qlge_main.c 134 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/bitops.h>
  11. #include <linux/types.h>
  12. #include <linux/module.h>
  13. #include <linux/list.h>
  14. #include <linux/pci.h>
  15. #include <linux/dma-mapping.h>
  16. #include <linux/pagemap.h>
  17. #include <linux/sched.h>
  18. #include <linux/slab.h>
  19. #include <linux/dmapool.h>
  20. #include <linux/mempool.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/kthread.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/errno.h>
  25. #include <linux/ioport.h>
  26. #include <linux/in.h>
  27. #include <linux/ip.h>
  28. #include <linux/ipv6.h>
  29. #include <net/ipv6.h>
  30. #include <linux/tcp.h>
  31. #include <linux/udp.h>
  32. #include <linux/if_arp.h>
  33. #include <linux/if_ether.h>
  34. #include <linux/netdevice.h>
  35. #include <linux/etherdevice.h>
  36. #include <linux/ethtool.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/skbuff.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/prefetch.h>
  43. #include <net/ip6_checksum.h>
  44. #include "qlge.h"
  45. char qlge_driver_name[] = DRV_NAME;
  46. const char qlge_driver_version[] = DRV_VERSION;
  47. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  48. MODULE_DESCRIPTION(DRV_STRING " ");
  49. MODULE_LICENSE("GPL");
  50. MODULE_VERSION(DRV_VERSION);
  51. static const u32 default_msg =
  52. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  53. /* NETIF_MSG_TIMER | */
  54. NETIF_MSG_IFDOWN |
  55. NETIF_MSG_IFUP |
  56. NETIF_MSG_RX_ERR |
  57. NETIF_MSG_TX_ERR |
  58. /* NETIF_MSG_TX_QUEUED | */
  59. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  60. /* NETIF_MSG_PKTDATA | */
  61. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  62. static int debug = -1; /* defaults above */
  63. module_param(debug, int, 0664);
  64. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  65. #define MSIX_IRQ 0
  66. #define MSI_IRQ 1
  67. #define LEG_IRQ 2
  68. static int qlge_irq_type = MSIX_IRQ;
  69. module_param(qlge_irq_type, int, 0664);
  70. MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  71. static int qlge_mpi_coredump;
  72. module_param(qlge_mpi_coredump, int, 0);
  73. MODULE_PARM_DESC(qlge_mpi_coredump,
  74. "Option to enable MPI firmware dump. "
  75. "Default is OFF - Do Not allocate memory. ");
  76. static int qlge_force_coredump;
  77. module_param(qlge_force_coredump, int, 0);
  78. MODULE_PARM_DESC(qlge_force_coredump,
  79. "Option to allow force of firmware core dump. "
  80. "Default is OFF - Do not allow.");
  81. static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
  82. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  83. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  84. /* required last entry */
  85. {0,}
  86. };
  87. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  88. static int ql_wol(struct ql_adapter *);
  89. static void qlge_set_multicast_list(struct net_device *);
  90. static int ql_adapter_down(struct ql_adapter *);
  91. static int ql_adapter_up(struct ql_adapter *);
  92. /* This hardware semaphore causes exclusive access to
  93. * resources shared between the NIC driver, MPI firmware,
  94. * FCOE firmware and the FC driver.
  95. */
  96. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  97. {
  98. u32 sem_bits = 0;
  99. switch (sem_mask) {
  100. case SEM_XGMAC0_MASK:
  101. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  102. break;
  103. case SEM_XGMAC1_MASK:
  104. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  105. break;
  106. case SEM_ICB_MASK:
  107. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  108. break;
  109. case SEM_MAC_ADDR_MASK:
  110. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  111. break;
  112. case SEM_FLASH_MASK:
  113. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  114. break;
  115. case SEM_PROBE_MASK:
  116. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  117. break;
  118. case SEM_RT_IDX_MASK:
  119. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  120. break;
  121. case SEM_PROC_REG_MASK:
  122. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  123. break;
  124. default:
  125. netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
  126. return -EINVAL;
  127. }
  128. ql_write32(qdev, SEM, sem_bits | sem_mask);
  129. return !(ql_read32(qdev, SEM) & sem_bits);
  130. }
  131. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  132. {
  133. unsigned int wait_count = 30;
  134. do {
  135. if (!ql_sem_trylock(qdev, sem_mask))
  136. return 0;
  137. udelay(100);
  138. } while (--wait_count);
  139. return -ETIMEDOUT;
  140. }
  141. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  142. {
  143. ql_write32(qdev, SEM, sem_mask);
  144. ql_read32(qdev, SEM); /* flush */
  145. }
  146. /* This function waits for a specific bit to come ready
  147. * in a given register. It is used mostly by the initialize
  148. * process, but is also used in kernel thread API such as
  149. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  150. */
  151. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  152. {
  153. u32 temp;
  154. int count = UDELAY_COUNT;
  155. while (count) {
  156. temp = ql_read32(qdev, reg);
  157. /* check for errors */
  158. if (temp & err_bit) {
  159. netif_alert(qdev, probe, qdev->ndev,
  160. "register 0x%.08x access error, value = 0x%.08x!.\n",
  161. reg, temp);
  162. return -EIO;
  163. } else if (temp & bit)
  164. return 0;
  165. udelay(UDELAY_DELAY);
  166. count--;
  167. }
  168. netif_alert(qdev, probe, qdev->ndev,
  169. "Timed out waiting for reg %x to come ready.\n", reg);
  170. return -ETIMEDOUT;
  171. }
  172. /* The CFG register is used to download TX and RX control blocks
  173. * to the chip. This function waits for an operation to complete.
  174. */
  175. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  176. {
  177. int count = UDELAY_COUNT;
  178. u32 temp;
  179. while (count) {
  180. temp = ql_read32(qdev, CFG);
  181. if (temp & CFG_LE)
  182. return -EIO;
  183. if (!(temp & bit))
  184. return 0;
  185. udelay(UDELAY_DELAY);
  186. count--;
  187. }
  188. return -ETIMEDOUT;
  189. }
  190. /* Used to issue init control blocks to hw. Maps control block,
  191. * sets address, triggers download, waits for completion.
  192. */
  193. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  194. u16 q_id)
  195. {
  196. u64 map;
  197. int status = 0;
  198. int direction;
  199. u32 mask;
  200. u32 value;
  201. direction =
  202. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  203. PCI_DMA_FROMDEVICE;
  204. map = pci_map_single(qdev->pdev, ptr, size, direction);
  205. if (pci_dma_mapping_error(qdev->pdev, map)) {
  206. netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
  207. return -ENOMEM;
  208. }
  209. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  210. if (status)
  211. return status;
  212. status = ql_wait_cfg(qdev, bit);
  213. if (status) {
  214. netif_err(qdev, ifup, qdev->ndev,
  215. "Timed out waiting for CFG to come ready.\n");
  216. goto exit;
  217. }
  218. ql_write32(qdev, ICB_L, (u32) map);
  219. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  220. mask = CFG_Q_MASK | (bit << 16);
  221. value = bit | (q_id << CFG_Q_SHIFT);
  222. ql_write32(qdev, CFG, (mask | value));
  223. /*
  224. * Wait for the bit to clear after signaling hw.
  225. */
  226. status = ql_wait_cfg(qdev, bit);
  227. exit:
  228. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  229. pci_unmap_single(qdev->pdev, map, size, direction);
  230. return status;
  231. }
  232. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  233. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  234. u32 *value)
  235. {
  236. u32 offset = 0;
  237. int status;
  238. switch (type) {
  239. case MAC_ADDR_TYPE_MULTI_MAC:
  240. case MAC_ADDR_TYPE_CAM_MAC:
  241. {
  242. status =
  243. ql_wait_reg_rdy(qdev,
  244. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  245. if (status)
  246. goto exit;
  247. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  248. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  249. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  250. status =
  251. ql_wait_reg_rdy(qdev,
  252. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  253. if (status)
  254. goto exit;
  255. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  256. status =
  257. ql_wait_reg_rdy(qdev,
  258. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  259. if (status)
  260. goto exit;
  261. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  262. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  263. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  264. status =
  265. ql_wait_reg_rdy(qdev,
  266. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  267. if (status)
  268. goto exit;
  269. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  270. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  271. status =
  272. ql_wait_reg_rdy(qdev,
  273. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  274. if (status)
  275. goto exit;
  276. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  277. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  278. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  279. status =
  280. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  281. MAC_ADDR_MR, 0);
  282. if (status)
  283. goto exit;
  284. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  285. }
  286. break;
  287. }
  288. case MAC_ADDR_TYPE_VLAN:
  289. case MAC_ADDR_TYPE_MULTI_FLTR:
  290. default:
  291. netif_crit(qdev, ifup, qdev->ndev,
  292. "Address type %d not yet supported.\n", type);
  293. status = -EPERM;
  294. }
  295. exit:
  296. return status;
  297. }
  298. /* Set up a MAC, multicast or VLAN address for the
  299. * inbound frame matching.
  300. */
  301. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  302. u16 index)
  303. {
  304. u32 offset = 0;
  305. int status = 0;
  306. switch (type) {
  307. case MAC_ADDR_TYPE_MULTI_MAC:
  308. {
  309. u32 upper = (addr[0] << 8) | addr[1];
  310. u32 lower = (addr[2] << 24) | (addr[3] << 16) |
  311. (addr[4] << 8) | (addr[5]);
  312. status =
  313. ql_wait_reg_rdy(qdev,
  314. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  315. if (status)
  316. goto exit;
  317. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  318. (index << MAC_ADDR_IDX_SHIFT) |
  319. type | MAC_ADDR_E);
  320. ql_write32(qdev, MAC_ADDR_DATA, lower);
  321. status =
  322. ql_wait_reg_rdy(qdev,
  323. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  324. if (status)
  325. goto exit;
  326. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  327. (index << MAC_ADDR_IDX_SHIFT) |
  328. type | MAC_ADDR_E);
  329. ql_write32(qdev, MAC_ADDR_DATA, upper);
  330. status =
  331. ql_wait_reg_rdy(qdev,
  332. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  333. if (status)
  334. goto exit;
  335. break;
  336. }
  337. case MAC_ADDR_TYPE_CAM_MAC:
  338. {
  339. u32 cam_output;
  340. u32 upper = (addr[0] << 8) | addr[1];
  341. u32 lower =
  342. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  343. (addr[5]);
  344. status =
  345. ql_wait_reg_rdy(qdev,
  346. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  347. if (status)
  348. goto exit;
  349. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  350. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  351. type); /* type */
  352. ql_write32(qdev, MAC_ADDR_DATA, lower);
  353. status =
  354. ql_wait_reg_rdy(qdev,
  355. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  356. if (status)
  357. goto exit;
  358. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  359. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  360. type); /* type */
  361. ql_write32(qdev, MAC_ADDR_DATA, upper);
  362. status =
  363. ql_wait_reg_rdy(qdev,
  364. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  365. if (status)
  366. goto exit;
  367. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  368. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  369. type); /* type */
  370. /* This field should also include the queue id
  371. and possibly the function id. Right now we hardcode
  372. the route field to NIC core.
  373. */
  374. cam_output = (CAM_OUT_ROUTE_NIC |
  375. (qdev->
  376. func << CAM_OUT_FUNC_SHIFT) |
  377. (0 << CAM_OUT_CQ_ID_SHIFT));
  378. if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
  379. cam_output |= CAM_OUT_RV;
  380. /* route to NIC core */
  381. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  382. break;
  383. }
  384. case MAC_ADDR_TYPE_VLAN:
  385. {
  386. u32 enable_bit = *((u32 *) &addr[0]);
  387. /* For VLAN, the addr actually holds a bit that
  388. * either enables or disables the vlan id we are
  389. * addressing. It's either MAC_ADDR_E on or off.
  390. * That's bit-27 we're talking about.
  391. */
  392. status =
  393. ql_wait_reg_rdy(qdev,
  394. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  395. if (status)
  396. goto exit;
  397. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  398. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  399. type | /* type */
  400. enable_bit); /* enable/disable */
  401. break;
  402. }
  403. case MAC_ADDR_TYPE_MULTI_FLTR:
  404. default:
  405. netif_crit(qdev, ifup, qdev->ndev,
  406. "Address type %d not yet supported.\n", type);
  407. status = -EPERM;
  408. }
  409. exit:
  410. return status;
  411. }
  412. /* Set or clear MAC address in hardware. We sometimes
  413. * have to clear it to prevent wrong frame routing
  414. * especially in a bonding environment.
  415. */
  416. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  417. {
  418. int status;
  419. char zero_mac_addr[ETH_ALEN];
  420. char *addr;
  421. if (set) {
  422. addr = &qdev->current_mac_addr[0];
  423. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  424. "Set Mac addr %pM\n", addr);
  425. } else {
  426. memset(zero_mac_addr, 0, ETH_ALEN);
  427. addr = &zero_mac_addr[0];
  428. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  429. "Clearing MAC address\n");
  430. }
  431. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  432. if (status)
  433. return status;
  434. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  435. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  436. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  437. if (status)
  438. netif_err(qdev, ifup, qdev->ndev,
  439. "Failed to init mac address.\n");
  440. return status;
  441. }
  442. void ql_link_on(struct ql_adapter *qdev)
  443. {
  444. netif_err(qdev, link, qdev->ndev, "Link is up.\n");
  445. netif_carrier_on(qdev->ndev);
  446. ql_set_mac_addr(qdev, 1);
  447. }
  448. void ql_link_off(struct ql_adapter *qdev)
  449. {
  450. netif_err(qdev, link, qdev->ndev, "Link is down.\n");
  451. netif_carrier_off(qdev->ndev);
  452. ql_set_mac_addr(qdev, 0);
  453. }
  454. /* Get a specific frame routing value from the CAM.
  455. * Used for debug and reg dump.
  456. */
  457. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  458. {
  459. int status = 0;
  460. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  461. if (status)
  462. goto exit;
  463. ql_write32(qdev, RT_IDX,
  464. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  465. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  466. if (status)
  467. goto exit;
  468. *value = ql_read32(qdev, RT_DATA);
  469. exit:
  470. return status;
  471. }
  472. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  473. * to route different frame types to various inbound queues. We send broadcast/
  474. * multicast/error frames to the default queue for slow handling,
  475. * and CAM hit/RSS frames to the fast handling queues.
  476. */
  477. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  478. int enable)
  479. {
  480. int status = -EINVAL; /* Return error if no mask match. */
  481. u32 value = 0;
  482. switch (mask) {
  483. case RT_IDX_CAM_HIT:
  484. {
  485. value = RT_IDX_DST_CAM_Q | /* dest */
  486. RT_IDX_TYPE_NICQ | /* type */
  487. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  488. break;
  489. }
  490. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  491. {
  492. value = RT_IDX_DST_DFLT_Q | /* dest */
  493. RT_IDX_TYPE_NICQ | /* type */
  494. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  495. break;
  496. }
  497. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  498. {
  499. value = RT_IDX_DST_DFLT_Q | /* dest */
  500. RT_IDX_TYPE_NICQ | /* type */
  501. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  502. break;
  503. }
  504. case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
  505. {
  506. value = RT_IDX_DST_DFLT_Q | /* dest */
  507. RT_IDX_TYPE_NICQ | /* type */
  508. (RT_IDX_IP_CSUM_ERR_SLOT <<
  509. RT_IDX_IDX_SHIFT); /* index */
  510. break;
  511. }
  512. case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
  513. {
  514. value = RT_IDX_DST_DFLT_Q | /* dest */
  515. RT_IDX_TYPE_NICQ | /* type */
  516. (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
  517. RT_IDX_IDX_SHIFT); /* index */
  518. break;
  519. }
  520. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  521. {
  522. value = RT_IDX_DST_DFLT_Q | /* dest */
  523. RT_IDX_TYPE_NICQ | /* type */
  524. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  525. break;
  526. }
  527. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  528. {
  529. value = RT_IDX_DST_DFLT_Q | /* dest */
  530. RT_IDX_TYPE_NICQ | /* type */
  531. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  532. break;
  533. }
  534. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  535. {
  536. value = RT_IDX_DST_DFLT_Q | /* dest */
  537. RT_IDX_TYPE_NICQ | /* type */
  538. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  539. break;
  540. }
  541. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  542. {
  543. value = RT_IDX_DST_RSS | /* dest */
  544. RT_IDX_TYPE_NICQ | /* type */
  545. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  546. break;
  547. }
  548. case 0: /* Clear the E-bit on an entry. */
  549. {
  550. value = RT_IDX_DST_DFLT_Q | /* dest */
  551. RT_IDX_TYPE_NICQ | /* type */
  552. (index << RT_IDX_IDX_SHIFT);/* index */
  553. break;
  554. }
  555. default:
  556. netif_err(qdev, ifup, qdev->ndev,
  557. "Mask type %d not yet supported.\n", mask);
  558. status = -EPERM;
  559. goto exit;
  560. }
  561. if (value) {
  562. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  563. if (status)
  564. goto exit;
  565. value |= (enable ? RT_IDX_E : 0);
  566. ql_write32(qdev, RT_IDX, value);
  567. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  568. }
  569. exit:
  570. return status;
  571. }
  572. static void ql_enable_interrupts(struct ql_adapter *qdev)
  573. {
  574. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  575. }
  576. static void ql_disable_interrupts(struct ql_adapter *qdev)
  577. {
  578. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  579. }
  580. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  581. * Otherwise, we may have multiple outstanding workers and don't want to
  582. * enable until the last one finishes. In this case, the irq_cnt gets
  583. * incremented every time we queue a worker and decremented every time
  584. * a worker finishes. Once it hits zero we enable the interrupt.
  585. */
  586. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  587. {
  588. u32 var = 0;
  589. unsigned long hw_flags = 0;
  590. struct intr_context *ctx = qdev->intr_context + intr;
  591. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  592. /* Always enable if we're MSIX multi interrupts and
  593. * it's not the default (zeroeth) interrupt.
  594. */
  595. ql_write32(qdev, INTR_EN,
  596. ctx->intr_en_mask);
  597. var = ql_read32(qdev, STS);
  598. return var;
  599. }
  600. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  601. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  602. ql_write32(qdev, INTR_EN,
  603. ctx->intr_en_mask);
  604. var = ql_read32(qdev, STS);
  605. }
  606. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  607. return var;
  608. }
  609. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  610. {
  611. u32 var = 0;
  612. struct intr_context *ctx;
  613. /* HW disables for us if we're MSIX multi interrupts and
  614. * it's not the default (zeroeth) interrupt.
  615. */
  616. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  617. return 0;
  618. ctx = qdev->intr_context + intr;
  619. spin_lock(&qdev->hw_lock);
  620. if (!atomic_read(&ctx->irq_cnt)) {
  621. ql_write32(qdev, INTR_EN,
  622. ctx->intr_dis_mask);
  623. var = ql_read32(qdev, STS);
  624. }
  625. atomic_inc(&ctx->irq_cnt);
  626. spin_unlock(&qdev->hw_lock);
  627. return var;
  628. }
  629. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  630. {
  631. int i;
  632. for (i = 0; i < qdev->intr_count; i++) {
  633. /* The enable call does a atomic_dec_and_test
  634. * and enables only if the result is zero.
  635. * So we precharge it here.
