ce.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138
  1. /*
  2. * Copyright (c) 2005-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include "hif.h"
  18. #include "pci.h"
  19. #include "ce.h"
  20. #include "debug.h"
  21. /*
  22. * Support for Copy Engine hardware, which is mainly used for
  23. * communication between Host and Target over a PCIe interconnect.
  24. */
  25. /*
  26. * A single CopyEngine (CE) comprises two "rings":
  27. * a source ring
  28. * a destination ring
  29. *
  30. * Each ring consists of a number of descriptors which specify
  31. * an address, length, and meta-data.
  32. *
  33. * Typically, one side of the PCIe interconnect (Host or Target)
  34. * controls one ring and the other side controls the other ring.
  35. * The source side chooses when to initiate a transfer and it
  36. * chooses what to send (buffer address, length). The destination
  37. * side keeps a supply of "anonymous receive buffers" available and
  38. * it handles incoming data as it arrives (when the destination
  39. * recieves an interrupt).
  40. *
  41. * The sender may send a simple buffer (address/length) or it may
  42. * send a small list of buffers. When a small list is sent, hardware
  43. * "gathers" these and they end up in a single destination buffer
  44. * with a single interrupt.
  45. *
  46. * There are several "contexts" managed by this layer -- more, it
  47. * may seem -- than should be needed. These are provided mainly for
  48. * maximum flexibility and especially to facilitate a simpler HIF
  49. * implementation. There are per-CopyEngine recv, send, and watermark
  50. * contexts. These are supplied by the caller when a recv, send,
  51. * or watermark handler is established and they are echoed back to
  52. * the caller when the respective callbacks are invoked. There is
  53. * also a per-transfer context supplied by the caller when a buffer
  54. * (or sendlist) is sent and when a buffer is enqueued for recv.
  55. * These per-transfer contexts are echoed back to the caller when
  56. * the buffer is sent/received.
  57. */
  58. static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
  59. u32 ce_ctrl_addr,
  60. unsigned int n)
  61. {
  62. ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
  63. }
  64. static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
  65. u32 ce_ctrl_addr)
  66. {
  67. return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
  68. }
  69. static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
  70. u32 ce_ctrl_addr,
  71. unsigned int n)
  72. {
  73. ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
  74. }
  75. static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
  76. u32 ce_ctrl_addr)
  77. {
  78. return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
  79. }
  80. static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
  81. u32 ce_ctrl_addr)
  82. {
  83. return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
  84. }
  85. static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
  86. u32 ce_ctrl_addr,
  87. unsigned int addr)
  88. {
  89. ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
  90. }
  91. static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
  92. u32 ce_ctrl_addr,
  93. unsigned int n)
  94. {
  95. ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
  96. }
  97. static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
  98. u32 ce_ctrl_addr,
  99. unsigned int n)
  100. {
  101. u32 ctrl1_addr = ath10k_pci_read32((ar),
  102. (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
  103. ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
  104. (ctrl1_addr & ~CE_CTRL1_DMAX_LENGTH_MASK) |
  105. CE_CTRL1_DMAX_LENGTH_SET(n));
  106. }
  107. static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
  108. u32 ce_ctrl_addr,
  109. unsigned int n)
  110. {
  111. u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
  112. ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
  113. (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
  114. CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
  115. }
  116. static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
  117. u32 ce_ctrl_addr,
  118. unsigned int n)
  119. {
  120. u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
  121. ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
  122. (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
  123. CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
  124. }
  125. static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
  126. u32 ce_ctrl_addr)
  127. {
  128. return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
  129. }
