ready);
  992. init_completion(&ar->wmi.unified_ready);
  993. init_waitqueue_head(&ar->wmi.tx_credits_wq);
  994. return 0;
  995. }
  996. void ath10k_wmi_detach(struct ath10k *ar)
  997. {
  998. }
  999. int ath10k_wmi_connect_htc_service(struct ath10k *ar)
  1000. {
  1001. int status;
  1002. struct ath10k_htc_svc_conn_req conn_req;
  1003. struct ath10k_htc_svc_conn_resp conn_resp;
  1004. memset(&conn_req, 0, sizeof(conn_req));
  1005. memset(&conn_resp, 0, sizeof(conn_resp));
  1006. /* these fields are the same for all service endpoints */
  1007. conn_req.ep_ops.ep_tx_complete = ath10k_wmi_htc_tx_complete;
  1008. conn_req.ep_ops.ep_rx_complete = ath10k_wmi_process_rx;
  1009. conn_req.ep_ops.ep_tx_credits = ath10k_wmi_op_ep_tx_credits;
  1010. /* connect to control service */
  1011. conn_req.service_id = ATH10K_HTC_SVC_ID_WMI_CONTROL;
  1012. status = ath10k_htc_connect_service(&ar->htc, &conn_req, &conn_resp);
  1013. if (status) {
  1014. ath10k_warn("failed to connect to WMI CONTROL service status: %d\n",
  1015. status);
  1016. return status;
  1017. }
  1018. ar->wmi.eid = conn_resp.eid;
  1019. return 0;
  1020. }
  1021. int ath10k_wmi_pdev_set_regdomain(struct ath10k *ar, u16 rd, u16 rd2g,
  1022. u16 rd5g, u16 ctl2g, u16 ctl5g)
  1023. {
  1024. struct wmi_pdev_set_regdomain_cmd *cmd;
  1025. struct sk_buff *skb;
  1026. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1027. if (!skb)
  1028. return -ENOMEM;
  1029. cmd = (struct wmi_pdev_set_regdomain_cmd *)skb->data;
  1030. cmd->reg_domain = __cpu_to_le32(rd);
  1031. cmd->reg_domain_2G = __cpu_to_le32(rd2g);
  1032. cmd->reg_domain_5G = __cpu_to_le32(rd5g);
  1033. cmd->conformance_test_limit_2G = __cpu_to_le32(ctl2g);
  1034. cmd->conformance_test_limit_5G = __cpu_to_le32(ctl5g);
  1035. ath10k_dbg(ATH10K_DBG_WMI,
  1036. "wmi pdev regdomain rd %x rd2g %x rd5g %x ctl2g %x ctl5g %x\n",
  1037. rd, rd2g, rd5g, ctl2g, ctl5g);
  1038. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_REGDOMAIN_CMDID);
  1039. }
  1040. int ath10k_wmi_pdev_set_channel(struct ath10k *ar,
  1041. const struct wmi_channel_arg *arg)
  1042. {
  1043. struct wmi_set_channel_cmd *cmd;
  1044. struct sk_buff *skb;
  1045. if (arg->passive)
  1046. return -EINVAL;
  1047. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1048. if (!skb)
  1049. return -ENOMEM;
  1050. cmd = (struct wmi_set_channel_cmd *)skb->data;
  1051. cmd->chan.mhz = __cpu_to_le32(arg->freq);
  1052. cmd->chan.band_center_freq1 = __cpu_to_le32(arg->freq);
  1053. cmd->chan.mode = arg->mode;
  1054. cmd->chan.min_power = arg->min_power;
  1055. cmd->chan.max_power = arg->max_power;
  1056. cmd->chan.reg_power = arg->max_reg_power;
  1057. cmd->chan.reg_classid = arg->reg_class_id;
  1058. cmd->chan.antenna_max = arg->max_antenna_gain;
  1059. ath10k_dbg(ATH10K_DBG_WMI,
  1060. "wmi set channel mode %d freq %d\n",
  1061. arg->mode, arg->freq);
  1062. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_CHANNEL_CMDID);
  1063. }
  1064. int ath10k_wmi_pdev_suspend_target(struct ath10k *ar)
  1065. {
  1066. struct wmi_pdev_suspend_cmd *cmd;
  1067. struct sk_buff *skb;
  1068. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1069. if (!skb)
  1070. return -ENOMEM;
  1071. cmd = (struct wmi_pdev_suspend_cmd *)skb->data;
  1072. cmd->suspend_opt = WMI_PDEV_SUSPEND;
  1073. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SUSPEND_CMDID);
  1074. }
  1075. int ath10k_wmi_pdev_resume_target(struct ath10k *ar)
  1076. {
  1077. struct sk_buff *skb;
  1078. skb = ath10k_wmi_alloc_skb(0);
  1079. if (skb == NULL)
  1080. return -ENOMEM;
  1081. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_RESUME_CMDID);
  1082. }
  1083. int ath10k_wmi_pdev_set_param(struct ath10k *ar, enum wmi_pdev_param id,
  1084. u32 value)
  1085. {
  1086. struct wmi_pdev_set_param_cmd *cmd;
  1087. struct sk_buff *skb;
  1088. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1089. if (!skb)
  1090. return -ENOMEM;
  1091. cmd = (struct wmi_pdev_set_param_cmd *)skb->data;
  1092. cmd->param_id = __cpu_to_le32(id);
  1093. cmd->param_value = __cpu_to_le32(value);
  1094. ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set param %d value %d\n",
  1095. id, value);
  1096. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_PARAM_CMDID);
  1097. }
  1098. int ath10k_wmi_cmd_init(struct ath10k *ar)
  1099. {