  636. */
  637. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  638. i == 0))
  639. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  640. ql_enable_completion_interrupt(qdev, i);
  641. }
  642. }
  643. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  644. {
  645. int status, i;
  646. u16 csum = 0;
  647. __le16 *flash = (__le16 *)&qdev->flash;
  648. status = strncmp((char *)&qdev->flash, str, 4);
  649. if (status) {
  650. netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
  651. return status;
  652. }
  653. for (i = 0; i < size; i++)
  654. csum += le16_to_cpu(*flash++);
  655. if (csum)
  656. netif_err(qdev, ifup, qdev->ndev,
  657. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  658. return csum;
  659. }
  660. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  661. {
  662. int status = 0;
  663. /* wait for reg to come ready */
  664. status = ql_wait_reg_rdy(qdev,
  665. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  666. if (status)
  667. goto exit;
  668. /* set up for reg read */
  669. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  670. /* wait for reg to come ready */
  671. status = ql_wait_reg_rdy(qdev,
  672. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  673. if (status)
  674. goto exit;
  675. /* This data is stored on flash as an array of
  676. * __le32. Since ql_read32() returns cpu endian
  677. * we need to swap it back.
  678. */
  679. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  680. exit:
  681. return status;
  682. }
  683. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  684. {
  685. u32 i, size;
  686. int status;
  687. __le32 *p = (__le32 *)&qdev->flash;
  688. u32 offset;
  689. u8 mac_addr[6];
  690. /* Get flash offset for function and adjust
  691. * for dword access.
  692. */
  693. if (!qdev->port)
  694. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  695. else
  696. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  697. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  698. return -ETIMEDOUT;
  699. size = sizeof(struct flash_params_8000) / sizeof(u32);
  700. for (i = 0; i < size; i++, p++) {
  701. status = ql_read_flash_word(qdev, i+offset, p);
  702. if (status) {
  703. netif_err(qdev, ifup, qdev->ndev,
  704. "Error reading flash.\n");
  705. goto exit;
  706. }
  707. }
  708. status = ql_validate_flash(qdev,
  709. sizeof(struct flash_params_8000) / sizeof(u16),
  710. "8000");
  711. if (status) {
  712. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  713. status = -EINVAL;
  714. goto exit;
  715. }
  716. /* Extract either manufacturer or BOFM modified
  717. * MAC address.
  718. */
  719. if (qdev->flash.flash_params_8000.data_type1 == 2)
  720. memcpy(mac_addr,
  721. qdev->flash.flash_params_8000.mac_addr1,
  722. qdev->ndev->addr_len);
  723. else
  724. memcpy(mac_addr,
  725. qdev->flash.flash_params_8000.mac_addr,
  726. qdev->ndev->addr_len);
  727. if (!is_valid_ether_addr(mac_addr)) {
  728. netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
  729. status = -EINVAL;
  730. goto exit;
  731. }
  732. memcpy(qdev->ndev->dev_addr,
  733. mac_addr,
  734. qdev->ndev->addr_len);
  735. exit:
  736. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  737. return status;
  738. }
  739. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  740. {
  741. int i;
  742. int status;
  743. __le32 *p = (__le32 *)&qdev->flash;
  744. u32 offset = 0;
  745. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  746. /* Second function's parameters follow the first
  747. * function's.
  748. */
  749. if (qdev->port)
  750. offset = size;
  751. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  752. return -ETIMEDOUT;
  753. for (i = 0; i < size; i++, p++) {
  754. status = ql_read_flash_word(qdev, i+offset, p);
  755. if (status) {
  756. netif_err(qdev, ifup, qdev->ndev,
  757. "Error reading flash.\n");
  758. goto exit;
  759. }
  760. }
  761. status = ql_validate_flash(qdev,
  762. sizeof(struct flash_params_8012) / sizeof(u16),
  763. "8012");
  764. if (status) {
  765. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  766. status = -EINVAL;
  767. goto exit;
  768. }
  769. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  770. status = -EINVAL;
  771. goto exit;
  772. }
  773. memcpy(qdev->ndev->dev_addr,
  774. qdev->flash.flash_params_8012.mac_addr,
  775. qdev->ndev->addr_len);
  776. exit:
  777. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  778. return status;
  779. }
  780. /* xgmac register are located behind the xgmac_addr and xgmac_data
  781. * register pair. Each read/write requires us to wait for the ready
  782. * bit before reading/writing the data.
  783. */
  784. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  785. {
  786. int status;
  787. /* wait for reg to come ready */
  788. status = ql_wait_reg_rdy(qdev,
  789. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  790. if (status)
  791. return status;
  792. /* write the data to the data reg */
  793. ql_write32(qdev, XGMAC_DATA, data);
  794. /* trigger the write */
  795. ql_write32(qdev, XGMAC_ADDR, reg);
  796. return status;
  797. }
  798. /* xgmac register are located behind the xgmac_addr and xgmac_data
  799. * register pair. Each read/write requires us to wait for the ready
  800. * bit before reading/writing the data.
  801. */
  802. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  803. {
  804. int status = 0;
  805. /* wait for reg to come ready */
  806. status = ql_wait_reg_rdy(qdev,
  807. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  808. if (status)
  809. goto exit;
  810. /* set up for reg read */
  811. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  812. /* wait for reg to come ready */
  813. status = ql_wait_reg_rdy(qdev,
  814. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  815. if (status)
  816. goto exit;
  817. /* get the data */
  818. *data = ql_read32(qdev, XGMAC_DATA);
  819. exit:
  820. return status;
  821. }
  822. /* This is used for reading the 64-bit statistics regs. */
  823. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  824. {
  825. int status = 0;
  826. u32 hi = 0;
  827. u32 lo = 0;
  828. status = ql_read_xgmac_reg(qdev, reg, &lo);
  829. if (status)
  830. goto exit;
  831. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  832. if (status)
  833. goto exit;
  834. *data = (u64) lo | ((u64) hi << 32);
  835. exit:
  836. return status;
  837. }
  838. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  839. {
  840. int status;
  841. /*
  842. * Get MPI firmware version for driver banner
  843. * and ethool info.
  844. */
  845. status = ql_mb_about_fw(qdev);
  846. if (status)
  847. goto exit;
  848. status = ql_mb_get_fw_state(qdev);
  849. if (status)
  850. goto exit;
  851. /* Wake up a worker to get/set the TX/RX frame sizes. */
  852. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  853. exit:
  854. return status;
  855. }
  856. /* Take the MAC Core out of reset.
  857. * Enable statistics counting.
  858. * Take the transmitter/receiver out of reset.
  859. * This functionality may be done in the MPI firmware at a
  860. * later date.
  861. */
  862. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  863. {
  864. int status = 0;
  865. u32 data;
  866. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  867. /* Another function has the semaphore, so
  868. * wait for the port init bit to come ready.
  869. */
  870. netif_info(qdev, link, qdev->ndev,
  871. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  872. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  873. if (status) {
  874. netif_crit(qdev, link, qdev->ndev,
  875. "Port initialize timed out.\n");
  876. }
  877. return status;
  878. }
  879. netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
  880. /* Set the core reset. */
  881. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  882. if (status)
  883. goto end;
  884. data |= GLOBAL_CFG_RESET;
  885. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  886. if (status)
  887. goto end;
  888. /* Clear the core reset and turn on jumbo for receiver. */
  889. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  890. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  891. data |= GLOBAL_CFG_TX_STAT_EN;
  892. data |= GLOBAL_CFG_RX_STAT_EN;
  893. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  894. if (status)
  895. goto end;
  896. /* Enable transmitter, and clear it's reset. */
  897. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  898. if (status)
  899. goto end;
  900. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  901. data |= TX_CFG_EN; /* Enable the transmitter. */
  902. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  903. if (status)
  904. goto end;
  905. /* Enable receiver and clear it's reset. */
  906. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  907. if (status)
  908. goto end;
  909. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  910. data |= RX_CFG_EN; /* Enable the receiver. */
  911. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  912. if (status)
  913. goto end;
  914. /* Turn on jumbo. */
  915. status =
  916. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  917. if (status)
  918. goto end;
  919. status =
  920. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  921. if (status)
  922. goto end;
  923. /* Signal to the world that the port is enabled. */
  924. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  925. end:
  926. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  927. return status;
  928. }
  929. static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
  930. {
  931. return PAGE_SIZE << qdev->lbq_buf_order;
  932. }
  933. /* Get the next large buffer. */
  934. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  935. {
  936. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  937. rx_ring->lbq_curr_idx++;
  938. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  939. rx_ring->lbq_curr_idx = 0;
  940. rx_ring->lbq_free_cnt++;
  941. return lbq_desc;
  942. }
  943. static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
  944. struct rx_ring *rx_ring)
  945. {
  946. struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
  947. pci_dma_sync_single_for_cpu(qdev->pdev,
  948. dma_unmap_addr(lbq_desc, mapaddr),
  949. rx_ring->lbq_buf_size,
  950. PCI_DMA_FROMDEVICE);
  951. /* If it's the last chunk of our master page then
  952. * we unmap it.
  953. */
  954. if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
  955. == ql_lbq_block_size(qdev))
  956. pci_unmap_page(qdev->pdev,
  957. lbq_desc->p.pg_chunk.map,
  958. ql_lbq_block_size(qdev),
  959. PCI_DMA_FROMDEVICE);
  960. return lbq_desc;
  961. }
  962. /* Get the next small buffer. */
  963. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  964. {
  965. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  966. rx_ring->sbq_curr_idx++;
  967. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  968. rx_ring->sbq_curr_idx = 0;
  969. rx_ring->sbq_free_cnt++;
  970. return sbq_desc;
  971. }
  972. /* Update an rx ring index. */
  973. static void ql_update_cq(struct rx_ring *rx_ring)
  974. {
  975. rx_ring->cnsmr_idx++;
  976. rx_ring->curr_entry++;
  977. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  978. rx_ring->cnsmr_idx = 0;
  979. rx_ring->curr_entry = rx_ring->cq_base;
  980. }
  981. }
  982. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  983. {
  984. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  985. }
  986. static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
  987. struct bq_desc *lbq_desc)
  988. {
  989. if (!rx_ring->pg_chunk.page) {
  990. u64 map;
  991. rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
  992. GFP_ATOMIC,
  993. qdev->lbq_buf_order);
  994. if (unlikely(!rx_ring->pg_chunk.page)) {
  995. netif_err(qdev, drv, qdev->ndev,
  996. "page allocation failed.\n");
  997. return -ENOMEM;
  998. }
  999. rx_ring->pg_chunk.offset = 0;
  1000. map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
  1001. 0, ql_lbq_block_size(qdev),
  1002. PCI_DMA_FROMDEVICE);
  1003. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1004. __free_pages(rx_ring->pg_chunk.page,
  1005. qdev->lbq_buf_order);
  1006. rx_ring->pg_chunk.page = NULL;
  1007. netif_err(qdev, drv, qdev->ndev,
  1008. "PCI mapping failed.\n");
  1009. return -ENOMEM;
  1010. }
  1011. rx_ring->pg_chunk.map = map;
  1012. rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
  1013. }
  1014. /* Copy the current master pg_chunk info
  1015. * to the current descriptor.
  1016. */
  1017. lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
  1018. /* Adjust the master page chunk for next
  1019. * buffer get.
  1020. */
  1021. rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
  1022. if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
  1023. rx_ring->pg_chunk.page = NULL;
  1024. lbq_desc->p.pg_chunk.last_flag = 1;
  1025. } else {
  1026. rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
  1027. get_page(rx_ring->pg_chunk.page);
  1028. lbq_desc->p.pg_chunk.last_flag = 0;
  1029. }
  1030. return 0;
  1031. }
  1032. /* Process (refill) a large buffer queue. */
  1033. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1034. {
  1035. u32 clean_idx = rx_ring->lbq_clean_idx;
  1036. u32 start_idx = clean_idx;
  1037. struct bq_desc *lbq_desc;
  1038. u64 map;
  1039. int i;
  1040. while (rx_ring->lbq_free_cnt > 32) {
  1041. for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
  1042. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1043. "lbq: try cleaning clean_idx = %d.\n",
  1044. clean_idx);
  1045. lbq_desc = &rx_ring->lbq[clean_idx];
  1046. if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
  1047. rx_ring->lbq_clean_idx = clean_idx;
  1048. netif_err(qdev, ifup, qdev->ndev,
  1049. "Could not get a page chunk, i=%d, clean_idx =%d .\n",
  1050. i, clean_idx);
  1051. return;
  1052. }
  1053. map = lbq_desc->p.pg_chunk.map +
  1054. lbq_desc->p.pg_chunk.offset;
  1055. dma_unmap_addr_set(lbq_desc, mapaddr, map);
  1056. dma_unmap_len_set(lbq_desc, maplen,
  1057. rx_ring->lbq_buf_size);
  1058. *lbq_desc->addr = cpu_to_le64(map);
  1059. pci_dma_sync_single_for_device(qdev->pdev, map,
  1060. rx_ring->lbq_buf_size,
  1061. PCI_DMA_FROMDEVICE);
  1062. clean_idx++;
  1063. if (clean_idx == rx_ring->lbq_len)
  1064. clean_idx = 0;
  1065. }
  1066. rx_ring->lbq_clean_idx = clean_idx;
  1067. rx_ring->lbq_prod_idx += 16;
  1068. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  1069. rx_ring->lbq_prod_idx = 0;
  1070. rx_ring->lbq_free_cnt -= 16;
  1071. }
  1072. if (start_idx != clean_idx) {
  1073. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1074. "lbq: updating prod idx = %d.\n",
  1075. rx_ring->lbq_prod_idx);
  1076. ql_write_db_reg(rx_ring->lbq_prod_idx,
  1077. rx_ring->lbq_prod_idx_db_reg);
  1078. }
  1079. }
  1080. /* Process (refill) a small buffer queue. */
  1081. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1082. {
  1083. u32 clean_idx = rx_ring->sbq_clean_idx;
  1084. u32 start_idx = clean_idx;
  1085. struct bq_desc *sbq_desc;
  1086. u64 map;
  1087. int i;
  1088. while (rx_ring->sbq_free_cnt > 16) {
  1089. for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
  1090. sbq_desc = &rx_ring->sbq[clean_idx];
  1091. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1092. "sbq: try cleaning clean_idx = %d.\n",
  1093. clean_idx);
  1094. if (sbq_desc->p.skb == NULL) {
  1095. netif_printk(qdev, rx_status, KERN_DEBUG,
  1096. qdev->ndev,
  1097. "sbq: getting new skb for index %d.\n",
  1098. sbq_desc->index);
  1099. sbq_desc->p.skb =
  1100. netdev_alloc_skb(qdev->ndev,
  1101. SMALL_BUFFER_SIZE);
  1102. if (sbq_desc->p.skb == NULL) {
  1103. rx_ring->sbq_clean_idx = clean_idx;
  1104. return;
  1105. }
  1106. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1107. map = pci_map_single(qdev->pdev,
  1108. sbq_desc->p.skb->data,
  1109. rx_ring->sbq_buf_size,
  1110. PCI_DMA_FROMDEVICE);
  1111. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1112. netif_err(qdev, ifup, qdev->ndev,
  1113. "PCI mapping failed.\n");
  1114. rx_ring->sbq_clean_idx = clean_idx;
  1115. dev_kfree_skb_any(sbq_desc->p.skb);
  1116. sbq_desc->p.skb = NULL;
  1117. return;
  1118. }
  1119. dma_unmap_addr_set(sbq_desc, mapaddr, map);
  1120. dma_unmap_len_set(sbq_desc, maplen,
  1121. rx_ring->sbq_buf_size);
  1122. *sbq_desc->addr = cpu_to_le64(map);
  1123. }
  1124. clean_idx++;
  1125. if (clean_idx == rx_ring->sbq_len)
  1126. clean_idx = 0;
  1127. }
  1128. rx_ring->sbq_clean_idx = clean_idx;
  1129. rx_ring->sbq_prod_idx += 16;
  1130. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1131. rx_ring->sbq_prod_idx = 0;
  1132. rx_ring->sbq_free_cnt -= 16;
  1133. }
  1134. if (start_idx != clean_idx) {
  1135. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1136. "sbq: updating prod idx = %d.\n",
  1137. rx_ring->sbq_prod_idx);
  1138. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1139. rx_ring->sbq_prod_idx_db_reg);
  1140. }
  1141. }
  1142. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1143. struct rx_ring *rx_ring)
  1144. {
  1145. ql_update_sbq(qdev, rx_ring);
  1146. ql_update_lbq(qdev, rx_ring);
  1147. }
  1148. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1149. * fails at some stage, or from the interrupt when a tx completes.
  1150. */
  1151. static void ql_unmap_send(struct ql_adapter *qdev,
  1152. struct tx_ring_desc *tx_ring_desc, int mapped)
  1153. {
  1154. int i;
  1155. for (i = 0; i < mapped; i++) {
  1156. if (i == 0 || (i == 7 && mapped > 7)) {
  1157. /*
  1158. * Unmap the skb->data area, or the
  1159. * external sglist (AKA the Outbound
  1160. * Address List (OAL)).
  1161. * If its the zeroeth element, then it's
  1162. * the skb->data area. If it's the 7th
  1163. * element and there is more than 6 frags,
  1164. * then its an OAL.
  1165. */
  1166. if (i == 7) {
  1167. netif_printk(qdev, tx_done, KERN_DEBUG,
  1168. qdev->ndev,
  1169. "unmapping OAL area.\n");
  1170. }
  1171. pci_unmap_single(qdev->pdev,
  1172. dma_unmap_addr(&tx_ring_desc->map[i],
  1173. mapaddr),
  1174. dma_unmap_len(&tx_ring_desc->map[i],
  1175. maplen),
  1176. PCI_DMA_TODEVICE);
  1177. } else {
  1178. netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
  1179. "unmapping frag %d.\n", i);
  1180. pci_unmap_page(qdev->pdev,
  1181. dma_unmap_addr(&tx_ring_desc->map[i],
  1182. mapaddr),
  1183. dma_unmap_len(&tx_ring_desc->map[i],
  1184. maplen), PCI_DMA_TODEVICE);
  1185. }
  1186. }
  1187. }
  1188. /* Map the buffers for this transmit. This will return
  1189. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1190. */
  1191. static int ql_map_send(struct ql_adapter *qdev,
  1192. struct ob_mac_iocb_req *mac_iocb_ptr,
  1193. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1194. {
  1195. int len = skb_headlen(skb);
  1196. dma_addr_t map;
  1197. int frag_idx, err, map_idx = 0;
  1198. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1199. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1200. if (frag_cnt) {
  1201. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  1202. "frag_cnt = %d.\n", frag_cnt);
  1203. }
  1204. /*
  1205. * Map the skb buffer first.
  1206. */
  1207. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1208. err = pci_dma_mapping_error(qdev->pdev, map);
  1209. if (err) {
  1210. netif_err(qdev, tx_queued, qdev->ndev,
  1211. "PCI mapping failed with error: %d\n", err);
  1212. return NETDEV_TX_BUSY;
  1213. }
  1214. tbd->len = cpu_to_le32(len);
  1215. tbd->addr = cpu_to_le64(map);
  1216. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1217. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1218. map_idx++;
  1219. /*
  1220. * This loop fills the remainder of the 8 address descriptors
  1221. * in the IOCB. If there are more than 7 fragments, then the
  1222. * eighth address desc will point to an external list (OAL).