  130. static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
  131. u32 ce_ctrl_addr,
  132. u32 addr)
  133. {
  134. ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
  135. }
  136. static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
  137. u32 ce_ctrl_addr,
  138. unsigned int n)
  139. {
  140. ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
  141. }
  142. static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
  143. u32 ce_ctrl_addr,
  144. unsigned int n)
  145. {
  146. u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
  147. ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
  148. (addr & ~SRC_WATERMARK_HIGH_MASK) |
  149. SRC_WATERMARK_HIGH_SET(n));
  150. }
  151. static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
  152. u32 ce_ctrl_addr,
  153. unsigned int n)
  154. {
  155. u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
  156. ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
  157. (addr & ~SRC_WATERMARK_LOW_MASK) |
  158. SRC_WATERMARK_LOW_SET(n));
  159. }
  160. static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
  161. u32 ce_ctrl_addr,
  162. unsigned int n)
  163. {
  164. u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
  165. ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
  166. (addr & ~DST_WATERMARK_HIGH_MASK) |
  167. DST_WATERMARK_HIGH_SET(n));
  168. }
  169. static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
  170. u32 ce_ctrl_addr,
  171. unsigned int n)
  172. {
  173. u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
  174. ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
  175. (addr & ~DST_WATERMARK_LOW_MASK) |
  176. DST_WATERMARK_LOW_SET(n));
  177. }
  178. static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
  179. u32 ce_ctrl_addr)
  180. {
  181. u32 host_ie_addr = ath10k_pci_read32(ar,
  182. ce_ctrl_addr + HOST_IE_ADDRESS);
  183. ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
  184. host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
  185. }
  186. static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
  187. u32 ce_ctrl_addr)
  188. {
  189. u32 host_ie_addr = ath10k_pci_read32(ar,
  190. ce_ctrl_addr + HOST_IE_ADDRESS);
  191. ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
  192. host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
  193. }
  194. static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
  195. u32 ce_ctrl_addr)
  196. {
  197. u32 host_ie_addr = ath10k_pci_read32(ar,
  198. ce_ctrl_addr + HOST_IE_ADDRESS);
  199. ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
  200. host_ie_addr & ~CE_WATERMARK_MASK);
  201. }
  202. static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
  203. u32 ce_ctrl_addr)
  204. {
  205. u32 misc_ie_addr = ath10k_pci_read32(ar,
  206. ce_ctrl_addr + MISC_IE_ADDRESS);
  207. ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
  208. misc_ie_addr | CE_ERROR_MASK);
  209. }
  210. static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
  211. u32 ce_ctrl_addr,
  212. unsigned int mask)
  213. {
  214. ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
  215. }
  216. /*
  217. * Guts of ath10k_ce_send, used by both ath10k_ce_send and
  218. * ath10k_ce_sendlist_send.
  219. * The caller takes responsibility for any needed locking.
  220. */
  221. static int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
  222. void *per_transfer_context,
  223. u32 buffer,
  224. unsigned int nbytes,
  225. unsigned int transfer_id,
  226. unsigned int flags)
  227. {
  228. struct ath10k *ar = ce_state->ar;
  229. struct ath10k_ce_ring *src_ring = ce_state->src_ring;
  230. struct ce_desc *desc, *sdesc;
  231. unsigned int nentries_mask = src_ring->nentries_mask;
  232. unsigned int sw_index = src_ring->sw_index;
  233. unsigned int write_index = src_ring->write_index;
  234. u32 ctrl_addr = ce_state->ctrl_addr;
  235. u32 desc_flags = 0;
  236. int ret = 0;
  237. if (nbytes > ce_state->src_sz_max)
  238. ath10k_warn("%s: send more we can (nbytes: %d, max: %d)\n",
  239. __func__, nbytes, ce_state->src_sz_max);
  240. ret = ath10k_pci_wake(ar);
  241. if (ret)
  242. return ret;
  243. if (unlikely(CE_RING_DELTA(nentries_mask,
  244. write_index, sw_index - 1) <= 0)) {
  245. ret = -EIO;
  246. goto exit;
  247. }
  248. desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
  249. write_index);
  250. sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
  251. desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
  252. if (flags & CE_SEND_FLAG_GATHER)
  253. desc_flags |= CE_DESC_FLAGS_GATHER;
  254. if (flags & CE_SEND_FLAG_BYTE_SWAP)
  255. desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