  1100. struct wmi_init_cmd *cmd;
  1101. struct sk_buff *buf;
  1102. struct wmi_resource_config config = {};
  1103. u32 val;
  1104. config.num_vdevs = __cpu_to_le32(TARGET_NUM_VDEVS);
  1105. config.num_peers = __cpu_to_le32(TARGET_NUM_PEERS + TARGET_NUM_VDEVS);
  1106. config.num_offload_peers = __cpu_to_le32(TARGET_NUM_OFFLOAD_PEERS);
  1107. config.num_offload_reorder_bufs =
  1108. __cpu_to_le32(TARGET_NUM_OFFLOAD_REORDER_BUFS);
  1109. config.num_peer_keys = __cpu_to_le32(TARGET_NUM_PEER_KEYS);
  1110. config.num_tids = __cpu_to_le32(TARGET_NUM_TIDS);
  1111. config.ast_skid_limit = __cpu_to_le32(TARGET_AST_SKID_LIMIT);
  1112. config.tx_chain_mask = __cpu_to_le32(TARGET_TX_CHAIN_MASK);
  1113. config.rx_chain_mask = __cpu_to_le32(TARGET_RX_CHAIN_MASK);
  1114. config.rx_timeout_pri_vo = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
  1115. config.rx_timeout_pri_vi = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
  1116. config.rx_timeout_pri_be = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
  1117. config.rx_timeout_pri_bk = __cpu_to_le32(TARGET_RX_TIMEOUT_HI_PRI);
  1118. config.rx_decap_mode = __cpu_to_le32(TARGET_RX_DECAP_MODE);
  1119. config.scan_max_pending_reqs =
  1120. __cpu_to_le32(TARGET_SCAN_MAX_PENDING_REQS);
  1121. config.bmiss_offload_max_vdev =
  1122. __cpu_to_le32(TARGET_BMISS_OFFLOAD_MAX_VDEV);
  1123. config.roam_offload_max_vdev =
  1124. __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_VDEV);
  1125. config.roam_offload_max_ap_profiles =
  1126. __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_AP_PROFILES);
  1127. config.num_mcast_groups = __cpu_to_le32(TARGET_NUM_MCAST_GROUPS);
  1128. config.num_mcast_table_elems =
  1129. __cpu_to_le32(TARGET_NUM_MCAST_TABLE_ELEMS);
  1130. config.mcast2ucast_mode = __cpu_to_le32(TARGET_MCAST2UCAST_MODE);
  1131. config.tx_dbg_log_size = __cpu_to_le32(TARGET_TX_DBG_LOG_SIZE);
  1132. config.num_wds_entries = __cpu_to_le32(TARGET_NUM_WDS_ENTRIES);
  1133. config.dma_burst_size = __cpu_to_le32(TARGET_DMA_BURST_SIZE);
  1134. config.mac_aggr_delim = __cpu_to_le32(TARGET_MAC_AGGR_DELIM);
  1135. val = TARGET_RX_SKIP_DEFRAG_TIMEOUT_DUP_DETECTION_CHECK;
  1136. config.rx_skip_defrag_timeout_dup_detection_check = __cpu_to_le32(val);
  1137. config.vow_config = __cpu_to_le32(TARGET_VOW_CONFIG);
  1138. config.gtk_offload_max_vdev =
  1139. __cpu_to_le32(TARGET_GTK_OFFLOAD_MAX_VDEV);
  1140. config.num_msdu_desc = __cpu_to_le32(TARGET_NUM_MSDU_DESC);
  1141. config.max_frag_entries = __cpu_to_le32(TARGET_MAX_FRAG_ENTRIES);
  1142. buf = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1143. if (!buf)
  1144. return -ENOMEM;
  1145. cmd = (struct wmi_init_cmd *)buf->data;
  1146. cmd->num_host_mem_chunks = 0;
  1147. memcpy(&cmd->resource_config, &config, sizeof(config));
  1148. ath10k_dbg(ATH10K_DBG_WMI, "wmi init\n");
  1149. return ath10k_wmi_cmd_send(ar, buf, WMI_INIT_CMDID);
  1150. }
  1151. static int ath10k_wmi_start_scan_calc_len(const struct wmi_start_scan_arg *arg)
  1152. {
  1153. int len;
  1154. len = sizeof(struct wmi_start_scan_cmd);
  1155. if (arg->ie_len) {
  1156. if (!arg->ie)
  1157. return -EINVAL;
  1158. if (arg->ie_len > WLAN_SCAN_PARAMS_MAX_IE_LEN)
  1159. return -EINVAL;
  1160. len += sizeof(struct wmi_ie_data);
  1161. len += roundup(arg->ie_len, 4);
  1162. }
  1163. if (arg->n_channels) {
  1164. if (!arg->channels)
  1165. return -EINVAL;
  1166. if (arg->n_channels > ARRAY_SIZE(arg->channels))
  1167. return -EINVAL;
  1168. len += sizeof(struct wmi_chan_list);
  1169. len += sizeof(__le32) * arg->n_channels;
  1170. }
  1171. if (arg->n_ssids) {
  1172. if (!arg->ssids)
  1173. return -EINVAL;
  1174. if (arg->n_ssids > WLAN_SCAN_PARAMS_MAX_SSID)
  1175. return -EINVAL;
  1176. len += sizeof(struct wmi_ssid_list);
  1177. len += sizeof(struct wmi_ssid) * arg->n_ssids;
  1178. }
  1179. if (arg->n_bssids) {
  1180. if (!arg->bssids)
  1181. return -EINVAL;
  1182. if (arg->n_bssids > WLAN_SCAN_PARAMS_MAX_BSSID)
  1183. return -EINVAL;
  1184. len += sizeof(struct wmi_bssid_list);
  1185. len += sizeof(struct wmi_mac_addr) * arg->n_bssids;
  1186. }
  1187. return len;
  1188. }
  1189. int ath10k_wmi_start_scan(struct ath10k *ar,
  1190. const struct wmi_start_scan_arg *arg)
  1191. {
  1192. struct wmi_start_scan_cmd *cmd;
  1193. struct sk_buff *skb;
  1194. struct wmi_ie_data *ie;