  1223. * When this happens, the remainder of the frags will be stored
  1224. * in this list.
  1225. */
  1226. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1227. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1228. tbd++;
  1229. if (frag_idx == 6 && frag_cnt > 7) {
  1230. /* Let's tack on an sglist.
  1231. * Our control block will now
  1232. * look like this:
  1233. * iocb->seg[0] = skb->data
  1234. * iocb->seg[1] = frag[0]
  1235. * iocb->seg[2] = frag[1]
  1236. * iocb->seg[3] = frag[2]
  1237. * iocb->seg[4] = frag[3]
  1238. * iocb->seg[5] = frag[4]
  1239. * iocb->seg[6] = frag[5]
  1240. * iocb->seg[7] = ptr to OAL (external sglist)
  1241. * oal->seg[0] = frag[6]
  1242. * oal->seg[1] = frag[7]
  1243. * oal->seg[2] = frag[8]
  1244. * oal->seg[3] = frag[9]
  1245. * oal->seg[4] = frag[10]
  1246. * etc...
  1247. */
  1248. /* Tack on the OAL in the eighth segment of IOCB. */
  1249. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1250. sizeof(struct oal),
  1251. PCI_DMA_TODEVICE);
  1252. err = pci_dma_mapping_error(qdev->pdev, map);
  1253. if (err) {
  1254. netif_err(qdev, tx_queued, qdev->ndev,
  1255. "PCI mapping outbound address list with error: %d\n",
  1256. err);
  1257. goto map_error;
  1258. }
  1259. tbd->addr = cpu_to_le64(map);
  1260. /*
  1261. * The length is the number of fragments
  1262. * that remain to be mapped times the length
  1263. * of our sglist (OAL).
  1264. */
  1265. tbd->len =
  1266. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1267. (frag_cnt - frag_idx)) | TX_DESC_C);
  1268. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1269. map);
  1270. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1271. sizeof(struct oal));
  1272. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1273. map_idx++;
  1274. }
  1275. map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
  1276. DMA_TO_DEVICE);
  1277. err = dma_mapping_error(&qdev->pdev->dev, map);
  1278. if (err) {
  1279. netif_err(qdev, tx_queued, qdev->ndev,
  1280. "PCI mapping frags failed with error: %d.\n",
  1281. err);
  1282. goto map_error;
  1283. }
  1284. tbd->addr = cpu_to_le64(map);
  1285. tbd->len = cpu_to_le32(skb_frag_size(frag));
  1286. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1287. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1288. skb_frag_size(frag));
  1289. }
  1290. /* Save the number of segments we've mapped. */
  1291. tx_ring_desc->map_cnt = map_idx;
  1292. /* Terminate the last segment. */
  1293. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1294. return NETDEV_TX_OK;
  1295. map_error:
  1296. /*
  1297. * If the first frag mapping failed, then i will be zero.
  1298. * This causes the unmap of the skb->data area. Otherwise
  1299. * we pass in the number of frags that mapped successfully
  1300. * so they can be umapped.
  1301. */
  1302. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1303. return NETDEV_TX_BUSY;
  1304. }
  1305. /* Categorizing receive firmware frame errors */
  1306. static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
  1307. struct rx_ring *rx_ring)
  1308. {
  1309. struct nic_stats *stats = &qdev->nic_stats;
  1310. stats->rx_err_count++;
  1311. rx_ring->rx_errors++;
  1312. switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
  1313. case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
  1314. stats->rx_code_err++;
  1315. break;
  1316. case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
  1317. stats->rx_oversize_err++;
  1318. break;
  1319. case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
  1320. stats->rx_undersize_err++;
  1321. break;
  1322. case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
  1323. stats->rx_preamble_err++;
  1324. break;
  1325. case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
  1326. stats->rx_frame_len_err++;
  1327. break;
  1328. case IB_MAC_IOCB_RSP_ERR_CRC:
  1329. stats->rx_crc_err++;
  1330. default:
  1331. break;
  1332. }
  1333. }
  1334. /**
  1335. * ql_update_mac_hdr_len - helper routine to update the mac header length
  1336. * based on vlan tags if present
  1337. */
  1338. static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
  1339. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1340. void *page, size_t *len)
  1341. {
  1342. u16 *tags;
  1343. if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
  1344. return;
  1345. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
  1346. tags = (u16 *)page;
  1347. /* Look for stacked vlan tags in ethertype field */
  1348. if (tags[6] == ETH_P_8021Q &&
  1349. tags[8] == ETH_P_8021Q)
  1350. *len += 2 * VLAN_HLEN;
  1351. else
  1352. *len += VLAN_HLEN;
  1353. }
  1354. }
  1355. /* Process an inbound completion from an rx ring. */
  1356. static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
  1357. struct rx_ring *rx_ring,
  1358. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1359. u32 length,
  1360. u16 vlan_id)
  1361. {
  1362. struct sk_buff *skb;
  1363. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1364. struct napi_struct *napi = &rx_ring->napi;
  1365. /* Frame error, so drop the packet. */
  1366. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1367. ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
  1368. put_page(lbq_desc->p.pg_chunk.page);
  1369. return;
  1370. }
  1371. napi->dev = qdev->ndev;
  1372. skb = napi_get_frags(napi);
  1373. if (!skb) {
  1374. netif_err(qdev, drv, qdev->ndev,
  1375. "Couldn't get an skb, exiting.\n");
  1376. rx_ring->rx_dropped++;
  1377. put_page(lbq_desc->p.pg_chunk.page);
  1378. return;
  1379. }
  1380. prefetch(lbq_desc->p.pg_chunk.va);
  1381. __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  1382. lbq_desc->p.pg_chunk.page,
  1383. lbq_desc->p.pg_chunk.offset,
  1384. length);
  1385. skb->len += length;
  1386. skb->data_len += length;
  1387. skb->truesize += length;
  1388. skb_shinfo(skb)->nr_frags++;
  1389. rx_ring->rx_packets++;
  1390. rx_ring->rx_bytes += length;
  1391. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1392. skb_record_rx_queue(skb, rx_ring->cq_id);
  1393. if (vlan_id != 0xffff)
  1394. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
  1395. napi_gro_frags(napi);
  1396. }
  1397. /* Process an inbound completion from an rx ring. */
  1398. static void ql_process_mac_rx_page(struct ql_adapter *qdev,
  1399. struct rx_ring *rx_ring,
  1400. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1401. u32 length,
  1402. u16 vlan_id)
  1403. {
  1404. struct net_device *ndev = qdev->ndev;
  1405. struct sk_buff *skb = NULL;
  1406. void *addr;
  1407. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1408. struct napi_struct *napi = &rx_ring->napi;
  1409. size_t hlen = ETH_HLEN;
  1410. skb = netdev_alloc_skb(ndev, length);
  1411. if (!skb) {
  1412. rx_ring->rx_dropped++;
  1413. put_page(lbq_desc->p.pg_chunk.page);
  1414. return;
  1415. }
  1416. addr = lbq_desc->p.pg_chunk.va;
  1417. prefetch(addr);
  1418. /* Frame error, so drop the packet. */
  1419. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1420. ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
  1421. goto err_out;
  1422. }
  1423. /* Update the MAC header length*/
  1424. ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
  1425. /* The max framesize filter on this chip is set higher than
  1426. * MTU since FCoE uses 2k frames.
  1427. */
  1428. if (skb->len > ndev->mtu + hlen) {
  1429. netif_err(qdev, drv, qdev->ndev,
  1430. "Segment too small, dropping.\n");
  1431. rx_ring->rx_dropped++;
  1432. goto err_out;
  1433. }
  1434. memcpy(skb_put(skb, hlen), addr, hlen);
  1435. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1436. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1437. length);
  1438. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1439. lbq_desc->p.pg_chunk.offset + hlen,
  1440. length - hlen);
  1441. skb->len += length - hlen;
  1442. skb->data_len += length - hlen;
  1443. skb->truesize += length - hlen;
  1444. rx_ring->rx_packets++;
  1445. rx_ring->rx_bytes += skb->len;
  1446. skb->protocol = eth_type_trans(skb, ndev);
  1447. skb_checksum_none_assert(skb);
  1448. if ((ndev->features & NETIF_F_RXCSUM) &&
  1449. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1450. /* TCP frame. */
  1451. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1452. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1453. "TCP checksum done!\n");
  1454. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1455. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1456. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1457. /* Unfragmented ipv4 UDP frame. */
  1458. struct iphdr *iph =
  1459. (struct iphdr *)((u8 *)addr + hlen);
  1460. if (!(iph->frag_off &
  1461. htons(IP_MF|IP_OFFSET))) {
  1462. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1463. netif_printk(qdev, rx_status, KERN_DEBUG,
  1464. qdev->ndev,
  1465. "UDP checksum done!\n");
  1466. }
  1467. }
  1468. }
  1469. skb_record_rx_queue(skb, rx_ring->cq_id);
  1470. if (vlan_id != 0xffff)
  1471. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
  1472. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1473. napi_gro_receive(napi, skb);
  1474. else
  1475. netif_receive_skb(skb);
  1476. return;
  1477. err_out:
  1478. dev_kfree_skb_any(skb);
  1479. put_page(lbq_desc->p.pg_chunk.page);
  1480. }
  1481. /* Process an inbound completion from an rx ring. */
  1482. static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
  1483. struct rx_ring *rx_ring,
  1484. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1485. u32 length,
  1486. u16 vlan_id)
  1487. {
  1488. struct net_device *ndev = qdev->ndev;
  1489. struct sk_buff *skb = NULL;
  1490. struct sk_buff *new_skb = NULL;
  1491. struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
  1492. skb = sbq_desc->p.skb;
  1493. /* Allocate new_skb and copy */
  1494. new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
  1495. if (new_skb == NULL) {
  1496. rx_ring->rx_dropped++;
  1497. return;
  1498. }
  1499. skb_reserve(new_skb, NET_IP_ALIGN);
  1500. memcpy(skb_put(new_skb, length), skb->data, length);
  1501. skb = new_skb;
  1502. /* Frame error, so drop the packet. */
  1503. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1504. ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
  1505. dev_kfree_skb_any(skb);
  1506. return;
  1507. }
  1508. /* loopback self test for ethtool */
  1509. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1510. ql_check_lb_frame(qdev, skb);
  1511. dev_kfree_skb_any(skb);
  1512. return;
  1513. }
  1514. /* The max framesize filter on this chip is set higher than
  1515. * MTU since FCoE uses 2k frames.
  1516. */
  1517. if (skb->len > ndev->mtu + ETH_HLEN) {
  1518. dev_kfree_skb_any(skb);
  1519. rx_ring->rx_dropped++;
  1520. return;
  1521. }
  1522. prefetch(skb->data);
  1523. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1524. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1525. "%s Multicast.\n",
  1526. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1527. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1528. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1529. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1530. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1531. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1532. }
  1533. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
  1534. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1535. "Promiscuous Packet.\n");
  1536. rx_ring->rx_packets++;
  1537. rx_ring->rx_bytes += skb->len;
  1538. skb->protocol = eth_type_trans(skb, ndev);
  1539. skb_checksum_none_assert(skb);
  1540. /* If rx checksum is on, and there are no
  1541. * csum or frame errors.
  1542. */
  1543. if ((ndev->features & NETIF_F_RXCSUM) &&
  1544. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1545. /* TCP frame. */
  1546. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1547. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1548. "TCP checksum done!\n");
  1549. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1550. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1551. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1552. /* Unfragmented ipv4 UDP frame. */
  1553. struct iphdr *iph = (struct iphdr *) skb->data;
  1554. if (!(iph->frag_off &
  1555. htons(IP_MF|IP_OFFSET))) {
  1556. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1557. netif_printk(qdev, rx_status, KERN_DEBUG,
  1558. qdev->ndev,
  1559. "UDP checksum done!\n");
  1560. }
  1561. }
  1562. }
  1563. skb_record_rx_queue(skb, rx_ring->cq_id);
  1564. if (vlan_id != 0xffff)
  1565. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
  1566. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1567. napi_gro_receive(&rx_ring->napi, skb);
  1568. else
  1569. netif_receive_skb(skb);
  1570. }
  1571. static void ql_realign_skb(struct sk_buff *skb, int len)
  1572. {
  1573. void *temp_addr = skb->data;
  1574. /* Undo the skb_reserve(skb,32) we did before
  1575. * giving to hardware, and realign data on
  1576. * a 2-byte boundary.
  1577. */
  1578. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1579. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1580. skb_copy_to_linear_data(skb, temp_addr,
  1581. (unsigned int)len);
  1582. }
  1583. /*
  1584. * This function builds an skb for the given inbound
  1585. * completion. It will be rewritten for readability in the near
  1586. * future, but for not it works well.
  1587. */
  1588. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1589. struct rx_ring *rx_ring,
  1590. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1591. {
  1592. struct bq_desc *lbq_desc;
  1593. struct bq_desc *sbq_desc;
  1594. struct sk_buff *skb = NULL;
  1595. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1596. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1597. size_t hlen = ETH_HLEN;
  1598. /*
  1599. * Handle the header buffer if present.
  1600. */
  1601. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1602. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1603. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1604. "Header of %d bytes in small buffer.\n", hdr_len);
  1605. /*
  1606. * Headers fit nicely into a small buffer.
  1607. */
  1608. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1609. pci_unmap_single(qdev->pdev,
  1610. dma_unmap_addr(sbq_desc, mapaddr),
  1611. dma_unmap_len(sbq_desc, maplen),
  1612. PCI_DMA_FROMDEVICE);
  1613. skb = sbq_desc->p.skb;
  1614. ql_realign_skb(skb, hdr_len);
  1615. skb_put(skb, hdr_len);
  1616. sbq_desc->p.skb = NULL;
  1617. }
  1618. /*
  1619. * Handle the data buffer(s).
  1620. */
  1621. if (unlikely(!length)) { /* Is there data too? */
  1622. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1623. "No Data buffer in this packet.\n");
  1624. return skb;
  1625. }
  1626. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1627. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1628. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1629. "Headers in small, data of %d bytes in small, combine them.\n",
  1630. length);
  1631. /*
  1632. * Data is less than small buffer size so it's
  1633. * stuffed in a small buffer.
  1634. * For this case we append the data
  1635. * from the "data" small buffer to the "header" small
  1636. * buffer.
  1637. */
  1638. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1639. pci_dma_sync_single_for_cpu(qdev->pdev,
  1640. dma_unmap_addr
  1641. (sbq_desc, mapaddr),
  1642. dma_unmap_len
  1643. (sbq_desc, maplen),
  1644. PCI_DMA_FROMDEVICE);
  1645. memcpy(skb_put(skb, length),
  1646. sbq_desc->p.skb->data, length);
  1647. pci_dma_sync_single_for_device(qdev->pdev,
  1648. dma_unmap_addr
  1649. (sbq_desc,
  1650. mapaddr),
  1651. dma_unmap_len
  1652. (sbq_desc,
  1653. maplen),
  1654. PCI_DMA_FROMDEVICE);
  1655. } else {
  1656. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1657. "%d bytes in a single small buffer.\n",
  1658. length);
  1659. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1660. skb = sbq_desc->p.skb;
  1661. ql_realign_skb(skb, length);
  1662. skb_put(skb, length);
  1663. pci_unmap_single(qdev->pdev,
  1664. dma_unmap_addr(sbq_desc,
  1665. mapaddr),
  1666. dma_unmap_len(sbq_desc,
  1667. maplen),
  1668. PCI_DMA_FROMDEVICE);
  1669. sbq_desc->p.skb = NULL;
  1670. }
  1671. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1672. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1673. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1674. "Header in small, %d bytes in large. Chain large to small!\n",
  1675. length);
  1676. /*
  1677. * The data is in a single large buffer. We
  1678. * chain it to the header buffer's skb and let
  1679. * it rip.
  1680. */
  1681. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1682. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1683. "Chaining page at offset = %d, for %d bytes to skb.\n",
  1684. lbq_desc->p.pg_chunk.offset, length);
  1685. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1686. lbq_desc->p.pg_chunk.offset,
  1687. length);
  1688. skb->len += length;
  1689. skb->data_len += length;
  1690. skb->truesize += length;
  1691. } else {
  1692. /*
  1693. * The headers and data are in a single large buffer. We
  1694. * copy it to a new skb and let it go. This can happen with
  1695. * jumbo mtu on a non-TCP/UDP frame.
  1696. */
  1697. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1698. skb = netdev_alloc_skb(qdev->ndev, length);
  1699. if (skb == NULL) {
  1700. netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
  1701. "No skb available, drop the packet.\n");
  1702. return NULL;
  1703. }
  1704. pci_unmap_page(qdev->pdev,
  1705. dma_unmap_addr(lbq_desc,
  1706. mapaddr),
  1707. dma_unmap_len(lbq_desc, maplen),
  1708. PCI_DMA_FROMDEVICE);
  1709. skb_reserve(skb, NET_IP_ALIGN);
  1710. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1711. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1712. length);
  1713. skb_fill_page_desc(skb, 0,
  1714. lbq_desc->p.pg_chunk.page,
  1715. lbq_desc->p.pg_chunk.offset,
  1716. length);
  1717. skb->len += length;
  1718. skb->data_len += length;
  1719. skb->truesize += length;
  1720. length -= length;
  1721. ql_update_mac_hdr_len(qdev, ib_mac_rsp,
  1722. lbq_desc->p.pg_chunk.va,
  1723. &hlen);
  1724. __pskb_pull_tail(skb, hlen);
  1725. }
  1726. } else {
  1727. /*
  1728. * The data is in a chain of large buffers
  1729. * pointed to by a small buffer. We loop
  1730. * thru and chain them to the our small header
  1731. * buffer's skb.
  1732. * frags: There are 18 max frags and our small
  1733. * buffer will hold 32 of them. The thing is,
  1734. * we'll use 3 max for our 9000 byte jumbo
  1735. * frames. If the MTU goes up we could
  1736. * eventually be in trouble.
  1737. */
  1738. int size, i = 0;
  1739. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1740. pci_unmap_single(qdev->pdev,
  1741. dma_unmap_addr(sbq_desc, mapaddr),
  1742. dma_unmap_len(sbq_desc, maplen),
  1743. PCI_DMA_FROMDEVICE);
  1744. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1745. /*
  1746. * This is an non TCP/UDP IP frame, so
  1747. * the headers aren't split into a small
  1748. * buffer. We have to use the small buffer
  1749. * that contains our sg list as our skb to
  1750. * send upstairs. Copy the sg list here to
  1751. * a local buffer and use it to find the
  1752. * pages to chain.