  256. sdesc->addr = __cpu_to_le32(buffer);
  257. sdesc->nbytes = __cpu_to_le16(nbytes);
  258. sdesc->flags = __cpu_to_le16(desc_flags);
  259. *desc = *sdesc;
  260. src_ring->per_transfer_context[write_index] = per_transfer_context;
  261. /* Update Source Ring Write Index */
  262. write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
  263. /* WORKAROUND */
  264. if (!(flags & CE_SEND_FLAG_GATHER))
  265. ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
  266. src_ring->write_index = write_index;
  267. exit:
  268. ath10k_pci_sleep(ar);
  269. return ret;
  270. }
  271. int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
  272. void *per_transfer_context,
  273. u32 buffer,
  274. unsigned int nbytes,
  275. unsigned int transfer_id,
  276. unsigned int flags)
  277. {
  278. struct ath10k *ar = ce_state->ar;
  279. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  280. int ret;
  281. spin_lock_bh(&ar_pci->ce_lock);
  282. ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
  283. buffer, nbytes, transfer_id, flags);
  284. spin_unlock_bh(&ar_pci->ce_lock);
  285. return ret;
  286. }
  287. int ath10k_ce_sendlist_send(struct ath10k_ce_pipe *ce_state,
  288. void *per_transfer_context,
  289. unsigned int transfer_id,
  290. u32 paddr, unsigned int nbytes,
  291. u32 flags)
  292. {
  293. struct ath10k_ce_ring *src_ring = ce_state->src_ring;
  294. struct ath10k *ar = ce_state->ar;
  295. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  296. unsigned int nentries_mask = src_ring->nentries_mask;
  297. unsigned int sw_index;
  298. unsigned int write_index;
  299. int delta, ret = -ENOMEM;
  300. spin_lock_bh(&ar_pci->ce_lock);
  301. sw_index = src_ring->sw_index;
  302. write_index = src_ring->write_index;
  303. delta = CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
  304. if (delta >= 1) {
  305. ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
  306. paddr, nbytes,
  307. transfer_id, flags);
  308. if (ret)
  309. ath10k_warn("CE send failed: %d\n", ret);
  310. }
  311. spin_unlock_bh(&ar_pci->ce_lock);
  312. return ret;
  313. }
  314. int ath10k_ce_recv_buf_enqueue(struct ath10k_ce_pipe *ce_state,
  315. void *per_recv_context,
  316. u32 buffer)
  317. {
  318. struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
  319. u32 ctrl_addr = ce_state->ctrl_addr;
  320. struct ath10k *ar = ce_state->ar;
  321. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  322. unsigned int nentries_mask = dest_ring->nentries_mask;
  323. unsigned int write_index;
  324. unsigned int sw_index;
  325. int ret;
  326. spin_lock_bh(&ar_pci->ce_lock);
  327. write_index = dest_ring->write_index;
  328. sw_index = dest_ring->sw_index;
  329. ret = ath10k_pci_wake(ar);
  330. if (ret)
  331. goto out;
  332. if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) > 0) {
  333. struct ce_desc *base = dest_ring->base_addr_owner_space;
  334. struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
  335. /* Update destination descriptor */
  336. desc->addr = __cpu_to_le32(buffer);
  337. desc->nbytes = 0;
  338. dest_ring->per_transfer_context[write_index] =
  339. per_recv_context;
  340. /* Update Destination Ring Write Index */
  341. write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
  342. ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
  343. dest_ring->write_index = write_index;
  344. ret = 0;
  345. } else {
  346. ret = -EIO;
  347. }
  348. ath10k_pci_sleep(ar);
  349. out:
  350. spin_unlock_bh(&ar_pci->ce_lock);
  351. return ret;
  352. }
  353. /*
  354. * Guts of ath10k_ce_completed_recv_next.
  355. * The caller takes responsibility for any necessary locking.
  356. */
  357. static int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
  358. void **per_transfer_contextp,
  359. u32 *bufferp,
  360. unsigned int *nbytesp,
  361. unsigned int *transfer_idp,
  362. unsigned int *flagsp)
  363. {
  364. struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
  365. unsigned int nentries_mask = dest_ring->nentries_mask;
  366. unsigned int sw_index = dest_ring->sw_index;
  367. struct ce_desc *base = dest_ring->base_addr_owner_space;
  368. struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
  369. struct ce_desc sdesc;
  370. u16 nbytes;
  371. /* Copy in one go for performance reasons */
  372. sdesc = *desc;
  373. nbytes = __le16_to_cpu(sdesc.nbytes);
  374. if (nbytes == 0) {
  375. /*
  376. * This closes a relatively unusual race where the Host
  377. * sees the updated DRRI before the update to the
  378. * corresponding descriptor has completed. We treat this
  379. * as a descriptor that is not yet done.
