nic.h 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781
  1. /****************************************************************************
  2. * Driver for Solarflare network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2013 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #ifndef EFX_NIC_H
  11. #define EFX_NIC_H
  12. #include <linux/net_tstamp.h>
  13. #include <linux/i2c-algo-bit.h>
  14. #include "net_driver.h"
  15. #include "efx.h"
  16. #include "mcdi.h"
  17. enum {
  18. EFX_REV_FALCON_A0 = 0,
  19. EFX_REV_FALCON_A1 = 1,
  20. EFX_REV_FALCON_B0 = 2,
  21. EFX_REV_SIENA_A0 = 3,
  22. EFX_REV_HUNT_A0 = 4,
  23. };
  24. static inline int efx_nic_rev(struct efx_nic *efx)
  25. {
  26. return efx->type->revision;
  27. }
  28. u32 efx_farch_fpga_ver(struct efx_nic *efx);
  29. /* NIC has two interlinked PCI functions for the same port. */
  30. static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
  31. {
  32. return efx_nic_rev(efx) < EFX_REV_FALCON_B0;
  33. }
  34. /* Read the current event from the event queue */
  35. static inline efx_qword_t *efx_event(struct efx_channel *channel,
  36. unsigned int index)
  37. {
  38. return ((efx_qword_t *) (channel->eventq.buf.addr)) +
  39. (index & channel->eventq_mask);
  40. }
  41. /* See if an event is present
  42. *
  43. * We check both the high and low dword of the event for all ones. We
  44. * wrote all ones when we cleared the event, and no valid event can
  45. * have all ones in either its high or low dwords. This approach is
  46. * robust against reordering.
  47. *
  48. * Note that using a single 64-bit comparison is incorrect; even
  49. * though the CPU read will be atomic, the DMA write may not be.
  50. */
  51. static inline int efx_event_present(efx_qword_t *event)
  52. {
  53. return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
  54. EFX_DWORD_IS_ALL_ONES(event->dword[1]));
  55. }
  56. /* Returns a pointer to the specified transmit descriptor in the TX
  57. * descriptor queue belonging to the specified channel.
  58. */
  59. static inline efx_qword_t *
  60. efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
  61. {
  62. return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
  63. }
  64. /* Report whether the NIC considers this TX queue empty, given the
  65. * write_count used for the last doorbell push. May return false
  66. * negative.
  67. */
  68. static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
  69. unsigned int write_count)
  70. {
  71. unsigned int empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
  72. if (empty_read_count == 0)
  73. return false;
  74. return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
  75. }
  76. static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue)
  77. {
  78. return __efx_nic_tx_is_empty(tx_queue, tx_queue->write_count);
  79. }
  80. /* Decide whether to push a TX descriptor to the NIC vs merely writing
  81. * the doorbell. This can reduce latency when we are adding a single
  82. * descriptor to an empty queue, but is otherwise pointless. Further,
  83. * Falcon and Siena have hardware bugs (SF bug 33851) that may be
  84. * triggered if we don't check this.