  1753. */
  1754. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1755. "%d bytes of headers & data in chain of large.\n",
  1756. length);
  1757. skb = sbq_desc->p.skb;
  1758. sbq_desc->p.skb = NULL;
  1759. skb_reserve(skb, NET_IP_ALIGN);
  1760. }
  1761. while (length > 0) {
  1762. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1763. size = (length < rx_ring->lbq_buf_size) ? length :
  1764. rx_ring->lbq_buf_size;
  1765. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1766. "Adding page %d to skb for %d bytes.\n",
  1767. i, size);
  1768. skb_fill_page_desc(skb, i,
  1769. lbq_desc->p.pg_chunk.page,
  1770. lbq_desc->p.pg_chunk.offset,
  1771. size);
  1772. skb->len += size;
  1773. skb->data_len += size;
  1774. skb->truesize += size;
  1775. length -= size;
  1776. i++;
  1777. }
  1778. ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
  1779. &hlen);
  1780. __pskb_pull_tail(skb, hlen);
  1781. }
  1782. return skb;
  1783. }
  1784. /* Process an inbound completion from an rx ring. */
  1785. static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
  1786. struct rx_ring *rx_ring,
  1787. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1788. u16 vlan_id)
  1789. {
  1790. struct net_device *ndev = qdev->ndev;
  1791. struct sk_buff *skb = NULL;
  1792. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1793. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1794. if (unlikely(!skb)) {
  1795. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1796. "No skb available, drop packet.\n");
  1797. rx_ring->rx_dropped++;
  1798. return;
  1799. }
  1800. /* Frame error, so drop the packet. */
  1801. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1802. ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
  1803. dev_kfree_skb_any(skb);
  1804. return;
  1805. }
  1806. /* The max framesize filter on this chip is set higher than
  1807. * MTU since FCoE uses 2k frames.
  1808. */
  1809. if (skb->len > ndev->mtu + ETH_HLEN) {
  1810. dev_kfree_skb_any(skb);
  1811. rx_ring->rx_dropped++;
  1812. return;
  1813. }
  1814. /* loopback self test for ethtool */
  1815. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1816. ql_check_lb_frame(qdev, skb);
  1817. dev_kfree_skb_any(skb);
  1818. return;
  1819. }
  1820. prefetch(skb->data);
  1821. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1822. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
  1823. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1824. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1825. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1826. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1827. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1828. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1829. rx_ring->rx_multicast++;
  1830. }
  1831. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1832. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1833. "Promiscuous Packet.\n");
  1834. }
  1835. skb->protocol = eth_type_trans(skb, ndev);
  1836. skb_checksum_none_assert(skb);
  1837. /* If rx checksum is on, and there are no
  1838. * csum or frame errors.
  1839. */
  1840. if ((ndev->features & NETIF_F_RXCSUM) &&
  1841. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1842. /* TCP frame. */
  1843. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1844. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1845. "TCP checksum done!\n");
  1846. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1847. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1848. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1849. /* Unfragmented ipv4 UDP frame. */
  1850. struct iphdr *iph = (struct iphdr *) skb->data;
  1851. if (!(iph->frag_off &
  1852. htons(IP_MF|IP_OFFSET))) {
  1853. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1854. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1855. "TCP checksum done!\n");
  1856. }
  1857. }
  1858. }
  1859. rx_ring->rx_packets++;
  1860. rx_ring->rx_bytes += skb->len;
  1861. skb_record_rx_queue(skb, rx_ring->cq_id);
  1862. if (vlan_id != 0xffff)
  1863. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
  1864. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1865. napi_gro_receive(&rx_ring->napi, skb);
  1866. else
  1867. netif_receive_skb(skb);
  1868. }
  1869. /* Process an inbound completion from an rx ring. */
  1870. static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1871. struct rx_ring *rx_ring,
  1872. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1873. {
  1874. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1875. u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1876. (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
  1877. ((le16_to_cpu(ib_mac_rsp->vlan_id) &
  1878. IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
  1879. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1880. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
  1881. /* The data and headers are split into
  1882. * separate buffers.
  1883. */
  1884. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1885. vlan_id);
  1886. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1887. /* The data fit in a single small buffer.
  1888. * Allocate a new skb, copy the data and
  1889. * return the buffer to the free pool.
  1890. */
  1891. ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
  1892. length, vlan_id);
  1893. } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
  1894. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
  1895. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
  1896. /* TCP packet in a page chunk that's been checksummed.
  1897. * Tack it on to our GRO skb and let it go.
  1898. */
  1899. ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
  1900. length, vlan_id);
  1901. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1902. /* Non-TCP packet in a page chunk. Allocate an
  1903. * skb, tack it on frags, and send it up.
  1904. */
  1905. ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
  1906. length, vlan_id);
  1907. } else {
  1908. /* Non-TCP/UDP large frames that span multiple buffers
  1909. * can be processed corrrectly by the split frame logic.
  1910. */
  1911. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1912. vlan_id);
  1913. }
  1914. return (unsigned long)length;
  1915. }
  1916. /* Process an outbound completion from an rx ring. */
  1917. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1918. struct ob_mac_iocb_rsp *mac_rsp)
  1919. {
  1920. struct tx_ring *tx_ring;
  1921. struct tx_ring_desc *tx_ring_desc;
  1922. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1923. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1924. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1925. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1926. tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
  1927. tx_ring->tx_packets++;
  1928. dev_kfree_skb(tx_ring_desc->skb);
  1929. tx_ring_desc->skb = NULL;
  1930. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1931. OB_MAC_IOCB_RSP_S |
  1932. OB_MAC_IOCB_RSP_L |
  1933. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1934. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1935. netif_warn(qdev, tx_done, qdev->ndev,
  1936. "Total descriptor length did not match transfer length.\n");
  1937. }
  1938. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1939. netif_warn(qdev, tx_done, qdev->ndev,
  1940. "Frame too short to be valid, not sent.\n");
  1941. }
  1942. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1943. netif_warn(qdev, tx_done, qdev->ndev,
  1944. "Frame too long, but sent anyway.\n");
  1945. }
  1946. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1947. netif_warn(qdev, tx_done, qdev->ndev,
  1948. "PCI backplane error. Frame not sent.\n");
  1949. }
  1950. }
  1951. atomic_inc(&tx_ring->tx_count);
  1952. }
  1953. /* Fire up a handler to reset the MPI processor. */
  1954. void ql_queue_fw_error(struct ql_adapter *qdev)
  1955. {
  1956. ql_link_off(qdev);
  1957. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1958. }
  1959. void ql_queue_asic_error(struct ql_adapter *qdev)
  1960. {
  1961. ql_link_off(qdev);
  1962. ql_disable_interrupts(qdev);
  1963. /* Clear adapter up bit to signal the recovery
  1964. * process that it shouldn't kill the reset worker
  1965. * thread
  1966. */
  1967. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1968. /* Set asic recovery bit to indicate reset process that we are
  1969. * in fatal error recovery process rather than normal close
  1970. */
  1971. set_bit(QL_ASIC_RECOVERY, &qdev->flags);
  1972. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1973. }
  1974. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1975. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1976. {
  1977. switch (ib_ae_rsp->event) {
  1978. case MGMT_ERR_EVENT:
  1979. netif_err(qdev, rx_err, qdev->ndev,
  1980. "Management Processor Fatal Error.\n");
  1981. ql_queue_fw_error(qdev);
  1982. return;
  1983. case CAM_LOOKUP_ERR_EVENT:
  1984. netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
  1985. netdev_err(qdev->ndev, "This event shouldn't occur.\n");
  1986. ql_queue_asic_error(qdev);
  1987. return;
  1988. case SOFT_ECC_ERROR_EVENT:
  1989. netdev_err(qdev->ndev, "Soft ECC error detected.\n");
  1990. ql_queue_asic_error(qdev);
  1991. break;
  1992. case PCI_ERR_ANON_BUF_RD:
  1993. netdev_err(qdev->ndev, "PCI error occurred when reading "
  1994. "anonymous buffers from rx_ring %d.\n",
  1995. ib_ae_rsp->q_id);
  1996. ql_queue_asic_error(qdev);
  1997. break;
  1998. default:
  1999. netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
  2000. ib_ae_rsp->event);
  2001. ql_queue_asic_error(qdev);
  2002. break;
  2003. }
  2004. }
  2005. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  2006. {
  2007. struct ql_adapter *qdev = rx_ring->qdev;
  2008. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2009. struct ob_mac_iocb_rsp *net_rsp = NULL;
  2010. int count = 0;
  2011. struct tx_ring *tx_ring;
  2012. /* While there are entries in the completion queue. */
  2013. while (prod != rx_ring->cnsmr_idx) {
  2014. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2015. "cq_id = %d, prod = %d, cnsmr = %d.\n.",
  2016. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  2017. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  2018. rmb();
  2019. switch (net_rsp->opcode) {
  2020. case OPCODE_OB_MAC_TSO_IOCB:
  2021. case OPCODE_OB_MAC_IOCB:
  2022. ql_process_mac_tx_intr(qdev, net_rsp);
  2023. break;
  2024. default:
  2025. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2026. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2027. net_rsp->opcode);
  2028. }
  2029. count++;
  2030. ql_update_cq(rx_ring);
  2031. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2032. }
  2033. if (!net_rsp)
  2034. return 0;
  2035. ql_write_cq_idx(rx_ring);
  2036. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  2037. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
  2038. if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  2039. /*
  2040. * The queue got stopped because the tx_ring was full.
  2041. * Wake it up, because it's now at least 25% empty.
  2042. */
  2043. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  2044. }
  2045. return count;
  2046. }
  2047. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  2048. {
  2049. struct ql_adapter *qdev = rx_ring->qdev;
  2050. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2051. struct ql_net_rsp_iocb *net_rsp;
  2052. int count = 0;
  2053. /* While there are entries in the completion queue. */
  2054. while (prod != rx_ring->cnsmr_idx) {
  2055. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2056. "cq_id = %d, prod = %d, cnsmr = %d.\n.",
  2057. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  2058. net_rsp = rx_ring->curr_entry;
  2059. rmb();
  2060. switch (net_rsp->opcode) {
  2061. case OPCODE_IB_MAC_IOCB:
  2062. ql_process_mac_rx_intr(qdev, rx_ring,
  2063. (struct ib_mac_iocb_rsp *)
  2064. net_rsp);
  2065. break;
  2066. case OPCODE_IB_AE_IOCB:
  2067. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  2068. net_rsp);
  2069. break;
  2070. default:
  2071. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2072. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2073. net_rsp->opcode);
  2074. break;
  2075. }
  2076. count++;
  2077. ql_update_cq(rx_ring);
  2078. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2079. if (count == budget)
  2080. break;
  2081. }
  2082. ql_update_buffer_queues(qdev, rx_ring);
  2083. ql_write_cq_idx(rx_ring);
  2084. return count;
  2085. }
  2086. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  2087. {
  2088. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  2089. struct ql_adapter *qdev = rx_ring->qdev;
  2090. struct rx_ring *trx_ring;
  2091. int i, work_done = 0;
  2092. struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
  2093. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2094. "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
  2095. /* Service the TX rings first. They start
  2096. * right after the RSS rings. */
  2097. for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
  2098. trx_ring = &qdev->rx_ring[i];
  2099. /* If this TX completion ring belongs to this vector and
  2100. * it's not empty then service it.
  2101. */
  2102. if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
  2103. (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
  2104. trx_ring->cnsmr_idx)) {
  2105. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2106. "%s: Servicing TX completion ring %d.\n",
  2107. __func__, trx_ring->cq_id);
  2108. ql_clean_outbound_rx_ring(trx_ring);
  2109. }
  2110. }
  2111. /*
  2112. * Now service the RSS ring if it's active.
  2113. */
  2114. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  2115. rx_ring->cnsmr_idx) {
  2116. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2117. "%s: Servicing RX completion ring %d.\n",
  2118. __func__, rx_ring->cq_id);
  2119. work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  2120. }
  2121. if (work_done < budget) {
  2122. napi_complete(napi);
  2123. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  2124. }
  2125. return work_done;
  2126. }
  2127. static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
  2128. {
  2129. struct ql_adapter *qdev = netdev_priv(ndev);
  2130. if (features & NETIF_F_HW_VLAN_CTAG_RX) {
  2131. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  2132. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  2133. } else {
  2134. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  2135. }
  2136. }
  2137. /**
  2138. * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
  2139. * based on the features to enable/disable hardware vlan accel
  2140. */
  2141. static int qlge_update_hw_vlan_features(struct net_device *ndev,
  2142. netdev_features_t features)
  2143. {
  2144. struct ql_adapter *qdev = netdev_priv(ndev);
  2145. int status = 0;
  2146. status = ql_adapter_down(qdev);
  2147. if (status) {
  2148. netif_err(qdev, link, qdev->ndev,
  2149. "Failed to bring down the adapter\n");
  2150. return status;
  2151. }
  2152. /* update the features with resent change */
  2153. ndev->features = features;
  2154. status = ql_adapter_up(qdev);
  2155. if (status) {
  2156. netif_err(qdev, link, qdev->ndev,
  2157. "Failed to bring up the adapter\n");
  2158. return status;
  2159. }
  2160. return status;
  2161. }
  2162. static netdev_features_t qlge_fix_features(struct net_device *ndev,
  2163. netdev_features_t features)
  2164. {
  2165. int err;
  2166. /*
  2167. * Since there is no support for separate rx/tx vlan accel
  2168. * enable/disable make sure tx flag is always in same state as rx.
  2169. */
  2170. if (features & NETIF_F_HW_VLAN_CTAG_RX)
  2171. features |= NETIF_F_HW_VLAN_CTAG_TX;
  2172. else
  2173. features &= ~NETIF_F_HW_VLAN_CTAG_TX;
  2174. /* Update the behavior of vlan accel in the adapter */
  2175. err = qlge_update_hw_vlan_features(ndev, features);
  2176. if (err)
  2177. return err;
  2178. return features;
  2179. }
  2180. static int qlge_set_features(struct net_device *ndev,
  2181. netdev_features_t features)
  2182. {
  2183. netdev_features_t changed = ndev->features ^ features;
  2184. if (changed & NETIF_F_HW_VLAN_CTAG_RX)
  2185. qlge_vlan_mode(ndev, features);
  2186. return 0;
  2187. }
  2188. static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
  2189. {
  2190. u32 enable_bit = MAC_ADDR_E;
  2191. int err;
  2192. err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
  2193. MAC_ADDR_TYPE_VLAN, vid);
  2194. if (err)
  2195. netif_err(qdev, ifup, qdev->ndev,
  2196. "Failed to init vlan address.\n");
  2197. return err;
  2198. }
  2199. static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
  2200. {
  2201. struct ql_adapter *qdev = netdev_priv(ndev);
  2202. int status;
  2203. int err;
  2204. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2205. if (status)
  2206. return status;
  2207. err = __qlge_vlan_rx_add_vid(qdev, vid);
  2208. set_bit(vid, qdev->active_vlans);
  2209. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2210. return err;
  2211. }
  2212. static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
  2213. {
  2214. u32 enable_bit = 0;
  2215. int err;
  2216. err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
  2217. MAC_ADDR_TYPE_VLAN, vid);
  2218. if (err)
  2219. netif_err(qdev, ifup, qdev->ndev,
  2220. "Failed to clear vlan address.\n");
  2221. return err;
  2222. }
  2223. static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
  2224. {
  2225. struct ql_adapter *qdev = netdev_priv(ndev);
  2226. int status;
  2227. int err;
  2228. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2229. if (status)
  2230. return status;
  2231. err = __qlge_vlan_rx_kill_vid(qdev, vid);
  2232. clear_bit(vid, qdev->active_vlans);
  2233. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2234. return err;
  2235. }
  2236. static void qlge_restore_vlan(struct ql_adapter *qdev)
  2237. {
  2238. int status;
  2239. u16 vid;
  2240. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2241. if (status)
  2242. return;
  2243. for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
  2244. __qlge_vlan_rx_add_vid(qdev, vid);
  2245. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2246. }
  2247. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  2248. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  2249. {
  2250. struct rx_ring *rx_ring = dev_id;
  2251. napi_schedule(&rx_ring->napi);
  2252. return IRQ_HANDLED;
  2253. }
  2254. /* This handles a fatal error, MPI activity, and the default
  2255. * rx_ring in an MSI-X multiple vector environment.
  2256. * In MSI/Legacy environment it also process the rest of
  2257. * the rx_rings.
  2258. */
  2259. static irqreturn_t qlge_isr(int irq, void *dev_id)
  2260. {
  2261. struct rx_ring *rx_ring = dev_id;
  2262. struct ql_adapter *qdev = rx_ring->qdev;
  2263. struct intr_context *intr_context = &qdev->intr_context[0];
  2264. u32 var;
  2265. int work_done = 0;
  2266. spin_lock(&qdev->hw_lock);
  2267. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  2268. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2269. "Shared Interrupt, Not ours!\n");
  2270. spin_unlock(&qdev->hw_lock);
  2271. return IRQ_NONE;
  2272. }
  2273. spin_unlock(&qdev->hw_lock);
  2274. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  2275. /*
  2276. * Check for fatal error.
  2277. */
  2278. if (var & STS_FE) {
  2279. ql_queue_asic_error(qdev);
  2280. netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
  2281. var = ql_read32(qdev, ERR_STS);
  2282. netdev_err(qdev->ndev, "Resetting chip. "
  2283. "Error Status Register = 0x%x\n", var);
  2284. return IRQ_HANDLED;
  2285. }
  2286. /*
  2287. * Check MPI processor activity.
  2288. */
  2289. if ((var & STS_PI) &&
  2290. (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
  2291. /*
  2292. * We've got an async event or mailbox completion.
  2293. * Handle it and clear the source of the interrupt.
  2294. */
  2295. netif_err(qdev, intr, qdev->ndev,
  2296. "Got MPI processor interrupt.\n");
  2297. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2298. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
  2299. queue_delayed_work_on(smp_processor_id(),
  2300. qdev->workqueue, &qdev->mpi_work, 0);
  2301. work_done++;
  2302. }
  2303. /*
  2304. * Get the bit-mask that shows the active queues for this
  2305. * pass. Compare it to the queues that this irq services
  2306. * and call napi if there's a match.