  1195. struct wmi_chan_list *channels;
  1196. struct wmi_ssid_list *ssids;
  1197. struct wmi_bssid_list *bssids;
  1198. u32 scan_id;
  1199. u32 scan_req_id;
  1200. int off;
  1201. int len = 0;
  1202. int i;
  1203. len = ath10k_wmi_start_scan_calc_len(arg);
  1204. if (len < 0)
  1205. return len; /* len contains error code here */
  1206. skb = ath10k_wmi_alloc_skb(len);
  1207. if (!skb)
  1208. return -ENOMEM;
  1209. scan_id = WMI_HOST_SCAN_REQ_ID_PREFIX;
  1210. scan_id |= arg->scan_id;
  1211. scan_req_id = WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
  1212. scan_req_id |= arg->scan_req_id;
  1213. cmd = (struct wmi_start_scan_cmd *)skb->data;
  1214. cmd->scan_id = __cpu_to_le32(scan_id);
  1215. cmd->scan_req_id = __cpu_to_le32(scan_req_id);
  1216. cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
  1217. cmd->scan_priority = __cpu_to_le32(arg->scan_priority);
  1218. cmd->notify_scan_events = __cpu_to_le32(arg->notify_scan_events);
  1219. cmd->dwell_time_active = __cpu_to_le32(arg->dwell_time_active);
  1220. cmd->dwell_time_passive = __cpu_to_le32(arg->dwell_time_passive);
  1221. cmd->min_rest_time = __cpu_to_le32(arg->min_rest_time);
  1222. cmd->max_rest_time = __cpu_to_le32(arg->max_rest_time);
  1223. cmd->repeat_probe_time = __cpu_to_le32(arg->repeat_probe_time);
  1224. cmd->probe_spacing_time = __cpu_to_le32(arg->probe_spacing_time);
  1225. cmd->idle_time = __cpu_to_le32(arg->idle_time);
  1226. cmd->max_scan_time = __cpu_to_le32(arg->max_scan_time);
  1227. cmd->probe_delay = __cpu_to_le32(arg->probe_delay);
  1228. cmd->scan_ctrl_flags = __cpu_to_le32(arg->scan_ctrl_flags);
  1229. /* TLV list starts after fields included in the struct */
  1230. off = sizeof(*cmd);
  1231. if (arg->n_channels) {
  1232. channels = (void *)skb->data + off;
  1233. channels->tag = __cpu_to_le32(WMI_CHAN_LIST_TAG);
  1234. channels->num_chan = __cpu_to_le32(arg->n_channels);
  1235. for (i = 0; i < arg->n_channels; i++)
  1236. channels->channel_list[i] =
  1237. __cpu_to_le32(arg->channels[i]);
  1238. off += sizeof(*channels);
  1239. off += sizeof(__le32) * arg->n_channels;
  1240. }
  1241. if (arg->n_ssids) {
  1242. ssids = (void *)skb->data + off;
  1243. ssids->tag = __cpu_to_le32(WMI_SSID_LIST_TAG);
  1244. ssids->num_ssids = __cpu_to_le32(arg->n_ssids);
  1245. for (i = 0; i < arg->n_ssids; i++) {
  1246. ssids->ssids[i].ssid_len =
  1247. __cpu_to_le32(arg->ssids[i].len);
  1248. memcpy(&ssids->ssids[i].ssid,
  1249. arg->ssids[i].ssid,
  1250. arg->ssids[i].len);
  1251. }
  1252. off += sizeof(*ssids);
  1253. off += sizeof(struct wmi_ssid) * arg->n_ssids;
  1254. }
  1255. if (arg->n_bssids) {
  1256. bssids = (void *)skb->data + off;
  1257. bssids->tag = __cpu_to_le32(WMI_BSSID_LIST_TAG);
  1258. bssids->num_bssid = __cpu_to_le32(arg->n_bssids);
  1259. for (i = 0; i < arg->n_bssids; i++)
  1260. memcpy(&bssids->bssid_list[i],
  1261. arg->bssids[i].bssid,
  1262. ETH_ALEN);
  1263. off += sizeof(*bssids);
  1264. off += sizeof(struct wmi_mac_addr) * arg->n_bssids;
  1265. }
  1266. if (arg->ie_len) {
  1267. ie = (void *)skb->data + off;
  1268. ie->tag = __cpu_to_le32(WMI_IE_TAG);
  1269. ie->ie_len = __cpu_to_le32(arg->ie_len);
  1270. memcpy(ie->ie_data, arg->ie, arg->ie_len);
  1271. off += sizeof(*ie);
  1272. off += roundup(arg->ie_len, 4);
  1273. }
  1274. if (off != skb->len) {
  1275. dev_kfree_skb(skb);
  1276. return -EINVAL;
  1277. }
  1278. ath10k_dbg(ATH10K_DBG_WMI, "wmi start scan\n");
  1279. return ath10k_wmi_cmd_send(ar, skb, WMI_START_SCAN_CMDID);
  1280. }
  1281. void ath10k_wmi_start_scan_init(struct ath10k *ar,
  1282. struct wmi_start_scan_arg *arg)
  1283. {
  1284. /* setup commonly used values */
  1285. arg->scan_req_id = 1;
  1286. arg->scan_priority = WMI_SCAN_PRIORITY_LOW;
  1287. arg->dwell_time_active = 50;
  1288. arg->dwell_time_passive = 150;
  1289. arg->min_rest_time = 50;
  1290. arg->max_rest_time = 500;
  1291. arg->repeat_probe_time = 0;
  1292. arg->probe_spacing_time = 0;
  1293. arg->idle_time = 0;
  1294. arg->max_scan_time = 5000;
  1295. arg->probe_delay = 5;
  1296. arg->notify_scan_events = WMI_SCAN_EVENT_STARTED
  1297. | WMI_SCAN_EVENT_COMPLETED
  1298. | WMI_SCAN_EVENT_BSS_CHANNEL
  1299. | WMI_SCAN_EVENT_FOREIGN_CHANNEL
  1300. | WMI_SCAN_EVENT_DEQUEUED;
  1301. arg->scan_ctrl_flags |= WMI_SCAN_ADD_OFDM_RATES;