  85. */
  86. static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
  87. unsigned int write_count)
  88. {
  89. bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
  90. tx_queue->empty_read_count = 0;
  91. return was_empty && tx_queue->write_count - write_count == 1;
  92. }
  93. /* Returns a pointer to the specified descriptor in the RX descriptor queue */
  94. static inline efx_qword_t *
  95. efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
  96. {
  97. return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
  98. }
  99. enum {
  100. PHY_TYPE_NONE = 0,
  101. PHY_TYPE_TXC43128 = 1,
  102. PHY_TYPE_88E1111 = 2,
  103. PHY_TYPE_SFX7101 = 3,
  104. PHY_TYPE_QT2022C2 = 4,
  105. PHY_TYPE_PM8358 = 6,
  106. PHY_TYPE_SFT9001A = 8,
  107. PHY_TYPE_QT2025C = 9,
  108. PHY_TYPE_SFT9001B = 10,
  109. };
  110. #define FALCON_XMAC_LOOPBACKS \
  111. ((1 << LOOPBACK_XGMII) | \
  112. (1 << LOOPBACK_XGXS) | \
  113. (1 << LOOPBACK_XAUI))
  114. /* Alignment of PCIe DMA boundaries (4KB) */
  115. #define EFX_PAGE_SIZE 4096
  116. /* Size and alignment of buffer table entries (same) */
  117. #define EFX_BUF_SIZE EFX_PAGE_SIZE
  118. /**
  119. * struct falcon_board_type - board operations and type information
  120. * @id: Board type id, as found in NVRAM
  121. * @init: Allocate resources and initialise peripheral hardware
  122. * @init_phy: Do board-specific PHY initialisation
  123. * @fini: Shut down hardware and free resources
  124. * @set_id_led: Set state of identifying LED or revert to automatic function
  125. * @monitor: Board-specific health check function
  126. */
  127. struct falcon_board_type {
  128. u8 id;
  129. int (*init) (struct efx_nic *nic);
  130. void (*init_phy) (struct efx_nic *efx);
  131. void (*fini) (struct efx_nic *nic);
  132. void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode);
  133. int (*monitor) (struct efx_nic *nic);
  134. };
  135. /**
  136. * struct falcon_board - board information
  137. * @type: Type of board
  138. * @major: Major rev. ('A', 'B' ...)
  139. * @minor: Minor rev. (0, 1, ...)
  140. * @i2c_adap: I2C adapter for on-board peripherals
  141. * @i2c_data: Data for bit-banging algorithm
  142. * @hwmon_client: I2C client for hardware monitor
  143. * @ioexp_client: I2C client for power/port control
  144. */
  145. struct falcon_board {
  146. const struct falcon_board_type *type;
  147. int major;
  148. int minor;
  149. struct i2c_adapter i2c_adap;
  150. struct i2c_algo_bit_data i2c_data;
  151. struct i2c_client *hwmon_client, *ioexp_client;
  152. };
  153. /**
  154. * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
  155. * @device_id: Controller's id for the device
  156. * @size: Size (in bytes)
  157. * @addr_len: Number of address bytes in read/write commands
  158. * @munge_address: Flag whether addresses should be munged.
  159. * Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
  160. * use bit 3 of the command byte as address bit A8, rather
  161. * than having a two-byte address. If this flag is set, then
  162. * commands should be munged in this way.
  163. * @erase_command: Erase command (or 0 if sector erase not needed).
  164. * @erase_size: Erase sector size (in bytes)