  380. */
  381. return -EIO;
  382. }
  383. desc->nbytes = 0;
  384. /* Return data from completed destination descriptor */
  385. *bufferp = __le32_to_cpu(sdesc.addr);
  386. *nbytesp = nbytes;
  387. *transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
  388. if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
  389. *flagsp = CE_RECV_FLAG_SWAPPED;
  390. else
  391. *flagsp = 0;
  392. if (per_transfer_contextp)
  393. *per_transfer_contextp =
  394. dest_ring->per_transfer_context[sw_index];
  395. /* sanity */
  396. dest_ring->per_transfer_context[sw_index] = NULL;
  397. /* Update sw_index */
  398. sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
  399. dest_ring->sw_index = sw_index;
  400. return 0;
  401. }
  402. int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
  403. void **per_transfer_contextp,
  404. u32 *bufferp,
  405. unsigned int *nbytesp,
  406. unsigned int *transfer_idp,
  407. unsigned int *flagsp)
  408. {
  409. struct ath10k *ar = ce_state->ar;
  410. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  411. int ret;
  412. spin_lock_bh(&ar_pci->ce_lock);
  413. ret = ath10k_ce_completed_recv_next_nolock(ce_state,
  414. per_transfer_contextp,
  415. bufferp, nbytesp,
  416. transfer_idp, flagsp);
  417. spin_unlock_bh(&ar_pci->ce_lock);
  418. return ret;
  419. }
  420. int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
  421. void **per_transfer_contextp,
  422. u32 *bufferp)
  423. {
  424. struct ath10k_ce_ring *dest_ring;
  425. unsigned int nentries_mask;
  426. unsigned int sw_index;
  427. unsigned int write_index;
  428. int ret;
  429. struct ath10k *ar;
  430. struct ath10k_pci *ar_pci;
  431. dest_ring = ce_state->dest_ring;
  432. if (!dest_ring)
  433. return -EIO;
  434. ar = ce_state->ar;
  435. ar_pci = ath10k_pci_priv(ar);
  436. spin_lock_bh(&ar_pci->ce_lock);
  437. nentries_mask = dest_ring->nentries_mask;
  438. sw_index = dest_ring->sw_index;
  439. write_index = dest_ring->write_index;
  440. if (write_index != sw_index) {
  441. struct ce_desc *base = dest_ring->base_addr_owner_space;
  442. struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
  443. /* Return data from completed destination descriptor */
  444. *bufferp = __le32_to_cpu(desc->addr);
  445. if (per_transfer_contextp)
  446. *per_transfer_contextp =
  447. dest_ring->per_transfer_context[sw_index];
  448. /* sanity */
  449. dest_ring->per_transfer_context[sw_index] = NULL;
  450. /* Update sw_index */
  451. sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
  452. dest_ring->sw_index = sw_index;
  453. ret = 0;
  454. } else {
  455. ret = -EIO;
  456. }
  457. spin_unlock_bh(&ar_pci->ce_lock);
  458. return ret;
  459. }
  460. /*
  461. * Guts of ath10k_ce_completed_send_next.
  462. * The caller takes responsibility for any necessary locking.
  463. */
  464. static int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
  465. void **per_transfer_contextp,
  466. u32 *bufferp,
  467. unsigned int *nbytesp,
  468. unsigned int *transfer_idp)
  469. {
  470. struct ath10k_ce_ring *src_ring = ce_state->src_ring;
  471. u32 ctrl_addr = ce_state->ctrl_addr;
  472. struct ath10k *ar = ce_state->ar;
  473. unsigned int nentries_mask = src_ring->nentries_mask;
  474. unsigned int sw_index = src_ring->sw_index;
  475. struct ce_desc *sdesc, *sbase;
  476. unsigned int read_index;
  477. int ret;
  478. if (src_ring->hw_index == sw_index) {
  479. /*
  480. * The SW completion index has caught up with the cached
  481. * version of the HW completion index.
  482. * Update the cached HW completion index to see whether
  483. * the SW has really caught up to the HW, or if the cached
  484. * value of the HW index has become stale.