  1302. arg->scan_ctrl_flags |= WMI_SCAN_CHAN_STAT_EVENT;
  1303. arg->n_bssids = 1;
  1304. arg->bssids[0].bssid = "\xFF\xFF\xFF\xFF\xFF\xFF";
  1305. }
  1306. int ath10k_wmi_stop_scan(struct ath10k *ar, const struct wmi_stop_scan_arg *arg)
  1307. {
  1308. struct wmi_stop_scan_cmd *cmd;
  1309. struct sk_buff *skb;
  1310. u32 scan_id;
  1311. u32 req_id;
  1312. if (arg->req_id > 0xFFF)
  1313. return -EINVAL;
  1314. if (arg->req_type == WMI_SCAN_STOP_ONE && arg->u.scan_id > 0xFFF)
  1315. return -EINVAL;
  1316. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1317. if (!skb)
  1318. return -ENOMEM;
  1319. scan_id = arg->u.scan_id;
  1320. scan_id |= WMI_HOST_SCAN_REQ_ID_PREFIX;
  1321. req_id = arg->req_id;
  1322. req_id |= WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
  1323. cmd = (struct wmi_stop_scan_cmd *)skb->data;
  1324. cmd->req_type = __cpu_to_le32(arg->req_type);
  1325. cmd->vdev_id = __cpu_to_le32(arg->u.vdev_id);
  1326. cmd->scan_id = __cpu_to_le32(scan_id);
  1327. cmd->scan_req_id = __cpu_to_le32(req_id);
  1328. ath10k_dbg(ATH10K_DBG_WMI,
  1329. "wmi stop scan reqid %d req_type %d vdev/scan_id %d\n",
  1330. arg->req_id, arg->req_type, arg->u.scan_id);
  1331. return ath10k_wmi_cmd_send(ar, skb, WMI_STOP_SCAN_CMDID);
  1332. }
  1333. int ath10k_wmi_vdev_create(struct ath10k *ar, u32 vdev_id,
  1334. enum wmi_vdev_type type,
  1335. enum wmi_vdev_subtype subtype,
  1336. const u8 macaddr[ETH_ALEN])
  1337. {
  1338. struct wmi_vdev_create_cmd *cmd;
  1339. struct sk_buff *skb;
  1340. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1341. if (!skb)
  1342. return -ENOMEM;
  1343. cmd = (struct wmi_vdev_create_cmd *)skb->data;
  1344. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1345. cmd->vdev_type = __cpu_to_le32(type);
  1346. cmd->vdev_subtype = __cpu_to_le32(subtype);
  1347. memcpy(cmd->vdev_macaddr.addr, macaddr, ETH_ALEN);
  1348. ath10k_dbg(ATH10K_DBG_WMI,
  1349. "WMI vdev create: id %d type %d subtype %d macaddr %pM\n",
  1350. vdev_id, type, subtype, macaddr);
  1351. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_CREATE_CMDID);
  1352. }
  1353. int ath10k_wmi_vdev_delete(struct ath10k *ar, u32 vdev_id)
  1354. {
  1355. struct wmi_vdev_delete_cmd *cmd;
  1356. struct sk_buff *skb;
  1357. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1358. if (!skb)
  1359. return -ENOMEM;
  1360. cmd = (struct wmi_vdev_delete_cmd *)skb->data;
  1361. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1362. ath10k_dbg(ATH10K_DBG_WMI,
  1363. "WMI vdev delete id %d\n", vdev_id);
  1364. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DELETE_CMDID);
  1365. }
  1366. static int ath10k_wmi_vdev_start_restart(struct ath10k *ar,
  1367. const struct wmi_vdev_start_request_arg *arg,
  1368. enum wmi_cmd_id cmd_id)
  1369. {
  1370. struct wmi_vdev_start_request_cmd *cmd;
  1371. struct sk_buff *skb;
  1372. const char *cmdname;
  1373. u32 flags = 0;
  1374. if (cmd_id != WMI_VDEV_START_REQUEST_CMDID &&
  1375. cmd_id != WMI_VDEV_RESTART_REQUEST_CMDID)
  1376. return -EINVAL;
  1377. if (WARN_ON(arg->ssid && arg->ssid_len == 0))
  1378. return -EINVAL;
  1379. if (WARN_ON(arg->hidden_ssid && !arg->ssid))
  1380. return -EINVAL;
  1381. if (WARN_ON(arg->ssid_len > sizeof(cmd->ssid.ssid)))
  1382. return -EINVAL;
  1383. if (cmd_id == WMI_VDEV_START_REQUEST_CMDID)
  1384. cmdname = "start";
  1385. else if (cmd_id == WMI_VDEV_RESTART_REQUEST_CMDID)
  1386. cmdname = "restart";
  1387. else
  1388. return -EINVAL; /* should not happen, we already check cmd_id */
  1389. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1390. if (!skb)
  1391. return -ENOMEM;
  1392. if (arg->hidden_ssid)
  1393. flags |= WMI_VDEV_START_HIDDEN_SSID;
  1394. if (arg->pmf_enabled)
  1395. flags |= WMI_VDEV_START_PMF_ENABLED;
  1396. cmd = (struct wmi_vdev_start_request_cmd *)skb->data;
  1397. cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
  1398. cmd->disable_hw_ack = __cpu_to_le32(arg->disable_hw_ack);
  1399. cmd->beacon_interval = __cpu_to_le32(arg->bcn_intval);
  1400. cmd->dtim_period = __cpu_to_le32(arg->dtim_period);
  1401. cmd->flags = __cpu_to_le32(flags);
  1402. cmd->bcn_tx_rate = __cpu_to_le32(arg->bcn_tx_rate);
  1403. cmd->bcn_tx_power = __cpu_to_le32(arg->bcn_tx_power);
  1404. if (arg->ssid) {
  1405. cmd->ssid.ssid_len = __cpu_to_le32(arg->ssid_len);