  165. * Erase commands affect sectors with this size and alignment.
  166. * This must be a power of two.
  167. * @block_size: Write block size (in bytes).
  168. * Write commands are limited to blocks with this size and alignment.
  169. */
  170. struct falcon_spi_device {
  171. int device_id;
  172. unsigned int size;
  173. unsigned int addr_len;
  174. unsigned int munge_address:1;
  175. u8 erase_command;
  176. unsigned int erase_size;
  177. unsigned int block_size;
  178. };
  179. static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
  180. {
  181. return spi->size != 0;
  182. }
  183. enum {
  184. FALCON_STAT_tx_bytes,
  185. FALCON_STAT_tx_packets,
  186. FALCON_STAT_tx_pause,
  187. FALCON_STAT_tx_control,
  188. FALCON_STAT_tx_unicast,
  189. FALCON_STAT_tx_multicast,
  190. FALCON_STAT_tx_broadcast,
  191. FALCON_STAT_tx_lt64,
  192. FALCON_STAT_tx_64,
  193. FALCON_STAT_tx_65_to_127,
  194. FALCON_STAT_tx_128_to_255,
  195. FALCON_STAT_tx_256_to_511,
  196. FALCON_STAT_tx_512_to_1023,
  197. FALCON_STAT_tx_1024_to_15xx,
  198. FALCON_STAT_tx_15xx_to_jumbo,
  199. FALCON_STAT_tx_gtjumbo,
  200. FALCON_STAT_tx_non_tcpudp,
  201. FALCON_STAT_tx_mac_src_error,
  202. FALCON_STAT_tx_ip_src_error,
  203. FALCON_STAT_rx_bytes,
  204. FALCON_STAT_rx_good_bytes,
  205. FALCON_STAT_rx_bad_bytes,
  206. FALCON_STAT_rx_packets,
  207. FALCON_STAT_rx_good,
  208. FALCON_STAT_rx_bad,
  209. FALCON_STAT_rx_pause,
  210. FALCON_STAT_rx_control,
  211. FALCON_STAT_rx_unicast,
  212. FALCON_STAT_rx_multicast,
  213. FALCON_STAT_rx_broadcast,
  214. FALCON_STAT_rx_lt64,
  215. FALCON_STAT_rx_64,
  216. FALCON_STAT_rx_65_to_127,
  217. FALCON_STAT_rx_128_to_255,
  218. FALCON_STAT_rx_256_to_511,
  219. FALCON_STAT_rx_512_to_1023,
  220. FALCON_STAT_rx_1024_to_15xx,
  221. FALCON_STAT_rx_15xx_to_jumbo,
  222. FALCON_STAT_rx_gtjumbo,
  223. FALCON_STAT_rx_bad_lt64,
  224. FALCON_STAT_rx_bad_gtjumbo,
  225. FALCON_STAT_rx_overflow,
  226. FALCON_STAT_rx_symbol_error,
  227. FALCON_STAT_rx_align_error,
  228. FALCON_STAT_rx_length_error,
  229. FALCON_STAT_rx_internal_error,
  230. FALCON_STAT_rx_nodesc_drop_cnt,
  231. FALCON_STAT_COUNT
  232. };
  233. /**
  234. * struct falcon_nic_data - Falcon NIC state
  235. * @pci_dev2: Secondary function of Falcon A
  236. * @board: Board state and functions
  237. * @stats: Hardware statistics
  238. * @stats_disable_count: Nest count for disabling statistics fetches
  239. * @stats_pending: Is there a pending DMA of MAC statistics.
  240. * @stats_timer: A timer for regularly fetching MAC statistics.
  241. * @spi_flash: SPI flash device
  242. * @spi_eeprom: SPI EEPROM device
  243. * @spi_lock: SPI bus lock
  244. * @mdio_lock: MDIO bus lock
  245. * @xmac_poll_required: XMAC link state needs polling
  246. */
  247. struct falcon_nic_data {
  248. struct pci_dev *pci_dev2;
  249. struct falcon_board board;
  250. u64 stats[FALCON_STAT_COUNT];
  251. unsigned int stats_disable_count;
  252. bool stats_pending;
  253. struct timer_list stats_timer;
  254. struct falcon_spi_device spi_flash;
  255. struct falcon_spi_device spi_eeprom;
  256. struct mutex spi_lock;
  257. struct mutex mdio_lock;
  258. bool xmac_poll_required;
  259. };
  260. static inline struct falcon_board *falcon_board(struct efx_nic *efx)