  485. */
  486. ret = ath10k_pci_wake(ar);
  487. if (ret)
  488. return ret;
  489. src_ring->hw_index =
  490. ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
  491. src_ring->hw_index &= nentries_mask;
  492. ath10k_pci_sleep(ar);
  493. }
  494. read_index = src_ring->hw_index;
  495. if ((read_index == sw_index) || (read_index == 0xffffffff))
  496. return -EIO;
  497. sbase = src_ring->shadow_base;
  498. sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
  499. /* Return data from completed source descriptor */
  500. *bufferp = __le32_to_cpu(sdesc->addr);
  501. *nbytesp = __le16_to_cpu(sdesc->nbytes);
  502. *transfer_idp = MS(__le16_to_cpu(sdesc->flags),
  503. CE_DESC_FLAGS_META_DATA);
  504. if (per_transfer_contextp)
  505. *per_transfer_contextp =
  506. src_ring->per_transfer_context[sw_index];
  507. /* sanity */
  508. src_ring->per_transfer_context[sw_index] = NULL;
  509. /* Update sw_index */
  510. sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
  511. src_ring->sw_index = sw_index;
  512. return 0;
  513. }
  514. /* NB: Modeled after ath10k_ce_completed_send_next */
  515. int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
  516. void **per_transfer_contextp,
  517. u32 *bufferp,
  518. unsigned int *nbytesp,
  519. unsigned int *transfer_idp)
  520. {
  521. struct ath10k_ce_ring *src_ring;
  522. unsigned int nentries_mask;
  523. unsigned int sw_index;
  524. unsigned int write_index;
  525. int ret;
  526. struct ath10k *ar;
  527. struct ath10k_pci *ar_pci;
  528. src_ring = ce_state->src_ring;
  529. if (!src_ring)
  530. return -EIO;
  531. ar = ce_state->ar;
  532. ar_pci = ath10k_pci_priv(ar);
  533. spin_lock_bh(&ar_pci->ce_lock);
  534. nentries_mask = src_ring->nentries_mask;
  535. sw_index = src_ring->sw_index;
  536. write_index = src_ring->write_index;
  537. if (write_index != sw_index) {
  538. struct ce_desc *base = src_ring->base_addr_owner_space;
  539. struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
  540. /* Return data from completed source descriptor */
  541. *bufferp = __le32_to_cpu(desc->addr);
  542. *nbytesp = __le16_to_cpu(desc->nbytes);
  543. *transfer_idp = MS(__le16_to_cpu(desc->flags),
  544. CE_DESC_FLAGS_META_DATA);
  545. if (per_transfer_contextp)
  546. *per_transfer_contextp =
  547. src_ring->per_transfer_context[sw_index];
  548. /* sanity */
  549. src_ring->per_transfer_context[sw_index] = NULL;
  550. /* Update sw_index */
  551. sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
  552. src_ring->sw_index = sw_index;
  553. ret = 0;
  554. } else {
  555. ret = -EIO;
  556. }
  557. spin_unlock_bh(&ar_pci->ce_lock);
  558. return ret;
  559. }
  560. int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
  561. void **per_transfer_contextp,
  562. u32 *bufferp,
  563. unsigned int *nbytesp,
  564. unsigned int *transfer_idp)
  565. {
  566. struct ath10k *ar = ce_state->ar;
  567. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  568. int ret;
  569. spin_lock_bh(&ar_pci->ce_lock);
  570. ret = ath10k_ce_completed_send_next_nolock(ce_state,
  571. per_transfer_contextp,
  572. bufferp, nbytesp,
  573. transfer_idp);
  574. spin_unlock_bh(&ar_pci->ce_lock);
  575. return ret;
  576. }
  577. /*
  578. * Guts of interrupt handler for per-engine interrupts on a particular CE.
  579. *
  580. * Invokes registered callbacks for recv_complete,
  581. * send_complete, and watermarks.
  582. */
  583. void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
  584. {
  585. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  586. struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
  587. u32 ctrl_addr = ce_state->ctrl_addr;
  588. int ret;
  589. ret = ath10k_pci_wake(ar);
  590. if (ret)
  591. return;
  592. spin_lock_bh(&ar_pci->ce_lock);
  593. /* Clear the copy-complete interrupts that will be handled here. */
  594. ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
  595. HOST_IS_COPY_COMPLETE_MASK);
  596. spin_unlock_bh(&ar_pci->ce_lock);
  597. if (ce_state->recv_cb)
  598. ce_state->recv_cb(ce_state);
  599. if (ce_state->send_cb)
  600. ce_state->send_cb(ce_state);
  601. spin_lock_bh(&ar_pci->ce_lock);
  602. /*
  603. * Misc CE interrupts are not being handled, but still need
  604. * to be cleared.
  605. */
  606. ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
  607. spin_unlock_bh(&ar_pci->ce_lock);
  608. ath10k_pci_sleep(ar);
  609. }
  610. /*
  611. * Handler for per-engine interrupts on ALL active CEs.
  612. * This is used in cases where the system is sharing a
  613. * single interrput for all CEs
  614. */
  615. void ath10k_ce_per_engine_service_any(struct ath10k *ar)
  616. {
  617. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  618. int ce_id, ret;
  619. u32 intr_summary;
  620. ret = ath10k_pci_wake(ar);
  621. if (ret)
  622. return;
  623. intr_summary = CE_INTERRUPT_SUMMARY(ar);
  624. for (ce_id = 0; intr_summary && (ce_id < ar_pci->ce_count); ce_id++) {
  625. if (intr_summary & (1 << ce_id))
  626. intr_summary &= ~(1 << ce_id);
  627. else
  628. /* no intr pending on this CE */
  629. continue;
  630. ath10k_ce_per_engine_service(ar, ce_id);
  631. }
  632. ath10k_pci_sleep(ar);
  633. }
  634. /*
  635. * Adjust interrupts for the copy complete handler.