  1406. memcpy(cmd->ssid.ssid, arg->ssid, arg->ssid_len);
  1407. }
  1408. cmd->chan.mhz = __cpu_to_le32(arg->channel.freq);
  1409. cmd->chan.band_center_freq1 =
  1410. __cpu_to_le32(arg->channel.band_center_freq1);
  1411. cmd->chan.mode = arg->channel.mode;
  1412. cmd->chan.min_power = arg->channel.min_power;
  1413. cmd->chan.max_power = arg->channel.max_power;
  1414. cmd->chan.reg_power = arg->channel.max_reg_power;
  1415. cmd->chan.reg_classid = arg->channel.reg_class_id;
  1416. cmd->chan.antenna_max = arg->channel.max_antenna_gain;
  1417. ath10k_dbg(ATH10K_DBG_WMI,
  1418. "wmi vdev %s id 0x%x freq %d, mode %d, ch_flags: 0x%0X,"
  1419. "max_power: %d\n", cmdname, arg->vdev_id, arg->channel.freq,
  1420. arg->channel.mode, flags, arg->channel.max_power);
  1421. return ath10k_wmi_cmd_send(ar, skb, cmd_id);
  1422. }
  1423. int ath10k_wmi_vdev_start(struct ath10k *ar,
  1424. const struct wmi_vdev_start_request_arg *arg)
  1425. {
  1426. return ath10k_wmi_vdev_start_restart(ar, arg,
  1427. WMI_VDEV_START_REQUEST_CMDID);
  1428. }
  1429. int ath10k_wmi_vdev_restart(struct ath10k *ar,
  1430. const struct wmi_vdev_start_request_arg *arg)
  1431. {
  1432. return ath10k_wmi_vdev_start_restart(ar, arg,
  1433. WMI_VDEV_RESTART_REQUEST_CMDID);
  1434. }
  1435. int ath10k_wmi_vdev_stop(struct ath10k *ar, u32 vdev_id)
  1436. {
  1437. struct wmi_vdev_stop_cmd *cmd;
  1438. struct sk_buff *skb;
  1439. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1440. if (!skb)
  1441. return -ENOMEM;
  1442. cmd = (struct wmi_vdev_stop_cmd *)skb->data;
  1443. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1444. ath10k_dbg(ATH10K_DBG_WMI, "wmi vdev stop id 0x%x\n", vdev_id);
  1445. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_STOP_CMDID);
  1446. }
  1447. int ath10k_wmi_vdev_up(struct ath10k *ar, u32 vdev_id, u32 aid, const u8 *bssid)
  1448. {
  1449. struct wmi_vdev_up_cmd *cmd;
  1450. struct sk_buff *skb;
  1451. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1452. if (!skb)
  1453. return -ENOMEM;
  1454. cmd = (struct wmi_vdev_up_cmd *)skb->data;
  1455. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1456. cmd->vdev_assoc_id = __cpu_to_le32(aid);
  1457. memcpy(&cmd->vdev_bssid.addr, bssid, ETH_ALEN);
  1458. ath10k_dbg(ATH10K_DBG_WMI,
  1459. "wmi mgmt vdev up id 0x%x assoc id %d bssid %pM\n",
  1460. vdev_id, aid, bssid);
  1461. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_UP_CMDID);
  1462. }
  1463. int ath10k_wmi_vdev_down(struct ath10k *ar, u32 vdev_id)
  1464. {
  1465. struct wmi_vdev_down_cmd *cmd;
  1466. struct sk_buff *skb;
  1467. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1468. if (!skb)
  1469. return -ENOMEM;
  1470. cmd = (struct wmi_vdev_down_cmd *)skb->data;
  1471. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1472. ath10k_dbg(ATH10K_DBG_WMI,
  1473. "wmi mgmt vdev down id 0x%x\n", vdev_id);
  1474. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DOWN_CMDID);
  1475. }
  1476. int ath10k_wmi_vdev_set_param(struct ath10k *ar, u32 vdev_id,
  1477. enum wmi_vdev_param param_id, u32 param_value)
  1478. {
  1479. struct wmi_vdev_set_param_cmd *cmd;
  1480. struct sk_buff *skb;
  1481. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1482. if (!skb)
  1483. return -ENOMEM;
  1484. cmd = (struct wmi_vdev_set_param_cmd *)skb->data;
  1485. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1486. cmd->param_id = __cpu_to_le32(param_id);
  1487. cmd->param_value = __cpu_to_le32(param_value);
  1488. ath10k_dbg(ATH10K_DBG_WMI,
  1489. "wmi vdev id 0x%x set param %d value %d\n",
  1490. vdev_id, param_id, param_value);
  1491. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_SET_PARAM_CMDID);
  1492. }
  1493. int ath10k_wmi_vdev_install_key(struct ath10k *ar,
  1494. const struct wmi_vdev_install_key_arg *arg)
  1495. {
  1496. struct wmi_vdev_install_key_cmd *cmd;
  1497. struct sk_buff *skb;
  1498. if (arg->key_cipher == WMI_CIPHER_NONE && arg->key_data != NULL)
  1499. return -EINVAL;
  1500. if (arg->key_cipher != WMI_CIPHER_NONE && arg->key_data == NULL)
  1501. return -EINVAL;
  1502. skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->key_len);
  1503. if (!skb)
  1504. return -ENOMEM;
  1505. cmd = (struct wmi_vdev_install_key_cmd *)skb->data;
  1506. cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