  261. {
  262. struct falcon_nic_data *data = efx->nic_data;
  263. return &data->board;
  264. }
  265. enum {
  266. SIENA_STAT_tx_bytes,
  267. SIENA_STAT_tx_good_bytes,
  268. SIENA_STAT_tx_bad_bytes,
  269. SIENA_STAT_tx_packets,
  270. SIENA_STAT_tx_bad,
  271. SIENA_STAT_tx_pause,
  272. SIENA_STAT_tx_control,
  273. SIENA_STAT_tx_unicast,
  274. SIENA_STAT_tx_multicast,
  275. SIENA_STAT_tx_broadcast,
  276. SIENA_STAT_tx_lt64,
  277. SIENA_STAT_tx_64,
  278. SIENA_STAT_tx_65_to_127,
  279. SIENA_STAT_tx_128_to_255,
  280. SIENA_STAT_tx_256_to_511,
  281. SIENA_STAT_tx_512_to_1023,
  282. SIENA_STAT_tx_1024_to_15xx,
  283. SIENA_STAT_tx_15xx_to_jumbo,
  284. SIENA_STAT_tx_gtjumbo,
  285. SIENA_STAT_tx_collision,
  286. SIENA_STAT_tx_single_collision,
  287. SIENA_STAT_tx_multiple_collision,
  288. SIENA_STAT_tx_excessive_collision,
  289. SIENA_STAT_tx_deferred,
  290. SIENA_STAT_tx_late_collision,
  291. SIENA_STAT_tx_excessive_deferred,
  292. SIENA_STAT_tx_non_tcpudp,
  293. SIENA_STAT_tx_mac_src_error,
  294. SIENA_STAT_tx_ip_src_error,
  295. SIENA_STAT_rx_bytes,
  296. SIENA_STAT_rx_good_bytes,
  297. SIENA_STAT_rx_bad_bytes,
  298. SIENA_STAT_rx_packets,
  299. SIENA_STAT_rx_good,
  300. SIENA_STAT_rx_bad,
  301. SIENA_STAT_rx_pause,
  302. SIENA_STAT_rx_control,
  303. SIENA_STAT_rx_unicast,
  304. SIENA_STAT_rx_multicast,
  305. SIENA_STAT_rx_broadcast,
  306. SIENA_STAT_rx_lt64,
  307. SIENA_STAT_rx_64,
  308. SIENA_STAT_rx_65_to_127,
  309. SIENA_STAT_rx_128_to_255,
  310. SIENA_STAT_rx_256_to_511,
  311. SIENA_STAT_rx_512_to_1023,
  312. SIENA_STAT_rx_1024_to_15xx,
  313. SIENA_STAT_rx_15xx_to_jumbo,
  314. SIENA_STAT_rx_gtjumbo,
  315. SIENA_STAT_rx_bad_gtjumbo,
  316. SIENA_STAT_rx_overflow,
  317. SIENA_STAT_rx_false_carrier,
  318. SIENA_STAT_rx_symbol_error,
  319. SIENA_STAT_rx_align_error,
  320. SIENA_STAT_rx_length_error,
  321. SIENA_STAT_rx_internal_error,
  322. SIENA_STAT_rx_nodesc_drop_cnt,
  323. SIENA_STAT_COUNT
  324. };
  325. /**
  326. * struct siena_nic_data - Siena NIC state
  327. * @wol_filter_id: Wake-on-LAN packet filter id
  328. * @stats: Hardware statistics
  329. */
  330. struct siena_nic_data {
  331. int wol_filter_id;
  332. u64 stats[SIENA_STAT_COUNT];
  333. };
  334. enum {
  335. EF10_STAT_tx_bytes,
  336. EF10_STAT_tx_packets,
  337. EF10_STAT_tx_pause,
  338. EF10_STAT_tx_control,
  339. EF10_STAT_tx_unicast,
  340. EF10_STAT_tx_multicast,
  341. EF10_STAT_tx_broadcast,
  342. EF10_STAT_tx_lt64,
  343. EF10_STAT_tx_64,
  344. EF10_STAT_tx_65_to_127,
  345. EF10_STAT_tx_128_to_255,
  346. EF10_STAT_tx_256_to_511,
  347. EF10_STAT_tx_512_to_1023,
  348. EF10_STAT_tx_1024_to_15xx,
  349. EF10_STAT_tx_15xx_to_jumbo,
  350. EF10_STAT_rx_bytes,
  351. EF10_STAT_rx_bytes_minus_good_bytes,
  352. EF10_STAT_rx_good_bytes,
  353. EF10_STAT_rx_bad_bytes,
  354. EF10_STAT_rx_packets,
  355. EF10_STAT_rx_good,
  356. EF10_STAT_rx_bad,
  357. EF10_STAT_rx_pause,
  358. EF10_STAT_rx_control,
  359. EF10_STAT_rx_unicast,
  360. EF10_STAT_rx_multicast,
  361. EF10_STAT_rx_broadcast,
  362. EF10_STAT_rx_lt64,
  363. EF10_STAT_rx_64,
  364. EF10_STAT_rx_65_to_127,
  365. EF10_STAT_rx_128_to_255,
  366. EF10_STAT_rx_256_to_511,
  367. EF10_STAT_rx_512_to_1023,