  636. * If it's needed for either send or recv, then unmask
  637. * this interrupt; otherwise, mask it.
  638. *
  639. * Called with ce_lock held.
  640. */
  641. static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state,
  642. int disable_copy_compl_intr)
  643. {
  644. u32 ctrl_addr = ce_state->ctrl_addr;
  645. struct ath10k *ar = ce_state->ar;
  646. int ret;
  647. ret = ath10k_pci_wake(ar);
  648. if (ret)
  649. return;
  650. if ((!disable_copy_compl_intr) &&
  651. (ce_state->send_cb || ce_state->recv_cb))
  652. ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
  653. else
  654. ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
  655. ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
  656. ath10k_pci_sleep(ar);
  657. }
  658. void ath10k_ce_disable_interrupts(struct ath10k *ar)
  659. {
  660. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  661. int ce_id, ret;
  662. ret = ath10k_pci_wake(ar);
  663. if (ret)
  664. return;
  665. for (ce_id = 0; ce_id < ar_pci->ce_count; ce_id++) {
  666. struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
  667. u32 ctrl_addr = ce_state->ctrl_addr;
  668. ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
  669. }
  670. ath10k_pci_sleep(ar);
  671. }
  672. void ath10k_ce_send_cb_register(struct ath10k_ce_pipe *ce_state,
  673. void (*send_cb)(struct ath10k_ce_pipe *),
  674. int disable_interrupts)
  675. {
  676. struct ath10k *ar = ce_state->ar;
  677. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  678. spin_lock_bh(&ar_pci->ce_lock);
  679. ce_state->send_cb = send_cb;
  680. ath10k_ce_per_engine_handler_adjust(ce_state, disable_interrupts);
  681. spin_unlock_bh(&ar_pci->ce_lock);
  682. }
  683. void ath10k_ce_recv_cb_register(struct ath10k_ce_pipe *ce_state,
  684. void (*recv_cb)(struct ath10k_ce_pipe *))
  685. {
  686. struct ath10k *ar = ce_state->ar;
  687. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  688. spin_lock_bh(&ar_pci->ce_lock);
  689. ce_state->recv_cb = recv_cb;
  690. ath10k_ce_per_engine_handler_adjust(ce_state, 0);
  691. spin_unlock_bh(&ar_pci->ce_lock);
  692. }
  693. static int ath10k_ce_init_src_ring(struct ath10k *ar,
  694. unsigned int ce_id,
  695. struct ath10k_ce_pipe *ce_state,
  696. const struct ce_attr *attr)
  697. {
  698. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  699. struct ath10k_ce_ring *src_ring;
  700. unsigned int nentries = attr->src_nentries;
  701. unsigned int ce_nbytes;
  702. u32 ctrl_addr = ath10k_ce_base_address(ce_id);
  703. dma_addr_t base_addr;
  704. char *ptr;
  705. nentries = roundup_pow_of_two(nentries);
  706. if (ce_state->src_ring) {
  707. WARN_ON(ce_state->src_ring->nentries != nentries);
  708. return 0;
  709. }
  710. ce_nbytes = sizeof(struct ath10k_ce_ring) + (nentries * sizeof(void *));
  711. ptr = kzalloc(ce_nbytes, GFP_KERNEL);
  712. if (ptr == NULL)
  713. return -ENOMEM;
  714. ce_state->src_ring = (struct ath10k_ce_ring *)ptr;
  715. src_ring = ce_state->src_ring;
  716. ptr += sizeof(struct ath10k_ce_ring);
  717. src_ring->nentries = nentries;
  718. src_ring->nentries_mask = nentries - 1;
  719. src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
  720. src_ring->sw_index &= src_ring->nentries_mask;
  721. src_ring->hw_index = src_ring->sw_index;
  722. src_ring->write_index =
  723. ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
  724. src_ring->write_index &= src_ring->nentries_mask;
  725. src_ring->per_transfer_context = (void **)ptr;
  726. /*
  727. * Legacy platforms that do not support cache
  728. * coherent DMA are unsupported
  729. */
  730. src_ring->base_addr_owner_space_unaligned =
  731. pci_alloc_consistent(ar_pci->pdev,
  732. (nentries * sizeof(struct ce_desc) +
  733. CE_DESC_RING_ALIGN),
  734. &base_addr);
  735. if (!src_ring->base_addr_owner_space_unaligned) {
  736. kfree(ce_state->src_ring);
  737. ce_state->src_ring = NULL;
  738. return -ENOMEM;
  739. }
  740. src_ring->base_addr_ce_space_unaligned = base_addr;
  741. src_ring->base_addr_owner_space = PTR_ALIGN(
  742. src_ring->base_addr_owner_space_unaligned,
  743. CE_DESC_RING_ALIGN);
  744. src_ring->base_addr_ce_space = ALIGN(
  745. src_ring->base_addr_ce_space_unaligned,
  746. CE_DESC_RING_ALIGN);
  747. /*
  748. * Also allocate a shadow src ring in regular
  749. * mem to use for faster access.