  1507. cmd->key_idx = __cpu_to_le32(arg->key_idx);
  1508. cmd->key_flags = __cpu_to_le32(arg->key_flags);
  1509. cmd->key_cipher = __cpu_to_le32(arg->key_cipher);
  1510. cmd->key_len = __cpu_to_le32(arg->key_len);
  1511. cmd->key_txmic_len = __cpu_to_le32(arg->key_txmic_len);
  1512. cmd->key_rxmic_len = __cpu_to_le32(arg->key_rxmic_len);
  1513. if (arg->macaddr)
  1514. memcpy(cmd->peer_macaddr.addr, arg->macaddr, ETH_ALEN);
  1515. if (arg->key_data)
  1516. memcpy(cmd->key_data, arg->key_data, arg->key_len);
  1517. ath10k_dbg(ATH10K_DBG_WMI,
  1518. "wmi vdev install key idx %d cipher %d len %d\n",
  1519. arg->key_idx, arg->key_cipher, arg->key_len);
  1520. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_INSTALL_KEY_CMDID);
  1521. }
  1522. int ath10k_wmi_peer_create(struct ath10k *ar, u32 vdev_id,
  1523. const u8 peer_addr[ETH_ALEN])
  1524. {
  1525. struct wmi_peer_create_cmd *cmd;
  1526. struct sk_buff *skb;
  1527. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1528. if (!skb)
  1529. return -ENOMEM;
  1530. cmd = (struct wmi_peer_create_cmd *)skb->data;
  1531. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1532. memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
  1533. ath10k_dbg(ATH10K_DBG_WMI,
  1534. "wmi peer create vdev_id %d peer_addr %pM\n",
  1535. vdev_id, peer_addr);
  1536. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_CREATE_CMDID);
  1537. }
  1538. int ath10k_wmi_peer_delete(struct ath10k *ar, u32 vdev_id,
  1539. const u8 peer_addr[ETH_ALEN])
  1540. {
  1541. struct wmi_peer_delete_cmd *cmd;
  1542. struct sk_buff *skb;
  1543. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1544. if (!skb)
  1545. return -ENOMEM;
  1546. cmd = (struct wmi_peer_delete_cmd *)skb->data;
  1547. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1548. memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
  1549. ath10k_dbg(ATH10K_DBG_WMI,
  1550. "wmi peer delete vdev_id %d peer_addr %pM\n",
  1551. vdev_id, peer_addr);
  1552. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_DELETE_CMDID);
  1553. }
  1554. int ath10k_wmi_peer_flush(struct ath10k *ar, u32 vdev_id,
  1555. const u8 peer_addr[ETH_ALEN], u32 tid_bitmap)
  1556. {
  1557. struct wmi_peer_flush_tids_cmd *cmd;
  1558. struct sk_buff *skb;
  1559. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1560. if (!skb)
  1561. return -ENOMEM;
  1562. cmd = (struct wmi_peer_flush_tids_cmd *)skb->data;
  1563. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1564. cmd->peer_tid_bitmap = __cpu_to_le32(tid_bitmap);
  1565. memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
  1566. ath10k_dbg(ATH10K_DBG_WMI,
  1567. "wmi peer flush vdev_id %d peer_addr %pM tids %08x\n",
  1568. vdev_id, peer_addr, tid_bitmap);
  1569. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_FLUSH_TIDS_CMDID);
  1570. }
  1571. int ath10k_wmi_peer_set_param(struct ath10k *ar, u32 vdev_id,
  1572. const u8 *peer_addr, enum wmi_peer_param param_id,
  1573. u32 param_value)
  1574. {
  1575. struct wmi_peer_set_param_cmd *cmd;
  1576. struct sk_buff *skb;
  1577. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1578. if (!skb)
  1579. return -ENOMEM;
  1580. cmd = (struct wmi_peer_set_param_cmd *)skb->data;
  1581. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1582. cmd->param_id = __cpu_to_le32(param_id);
  1583. cmd->param_value = __cpu_to_le32(param_value);
  1584. memcpy(&cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
  1585. ath10k_dbg(ATH10K_DBG_WMI,
  1586. "wmi vdev %d peer 0x%pM set param %d value %d\n",
  1587. vdev_id, peer_addr, param_id, param_value);
  1588. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_SET_PARAM_CMDID);
  1589. }
  1590. int ath10k_wmi_set_psmode(struct ath10k *ar, u32 vdev_id,
  1591. enum wmi_sta_ps_mode psmode)
  1592. {
  1593. struct wmi_sta_powersave_mode_cmd *cmd;
  1594. struct sk_buff *skb;
  1595. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1596. if (!skb)
  1597. return -ENOMEM;
  1598. cmd = (struct wmi_sta_powersave_mode_cmd *)skb->data;
  1599. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1600. cmd->sta_ps_mode = __cpu_to_le32(psmode);
  1601. ath10k_dbg(ATH10K_DBG_WMI,
  1602. "wmi set powersave id 0x%x mode %d\n",
  1603. vdev_id, psmode);
  1604. return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_MODE_CMDID);
  1605. }