  368. EF10_STAT_rx_1024_to_15xx,
  369. EF10_STAT_rx_15xx_to_jumbo,
  370. EF10_STAT_rx_gtjumbo,
  371. EF10_STAT_rx_bad_gtjumbo,
  372. EF10_STAT_rx_overflow,
  373. EF10_STAT_rx_align_error,
  374. EF10_STAT_rx_length_error,
  375. EF10_STAT_rx_nodesc_drops,
  376. EF10_STAT_rx_pm_trunc_bb_overflow,
  377. EF10_STAT_rx_pm_discard_bb_overflow,
  378. EF10_STAT_rx_pm_trunc_vfifo_full,
  379. EF10_STAT_rx_pm_discard_vfifo_full,
  380. EF10_STAT_rx_pm_trunc_qbb,
  381. EF10_STAT_rx_pm_discard_qbb,
  382. EF10_STAT_rx_pm_discard_mapping,
  383. EF10_STAT_rx_dp_q_disabled_packets,
  384. EF10_STAT_rx_dp_di_dropped_packets,
  385. EF10_STAT_rx_dp_streaming_packets,
  386. EF10_STAT_rx_dp_emerg_fetch,
  387. EF10_STAT_rx_dp_emerg_wait,
  388. EF10_STAT_COUNT
  389. };
  390. /* Maximum number of TX PIO buffers we may allocate to a function.
  391. * This matches the total number of buffers on each SFC9100-family
  392. * controller.
  393. */
  394. #define EF10_TX_PIOBUF_COUNT 16
  395. /**
  396. * struct efx_ef10_nic_data - EF10 architecture NIC state
  397. * @mcdi_buf: DMA buffer for MCDI
  398. * @warm_boot_count: Last seen MC warm boot count
  399. * @vi_base: Absolute index of first VI in this function
  400. * @n_allocated_vis: Number of VIs allocated to this function
  401. * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
  402. * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
  403. * @n_piobufs: Number of PIO buffers allocated to this function
  404. * @wc_membase: Base address of write-combining mapping of the memory BAR
  405. * @pio_write_base: Base address for writing PIO buffers
  406. * @pio_write_vi_base: Relative VI number for @pio_write_base
  407. * @piobuf_handle: Handle of each PIO buffer allocated
  408. * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
  409. * reboot
  410. * @rx_rss_context: Firmware handle for our RSS context
  411. * @stats: Hardware statistics
  412. * @workaround_35388: Flag: firmware supports workaround for bug 35388
  413. * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
  414. * after MC reboot
  415. * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
  416. * %MC_CMD_GET_CAPABILITIES response)
  417. */
  418. struct efx_ef10_nic_data {
  419. struct efx_buffer mcdi_buf;
  420. u16 warm_boot_count;
  421. unsigned int vi_base;
  422. unsigned int n_allocated_vis;
  423. bool must_realloc_vis;
  424. bool must_restore_filters;
  425. unsigned int n_piobufs;
  426. void __iomem *wc_membase, *pio_write_base;
  427. unsigned int pio_write_vi_base;
  428. unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
  429. bool must_restore_piobufs;
  430. u32 rx_rss_context;
  431. u64 stats[EF10_STAT_COUNT];
  432. bool workaround_35388;
  433. bool must_check_datapath_caps;
  434. u32 datapath_caps;
  435. };
  436. /*
  437. * On the SFC9000 family each port is associated with 1 PCI physical
  438. * function (PF) handled by sfc and a configurable number of virtual
  439. * functions (VFs) that may be handled by some other driver, often in
  440. * a VM guest. The queue pointer registers are mapped in both PF and
  441. * VF BARs such that an 8K region provides access to a single RX, TX
  442. * and event queue (collectively a Virtual Interface, VI or VNIC).