  2307. */
  2308. var = ql_read32(qdev, ISR1);
  2309. if (var & intr_context->irq_mask) {
  2310. netif_info(qdev, intr, qdev->ndev,
  2311. "Waking handler for rx_ring[0].\n");
  2312. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2313. napi_schedule(&rx_ring->napi);
  2314. work_done++;
  2315. }
  2316. ql_enable_completion_interrupt(qdev, intr_context->intr);
  2317. return work_done ? IRQ_HANDLED : IRQ_NONE;
  2318. }
  2319. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2320. {
  2321. if (skb_is_gso(skb)) {
  2322. int err;
  2323. if (skb_header_cloned(skb)) {
  2324. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2325. if (err)
  2326. return err;
  2327. }
  2328. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2329. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  2330. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2331. mac_iocb_ptr->total_hdrs_len =
  2332. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  2333. mac_iocb_ptr->net_trans_offset =
  2334. cpu_to_le16(skb_network_offset(skb) |
  2335. skb_transport_offset(skb)
  2336. << OB_MAC_TRANSPORT_HDR_SHIFT);
  2337. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  2338. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  2339. if (likely(skb->protocol == htons(ETH_P_IP))) {
  2340. struct iphdr *iph = ip_hdr(skb);
  2341. iph->check = 0;
  2342. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2343. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  2344. iph->daddr, 0,
  2345. IPPROTO_TCP,
  2346. 0);
  2347. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  2348. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  2349. tcp_hdr(skb)->check =
  2350. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  2351. &ipv6_hdr(skb)->daddr,
  2352. 0, IPPROTO_TCP, 0);
  2353. }
  2354. return 1;
  2355. }
  2356. return 0;
  2357. }
  2358. static void ql_hw_csum_setup(struct sk_buff *skb,
  2359. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2360. {
  2361. int len;
  2362. struct iphdr *iph = ip_hdr(skb);
  2363. __sum16 *check;
  2364. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2365. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2366. mac_iocb_ptr->net_trans_offset =
  2367. cpu_to_le16(skb_network_offset(skb) |
  2368. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  2369. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2370. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  2371. if (likely(iph->protocol == IPPROTO_TCP)) {
  2372. check = &(tcp_hdr(skb)->check);
  2373. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  2374. mac_iocb_ptr->total_hdrs_len =
  2375. cpu_to_le16(skb_transport_offset(skb) +
  2376. (tcp_hdr(skb)->doff << 2));
  2377. } else {
  2378. check = &(udp_hdr(skb)->check);
  2379. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  2380. mac_iocb_ptr->total_hdrs_len =
  2381. cpu_to_le16(skb_transport_offset(skb) +
  2382. sizeof(struct udphdr));
  2383. }
  2384. *check = ~csum_tcpudp_magic(iph->saddr,
  2385. iph->daddr, len, iph->protocol, 0);
  2386. }
  2387. static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
  2388. {
  2389. struct tx_ring_desc *tx_ring_desc;
  2390. struct ob_mac_iocb_req *mac_iocb_ptr;
  2391. struct ql_adapter *qdev = netdev_priv(ndev);
  2392. int tso;
  2393. struct tx_ring *tx_ring;
  2394. u32 tx_ring_idx = (u32) skb->queue_mapping;
  2395. tx_ring = &qdev->tx_ring[tx_ring_idx];
  2396. if (skb_padto(skb, ETH_ZLEN))
  2397. return NETDEV_TX_OK;
  2398. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2399. netif_info(qdev, tx_queued, qdev->ndev,
  2400. "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
  2401. __func__, tx_ring_idx);
  2402. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2403. tx_ring->tx_errors++;
  2404. return NETDEV_TX_BUSY;
  2405. }
  2406. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  2407. mac_iocb_ptr = tx_ring_desc->queue_entry;
  2408. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  2409. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  2410. mac_iocb_ptr->tid = tx_ring_desc->index;
  2411. /* We use the upper 32-bits to store the tx queue for this IO.
  2412. * When we get the completion we can use it to establish the context.
  2413. */
  2414. mac_iocb_ptr->txq_idx = tx_ring_idx;
  2415. tx_ring_desc->skb = skb;
  2416. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  2417. if (vlan_tx_tag_present(skb)) {
  2418. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2419. "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
  2420. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  2421. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  2422. }
  2423. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2424. if (tso < 0) {
  2425. dev_kfree_skb_any(skb);
  2426. return NETDEV_TX_OK;
  2427. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  2428. ql_hw_csum_setup(skb,
  2429. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2430. }
  2431. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  2432. NETDEV_TX_OK) {
  2433. netif_err(qdev, tx_queued, qdev->ndev,
  2434. "Could not map the segments.\n");
  2435. tx_ring->tx_errors++;
  2436. return NETDEV_TX_BUSY;
  2437. }
  2438. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  2439. tx_ring->prod_idx++;
  2440. if (tx_ring->prod_idx == tx_ring->wq_len)
  2441. tx_ring->prod_idx = 0;
  2442. wmb();
  2443. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  2444. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2445. "tx queued, slot %d, len %d\n",
  2446. tx_ring->prod_idx, skb->len);
  2447. atomic_dec(&tx_ring->tx_count);
  2448. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2449. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2450. if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  2451. /*
  2452. * The queue got stopped because the tx_ring was full.
  2453. * Wake it up, because it's now at least 25% empty.
  2454. */
  2455. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  2456. }
  2457. return NETDEV_TX_OK;
  2458. }
  2459. static void ql_free_shadow_space(struct ql_adapter *qdev)
  2460. {
  2461. if (qdev->rx_ring_shadow_reg_area) {
  2462. pci_free_consistent(qdev->pdev,
  2463. PAGE_SIZE,
  2464. qdev->rx_ring_shadow_reg_area,
  2465. qdev->rx_ring_shadow_reg_dma);
  2466. qdev->rx_ring_shadow_reg_area = NULL;
  2467. }
  2468. if (qdev->tx_ring_shadow_reg_area) {
  2469. pci_free_consistent(qdev->pdev,
  2470. PAGE_SIZE,
  2471. qdev->tx_ring_shadow_reg_area,
  2472. qdev->tx_ring_shadow_reg_dma);
  2473. qdev->tx_ring_shadow_reg_area = NULL;
  2474. }
  2475. }
  2476. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2477. {
  2478. qdev->rx_ring_shadow_reg_area =
  2479. pci_alloc_consistent(qdev->pdev,
  2480. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  2481. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2482. netif_err(qdev, ifup, qdev->ndev,
  2483. "Allocation of RX shadow space failed.\n");
  2484. return -ENOMEM;
  2485. }
  2486. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2487. qdev->tx_ring_shadow_reg_area =
  2488. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  2489. &qdev->tx_ring_shadow_reg_dma);
  2490. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2491. netif_err(qdev, ifup, qdev->ndev,
  2492. "Allocation of TX shadow space failed.\n");
  2493. goto err_wqp_sh_area;
  2494. }
  2495. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2496. return 0;
  2497. err_wqp_sh_area:
  2498. pci_free_consistent(qdev->pdev,
  2499. PAGE_SIZE,
  2500. qdev->rx_ring_shadow_reg_area,
  2501. qdev->rx_ring_shadow_reg_dma);
  2502. return -ENOMEM;
  2503. }
  2504. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2505. {
  2506. struct tx_ring_desc *tx_ring_desc;
  2507. int i;
  2508. struct ob_mac_iocb_req *mac_iocb_ptr;
  2509. mac_iocb_ptr = tx_ring->wq_base;
  2510. tx_ring_desc = tx_ring->q;
  2511. for (i = 0; i < tx_ring->wq_len; i++) {
  2512. tx_ring_desc->index = i;
  2513. tx_ring_desc->skb = NULL;
  2514. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2515. mac_iocb_ptr++;
  2516. tx_ring_desc++;
  2517. }
  2518. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2519. }
  2520. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2521. struct tx_ring *tx_ring)
  2522. {
  2523. if (tx_ring->wq_base) {
  2524. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2525. tx_ring->wq_base, tx_ring->wq_base_dma);
  2526. tx_ring->wq_base = NULL;
  2527. }
  2528. kfree(tx_ring->q);
  2529. tx_ring->q = NULL;
  2530. }
  2531. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2532. struct tx_ring *tx_ring)
  2533. {
  2534. tx_ring->wq_base =
  2535. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2536. &tx_ring->wq_base_dma);
  2537. if ((tx_ring->wq_base == NULL) ||
  2538. tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
  2539. goto pci_alloc_err;
  2540. tx_ring->q =
  2541. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2542. if (tx_ring->q == NULL)
  2543. goto err;
  2544. return 0;
  2545. err:
  2546. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2547. tx_ring->wq_base, tx_ring->wq_base_dma);
  2548. tx_ring->wq_base = NULL;
  2549. pci_alloc_err:
  2550. netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
  2551. return -ENOMEM;
  2552. }
  2553. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2554. {
  2555. struct bq_desc *lbq_desc;
  2556. uint32_t curr_idx, clean_idx;
  2557. curr_idx = rx_ring->lbq_curr_idx;
  2558. clean_idx = rx_ring->lbq_clean_idx;
  2559. while (curr_idx != clean_idx) {
  2560. lbq_desc = &rx_ring->lbq[curr_idx];
  2561. if (lbq_desc->p.pg_chunk.last_flag) {
  2562. pci_unmap_page(qdev->pdev,
  2563. lbq_desc->p.pg_chunk.map,
  2564. ql_lbq_block_size(qdev),
  2565. PCI_DMA_FROMDEVICE);
  2566. lbq_desc->p.pg_chunk.last_flag = 0;
  2567. }
  2568. put_page(lbq_desc->p.pg_chunk.page);
  2569. lbq_desc->p.pg_chunk.page = NULL;
  2570. if (++curr_idx == rx_ring->lbq_len)
  2571. curr_idx = 0;
  2572. }
  2573. if (rx_ring->pg_chunk.page) {
  2574. pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
  2575. ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
  2576. put_page(rx_ring->pg_chunk.page);
  2577. rx_ring->pg_chunk.page = NULL;
  2578. }
  2579. }
  2580. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2581. {
  2582. int i;
  2583. struct bq_desc *sbq_desc;
  2584. for (i = 0; i < rx_ring->sbq_len; i++) {
  2585. sbq_desc = &rx_ring->sbq[i];
  2586. if (sbq_desc == NULL) {
  2587. netif_err(qdev, ifup, qdev->ndev,
  2588. "sbq_desc %d is NULL.\n", i);
  2589. return;
  2590. }
  2591. if (sbq_desc->p.skb) {
  2592. pci_unmap_single(qdev->pdev,
  2593. dma_unmap_addr(sbq_desc, mapaddr),
  2594. dma_unmap_len(sbq_desc, maplen),
  2595. PCI_DMA_FROMDEVICE);
  2596. dev_kfree_skb(sbq_desc->p.skb);
  2597. sbq_desc->p.skb = NULL;
  2598. }
  2599. }
  2600. }
  2601. /* Free all large and small rx buffers associated
  2602. * with the completion queues for this device.
  2603. */
  2604. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2605. {
  2606. int i;
  2607. struct rx_ring *rx_ring;
  2608. for (i = 0; i < qdev->rx_ring_count; i++) {
  2609. rx_ring = &qdev->rx_ring[i];
  2610. if (rx_ring->lbq)
  2611. ql_free_lbq_buffers(qdev, rx_ring);
  2612. if (rx_ring->sbq)
  2613. ql_free_sbq_buffers(qdev, rx_ring);
  2614. }
  2615. }
  2616. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2617. {
  2618. struct rx_ring *rx_ring;
  2619. int i;
  2620. for (i = 0; i < qdev->rx_ring_count; i++) {
  2621. rx_ring = &qdev->rx_ring[i];
  2622. if (rx_ring->type != TX_Q)
  2623. ql_update_buffer_queues(qdev, rx_ring);
  2624. }
  2625. }
  2626. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2627. struct rx_ring *rx_ring)
  2628. {
  2629. int i;
  2630. struct bq_desc *lbq_desc;
  2631. __le64 *bq = rx_ring->lbq_base;
  2632. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2633. for (i = 0; i < rx_ring->lbq_len; i++) {
  2634. lbq_desc = &rx_ring->lbq[i];
  2635. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2636. lbq_desc->index = i;
  2637. lbq_desc->addr = bq;
  2638. bq++;
  2639. }
  2640. }
  2641. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2642. struct rx_ring *rx_ring)
  2643. {
  2644. int i;
  2645. struct bq_desc *sbq_desc;
  2646. __le64 *bq = rx_ring->sbq_base;
  2647. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2648. for (i = 0; i < rx_ring->sbq_len; i++) {
  2649. sbq_desc = &rx_ring->sbq[i];
  2650. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2651. sbq_desc->index = i;
  2652. sbq_desc->addr = bq;
  2653. bq++;
  2654. }
  2655. }
  2656. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2657. struct rx_ring *rx_ring)
  2658. {
  2659. /* Free the small buffer queue. */
  2660. if (rx_ring->sbq_base) {
  2661. pci_free_consistent(qdev->pdev,
  2662. rx_ring->sbq_size,
  2663. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2664. rx_ring->sbq_base = NULL;
  2665. }
  2666. /* Free the small buffer queue control blocks. */
  2667. kfree(rx_ring->sbq);
  2668. rx_ring->sbq = NULL;
  2669. /* Free the large buffer queue. */
  2670. if (rx_ring->lbq_base) {
  2671. pci_free_consistent(qdev->pdev,
  2672. rx_ring->lbq_size,
  2673. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2674. rx_ring->lbq_base = NULL;
  2675. }
  2676. /* Free the large buffer queue control blocks. */
  2677. kfree(rx_ring->lbq);
  2678. rx_ring->lbq = NULL;
  2679. /* Free the rx queue. */
  2680. if (rx_ring->cq_base) {
  2681. pci_free_consistent(qdev->pdev,
  2682. rx_ring->cq_size,
  2683. rx_ring->cq_base, rx_ring->cq_base_dma);
  2684. rx_ring->cq_base = NULL;
  2685. }
  2686. }
  2687. /* Allocate queues and buffers for this completions queue based
  2688. * on the values in the parameter structure. */
  2689. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2690. struct rx_ring *rx_ring)
  2691. {
  2692. /*
  2693. * Allocate the completion queue for this rx_ring.
  2694. */
  2695. rx_ring->cq_base =
  2696. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2697. &rx_ring->cq_base_dma);
  2698. if (rx_ring->cq_base == NULL) {
  2699. netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
  2700. return -ENOMEM;
  2701. }
  2702. if (rx_ring->sbq_len) {
  2703. /*
  2704. * Allocate small buffer queue.
  2705. */
  2706. rx_ring->sbq_base =
  2707. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2708. &rx_ring->sbq_base_dma);
  2709. if (rx_ring->sbq_base == NULL) {
  2710. netif_err(qdev, ifup, qdev->ndev,
  2711. "Small buffer queue allocation failed.\n");
  2712. goto err_mem;
  2713. }
  2714. /*
  2715. * Allocate small buffer queue control blocks.
  2716. */
  2717. rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
  2718. sizeof(struct bq_desc),
  2719. GFP_KERNEL);
  2720. if (rx_ring->sbq == NULL)
  2721. goto err_mem;
  2722. ql_init_sbq_ring(qdev, rx_ring);
  2723. }
  2724. if (rx_ring->lbq_len) {
  2725. /*
  2726. * Allocate large buffer queue.
  2727. */
  2728. rx_ring->lbq_base =
  2729. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2730. &rx_ring->lbq_base_dma);
  2731. if (rx_ring->lbq_base == NULL) {
  2732. netif_err(qdev, ifup, qdev->ndev,
  2733. "Large buffer queue allocation failed.\n");
  2734. goto err_mem;
  2735. }
  2736. /*
  2737. * Allocate large buffer queue control blocks.
  2738. */
  2739. rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
  2740. sizeof(struct bq_desc),
  2741. GFP_KERNEL);
  2742. if (rx_ring->lbq == NULL)
  2743. goto err_mem;
  2744. ql_init_lbq_ring(qdev, rx_ring);
  2745. }
  2746. return 0;
  2747. err_mem:
  2748. ql_free_rx_resources(qdev, rx_ring);
  2749. return -ENOMEM;
  2750. }
  2751. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2752. {
  2753. struct tx_ring *tx_ring;
  2754. struct tx_ring_desc *tx_ring_desc;
  2755. int i, j;
  2756. /*
  2757. * Loop through all queues and free
  2758. * any resources.
  2759. */
  2760. for (j = 0; j < qdev->tx_ring_count; j++) {
  2761. tx_ring = &qdev->tx_ring[j];
  2762. for (i = 0; i < tx_ring->wq_len; i++) {
  2763. tx_ring_desc = &tx_ring->q[i];
  2764. if (tx_ring_desc && tx_ring_desc->skb) {
  2765. netif_err(qdev, ifdown, qdev->ndev,
  2766. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2767. tx_ring_desc->skb, j,
  2768. tx_ring_desc->index);
  2769. ql_unmap_send(qdev, tx_ring_desc,
  2770. tx_ring_desc->map_cnt);
  2771. dev_kfree_skb(tx_ring_desc->skb);
  2772. tx_ring_desc->skb = NULL;
  2773. }
  2774. }
  2775. }
  2776. }
  2777. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2778. {
  2779. int i;
  2780. for (i = 0; i < qdev->tx_ring_count; i++)
  2781. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2782. for (i = 0; i < qdev->rx_ring_count; i++)
  2783. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2784. ql_free_shadow_space(qdev);
  2785. }
  2786. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2787. {
  2788. int i;
  2789. /* Allocate space for our shadow registers and such. */
  2790. if (ql_alloc_shadow_space(qdev))
  2791. return -ENOMEM;
  2792. for (i = 0; i < qdev->rx_ring_count; i++) {
  2793. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2794. netif_err(qdev, ifup, qdev->ndev,
  2795. "RX resource allocation failed.\n");
  2796. goto err_mem;
  2797. }
  2798. }
  2799. /* Allocate tx queue resources */
  2800. for (i = 0; i < qdev->tx_ring_count; i++) {
  2801. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2802. netif_err(qdev, ifup, qdev->ndev,
  2803. "TX resource allocation failed.\n");
  2804. goto err_mem;
  2805. }
  2806. }
  2807. return 0;
  2808. err_mem:
  2809. ql_free_mem_resources(qdev);
  2810. return -ENOMEM;
  2811. }
  2812. /* Set up the rx ring control block and pass it to the chip.
  2813. * The control block is defined as
  2814. * "Completion Queue Initialization Control Block", or cqicb.
  2815. */
  2816. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2817. {
  2818. struct cqicb *cqicb = &rx_ring->cqicb;
  2819. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2820. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2821. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2822. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2823. void __iomem *doorbell_area =
  2824. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2825. int err = 0;
  2826. u16 bq_len;
  2827. u64 tmp;
  2828. __le64 *base_indirect_ptr;
  2829. int page_entries;
  2830. /* Set up the shadow registers for this ring. */
  2831. rx_ring->prod_idx_sh_reg = shadow_reg;
  2832. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2833. *rx_ring->prod_idx_sh_reg = 0;
  2834. shadow_reg += sizeof(u64);
  2835. shadow_reg_dma += sizeof(u64);
  2836. rx_ring->lbq_base_indirect = shadow_reg;
  2837. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2838. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2839. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2840. rx_ring->sbq_base_indirect = shadow_reg;
  2841. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2842. /* PCI doorbell mem area + 0x00 for consumer index register */
  2843. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2844. rx_ring->cnsmr_idx = 0;
  2845. rx_ring->curr_entry = rx_ring->cq_base;
  2846. /* PCI doorbell mem area + 0x04 for valid register */
  2847. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2848. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2849. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2850. /* PCI doorbell mem area + 0x1c */
  2851. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2852. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2853. cqicb->msix_vect = rx_ring->irq;
  2854. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2855. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2856. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2857. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2858. /*
  2859. * Set up the control block load flags.
  2860. */
  2861. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2862. FLAGS_LV | /* Load MSI-X vector */
  2863. FLAGS_LI; /* Load irq delay values */
  2864. if (rx_ring->lbq_len) {
  2865. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2866. tmp = (u64)rx_ring->lbq_base_dma;
  2867. base_indirect_ptr = rx_ring->lbq_base_indirect;
  2868. page_entries = 0;
  2869. do {
  2870. *base_indirect_ptr = cpu_to_le64(tmp);
  2871. tmp += DB_PAGE_SIZE;
  2872. base_indirect_ptr++;
  2873. page_entries++;
  2874. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2875. cqicb->lbq_addr =
  2876. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2877. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2878. (u16) rx_ring->lbq_buf_size;
  2879. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2880. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2881. (u16) rx_ring->lbq_len;
  2882. cqicb->lbq_len = cpu_to_le16(bq_len);
  2883. rx_ring->lbq_prod_idx = 0;
  2884. rx_ring->lbq_curr_idx = 0;
  2885. rx_ring->lbq_clean_idx = 0;
  2886. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2887. }
  2888. if (rx_ring->sbq_len) {
  2889. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2890. tmp = (u64)rx_ring->sbq_base_dma;
  2891. base_indirect_ptr = rx_ring->sbq_base_indirect;
  2892. page_entries = 0;
  2893. do {
  2894. *base_indirect_ptr = cpu_to_le64(tmp);
  2895. tmp += DB_PAGE_SIZE;
  2896. base_indirect_ptr++;
  2897. page_entries++;
  2898. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2899. cqicb->sbq_addr =
  2900. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2901. cqicb->sbq_buf_size =
  2902. cpu_to_le16((u16)(rx_ring->sbq_buf_size));
  2903. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2904. (u16) rx_ring->sbq_len;
  2905. cqicb->sbq_len = cpu_to_le16(bq_len);
  2906. rx_ring->sbq_prod_idx = 0;
  2907. rx_ring->sbq_curr_idx = 0;
  2908. rx_ring->sbq_clean_idx = 0;
  2909. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2910. }
  2911. switch (rx_ring->type) {
  2912. case TX_Q:
  2913. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2914. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2915. break;
  2916. case RX_Q:
  2917. /* Inbound completion handling rx_rings run in
  2918. * separate NAPI contexts.