  750. */
  751. src_ring->shadow_base_unaligned =
  752. kmalloc((nentries * sizeof(struct ce_desc) +
  753. CE_DESC_RING_ALIGN), GFP_KERNEL);
  754. if (!src_ring->shadow_base_unaligned) {
  755. pci_free_consistent(ar_pci->pdev,
  756. (nentries * sizeof(struct ce_desc) +
  757. CE_DESC_RING_ALIGN),
  758. src_ring->base_addr_owner_space,
  759. src_ring->base_addr_ce_space);
  760. kfree(ce_state->src_ring);
  761. ce_state->src_ring = NULL;
  762. return -ENOMEM;
  763. }
  764. src_ring->shadow_base = PTR_ALIGN(
  765. src_ring->shadow_base_unaligned,
  766. CE_DESC_RING_ALIGN);
  767. ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
  768. src_ring->base_addr_ce_space);
  769. ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
  770. ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
  771. ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
  772. ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
  773. ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
  774. ath10k_dbg(ATH10K_DBG_BOOT,
  775. "boot ce src ring id %d entries %d base_addr %p\n",
  776. ce_id, nentries, src_ring->base_addr_owner_space);
  777. return 0;
  778. }
  779. static int ath10k_ce_init_dest_ring(struct ath10k *ar,
  780. unsigned int ce_id,
  781. struct ath10k_ce_pipe *ce_state,
  782. const struct ce_attr *attr)
  783. {
  784. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  785. struct ath10k_ce_ring *dest_ring;
  786. unsigned int nentries = attr->dest_nentries;
  787. unsigned int ce_nbytes;
  788. u32 ctrl_addr = ath10k_ce_base_address(ce_id);
  789. dma_addr_t base_addr;
  790. char *ptr;
  791. nentries = roundup_pow_of_two(nentries);
  792. if (ce_state->dest_ring) {
  793. WARN_ON(ce_state->dest_ring->nentries != nentries);
  794. return 0;
  795. }
  796. ce_nbytes = sizeof(struct ath10k_ce_ring) + (nentries * sizeof(void *));
  797. ptr = kzalloc(ce_nbytes, GFP_KERNEL);
  798. if (ptr == NULL)
  799. return -ENOMEM;
  800. ce_state->dest_ring = (struct ath10k_ce_ring *)ptr;
  801. dest_ring = ce_state->dest_ring;
  802. ptr += sizeof(struct ath10k_ce_ring);
  803. dest_ring->nentries = nentries;
  804. dest_ring->nentries_mask = nentries - 1;
  805. dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
  806. dest_ring->sw_index &= dest_ring->nentries_mask;
  807. dest_ring->write_index =
  808. ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
  809. dest_ring->write_index &= dest_ring->nentries_mask;
  810. dest_ring->per_transfer_context = (void **)ptr;
  811. /*
  812. * Legacy platforms that do not support cache
  813. * coherent DMA are unsupported
  814. */
  815. dest_ring->base_addr_owner_space_unaligned =
  816. pci_alloc_consistent(ar_pci->pdev,
  817. (nentries * sizeof(struct ce_desc) +
  818. CE_DESC_RING_ALIGN),
  819. &base_addr);
  820. if (!dest_ring->base_addr_owner_space_unaligned) {
  821. kfree(ce_state->dest_ring);
  822. ce_state->dest_ring = NULL;
  823. return -ENOMEM;
  824. }
  825. dest_ring->base_addr_ce_space_unaligned = base_addr;
  826. /*
  827. * Correctly initialize memory to 0 to prevent garbage
  828. * data crashing system when download firmware
  829. */
  830. memset(dest_ring->base_addr_owner_space_unaligned, 0,
  831. nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
  832. dest_ring->base_addr_owner_space = PTR_ALIGN(
  833. dest_ring->base_addr_owner_space_unaligned,
  834. CE_DESC_RING_ALIGN);
  835. dest_ring->base_addr_ce_space = ALIGN(
  836. dest_ring->base_addr_ce_space_unaligned,
  837. CE_DESC_RING_ALIGN);
  838. ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