  1606. int ath10k_wmi_set_sta_ps_param(struct ath10k *ar, u32 vdev_id,
  1607. enum wmi_sta_powersave_param param_id,
  1608. u32 value)
  1609. {
  1610. struct wmi_sta_powersave_param_cmd *cmd;
  1611. struct sk_buff *skb;
  1612. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1613. if (!skb)
  1614. return -ENOMEM;
  1615. cmd = (struct wmi_sta_powersave_param_cmd *)skb->data;
  1616. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1617. cmd->param_id = __cpu_to_le32(param_id);
  1618. cmd->param_value = __cpu_to_le32(value);
  1619. ath10k_dbg(ATH10K_DBG_WMI,
  1620. "wmi sta ps param vdev_id 0x%x param %d value %d\n",
  1621. vdev_id, param_id, value);
  1622. return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_PARAM_CMDID);
  1623. }
  1624. int ath10k_wmi_set_ap_ps_param(struct ath10k *ar, u32 vdev_id, const u8 *mac,
  1625. enum wmi_ap_ps_peer_param param_id, u32 value)
  1626. {
  1627. struct wmi_ap_ps_peer_cmd *cmd;
  1628. struct sk_buff *skb;
  1629. if (!mac)
  1630. return -EINVAL;
  1631. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1632. if (!skb)
  1633. return -ENOMEM;
  1634. cmd = (struct wmi_ap_ps_peer_cmd *)skb->data;
  1635. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1636. cmd->param_id = __cpu_to_le32(param_id);
  1637. cmd->param_value = __cpu_to_le32(value);
  1638. memcpy(&cmd->peer_macaddr, mac, ETH_ALEN);
  1639. ath10k_dbg(ATH10K_DBG_WMI,
  1640. "wmi ap ps param vdev_id 0x%X param %d value %d mac_addr %pM\n",
  1641. vdev_id, param_id, value, mac);
  1642. return ath10k_wmi_cmd_send(ar, skb, WMI_AP_PS_PEER_PARAM_CMDID);
  1643. }
  1644. int ath10k_wmi_scan_chan_list(struct ath10k *ar,
  1645. const struct wmi_scan_chan_list_arg *arg)
  1646. {
  1647. struct wmi_scan_chan_list_cmd *cmd;
  1648. struct sk_buff *skb;
  1649. struct wmi_channel_arg *ch;
  1650. struct wmi_channel *ci;
  1651. int len;
  1652. int i;
  1653. len = sizeof(*cmd) + arg->n_channels * sizeof(struct wmi_channel);
  1654. skb = ath10k_wmi_alloc_skb(len);
  1655. if (!skb)
  1656. return -EINVAL;
  1657. cmd = (struct wmi_scan_chan_list_cmd *)skb->data;
  1658. cmd->num_scan_chans = __cpu_to_le32(arg->n_channels);
  1659. for (i = 0; i < arg->n_channels; i++) {
  1660. u32 flags = 0;
  1661. ch = &arg->channels[i];
  1662. ci = &cmd->chan_info[i];
  1663. if (ch->passive)
  1664. flags |= WMI_CHAN_FLAG_PASSIVE;
  1665. if (ch->allow_ibss)
  1666. flags |= WMI_CHAN_FLAG_ADHOC_ALLOWED;
  1667. if (ch->allow_ht)
  1668. flags |= WMI_CHAN_FLAG_ALLOW_HT;
  1669. if (ch->allow_vht)
  1670. flags |= WMI_CHAN_FLAG_ALLOW_VHT;
  1671. if (ch->ht40plus)
  1672. flags |= WMI_CHAN_FLAG_HT40_PLUS;
  1673. ci->mhz = __cpu_to_le32(ch->freq);
  1674. ci->band_center_freq1 = __cpu_to_le32(ch->freq);
  1675. ci->band_center_freq2 = 0;
  1676. ci->min_power = ch->min_power;
  1677. ci->max_power = ch->max_power;
  1678. ci->reg_power = ch->max_reg_power;
  1679. ci->antenna_max = ch->max_antenna_gain;
  1680. ci->antenna_max = 0;
  1681. /* mode & flags share storage */
  1682. ci->mode = ch->mode;
  1683. ci->flags |= __cpu_to_le32(flags);
  1684. }
  1685. return ath10k_wmi_cmd_send(ar, skb, WMI_SCAN_CHAN_LIST_CMDID);
  1686. }
  1687. int ath10k_wmi_peer_assoc(struct ath10k *ar,
  1688. const struct wmi_peer_assoc_complete_arg *arg)
  1689. {
  1690. struct wmi_peer_assoc_complete_cmd *cmd;
  1691. struct sk_buff *skb;
  1692. if (arg->peer_mpdu_density > 16)
  1693. return -EINVAL;
  1694. if (arg->peer_legacy_rates.num_rates > MAX_SUPPORTED_RATES)
  1695. return -EINVAL;
  1696. if (arg->peer_ht_rates.num_rates > MAX_SUPPORTED_RATES)
  1697. return -EINVAL;
  1698. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1699. if (!skb)
  1700. return -ENOMEM;
  1701. cmd = (struct wmi_peer_assoc_complete_cmd *)skb->data;
  1702. cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
  1703. cmd->peer_new_assoc = __cpu_to_le32(arg->peer_reassoc ? 0 : 1);
  1704. cmd->peer_associd = __cpu_to_le32(arg->peer_aid);
  1705. cmd->peer_flags = __cpu_to_le32(arg->peer_flags);
  1706. cmd->peer_caps = __cpu_to_le32(arg->peer_caps);
  1707. cmd->peer_listen_intval = __cpu_to_le32(arg->peer_listen_intval);
  1708. cmd->peer_ht_caps = __cpu_to_le32(arg->peer_ht_caps);
  1709. cmd->peer_max_mpdu = __cpu_to_le32(arg->peer_max_mpdu);
  1710. cmd->peer_mpdu_density = __cpu_to_le32(arg->peer_mpdu_density);
  1711. cmd->peer_rate_caps = __cpu_to_le32(arg->peer_rate_caps);