  2919. */
  2920. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2921. 64);
  2922. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2923. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2924. break;
  2925. default:
  2926. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2927. "Invalid rx_ring->type = %d.\n", rx_ring->type);
  2928. }
  2929. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2930. CFG_LCQ, rx_ring->cq_id);
  2931. if (err) {
  2932. netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
  2933. return err;
  2934. }
  2935. return err;
  2936. }
  2937. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2938. {
  2939. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2940. void __iomem *doorbell_area =
  2941. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2942. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2943. (tx_ring->wq_id * sizeof(u64));
  2944. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2945. (tx_ring->wq_id * sizeof(u64));
  2946. int err = 0;
  2947. /*
  2948. * Assign doorbell registers for this tx_ring.
  2949. */
  2950. /* TX PCI doorbell mem area for tx producer index */
  2951. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2952. tx_ring->prod_idx = 0;
  2953. /* TX PCI doorbell mem area + 0x04 */
  2954. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2955. /*
  2956. * Assign shadow registers for this tx_ring.
  2957. */
  2958. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2959. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2960. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2961. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2962. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2963. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2964. wqicb->rid = 0;
  2965. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2966. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2967. ql_init_tx_ring(qdev, tx_ring);
  2968. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2969. (u16) tx_ring->wq_id);
  2970. if (err) {
  2971. netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
  2972. return err;
  2973. }
  2974. return err;
  2975. }
  2976. static void ql_disable_msix(struct ql_adapter *qdev)
  2977. {
  2978. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2979. pci_disable_msix(qdev->pdev);
  2980. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2981. kfree(qdev->msi_x_entry);
  2982. qdev->msi_x_entry = NULL;
  2983. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2984. pci_disable_msi(qdev->pdev);
  2985. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2986. }
  2987. }
  2988. /* We start by trying to get the number of vectors
  2989. * stored in qdev->intr_count. If we don't get that
  2990. * many then we reduce the count and try again.
  2991. */
  2992. static void ql_enable_msix(struct ql_adapter *qdev)
  2993. {
  2994. int i, err;
  2995. /* Get the MSIX vectors. */
  2996. if (qlge_irq_type == MSIX_IRQ) {
  2997. /* Try to alloc space for the msix struct,
  2998. * if it fails then go to MSI/legacy.
  2999. */
  3000. qdev->msi_x_entry = kcalloc(qdev->intr_count,
  3001. sizeof(struct msix_entry),
  3002. GFP_KERNEL);
  3003. if (!qdev->msi_x_entry) {
  3004. qlge_irq_type = MSI_IRQ;
  3005. goto msi;
  3006. }
  3007. for (i = 0; i < qdev->intr_count; i++)
  3008. qdev->msi_x_entry[i].entry = i;
  3009. /* Loop to get our vectors. We start with
  3010. * what we want and settle for what we get.
  3011. */
  3012. do {
  3013. err = pci_enable_msix(qdev->pdev,
  3014. qdev->msi_x_entry, qdev->intr_count);
  3015. if (err > 0)
  3016. qdev->intr_count = err;
  3017. } while (err > 0);
  3018. if (err < 0) {
  3019. kfree(qdev->msi_x_entry);
  3020. qdev->msi_x_entry = NULL;
  3021. netif_warn(qdev, ifup, qdev->ndev,
  3022. "MSI-X Enable failed, trying MSI.\n");
  3023. qdev->intr_count = 1;
  3024. qlge_irq_type = MSI_IRQ;
  3025. } else if (err == 0) {
  3026. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  3027. netif_info(qdev, ifup, qdev->ndev,
  3028. "MSI-X Enabled, got %d vectors.\n",
  3029. qdev->intr_count);
  3030. return;
  3031. }
  3032. }
  3033. msi:
  3034. qdev->intr_count = 1;
  3035. if (qlge_irq_type == MSI_IRQ) {
  3036. if (!pci_enable_msi(qdev->pdev)) {
  3037. set_bit(QL_MSI_ENABLED, &qdev->flags);
  3038. netif_info(qdev, ifup, qdev->ndev,
  3039. "Running with MSI interrupts.\n");
  3040. return;
  3041. }
  3042. }
  3043. qlge_irq_type = LEG_IRQ;
  3044. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3045. "Running with legacy interrupts.\n");
  3046. }
  3047. /* Each vector services 1 RSS ring and and 1 or more
  3048. * TX completion rings. This function loops through
  3049. * the TX completion rings and assigns the vector that
  3050. * will service it. An example would be if there are
  3051. * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
  3052. * This would mean that vector 0 would service RSS ring 0
  3053. * and TX completion rings 0,1,2 and 3. Vector 1 would
  3054. * service RSS ring 1 and TX completion rings 4,5,6 and 7.
  3055. */
  3056. static void ql_set_tx_vect(struct ql_adapter *qdev)
  3057. {
  3058. int i, j, vect;
  3059. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  3060. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3061. /* Assign irq vectors to TX rx_rings.*/
  3062. for (vect = 0, j = 0, i = qdev->rss_ring_count;
  3063. i < qdev->rx_ring_count; i++) {
  3064. if (j == tx_rings_per_vector) {
  3065. vect++;
  3066. j = 0;
  3067. }
  3068. qdev->rx_ring[i].irq = vect;
  3069. j++;
  3070. }
  3071. } else {
  3072. /* For single vector all rings have an irq
  3073. * of zero.
  3074. */
  3075. for (i = 0; i < qdev->rx_ring_count; i++)
  3076. qdev->rx_ring[i].irq = 0;
  3077. }
  3078. }
  3079. /* Set the interrupt mask for this vector. Each vector
  3080. * will service 1 RSS ring and 1 or more TX completion
  3081. * rings. This function sets up a bit mask per vector
  3082. * that indicates which rings it services.
  3083. */
  3084. static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
  3085. {
  3086. int j, vect = ctx->intr;
  3087. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  3088. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3089. /* Add the RSS ring serviced by this vector
  3090. * to the mask.
  3091. */
  3092. ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
  3093. /* Add the TX ring(s) serviced by this vector
  3094. * to the mask. */
  3095. for (j = 0; j < tx_rings_per_vector; j++) {
  3096. ctx->irq_mask |=
  3097. (1 << qdev->rx_ring[qdev->rss_ring_count +
  3098. (vect * tx_rings_per_vector) + j].cq_id);
  3099. }
  3100. } else {
  3101. /* For single vector we just shift each queue's
  3102. * ID into the mask.
  3103. */
  3104. for (j = 0; j < qdev->rx_ring_count; j++)
  3105. ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
  3106. }
  3107. }
  3108. /*
  3109. * Here we build the intr_context structures based on
  3110. * our rx_ring count and intr vector count.
  3111. * The intr_context structure is used to hook each vector
  3112. * to possibly different handlers.
  3113. */
  3114. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  3115. {
  3116. int i = 0;
  3117. struct intr_context *intr_context = &qdev->intr_context[0];
  3118. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3119. /* Each rx_ring has it's
  3120. * own intr_context since we have separate
  3121. * vectors for each queue.
  3122. */
  3123. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3124. qdev->rx_ring[i].irq = i;
  3125. intr_context->intr = i;
  3126. intr_context->qdev = qdev;
  3127. /* Set up this vector's bit-mask that indicates
  3128. * which queues it services.
  3129. */
  3130. ql_set_irq_mask(qdev, intr_context);
  3131. /*
  3132. * We set up each vectors enable/disable/read bits so
  3133. * there's no bit/mask calculations in the critical path.
  3134. */
  3135. intr_context->intr_en_mask =
  3136. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3137. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  3138. | i;
  3139. intr_context->intr_dis_mask =
  3140. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3141. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  3142. INTR_EN_IHD | i;
  3143. intr_context->intr_read_mask =
  3144. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3145. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  3146. i;
  3147. if (i == 0) {
  3148. /* The first vector/queue handles
  3149. * broadcast/multicast, fatal errors,
  3150. * and firmware events. This in addition
  3151. * to normal inbound NAPI processing.
  3152. */
  3153. intr_context->handler = qlge_isr;
  3154. sprintf(intr_context->name, "%s-rx-%d",
  3155. qdev->ndev->name, i);
  3156. } else {
  3157. /*
  3158. * Inbound queues handle unicast frames only.
  3159. */
  3160. intr_context->handler = qlge_msix_rx_isr;
  3161. sprintf(intr_context->name, "%s-rx-%d",
  3162. qdev->ndev->name, i);
  3163. }
  3164. }
  3165. } else {
  3166. /*
  3167. * All rx_rings use the same intr_context since
  3168. * there is only one vector.
  3169. */
  3170. intr_context->intr = 0;
  3171. intr_context->qdev = qdev;
  3172. /*
  3173. * We set up each vectors enable/disable/read bits so
  3174. * there's no bit/mask calculations in the critical path.
  3175. */
  3176. intr_context->intr_en_mask =
  3177. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  3178. intr_context->intr_dis_mask =
  3179. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3180. INTR_EN_TYPE_DISABLE;
  3181. intr_context->intr_read_mask =
  3182. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  3183. /*
  3184. * Single interrupt means one handler for all rings.
  3185. */
  3186. intr_context->handler = qlge_isr;
  3187. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  3188. /* Set up this vector's bit-mask that indicates
  3189. * which queues it services. In this case there is
  3190. * a single vector so it will service all RSS and
  3191. * TX completion rings.
  3192. */
  3193. ql_set_irq_mask(qdev, intr_context);
  3194. }
  3195. /* Tell the TX completion rings which MSIx vector
  3196. * they will be using.
  3197. */
  3198. ql_set_tx_vect(qdev);
  3199. }
  3200. static void ql_free_irq(struct ql_adapter *qdev)
  3201. {
  3202. int i;
  3203. struct intr_context *intr_context = &qdev->intr_context[0];
  3204. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3205. if (intr_context->hooked) {
  3206. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3207. free_irq(qdev->msi_x_entry[i].vector,
  3208. &qdev->rx_ring[i]);
  3209. } else {
  3210. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  3211. }
  3212. }
  3213. }
  3214. ql_disable_msix(qdev);
  3215. }
  3216. static int ql_request_irq(struct ql_adapter *qdev)
  3217. {
  3218. int i;
  3219. int status = 0;
  3220. struct pci_dev *pdev = qdev->pdev;
  3221. struct intr_context *intr_context = &qdev->intr_context[0];
  3222. ql_resolve_queues_to_irqs(qdev);
  3223. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3224. atomic_set(&intr_context->irq_cnt, 0);
  3225. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3226. status = request_irq(qdev->msi_x_entry[i].vector,
  3227. intr_context->handler,
  3228. 0,
  3229. intr_context->name,
  3230. &qdev->rx_ring[i]);
  3231. if (status) {
  3232. netif_err(qdev, ifup, qdev->ndev,
  3233. "Failed request for MSIX interrupt %d.\n",
  3234. i);
  3235. goto err_irq;
  3236. }
  3237. } else {
  3238. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3239. "trying msi or legacy interrupts.\n");
  3240. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3241. "%s: irq = %d.\n", __func__, pdev->irq);
  3242. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3243. "%s: context->name = %s.\n", __func__,
  3244. intr_context->name);
  3245. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3246. "%s: dev_id = 0x%p.\n", __func__,
  3247. &qdev->rx_ring[0]);
  3248. status =
  3249. request_irq(pdev->irq, qlge_isr,
  3250. test_bit(QL_MSI_ENABLED,
  3251. &qdev->
  3252. flags) ? 0 : IRQF_SHARED,
  3253. intr_context->name, &qdev->rx_ring[0]);
  3254. if (status)
  3255. goto err_irq;
  3256. netif_err(qdev, ifup, qdev->ndev,
  3257. "Hooked intr %d, queue type %s, with name %s.\n",
  3258. i,
  3259. qdev->rx_ring[0].type == DEFAULT_Q ?
  3260. "DEFAULT_Q" :
  3261. qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
  3262. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  3263. intr_context->name);
  3264. }
  3265. intr_context->hooked = 1;
  3266. }
  3267. return status;
  3268. err_irq:
  3269. netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
  3270. ql_free_irq(qdev);
  3271. return status;
  3272. }
  3273. static int ql_start_rss(struct ql_adapter *qdev)
  3274. {
  3275. static const u8 init_hash_seed[] = {
  3276. 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
  3277. 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
  3278. 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
  3279. 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
  3280. 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
  3281. };
  3282. struct ricb *ricb = &qdev->ricb;
  3283. int status = 0;
  3284. int i;
  3285. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  3286. memset((void *)ricb, 0, sizeof(*ricb));
  3287. ricb->base_cq = RSS_L4K;
  3288. ricb->flags =
  3289. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
  3290. ricb->mask = cpu_to_le16((u16)(0x3ff));
  3291. /*
  3292. * Fill out the Indirection Table.
  3293. */
  3294. for (i = 0; i < 1024; i++)
  3295. hash_id[i] = (i & (qdev->rss_ring_count - 1));
  3296. memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
  3297. memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
  3298. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  3299. if (status) {
  3300. netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
  3301. return status;
  3302. }
  3303. return status;
  3304. }
  3305. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  3306. {
  3307. int i, status = 0;
  3308. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3309. if (status)
  3310. return status;
  3311. /* Clear all the entries in the routing table. */
  3312. for (i = 0; i < 16; i++) {
  3313. status = ql_set_routing_reg(qdev, i, 0, 0);
  3314. if (status) {
  3315. netif_err(qdev, ifup, qdev->ndev,
  3316. "Failed to init routing register for CAM packets.\n");
  3317. break;
  3318. }
  3319. }
  3320. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3321. return status;
  3322. }
  3323. /* Initialize the frame-to-queue routing. */
  3324. static int ql_route_initialize(struct ql_adapter *qdev)
  3325. {
  3326. int status = 0;
  3327. /* Clear all the entries in the routing table. */
  3328. status = ql_clear_routing_entries(qdev);
  3329. if (status)
  3330. return status;
  3331. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3332. if (status)
  3333. return status;
  3334. status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
  3335. RT_IDX_IP_CSUM_ERR, 1);
  3336. if (status) {
  3337. netif_err(qdev, ifup, qdev->ndev,
  3338. "Failed to init routing register "
  3339. "for IP CSUM error packets.\n");
  3340. goto exit;
  3341. }
  3342. status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
  3343. RT_IDX_TU_CSUM_ERR, 1);
  3344. if (status) {
  3345. netif_err(qdev, ifup, qdev->ndev,
  3346. "Failed to init routing register "
  3347. "for TCP/UDP CSUM error packets.\n");
  3348. goto exit;
  3349. }
  3350. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  3351. if (status) {
  3352. netif_err(qdev, ifup, qdev->ndev,
  3353. "Failed to init routing register for broadcast packets.\n");
  3354. goto exit;
  3355. }
  3356. /* If we have more than one inbound queue, then turn on RSS in the
  3357. * routing block.
  3358. */
  3359. if (qdev->rss_ring_count > 1) {
  3360. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  3361. RT_IDX_RSS_MATCH, 1);
  3362. if (status) {
  3363. netif_err(qdev, ifup, qdev->ndev,
  3364. "Failed to init routing register for MATCH RSS packets.\n");
  3365. goto exit;
  3366. }
  3367. }
  3368. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  3369. RT_IDX_CAM_HIT, 1);
  3370. if (status)
  3371. netif_err(qdev, ifup, qdev->ndev,
  3372. "Failed to init routing register for CAM packets.\n");
  3373. exit:
  3374. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3375. return status;
  3376. }
  3377. int ql_cam_route_initialize(struct ql_adapter *qdev)
  3378. {
  3379. int status, set;
  3380. /* If check if the link is up and use to
  3381. * determine if we are setting or clearing
  3382. * the MAC address in the CAM.
  3383. */
  3384. set = ql_read32(qdev, STS);
  3385. set &= qdev->port_link_up;
  3386. status = ql_set_mac_addr(qdev, set);
  3387. if (status) {
  3388. netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
  3389. return status;
  3390. }
  3391. status = ql_route_initialize(qdev);
  3392. if (status)
  3393. netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
  3394. return status;
  3395. }
  3396. static int ql_adapter_initialize(struct ql_adapter *qdev)
  3397. {
  3398. u32 value, mask;
  3399. int i;
  3400. int status = 0;
  3401. /*
  3402. * Set up the System register to halt on errors.
  3403. */
  3404. value = SYS_EFE | SYS_FAE;
  3405. mask = value << 16;
  3406. ql_write32(qdev, SYS, mask | value);
  3407. /* Set the default queue, and VLAN behavior. */
  3408. value = NIC_RCV_CFG_DFQ;
  3409. mask = NIC_RCV_CFG_DFQ_MASK;
  3410. if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
  3411. value |= NIC_RCV_CFG_RV;
  3412. mask |= (NIC_RCV_CFG_RV << 16);
  3413. }
  3414. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  3415. /* Set the MPI interrupt to enabled. */
  3416. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  3417. /* Enable the function, set pagesize, enable error checking. */
  3418. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  3419. FSC_EC | FSC_VM_PAGE_4K;
  3420. value |= SPLT_SETTING;
  3421. /* Set/clear header splitting. */
  3422. mask = FSC_VM_PAGESIZE_MASK |
  3423. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  3424. ql_write32(qdev, FSC, mask | value);
  3425. ql_write32(qdev, SPLT_HDR, SPLT_LEN);
  3426. /* Set RX packet routing to use port/pci function on which the
  3427. * packet arrived on in addition to usual frame routing.
  3428. * This is helpful on bonding where both interfaces can have
  3429. * the same MAC address.
  3430. */
  3431. ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
  3432. /* Reroute all packets to our Interface.
  3433. * They may have been routed to MPI firmware
  3434. * due to WOL.