  839. dest_ring->base_addr_ce_space);
  840. ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
  841. ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
  842. ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
  843. ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
  844. ath10k_dbg(ATH10K_DBG_BOOT,
  845. "boot ce dest ring id %d entries %d base_addr %p\n",
  846. ce_id, nentries, dest_ring->base_addr_owner_space);
  847. return 0;
  848. }
  849. static struct ath10k_ce_pipe *ath10k_ce_init_state(struct ath10k *ar,
  850. unsigned int ce_id,
  851. const struct ce_attr *attr)
  852. {
  853. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  854. struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
  855. u32 ctrl_addr = ath10k_ce_base_address(ce_id);
  856. spin_lock_bh(&ar_pci->ce_lock);
  857. ce_state->ar = ar;
  858. ce_state->id = ce_id;
  859. ce_state->ctrl_addr = ctrl_addr;
  860. ce_state->attr_flags = attr->flags;
  861. ce_state->src_sz_max = attr->src_sz_max;
  862. spin_unlock_bh(&ar_pci->ce_lock);
  863. return ce_state;
  864. }
  865. /*
  866. * Initialize a Copy Engine based on caller-supplied attributes.
  867. * This may be called once to initialize both source and destination
  868. * rings or it may be called twice for separate source and destination
  869. * initialization. It may be that only one side or the other is
  870. * initialized by software/firmware.
  871. */
  872. struct ath10k_ce_pipe *ath10k_ce_init(struct ath10k *ar,
  873. unsigned int ce_id,
  874. const struct ce_attr *attr)
  875. {
  876. struct ath10k_ce_pipe *ce_state;
  877. u32 ctrl_addr = ath10k_ce_base_address(ce_id);
  878. int ret;
  879. ret = ath10k_pci_wake(ar);
  880. if (ret)
  881. return NULL;
  882. ce_state = ath10k_ce_init_state(ar, ce_id, attr);
  883. if (!ce_state) {
  884. ath10k_err("Failed to initialize CE state for ID: %d\n", ce_id);
  885. return NULL;
  886. }
  887. if (attr->src_nentries) {
  888. ret = ath10k_ce_init_src_ring(ar, ce_id, ce_state, attr);
  889. if (ret) {
  890. ath10k_err("Failed to initialize CE src ring for ID: %d (%d)\n",
  891. ce_id, ret);
  892. ath10k_ce_deinit(ce_state);
  893. return NULL;
  894. }
  895. }
  896. if (attr->dest_nentries) {
  897. ret = ath10k_ce_init_dest_ring(ar, ce_id, ce_state, attr);
  898. if (ret) {
  899. ath10k_err("Failed to initialize CE dest ring for ID: %d (%d)\n",
  900. ce_id, ret);
  901. ath10k_ce_deinit(ce_state);
  902. return NULL;
  903. }
  904. }
  905. /* Enable CE error interrupts */
  906. ath10k_ce_error_intr_enable(ar, ctrl_addr);
  907. ath10k_pci_sleep(ar);
  908. return ce_state;
  909. }
  910. void ath10k_ce_deinit(struct ath10k_ce_pipe *ce_state)
  911. {
  912. struct ath10k *ar = ce_state->ar;
  913. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  914. if (ce_state->src_ring) {
  915. kfree(ce_state->src_ring->shadow_base_unaligned);
  916. pci_free_consistent(ar_pci->pdev,
  917. (ce_state->src_ring->nentries *
  918. sizeof(struct ce_desc) +
  919. CE_DESC_RING_ALIGN),
  920. ce_state->src_ring->base_addr_owner_space,
  921. ce_state->src_ring->base_addr_ce_space);
  922. kfree(ce_state->src_ring);
  923. }
  924. if (ce_state->dest_ring) {
  925. pci_free_consistent(ar_pci->pdev,
  926. (ce_state->dest_ring->nentries *
  927. sizeof(struct ce_desc) +
  928. CE_DESC_RING_ALIGN),
  929. ce_state->dest_ring->base_addr_owner_space,
  930. ce_state->dest_ring->base_addr_ce_space);
  931. kfree(ce_state->dest_ring);
  932. }
  933. ce_state->src_ring = NULL;
  934. ce_state->dest_ring = NULL;
  935. }