  1712. cmd->peer_nss = __cpu_to_le32(arg->peer_num_spatial_streams);
  1713. cmd->peer_vht_caps = __cpu_to_le32(arg->peer_vht_caps);
  1714. cmd->peer_phymode = __cpu_to_le32(arg->peer_phymode);
  1715. memcpy(cmd->peer_macaddr.addr, arg->addr, ETH_ALEN);
  1716. cmd->peer_legacy_rates.num_rates =
  1717. __cpu_to_le32(arg->peer_legacy_rates.num_rates);
  1718. memcpy(cmd->peer_legacy_rates.rates, arg->peer_legacy_rates.rates,
  1719. arg->peer_legacy_rates.num_rates);
  1720. cmd->peer_ht_rates.num_rates =
  1721. __cpu_to_le32(arg->peer_ht_rates.num_rates);
  1722. memcpy(cmd->peer_ht_rates.rates, arg->peer_ht_rates.rates,
  1723. arg->peer_ht_rates.num_rates);
  1724. cmd->peer_vht_rates.rx_max_rate =
  1725. __cpu_to_le32(arg->peer_vht_rates.rx_max_rate);
  1726. cmd->peer_vht_rates.rx_mcs_set =
  1727. __cpu_to_le32(arg->peer_vht_rates.rx_mcs_set);
  1728. cmd->peer_vht_rates.tx_max_rate =
  1729. __cpu_to_le32(arg->peer_vht_rates.tx_max_rate);
  1730. cmd->peer_vht_rates.tx_mcs_set =
  1731. __cpu_to_le32(arg->peer_vht_rates.tx_mcs_set);
  1732. ath10k_dbg(ATH10K_DBG_WMI,
  1733. "wmi peer assoc vdev %d addr %pM\n",
  1734. arg->vdev_id, arg->addr);
  1735. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_ASSOC_CMDID);
  1736. }
  1737. int ath10k_wmi_beacon_send_nowait(struct ath10k *ar,
  1738. const struct wmi_bcn_tx_arg *arg)
  1739. {
  1740. struct wmi_bcn_tx_cmd *cmd;
  1741. struct sk_buff *skb;
  1742. skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->bcn_len);
  1743. if (!skb)
  1744. return -ENOMEM;
  1745. cmd = (struct wmi_bcn_tx_cmd *)skb->data;
  1746. cmd->hdr.vdev_id = __cpu_to_le32(arg->vdev_id);
  1747. cmd->hdr.tx_rate = __cpu_to_le32(arg->tx_rate);
  1748. cmd->hdr.tx_power = __cpu_to_le32(arg->tx_power);
  1749. cmd->hdr.bcn_len = __cpu_to_le32(arg->bcn_len);
  1750. memcpy(cmd->bcn, arg->bcn, arg->bcn_len);
  1751. return ath10k_wmi_cmd_send_nowait(ar, skb, WMI_BCN_TX_CMDID);
  1752. }
  1753. static void ath10k_wmi_pdev_set_wmm_param(struct wmi_wmm_params *params,
  1754. const struct wmi_wmm_params_arg *arg)
  1755. {
  1756. params->cwmin = __cpu_to_le32(arg->cwmin);
  1757. params->cwmax = __cpu_to_le32(arg->cwmax);
  1758. params->aifs = __cpu_to_le32(arg->aifs);
  1759. params->txop = __cpu_to_le32(arg->txop);
  1760. params->acm = __cpu_to_le32(arg->acm);
  1761. params->no_ack = __cpu_to_le32(arg->no_ack);
  1762. }
  1763. int ath10k_wmi_pdev_set_wmm_params(struct ath10k *ar,
  1764. const struct wmi_pdev_set_wmm_params_arg *arg)
  1765. {
  1766. struct wmi_pdev_set_wmm_params *cmd;
  1767. struct sk_buff *skb;
  1768. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1769. if (!skb)
  1770. return -ENOMEM;
  1771. cmd = (struct wmi_pdev_set_wmm_params *)skb->data;
  1772. ath10k_wmi_pdev_set_wmm_param(&cmd->ac_be, &arg->ac_be);
  1773. ath10k_wmi_pdev_set_wmm_param(&cmd->ac_bk, &arg->ac_bk);
  1774. ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vi, &arg->ac_vi);
  1775. ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vo, &arg->ac_vo);
  1776. ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set wmm params\n");
  1777. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_WMM_PARAMS_CMDID);
  1778. }
  1779. int ath10k_wmi_request_stats(struct ath10k *ar, enum wmi_stats_id stats_id)
  1780. {
  1781. struct wmi_request_stats_cmd *cmd;
  1782. struct sk_buff *skb;
  1783. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1784. if (!skb)
  1785. return -ENOMEM;
  1786. cmd = (struct wmi_request_stats_cmd *)skb->data;
  1787. cmd->stats_id = __cpu_to_le32(stats_id);
  1788. ath10k_dbg(ATH10K_DBG_WMI, "wmi request stats %d\n", (int)stats_id);
  1789. return ath10k_wmi_cmd_send(ar, skb, WMI_REQUEST_STATS_CMDID);
  1790. }
  1791. int ath10k_wmi_force_fw_hang(struct ath10k *ar,
  1792. enum wmi_force_fw_hang_type type, u32 delay_ms)
  1793. {
  1794. struct wmi_force_fw_hang_cmd *cmd;
  1795. struct sk_buff *skb;
  1796. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1797. if (!skb)
  1798. return -ENOMEM;
  1799. cmd = (struct wmi_force_fw_hang_cmd *)skb->data;
  1800. cmd->type = __cpu_to_le32(type);
  1801. cmd->delay_ms = __cpu_to_le32(delay_ms);
  1802. ath10k_dbg(ATH10K_DBG_WMI, "wmi force fw hang %d delay %d\n",
  1803. type, delay_ms);
  1804. return ath10k_wmi_cmd_send(ar, skb, WMI_FORCE_FW_HANG_CMDID);
  1805. }