  3435. */
  3436. value = ql_read32(qdev, MGMT_RCV_CFG);
  3437. value &= ~MGMT_RCV_CFG_RM;
  3438. mask = 0xffff0000;
  3439. /* Sticky reg needs clearing due to WOL. */
  3440. ql_write32(qdev, MGMT_RCV_CFG, mask);
  3441. ql_write32(qdev, MGMT_RCV_CFG, mask | value);
  3442. /* Default WOL is enable on Mezz cards */
  3443. if (qdev->pdev->subsystem_device == 0x0068 ||
  3444. qdev->pdev->subsystem_device == 0x0180)
  3445. qdev->wol = WAKE_MAGIC;
  3446. /* Start up the rx queues. */
  3447. for (i = 0; i < qdev->rx_ring_count; i++) {
  3448. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  3449. if (status) {
  3450. netif_err(qdev, ifup, qdev->ndev,
  3451. "Failed to start rx ring[%d].\n", i);
  3452. return status;
  3453. }
  3454. }
  3455. /* If there is more than one inbound completion queue
  3456. * then download a RICB to configure RSS.
  3457. */
  3458. if (qdev->rss_ring_count > 1) {
  3459. status = ql_start_rss(qdev);
  3460. if (status) {
  3461. netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
  3462. return status;
  3463. }
  3464. }
  3465. /* Start up the tx queues. */
  3466. for (i = 0; i < qdev->tx_ring_count; i++) {
  3467. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  3468. if (status) {
  3469. netif_err(qdev, ifup, qdev->ndev,
  3470. "Failed to start tx ring[%d].\n", i);
  3471. return status;
  3472. }
  3473. }
  3474. /* Initialize the port and set the max framesize. */
  3475. status = qdev->nic_ops->port_initialize(qdev);
  3476. if (status)
  3477. netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
  3478. /* Set up the MAC address and frame routing filter. */
  3479. status = ql_cam_route_initialize(qdev);
  3480. if (status) {
  3481. netif_err(qdev, ifup, qdev->ndev,
  3482. "Failed to init CAM/Routing tables.\n");
  3483. return status;
  3484. }
  3485. /* Start NAPI for the RSS queues. */
  3486. for (i = 0; i < qdev->rss_ring_count; i++)
  3487. napi_enable(&qdev->rx_ring[i].napi);
  3488. return status;
  3489. }
  3490. /* Issue soft reset to chip. */
  3491. static int ql_adapter_reset(struct ql_adapter *qdev)
  3492. {
  3493. u32 value;
  3494. int status = 0;
  3495. unsigned long end_jiffies;
  3496. /* Clear all the entries in the routing table. */
  3497. status = ql_clear_routing_entries(qdev);
  3498. if (status) {
  3499. netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
  3500. return status;
  3501. }
  3502. end_jiffies = jiffies +
  3503. max((unsigned long)1, usecs_to_jiffies(30));
  3504. /* Check if bit is set then skip the mailbox command and
  3505. * clear the bit, else we are in normal reset process.
  3506. */
  3507. if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
  3508. /* Stop management traffic. */
  3509. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
  3510. /* Wait for the NIC and MGMNT FIFOs to empty. */
  3511. ql_wait_fifo_empty(qdev);
  3512. } else
  3513. clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
  3514. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  3515. do {
  3516. value = ql_read32(qdev, RST_FO);
  3517. if ((value & RST_FO_FR) == 0)
  3518. break;
  3519. cpu_relax();
  3520. } while (time_before(jiffies, end_jiffies));
  3521. if (value & RST_FO_FR) {
  3522. netif_err(qdev, ifdown, qdev->ndev,
  3523. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  3524. status = -ETIMEDOUT;
  3525. }
  3526. /* Resume management traffic. */
  3527. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
  3528. return status;
  3529. }
  3530. static void ql_display_dev_info(struct net_device *ndev)
  3531. {
  3532. struct ql_adapter *qdev = netdev_priv(ndev);
  3533. netif_info(qdev, probe, qdev->ndev,
  3534. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3535. "XG Roll = %d, XG Rev = %d.\n",
  3536. qdev->func,
  3537. qdev->port,
  3538. qdev->chip_rev_id & 0x0000000f,
  3539. qdev->chip_rev_id >> 4 & 0x0000000f,
  3540. qdev->chip_rev_id >> 8 & 0x0000000f,
  3541. qdev->chip_rev_id >> 12 & 0x0000000f);
  3542. netif_info(qdev, probe, qdev->ndev,
  3543. "MAC address %pM\n", ndev->dev_addr);
  3544. }
  3545. static int ql_wol(struct ql_adapter *qdev)
  3546. {
  3547. int status = 0;
  3548. u32 wol = MB_WOL_DISABLE;
  3549. /* The CAM is still intact after a reset, but if we
  3550. * are doing WOL, then we may need to program the
  3551. * routing regs. We would also need to issue the mailbox
  3552. * commands to instruct the MPI what to do per the ethtool
  3553. * settings.
  3554. */
  3555. if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
  3556. WAKE_MCAST | WAKE_BCAST)) {
  3557. netif_err(qdev, ifdown, qdev->ndev,
  3558. "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
  3559. qdev->wol);
  3560. return -EINVAL;
  3561. }
  3562. if (qdev->wol & WAKE_MAGIC) {
  3563. status = ql_mb_wol_set_magic(qdev, 1);
  3564. if (status) {
  3565. netif_err(qdev, ifdown, qdev->ndev,
  3566. "Failed to set magic packet on %s.\n",
  3567. qdev->ndev->name);
  3568. return status;
  3569. } else
  3570. netif_info(qdev, drv, qdev->ndev,
  3571. "Enabled magic packet successfully on %s.\n",
  3572. qdev->ndev->name);
  3573. wol |= MB_WOL_MAGIC_PKT;
  3574. }
  3575. if (qdev->wol) {
  3576. wol |= MB_WOL_MODE_ON;
  3577. status = ql_mb_wol_mode(qdev, wol);
  3578. netif_err(qdev, drv, qdev->ndev,
  3579. "WOL %s (wol code 0x%x) on %s\n",
  3580. (status == 0) ? "Successfully set" : "Failed",
  3581. wol, qdev->ndev->name);
  3582. }
  3583. return status;
  3584. }
  3585. static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
  3586. {
  3587. /* Don't kill the reset worker thread if we
  3588. * are in the process of recovery.
  3589. */
  3590. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3591. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3592. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3593. cancel_delayed_work_sync(&qdev->mpi_work);
  3594. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3595. cancel_delayed_work_sync(&qdev->mpi_core_to_log);
  3596. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3597. }
  3598. static int ql_adapter_down(struct ql_adapter *qdev)
  3599. {
  3600. int i, status = 0;
  3601. ql_link_off(qdev);
  3602. ql_cancel_all_work_sync(qdev);
  3603. for (i = 0; i < qdev->rss_ring_count; i++)
  3604. napi_disable(&qdev->rx_ring[i].napi);
  3605. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3606. ql_disable_interrupts(qdev);
  3607. ql_tx_ring_clean(qdev);
  3608. /* Call netif_napi_del() from common point.
  3609. */
  3610. for (i = 0; i < qdev->rss_ring_count; i++)
  3611. netif_napi_del(&qdev->rx_ring[i].napi);
  3612. status = ql_adapter_reset(qdev);
  3613. if (status)
  3614. netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
  3615. qdev->func);
  3616. ql_free_rx_buffers(qdev);
  3617. return status;
  3618. }
  3619. static int ql_adapter_up(struct ql_adapter *qdev)
  3620. {
  3621. int err = 0;
  3622. err = ql_adapter_initialize(qdev);
  3623. if (err) {
  3624. netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
  3625. goto err_init;
  3626. }
  3627. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3628. ql_alloc_rx_buffers(qdev);
  3629. /* If the port is initialized and the
  3630. * link is up the turn on the carrier.
  3631. */
  3632. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3633. (ql_read32(qdev, STS) & qdev->port_link_up))
  3634. ql_link_on(qdev);
  3635. /* Restore rx mode. */
  3636. clear_bit(QL_ALLMULTI, &qdev->flags);
  3637. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3638. qlge_set_multicast_list(qdev->ndev);
  3639. /* Restore vlan setting. */
  3640. qlge_restore_vlan(qdev);
  3641. ql_enable_interrupts(qdev);
  3642. ql_enable_all_completion_interrupts(qdev);
  3643. netif_tx_start_all_queues(qdev->ndev);
  3644. return 0;
  3645. err_init:
  3646. ql_adapter_reset(qdev);
  3647. return err;
  3648. }
  3649. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3650. {
  3651. ql_free_mem_resources(qdev);
  3652. ql_free_irq(qdev);
  3653. }
  3654. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3655. {
  3656. int status = 0;
  3657. if (ql_alloc_mem_resources(qdev)) {
  3658. netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
  3659. return -ENOMEM;
  3660. }
  3661. status = ql_request_irq(qdev);
  3662. return status;
  3663. }
  3664. static int qlge_close(struct net_device *ndev)
  3665. {
  3666. struct ql_adapter *qdev = netdev_priv(ndev);
  3667. /* If we hit pci_channel_io_perm_failure
  3668. * failure condition, then we already
  3669. * brought the adapter down.
  3670. */
  3671. if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
  3672. netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
  3673. clear_bit(QL_EEH_FATAL, &qdev->flags);
  3674. return 0;
  3675. }
  3676. /*
  3677. * Wait for device to recover from a reset.
  3678. * (Rarely happens, but possible.)
  3679. */
  3680. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3681. msleep(1);
  3682. ql_adapter_down(qdev);
  3683. ql_release_adapter_resources(qdev);
  3684. return 0;
  3685. }
  3686. static int ql_configure_rings(struct ql_adapter *qdev)
  3687. {
  3688. int i;
  3689. struct rx_ring *rx_ring;
  3690. struct tx_ring *tx_ring;
  3691. int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
  3692. unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3693. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3694. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3695. /* In a perfect world we have one RSS ring for each CPU
  3696. * and each has it's own vector. To do that we ask for
  3697. * cpu_cnt vectors. ql_enable_msix() will adjust the
  3698. * vector count to what we actually get. We then
  3699. * allocate an RSS ring for each.
  3700. * Essentially, we are doing min(cpu_count, msix_vector_count).
  3701. */
  3702. qdev->intr_count = cpu_cnt;
  3703. ql_enable_msix(qdev);
  3704. /* Adjust the RSS ring count to the actual vector count. */
  3705. qdev->rss_ring_count = qdev->intr_count;
  3706. qdev->tx_ring_count = cpu_cnt;
  3707. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
  3708. for (i = 0; i < qdev->tx_ring_count; i++) {
  3709. tx_ring = &qdev->tx_ring[i];
  3710. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3711. tx_ring->qdev = qdev;
  3712. tx_ring->wq_id = i;
  3713. tx_ring->wq_len = qdev->tx_ring_size;
  3714. tx_ring->wq_size =
  3715. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3716. /*
  3717. * The completion queue ID for the tx rings start
  3718. * immediately after the rss rings.
  3719. */
  3720. tx_ring->cq_id = qdev->rss_ring_count + i;
  3721. }
  3722. for (i = 0; i < qdev->rx_ring_count; i++) {
  3723. rx_ring = &qdev->rx_ring[i];
  3724. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3725. rx_ring->qdev = qdev;
  3726. rx_ring->cq_id = i;
  3727. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3728. if (i < qdev->rss_ring_count) {
  3729. /*
  3730. * Inbound (RSS) queues.
  3731. */
  3732. rx_ring->cq_len = qdev->rx_ring_size;
  3733. rx_ring->cq_size =
  3734. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3735. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3736. rx_ring->lbq_size =
  3737. rx_ring->lbq_len * sizeof(__le64);
  3738. rx_ring->lbq_buf_size = (u16)lbq_buf_len;
  3739. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3740. rx_ring->sbq_size =
  3741. rx_ring->sbq_len * sizeof(__le64);
  3742. rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
  3743. rx_ring->type = RX_Q;
  3744. } else {
  3745. /*
  3746. * Outbound queue handles outbound completions only.
  3747. */
  3748. /* outbound cq is same size as tx_ring it services. */
  3749. rx_ring->cq_len = qdev->tx_ring_size;
  3750. rx_ring->cq_size =
  3751. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3752. rx_ring->lbq_len = 0;
  3753. rx_ring->lbq_size = 0;
  3754. rx_ring->lbq_buf_size = 0;
  3755. rx_ring->sbq_len = 0;
  3756. rx_ring->sbq_size = 0;
  3757. rx_ring->sbq_buf_size = 0;
  3758. rx_ring->type = TX_Q;
  3759. }
  3760. }
  3761. return 0;
  3762. }
  3763. static int qlge_open(struct net_device *ndev)
  3764. {
  3765. int err = 0;
  3766. struct ql_adapter *qdev = netdev_priv(ndev);
  3767. err = ql_adapter_reset(qdev);
  3768. if (err)
  3769. return err;
  3770. err = ql_configure_rings(qdev);
  3771. if (err)
  3772. return err;
  3773. err = ql_get_adapter_resources(qdev);
  3774. if (err)
  3775. goto error_up;
  3776. err = ql_adapter_up(qdev);
  3777. if (err)
  3778. goto error_up;
  3779. return err;
  3780. error_up:
  3781. ql_release_adapter_resources(qdev);
  3782. return err;
  3783. }
  3784. static int ql_change_rx_buffers(struct ql_adapter *qdev)
  3785. {
  3786. struct rx_ring *rx_ring;
  3787. int i, status;
  3788. u32 lbq_buf_len;
  3789. /* Wait for an outstanding reset to complete. */
  3790. if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3791. int i = 3;
  3792. while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3793. netif_err(qdev, ifup, qdev->ndev,
  3794. "Waiting for adapter UP...\n");
  3795. ssleep(1);
  3796. }
  3797. if (!i) {
  3798. netif_err(qdev, ifup, qdev->ndev,
  3799. "Timed out waiting for adapter UP\n");
  3800. return -ETIMEDOUT;
  3801. }
  3802. }
  3803. status = ql_adapter_down(qdev);
  3804. if (status)
  3805. goto error;
  3806. /* Get the new rx buffer size. */
  3807. lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3808. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3809. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3810. for (i = 0; i < qdev->rss_ring_count; i++) {
  3811. rx_ring = &qdev->rx_ring[i];
  3812. /* Set the new size. */
  3813. rx_ring->lbq_buf_size = lbq_buf_len;
  3814. }
  3815. status = ql_adapter_up(qdev);
  3816. if (status)
  3817. goto error;
  3818. return status;
  3819. error:
  3820. netif_alert(qdev, ifup, qdev->ndev,
  3821. "Driver up/down cycle failed, closing device.\n");
  3822. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3823. dev_close(qdev->ndev);
  3824. return status;
  3825. }
  3826. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3827. {
  3828. struct ql_adapter *qdev = netdev_priv(ndev);
  3829. int status;
  3830. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3831. netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
  3832. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3833. netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
  3834. } else
  3835. return -EINVAL;
  3836. queue_delayed_work(qdev->workqueue,
  3837. &qdev->mpi_port_cfg_work, 3*HZ);
  3838. ndev->mtu = new_mtu;
  3839. if (!netif_running(qdev->ndev)) {
  3840. return 0;
  3841. }
  3842. status = ql_change_rx_buffers(qdev);
  3843. if (status) {
  3844. netif_err(qdev, ifup, qdev->ndev,
  3845. "Changing MTU failed.\n");
  3846. }
  3847. return status;
  3848. }
  3849. static struct net_device_stats *qlge_get_stats(struct net_device
  3850. *ndev)
  3851. {
  3852. struct ql_adapter *qdev = netdev_priv(ndev);
  3853. struct rx_ring *rx_ring = &qdev->rx_ring[0];
  3854. struct tx_ring *tx_ring = &qdev->tx_ring[0];
  3855. unsigned long pkts, mcast, dropped, errors, bytes;
  3856. int i;
  3857. /* Get RX stats. */
  3858. pkts = mcast = dropped = errors = bytes = 0;
  3859. for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
  3860. pkts += rx_ring->rx_packets;
  3861. bytes += rx_ring->rx_bytes;
  3862. dropped += rx_ring->rx_dropped;
  3863. errors += rx_ring->rx_errors;
  3864. mcast += rx_ring->rx_multicast;
  3865. }
  3866. ndev->stats.rx_packets = pkts;
  3867. ndev->stats.rx_bytes = bytes;
  3868. ndev->stats.rx_dropped = dropped;
  3869. ndev->stats.rx_errors = errors;
  3870. ndev->stats.multicast = mcast;
  3871. /* Get TX stats. */
  3872. pkts = errors = bytes = 0;
  3873. for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
  3874. pkts += tx_ring->tx_packets;
  3875. bytes += tx_ring->tx_bytes;
  3876. errors += tx_ring->tx_errors;
  3877. }
  3878. ndev->stats.tx_packets = pkts;
  3879. ndev->stats.tx_bytes = bytes;
  3880. ndev->stats.tx_errors = errors;
  3881. return &ndev->stats;
  3882. }
  3883. static void qlge_set_multicast_list(struct net_device *ndev)
  3884. {
  3885. struct ql_adapter *qdev = netdev_priv(ndev);
  3886. struct netdev_hw_addr *ha;
  3887. int i, status;
  3888. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3889. if (status)
  3890. return;
  3891. /*
  3892. * Set or clear promiscuous mode if a
  3893. * transition is taking place.
  3894. */
  3895. if (ndev->flags & IFF_PROMISC) {
  3896. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3897. if (ql_set_routing_reg
  3898. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3899. netif_err(qdev, hw, qdev->ndev,
  3900. "Failed to set promiscuous mode.\n");
  3901. } else {
  3902. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3903. }
  3904. }
  3905. } else {
  3906. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3907. if (ql_set_routing_reg
  3908. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3909. netif_err(qdev, hw, qdev->ndev,
  3910. "Failed to clear promiscuous mode.\n");
  3911. } else {
  3912. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3913. }
  3914. }
  3915. }
  3916. /*
  3917. * Set or clear all multicast mode if a
  3918. * transition is taking place.