  443. *
  444. * The PF has access to all 1024 VIs while VFs are mapped to VIs
  445. * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered
  446. * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE).
  447. * The number of VIs and the VI_SCALE value are configurable but must
  448. * be established at boot time by firmware.
  449. */
  450. /* Maximum VI_SCALE parameter supported by Siena */
  451. #define EFX_VI_SCALE_MAX 6
  452. /* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX),
  453. * so this is the smallest allowed value. */
  454. #define EFX_VI_BASE 128U
  455. /* Maximum number of VFs allowed */
  456. #define EFX_VF_COUNT_MAX 127
  457. /* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */
  458. #define EFX_MAX_VF_EVQ_SIZE 8192UL
  459. /* The number of buffer table entries reserved for each VI on a VF */
  460. #define EFX_VF_BUFTBL_PER_VI \
  461. ((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) * \
  462. sizeof(efx_qword_t) / EFX_BUF_SIZE)
  463. #ifdef CONFIG_SFC_SRIOV
  464. static inline bool efx_sriov_wanted(struct efx_nic *efx)
  465. {
  466. return efx->vf_count != 0;
  467. }
  468. static inline bool efx_sriov_enabled(struct efx_nic *efx)
  469. {
  470. return efx->vf_init_count != 0;
  471. }
  472. static inline unsigned int efx_vf_size(struct efx_nic *efx)
  473. {
  474. return 1 << efx->vi_scale;
  475. }
  476. int efx_init_sriov(void);
  477. void efx_sriov_probe(struct efx_nic *efx);
  478. int efx_sriov_init(struct efx_nic *efx);
  479. void efx_sriov_mac_address_changed(struct efx_nic *efx);
  480. void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event);
  481. void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event);
  482. void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event);
  483. void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq);
  484. void efx_sriov_flr(struct efx_nic *efx, unsigned flr);
  485. void efx_sriov_reset(struct efx_nic *efx);
  486. void efx_sriov_fini(struct efx_nic *efx);
  487. void efx_fini_sriov(void);
  488. #else
  489. static inline bool efx_sriov_wanted(struct efx_nic *efx) { return false; }
  490. static inline bool efx_sriov_enabled(struct efx_nic *efx) { return false; }
  491. static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; }
  492. static inline int efx_init_sriov(void) { return 0; }
  493. static inline void efx_sriov_probe(struct efx_nic *efx) {}
  494. static inline int efx_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
  495. static inline void efx_sriov_mac_address_changed(struct efx_nic *efx) {}
  496. static inline void efx_sriov_tx_flush_done(struct efx_nic *efx,
  497. efx_qword_t *event) {}
  498. static inline void efx_sriov_rx_flush_done(struct efx_nic *efx,
  499. efx_qword_t *event) {}
  500. static inline void efx_sriov_event(struct efx_channel *channel,
  501. efx_qword_t *event) {}
  502. static inline void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) {}
  503. static inline void efx_sriov_flr(struct efx_nic *efx, unsigned flr) {}
  504. static inline void efx_sriov_reset(struct efx_nic *efx) {}
  505. static inline void efx_sriov_fini(struct efx_nic *efx) {}
  506. static inline void efx_fini_sriov(void) {}
  507. #endif
  508. int efx_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac);
  509. int efx_sriov_set_vf_vlan(struct net_device *dev, int vf, u16 vlan, u8 qos);
  510. int efx_sriov_get_vf_config(struct net_device *dev, int vf,
  511. struct ifla_vf_info *ivf);
  512. int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf,
  513. bool spoofchk);
  514. struct ethtool_ts_info;
  515. void efx_ptp_probe(struct efx_nic *efx);
  516. int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd);
  517. void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
  518. bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
  519. int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
  520. void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
  521. extern const struct efx_nic_type falcon_a1_nic_type;
  522. extern const struct efx_nic_type falcon_b0_nic_type;
  523. extern const struct efx_nic_type siena_a0_nic_type;
  524. extern const struct efx_nic_type efx_hunt_a0_nic_type;
  525. /**************************************************************************
  526. *
  527. * Externs
  528. *
  529. **************************************************************************
  530. */
  531. int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
  532. /* TX data path */
  533. static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
  534. {
  535. return tx_queue->efx->type->tx_probe(tx_queue);
  536. }
  537. static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
  538. {
  539. tx_queue->efx->type->tx_init(tx_queue);
  540. }
  541. static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
  542. {
  543. tx_queue->efx->type->tx_remove(tx_queue);
  544. }
  545. static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
  546. {
  547. tx_queue->efx->type->tx_write(tx_queue);
  548. }
  549. /* RX data path */
  550. static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
  551. {
  552. return rx_queue->efx->type->rx_probe(rx_queue);
  553. }
  554. static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
  555. {
  556. rx_queue->efx->type->rx_init(rx_queue);
  557. }
  558. static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
  559. {
  560. rx_queue->efx->type->rx_remove(rx_queue);
  561. }
  562. static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
  563. {
  564. rx_queue->efx->type->rx_write(rx_queue);
  565. }
  566. static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
  567. {
  568. rx_queue->efx->type->rx_defer_refill(rx_queue);
  569. }
  570. /* Event data path */
  571. static inline int efx_nic_probe_eventq(struct efx_channel *channel)
  572. {
  573. return channel->efx->type->ev_probe(channel);
  574. }
  575. static inline int efx_nic_init_eventq(struct efx_channel *channel)
  576. {
  577. return channel->efx->type->ev_init(channel);
  578. }
  579. static inline void efx_nic_fini_eventq(struct efx_channel *channel)
  580. {
  581. channel->efx->type->ev_fini(channel);
  582. }
  583. static inline void efx_nic_remove_eventq(struct efx_channel *channel)
  584. {
  585. channel->efx->type->ev_remove(channel);
  586. }
  587. static inline int
  588. efx_nic_process_eventq(struct efx_channel *channel, int quota)
  589. {
  590. return channel->efx->type->ev_process(channel, quota);
  591. }
  592. static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
  593. {
  594. channel->efx->type->ev_read_ack(channel);
  595. }
  596. void efx_nic_event_test_start(struct efx_channel *channel);
  597. /* Falcon/Siena queue operations */
  598. int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
  599. void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
  600. void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
  601. void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
  602. void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
  603. int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
  604. void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
  605. void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
  606. void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
  607. void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
  608. void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
  609. int efx_farch_ev_probe(struct efx_channel *channel);
  610. int efx_farch_ev_init(struct efx_channel *channel);
  611. void efx_farch_ev_fini(struct efx_channel *channel);
  612. void efx_farch_ev_remove(struct efx_channel *channel);
  613. int efx_farch_ev_process(struct efx_channel *channel, int quota);
  614. void efx_farch_ev_read_ack(struct efx_channel *channel);
  615. void efx_farch_ev_test_generate(struct efx_channel *channel);
  616. /* Falcon/Siena filter operations */
  617. int efx_farch_filter_table_probe(struct efx_nic *efx);
  618. void efx_farch_filter_table_restore(struct efx_nic *efx);
  619. void efx_farch_filter_table_remove(struct efx_nic *efx);
  620. void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
  621. s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
  622. bool replace);
  623. int efx_farch_filter_remove_safe(struct efx_nic *efx,
  624. enum efx_filter_priority priority,
  625. u32 filter_id);
  626. int efx_farch_filter_get_safe(struct efx_nic *efx,
  627. enum efx_filter_priority priority, u32 filter_id,
  628. struct efx_filter_spec *);
  629. void efx_farch_filter_clear_rx(struct efx_nic *efx,
  630. enum efx_filter_priority priority);
  631. u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
  632. enum efx_filter_priority priority);
  633. u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
  634. s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
  635. enum efx_filter_priority priority, u32 *buf,
  636. u32 size);
  637. #ifdef CONFIG_RFS_ACCEL
  638. s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
  639. struct efx_filter_spec *spec);
  640. bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
  641. unsigned int index);
  642. #endif
  643. void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
  644. bool efx_nic_event_present(struct efx_channel *channel);
  645. /* Some statistics are computed as A - B where A and B each increase
  646. * linearly with some hardware counter(s) and the counters are read
  647. * asynchronously. If the counters contributing to B are always read
  648. * after those contributing to A, the computed value may be lower than
  649. * the true value by some variable amount, and may decrease between
  650. * subsequent computations.