  3919. */
  3920. if ((ndev->flags & IFF_ALLMULTI) ||
  3921. (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
  3922. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3923. if (ql_set_routing_reg
  3924. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3925. netif_err(qdev, hw, qdev->ndev,
  3926. "Failed to set all-multi mode.\n");
  3927. } else {
  3928. set_bit(QL_ALLMULTI, &qdev->flags);
  3929. }
  3930. }
  3931. } else {
  3932. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3933. if (ql_set_routing_reg
  3934. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3935. netif_err(qdev, hw, qdev->ndev,
  3936. "Failed to clear all-multi mode.\n");
  3937. } else {
  3938. clear_bit(QL_ALLMULTI, &qdev->flags);
  3939. }
  3940. }
  3941. }
  3942. if (!netdev_mc_empty(ndev)) {
  3943. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3944. if (status)
  3945. goto exit;
  3946. i = 0;
  3947. netdev_for_each_mc_addr(ha, ndev) {
  3948. if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
  3949. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3950. netif_err(qdev, hw, qdev->ndev,
  3951. "Failed to loadmulticast address.\n");
  3952. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3953. goto exit;
  3954. }
  3955. i++;
  3956. }
  3957. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3958. if (ql_set_routing_reg
  3959. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3960. netif_err(qdev, hw, qdev->ndev,
  3961. "Failed to set multicast match mode.\n");
  3962. } else {
  3963. set_bit(QL_ALLMULTI, &qdev->flags);
  3964. }
  3965. }
  3966. exit:
  3967. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3968. }
  3969. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3970. {
  3971. struct ql_adapter *qdev = netdev_priv(ndev);
  3972. struct sockaddr *addr = p;
  3973. int status;
  3974. if (!is_valid_ether_addr(addr->sa_data))
  3975. return -EADDRNOTAVAIL;
  3976. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3977. /* Update local copy of current mac address. */
  3978. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  3979. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3980. if (status)
  3981. return status;
  3982. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3983. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3984. if (status)
  3985. netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
  3986. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3987. return status;
  3988. }
  3989. static void qlge_tx_timeout(struct net_device *ndev)
  3990. {
  3991. struct ql_adapter *qdev = netdev_priv(ndev);
  3992. ql_queue_asic_error(qdev);
  3993. }
  3994. static void ql_asic_reset_work(struct work_struct *work)
  3995. {
  3996. struct ql_adapter *qdev =
  3997. container_of(work, struct ql_adapter, asic_reset_work.work);
  3998. int status;
  3999. rtnl_lock();
  4000. status = ql_adapter_down(qdev);
  4001. if (status)
  4002. goto error;
  4003. status = ql_adapter_up(qdev);
  4004. if (status)
  4005. goto error;
  4006. /* Restore rx mode. */
  4007. clear_bit(QL_ALLMULTI, &qdev->flags);
  4008. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  4009. qlge_set_multicast_list(qdev->ndev);
  4010. rtnl_unlock();
  4011. return;
  4012. error:
  4013. netif_alert(qdev, ifup, qdev->ndev,
  4014. "Driver up/down cycle failed, closing device\n");
  4015. set_bit(QL_ADAPTER_UP, &qdev->flags);
  4016. dev_close(qdev->ndev);
  4017. rtnl_unlock();
  4018. }
  4019. static const struct nic_operations qla8012_nic_ops = {
  4020. .get_flash = ql_get_8012_flash_params,
  4021. .port_initialize = ql_8012_port_initialize,
  4022. };
  4023. static const struct nic_operations qla8000_nic_ops = {
  4024. .get_flash = ql_get_8000_flash_params,
  4025. .port_initialize = ql_8000_port_initialize,
  4026. };
  4027. /* Find the pcie function number for the other NIC
  4028. * on this chip. Since both NIC functions share a
  4029. * common firmware we have the lowest enabled function
  4030. * do any common work. Examples would be resetting
  4031. * after a fatal firmware error, or doing a firmware
  4032. * coredump.
  4033. */
  4034. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  4035. {
  4036. int status = 0;
  4037. u32 temp;
  4038. u32 nic_func1, nic_func2;
  4039. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  4040. &temp);
  4041. if (status)
  4042. return status;
  4043. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  4044. MPI_TEST_NIC_FUNC_MASK);
  4045. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  4046. MPI_TEST_NIC_FUNC_MASK);
  4047. if (qdev->func == nic_func1)
  4048. qdev->alt_func = nic_func2;
  4049. else if (qdev->func == nic_func2)
  4050. qdev->alt_func = nic_func1;
  4051. else
  4052. status = -EIO;
  4053. return status;
  4054. }
  4055. static int ql_get_board_info(struct ql_adapter *qdev)
  4056. {
  4057. int status;
  4058. qdev->func =
  4059. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  4060. if (qdev->func > 3)
  4061. return -EIO;
  4062. status = ql_get_alt_pcie_func(qdev);
  4063. if (status)
  4064. return status;
  4065. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  4066. if (qdev->port) {
  4067. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  4068. qdev->port_link_up = STS_PL1;
  4069. qdev->port_init = STS_PI1;
  4070. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  4071. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  4072. } else {
  4073. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  4074. qdev->port_link_up = STS_PL0;
  4075. qdev->port_init = STS_PI0;
  4076. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  4077. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  4078. }
  4079. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  4080. qdev->device_id = qdev->pdev->device;
  4081. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  4082. qdev->nic_ops = &qla8012_nic_ops;
  4083. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  4084. qdev->nic_ops = &qla8000_nic_ops;
  4085. return status;
  4086. }
  4087. static void ql_release_all(struct pci_dev *pdev)
  4088. {
  4089. struct net_device *ndev = pci_get_drvdata(pdev);
  4090. struct ql_adapter *qdev = netdev_priv(ndev);
  4091. if (qdev->workqueue) {
  4092. destroy_workqueue(qdev->workqueue);
  4093. qdev->workqueue = NULL;
  4094. }
  4095. if (qdev->reg_base)
  4096. iounmap(qdev->reg_base);
  4097. if (qdev->doorbell_area)
  4098. iounmap(qdev->doorbell_area);
  4099. vfree(qdev->mpi_coredump);
  4100. pci_release_regions(pdev);
  4101. }
  4102. static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
  4103. int cards_found)
  4104. {
  4105. struct ql_adapter *qdev = netdev_priv(ndev);
  4106. int err = 0;
  4107. memset((void *)qdev, 0, sizeof(*qdev));
  4108. err = pci_enable_device(pdev);
  4109. if (err) {
  4110. dev_err(&pdev->dev, "PCI device enable failed.\n");
  4111. return err;
  4112. }
  4113. qdev->ndev = ndev;
  4114. qdev->pdev = pdev;
  4115. pci_set_drvdata(pdev, ndev);
  4116. /* Set PCIe read request size */
  4117. err = pcie_set_readrq(pdev, 4096);
  4118. if (err) {
  4119. dev_err(&pdev->dev, "Set readrq failed.\n");
  4120. goto err_out1;
  4121. }
  4122. err = pci_request_regions(pdev, DRV_NAME);
  4123. if (err) {
  4124. dev_err(&pdev->dev, "PCI region request failed.\n");
  4125. return err;
  4126. }
  4127. pci_set_master(pdev);
  4128. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  4129. set_bit(QL_DMA64, &qdev->flags);
  4130. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  4131. } else {
  4132. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  4133. if (!err)
  4134. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  4135. }
  4136. if (err) {
  4137. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  4138. goto err_out2;
  4139. }
  4140. /* Set PCIe reset type for EEH to fundamental. */
  4141. pdev->needs_freset = 1;
  4142. pci_save_state(pdev);
  4143. qdev->reg_base =
  4144. ioremap_nocache(pci_resource_start(pdev, 1),
  4145. pci_resource_len(pdev, 1));
  4146. if (!qdev->reg_base) {
  4147. dev_err(&pdev->dev, "Register mapping failed.\n");
  4148. err = -ENOMEM;
  4149. goto err_out2;
  4150. }
  4151. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  4152. qdev->doorbell_area =
  4153. ioremap_nocache(pci_resource_start(pdev, 3),
  4154. pci_resource_len(pdev, 3));
  4155. if (!qdev->doorbell_area) {
  4156. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  4157. err = -ENOMEM;
  4158. goto err_out2;
  4159. }
  4160. err = ql_get_board_info(qdev);
  4161. if (err) {
  4162. dev_err(&pdev->dev, "Register access failed.\n");
  4163. err = -EIO;
  4164. goto err_out2;
  4165. }
  4166. qdev->msg_enable = netif_msg_init(debug, default_msg);
  4167. spin_lock_init(&qdev->hw_lock);
  4168. spin_lock_init(&qdev->stats_lock);
  4169. if (qlge_mpi_coredump) {
  4170. qdev->mpi_coredump =
  4171. vmalloc(sizeof(struct ql_mpi_coredump));
  4172. if (qdev->mpi_coredump == NULL) {
  4173. err = -ENOMEM;
  4174. goto err_out2;
  4175. }
  4176. if (qlge_force_coredump)
  4177. set_bit(QL_FRC_COREDUMP, &qdev->flags);
  4178. }
  4179. /* make sure the EEPROM is good */
  4180. err = qdev->nic_ops->get_flash(qdev);
  4181. if (err) {
  4182. dev_err(&pdev->dev, "Invalid FLASH.\n");
  4183. goto err_out2;
  4184. }
  4185. /* Keep local copy of current mac address. */
  4186. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  4187. /* Set up the default ring sizes. */
  4188. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  4189. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  4190. /* Set up the coalescing parameters. */
  4191. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4192. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4193. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4194. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4195. /*
  4196. * Set up the operating parameters.
  4197. */
  4198. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  4199. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  4200. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  4201. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  4202. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  4203. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  4204. INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
  4205. init_completion(&qdev->ide_completion);
  4206. mutex_init(&qdev->mpi_mutex);
  4207. if (!cards_found) {
  4208. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  4209. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  4210. DRV_NAME, DRV_VERSION);
  4211. }
  4212. return 0;
  4213. err_out2:
  4214. ql_release_all(pdev);
  4215. err_out1:
  4216. pci_disable_device(pdev);
  4217. return err;
  4218. }
  4219. static const struct net_device_ops qlge_netdev_ops = {
  4220. .ndo_open = qlge_open,
  4221. .ndo_stop = qlge_close,
  4222. .ndo_start_xmit = qlge_send,
  4223. .ndo_change_mtu = qlge_change_mtu,
  4224. .ndo_get_stats = qlge_get_stats,
  4225. .ndo_set_rx_mode = qlge_set_multicast_list,
  4226. .ndo_set_mac_address = qlge_set_mac_address,
  4227. .ndo_validate_addr = eth_validate_addr,
  4228. .ndo_tx_timeout = qlge_tx_timeout,
  4229. .ndo_fix_features = qlge_fix_features,
  4230. .ndo_set_features = qlge_set_features,
  4231. .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
  4232. .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
  4233. };
  4234. static void ql_timer(unsigned long data)
  4235. {
  4236. struct ql_adapter *qdev = (struct ql_adapter *)data;
  4237. u32 var = 0;
  4238. var = ql_read32(qdev, STS);
  4239. if (pci_channel_offline(qdev->pdev)) {
  4240. netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
  4241. return;
  4242. }
  4243. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4244. }
  4245. static int qlge_probe(struct pci_dev *pdev,
  4246. const struct pci_device_id *pci_entry)
  4247. {
  4248. struct net_device *ndev = NULL;
  4249. struct ql_adapter *qdev = NULL;
  4250. static int cards_found = 0;
  4251. int err = 0;
  4252. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  4253. min(MAX_CPUS, netif_get_num_default_rss_queues()));
  4254. if (!ndev)
  4255. return -ENOMEM;
  4256. err = ql_init_device(pdev, ndev, cards_found);
  4257. if (err < 0) {
  4258. free_netdev(ndev);
  4259. return err;
  4260. }
  4261. qdev = netdev_priv(ndev);
  4262. SET_NETDEV_DEV(ndev, &pdev->dev);
  4263. ndev->hw_features = NETIF_F_SG |
  4264. NETIF_F_IP_CSUM |
  4265. NETIF_F_TSO |
  4266. NETIF_F_TSO_ECN |
  4267. NETIF_F_HW_VLAN_CTAG_TX |
  4268. NETIF_F_HW_VLAN_CTAG_RX |
  4269. NETIF_F_HW_VLAN_CTAG_FILTER |
  4270. NETIF_F_RXCSUM;
  4271. ndev->features = ndev->hw_features;
  4272. ndev->vlan_features = ndev->hw_features;
  4273. if (test_bit(QL_DMA64, &qdev->flags))
  4274. ndev->features |= NETIF_F_HIGHDMA;
  4275. /*
  4276. * Set up net_device structure.
  4277. */
  4278. ndev->tx_queue_len = qdev->tx_ring_size;
  4279. ndev->irq = pdev->irq;
  4280. ndev->netdev_ops = &qlge_netdev_ops;
  4281. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  4282. ndev->watchdog_timeo = 10 * HZ;
  4283. err = register_netdev(ndev);
  4284. if (err) {
  4285. dev_err(&pdev->dev, "net device registration failed.\n");
  4286. ql_release_all(pdev);
  4287. pci_disable_device(pdev);
  4288. free_netdev(ndev);
  4289. return err;
  4290. }
  4291. /* Start up the timer to trigger EEH if
  4292. * the bus goes dead
  4293. */
  4294. init_timer_deferrable(&qdev->timer);
  4295. qdev->timer.data = (unsigned long)qdev;
  4296. qdev->timer.function = ql_timer;
  4297. qdev->timer.expires = jiffies + (5*HZ);
  4298. add_timer(&qdev->timer);
  4299. ql_link_off(qdev);
  4300. ql_display_dev_info(ndev);
  4301. atomic_set(&qdev->lb_count, 0);
  4302. cards_found++;
  4303. return 0;
  4304. }
  4305. netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
  4306. {
  4307. return qlge_send(skb, ndev);
  4308. }
  4309. int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
  4310. {
  4311. return ql_clean_inbound_rx_ring(rx_ring, budget);
  4312. }
  4313. static void qlge_remove(struct pci_dev *pdev)
  4314. {
  4315. struct net_device *ndev = pci_get_drvdata(pdev);
  4316. struct ql_adapter *qdev = netdev_priv(ndev);
  4317. del_timer_sync(&qdev->timer);
  4318. ql_cancel_all_work_sync(qdev);
  4319. unregister_netdev(ndev);
  4320. ql_release_all(pdev);
  4321. pci_disable_device(pdev);
  4322. free_netdev(ndev);
  4323. }
  4324. /* Clean up resources without touching hardware. */
  4325. static void ql_eeh_close(struct net_device *ndev)
  4326. {
  4327. int i;
  4328. struct ql_adapter *qdev = netdev_priv(ndev);
  4329. if (netif_carrier_ok(ndev)) {
  4330. netif_carrier_off(ndev);
  4331. netif_stop_queue(ndev);
  4332. }
  4333. /* Disabling the timer */
  4334. del_timer_sync(&qdev->timer);
  4335. ql_cancel_all_work_sync(qdev);
  4336. for (i = 0; i < qdev->rss_ring_count; i++)
  4337. netif_napi_del(&qdev->rx_ring[i].napi);
  4338. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  4339. ql_tx_ring_clean(qdev);
  4340. ql_free_rx_buffers(qdev);
  4341. ql_release_adapter_resources(qdev);
  4342. }
  4343. /*
  4344. * This callback is called by the PCI subsystem whenever
  4345. * a PCI bus error is detected.
  4346. */
  4347. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  4348. enum pci_channel_state state)
  4349. {
  4350. struct net_device *ndev = pci_get_drvdata(pdev);
  4351. struct ql_adapter *qdev = netdev_priv(ndev);
  4352. switch (state) {
  4353. case pci_channel_io_normal:
  4354. return PCI_ERS_RESULT_CAN_RECOVER;
  4355. case pci_channel_io_frozen:
  4356. netif_device_detach(ndev);
  4357. if (netif_running(ndev))
  4358. ql_eeh_close(ndev);
  4359. pci_disable_device(pdev);
  4360. return PCI_ERS_RESULT_NEED_RESET;
  4361. case pci_channel_io_perm_failure:
  4362. dev_err(&pdev->dev,
  4363. "%s: pci_channel_io_perm_failure.\n", __func__);
  4364. ql_eeh_close(ndev);
  4365. set_bit(QL_EEH_FATAL, &qdev->flags);
  4366. return PCI_ERS_RESULT_DISCONNECT;
  4367. }
  4368. /* Request a slot reset. */
  4369. return PCI_ERS_RESULT_NEED_RESET;
  4370. }
  4371. /*
  4372. * This callback is called after the PCI buss has been reset.
  4373. * Basically, this tries to restart the card from scratch.
  4374. * This is a shortened version of the device probe/discovery code,
  4375. * it resembles the first-half of the () routine.
  4376. */
  4377. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  4378. {
  4379. struct net_device *ndev = pci_get_drvdata(pdev);
  4380. struct ql_adapter *qdev = netdev_priv(ndev);
  4381. pdev->error_state = pci_channel_io_normal;
  4382. pci_restore_state(pdev);
  4383. if (pci_enable_device(pdev)) {
  4384. netif_err(qdev, ifup, qdev->ndev,
  4385. "Cannot re-enable PCI device after reset.\n");
  4386. return PCI_ERS_RESULT_DISCONNECT;
  4387. }
  4388. pci_set_master(pdev);
  4389. if (ql_adapter_reset(qdev)) {
  4390. netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
  4391. set_bit(QL_EEH_FATAL, &qdev->flags);
  4392. return PCI_ERS_RESULT_DISCONNECT;
  4393. }
  4394. return PCI_ERS_RESULT_RECOVERED;
  4395. }
  4396. static void qlge_io_resume(struct pci_dev *pdev)
  4397. {
  4398. struct net_device *ndev = pci_get_drvdata(pdev);
  4399. struct ql_adapter *qdev = netdev_priv(ndev);
  4400. int err = 0;
  4401. if (netif_running(ndev)) {
  4402. err = qlge_open(ndev);
  4403. if (err) {
  4404. netif_err(qdev, ifup, qdev->ndev,
  4405. "Device initialization failed after reset.\n");
  4406. return;
  4407. }
  4408. } else {
  4409. netif_err(qdev, ifup, qdev->ndev,
  4410. "Device was not running prior to EEH.\n");
  4411. }
  4412. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4413. netif_device_attach(ndev);
  4414. }
  4415. static const struct pci_error_handlers qlge_err_handler = {
  4416. .error_detected = qlge_io_error_detected,
  4417. .slot_reset = qlge_io_slot_reset,
  4418. .resume = qlge_io_resume,
  4419. };
  4420. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  4421. {
  4422. struct net_device *ndev = pci_get_drvdata(pdev);
  4423. struct ql_adapter *qdev = netdev_priv(ndev);
  4424. int err;
  4425. netif_device_detach(ndev);
  4426. del_timer_sync(&qdev->timer);
  4427. if (netif_running(ndev)) {
  4428. err = ql_adapter_down(qdev);
  4429. if (!err)
  4430. return err;
  4431. }
  4432. ql_wol(qdev);
  4433. err = pci_save_state(pdev);
  4434. if (err)
  4435. return err;
  4436. pci_disable_device(pdev);
  4437. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4438. return 0;
  4439. }
  4440. #ifdef CONFIG_PM
  4441. static int qlge_resume(struct pci_dev *pdev)
  4442. {
  4443. struct net_device *ndev = pci_get_drvdata(pdev);
  4444. struct ql_adapter *qdev = netdev_priv(ndev);
  4445. int err;
  4446. pci_set_power_state(pdev, PCI_D0);
  4447. pci_restore_state(pdev);
  4448. err = pci_enable_device(pdev);
  4449. if (err) {
  4450. netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
  4451. return err;
  4452. }
  4453. pci_set_master(pdev);
  4454. pci_enable_wake(pdev, PCI_D3hot, 0);
  4455. pci_enable_wake(pdev, PCI_D3cold, 0);
  4456. if (netif_running(ndev)) {
  4457. err = ql_adapter_up(qdev);
  4458. if (err)
  4459. return err;
  4460. }
  4461. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4462. netif_device_attach(ndev);
  4463. return 0;
  4464. }
  4465. #endif /* CONFIG_PM */
  4466. static void qlge_shutdown(struct pci_dev *pdev)
  4467. {
  4468. qlge_suspend(pdev, PMSG_SUSPEND);
  4469. }
  4470. static struct pci_driver qlge_driver = {
  4471. .name = DRV_NAME,
  4472. .id_table = qlge_pci_tbl,
  4473. .probe = qlge_probe,
  4474. .remove = qlge_remove,
  4475. #ifdef CONFIG_PM
  4476. .suspend = qlge_suspend,
  4477. .resume = qlge_resume,
  4478. #endif
  4479. .shutdown = qlge_shutdown,
  4480. .err_handler = &qlge_err_handler
  4481. };
  4482. module_pci_driver(qlge_driver);