  651. *
  652. * We should never allow statistics to decrease or to exceed the true
  653. * value. Since the computed value will never be greater than the
  654. * true value, we can achieve this by only storing the computed value
  655. * when it increases.
  656. */
  657. static inline void efx_update_diff_stat(u64 *stat, u64 diff)
  658. {
  659. if ((s64)(diff - *stat) > 0)
  660. *stat = diff;
  661. }
  662. /* Interrupts */
  663. int efx_nic_init_interrupt(struct efx_nic *efx);
  664. void efx_nic_irq_test_start(struct efx_nic *efx);
  665. void efx_nic_fini_interrupt(struct efx_nic *efx);
  666. /* Falcon/Siena interrupts */
  667. void efx_farch_irq_enable_master(struct efx_nic *efx);
  668. void efx_farch_irq_test_generate(struct efx_nic *efx);
  669. void efx_farch_irq_disable_master(struct efx_nic *efx);
  670. irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
  671. irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
  672. irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
  673. static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
  674. {
  675. return ACCESS_ONCE(channel->event_test_cpu);
  676. }
  677. static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
  678. {
  679. return ACCESS_ONCE(efx->last_irq_cpu);
  680. }
  681. /* Global Resources */
  682. int efx_nic_flush_queues(struct efx_nic *efx);
  683. void siena_prepare_flush(struct efx_nic *efx);
  684. int efx_farch_fini_dmaq(struct efx_nic *efx);
  685. void siena_finish_flush(struct efx_nic *efx);
  686. void falcon_start_nic_stats(struct efx_nic *efx);
  687. void falcon_stop_nic_stats(struct efx_nic *efx);
  688. int falcon_reset_xaui(struct efx_nic *efx);
  689. void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
  690. void efx_farch_init_common(struct efx_nic *efx);
  691. void efx_ef10_handle_drain_event(struct efx_nic *efx);
  692. static inline void efx_nic_push_rx_indir_table(struct efx_nic *efx)
  693. {
  694. efx->type->rx_push_indir_table(efx);
  695. }
  696. void efx_farch_rx_push_indir_table(struct efx_nic *efx);
  697. int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
  698. unsigned int len, gfp_t gfp_flags);
  699. void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
  700. /* Tests */
  701. struct efx_farch_register_test {
  702. unsigned address;
  703. efx_oword_t mask;
  704. };
  705. int efx_farch_test_registers(struct efx_nic *efx,
  706. const struct efx_farch_register_test *regs,
  707. size_t n_regs);
  708. size_t efx_nic_get_regs_len(struct efx_nic *efx);
  709. void efx_nic_get_regs(struct efx_nic *efx, void *buf);
  710. size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
  711. const unsigned long *mask, u8 *names);
  712. void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
  713. const unsigned long *mask, u64 *stats,
  714. const void *dma_buf, bool accumulate);
  715. #define EFX_MAX_FLUSH_TIME 5000
  716. void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
  717. efx_qword_t *event);
  718. #endif /* EFX_NIC_H */